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Abstract. When constructing practical zero-knowledge proofs based on
the hardness of the Ring-LWE or the Ring-SIS problems over polynomial
rings Zp[X]/(Xn +1), it is often necessary that the challenges come from
a set C that satisfies three properties: the set should be large (around
2256), the elements in it should have small norms, and all the non-zero
elements in the difference set C − C should be invertible. The first two
properties are straightforward to satisfy, while the third one requires us
to make efficiency compromises. We can either work over rings where
the polynomial Xn + 1 only splits into two irreducible factors modulo
p, which makes the speed of the multiplication operation in the ring
sub-optimal; or we can limit our challenge set to polynomials of smaller
degree, which requires them to have (much) larger norms.

In this work we show that one can use the optimal challenge sets C
and still have the polynomial Xn + 1 split into more than two factors.
This comes as a direct application of our more general result that states
that all non-zero polynomials with “small” coefficients in the cyclotomic
ring Zp[X]/(Φm(X)) are invertible (where “small” depends on the size
of p and how many irreducible factors the mth cyclotomic polynomial
Φm(X) splits into). We furthermore establish sufficient conditions for p
under which Φm(X) will split in such fashion.

For the purposes of implementation, if the polynomial Xn + 1 splits into
k factors, we can run FFT for log k levels until switching to Karatsuba
multiplication. Experimentally, we show that increasing the number of
levels from one to three or four results in a speedup by a factor of ≈ 2 –
3. We point out that this improvement comes completely for free simply
by choosing a modulus p that has certain algebraic properties. In addi-
tion to the speed improvement, having the polynomial split into many
factors has other applications – e.g. when one embeds information into
the Chinese Remainder representation of the ring elements, the more the
polynomial splits, the more information one can embed into an element.

1 Introduction

Cryptography based on the presumed hardness of the Ring / Module-SIS and
Ring / Module-LWE problems [Mic07, PR06, LM06, LPR10, LS15] is seen as a



very likely replacement of traditional cryptography after the eventual coming of
quantum computing. There already exist very efficient basic public key primiti-
ves, such as encryption schemes and digital signatures, based on the hardness of
these problems. For added efficiency, most practical lattice-based constructions
work over polynomial rings Zp[X]/(f(X)) where f(X) is the cyclotomic poly-
nomial f(X) = Xn + 1 and p is chosen in such a way that the Xn + 1 splits into
n linear factors modulo p. With such a choice of parameters, multiplication in
the ring can be performed very efficiently via the Number Theoretic Transform,
which is an analogue of the Fast Fourier Transform that works over a finite field.
Some examples of practical implementations that utilize NTT implementations
of digital signatures and public key encryption based on the Ring-LWE problem
can be found in [GLP12, PG13, ADPS16, BDK+17, DLL+17].

Constructions of more advanced lattice-based primitives sometimes require
that the underlying ring has additional properties. In particular, practical pro-
tocols that utilize zero-knowledge proofs often require that elements with small
coefficients are invertible (e.g. [BKLP15, BDOP16, LN17, DLNS17]). This re-
striction, which precludes using rings where Xn + 1 splits completely modulo p,
stems from the structure of approximate zero-knowledge proofs, and we sketch
this intuition below.

1.1 Approximate Zero-Knowledge Proofs

Abstractly, in a zero-knowledge proof the prover wants to prove the knowledge
of s that satisfies the relation f(s) = t, where f and t are public. In the lattice
setting, the function

f(s) := As (1)

where A is a random matrix over some ring (the ring is commonly Zp or
Zp[X]/(Xn + 1)) and s is a vector over that same ring, where the coefficients of
all (or almost all) the elements comprising s are bounded by some small value
� p.

The function f in (1) satisfies the property that f(s1) + f(s2) = f(s1 + s2)
and for any c in the ring and any vector s over the ring we have f(sc) = c · f(s).
The zero-knowledge proof for attempting to prove the knowledge of s proceeds
as follows:

The Prover first chooses a “masking parameter” y and sends w := f(y) to
the Verifier. The Verifier picks a random challenge c from a subset of the ring
and sends it to the prover (in a non-interactive proof, the Prover himself would
generate c := H(t, w), where H is a cryptographic hash function). The Prover
then computes z := sc+ y and sends it to the Verifier.1

1 In lattice-based schemes, it is important to keep the coefficients of z small, and so y
must be chosen to have small coefficients as well. This can lead to the distribution
of z being dependent on sc, which leaks some information about s. This problem is
solved in [Lyu09, Lyu12] via various rejection-sampling procedures. How this is done
is not important to this paper, and so we ignore this step.
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The Verifier checks that f(z) = ct+ w and, crucially, it also checks to make
sure that the coefficients of z are small. If these checks pass, then the Verifier
accepts the proof. To show that the protocol is a proof of knowledge, one can
rewind the Prover to just after his first move and send a different challenge c′,
and get a response z′ such that f(z′) = c′t+w. Combined with the first response,
we extract the equation

f(s̄) = c̄t (2)

where s̄ = z − z′ and c̄ = c− c′.
Notice that while the prover started with the knowledge of an s with small

coefficients such that f(s) = t, he only ends up proving the knowledge of an s̄
with larger coefficients such that f(s̄) = c̄t. If c̄ also has small coefficients, then
this type of proof is good enough in many (but not all) situations.

Applications of Approximate Zero-Knowledge Proofs. As a simple exam-
ple of the utility of approximate zero-knowledge proofs, we consider commitment
schemes where a commitment to a message m involves choosing some random-

ness r, and outputting f(s) = t, where s is defined as

[
r
m

]
where r and m have

small coefficients.2 Using the zero-knowledge proof from Section 1.1, one can
prove the knowledge of an s̄ and c̄ such that f(s̄) = c̄t. If c̄ is invertible in the
ring, then we can argue that this implies that if t is later opened to any valid
commitment s′ where f(s′) = t, then it must be s′ = s̄/c̄.

The sketch of the argument is as follows: If we extract s̄, c̄ and the com-
mitment is opened with s′ such that f(s′) = t, then multiplying both sides
by c̄ results in f(c̄s′) = c̄t. Combining this with what was extracted from the
zero-knowledge proof, we obtain that

f(c̄s′) = f(s̄). (3)

If s′ 6= s̄/c̄, then c̄s′ 6= s̄ and we found a collision (with small coefficients) for
the function f . Such a collision implies a solution to the (Ring-)SIS problem, or,
depending on the parameters, may simply not exist (and the scheme can thus
be based on (Ring-)LWE).

There are more intricate examples involving commitment schemes (see e.g.
[BKLP15, BDOP16]) as well as other applications of such zero knowledge proofs,
(e.g. to verifiable encryption [LN17] and voting protocols [DLNS17]) which re-
quire that the c̄ be invertible.

The Challenge Set and its Effect on the Proof. The challenge c is drawn
uniformly from some domain C which is a subset of Zp[X]/(Xn + 1). In order
to have small soundness error, we would like C to be large. When building non-
interactive schemes that should remain secure against quantum computers, one

2 It was shown in [BKLP15, BDOP16] that one actually does not need the message m
to have small coefficients, but for simplicity we assume here that it still has them.
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should have |C| be around 2256. On the other hand, we also would like c to
have a small norm. The reason for the latter is that the honest prover computes
z := sc+y and so the s̄ that is extracted from the Prover in (2) is equal to z−z′,
and must also therefore depend on ‖sc‖. Thus, the larger the norms of c, c′ are,
the larger the extracted solution s̄ will be, and the easier the corresponding
(Ring-)SIS problem will be.

As a running example, suppose that we’re working over the polynomial ring
Zp[X]/(X256 + 1). If invertibility were not an issue, then a simple and nearly
optimal way (this way of choosing the challenge set dates back to at least the ori-
ginal paper that proposed a Fiat-Shamir protocol over polynomial rings [Lyu09])
to choose C of size 2256 would be to define

C = {c ∈ R256
p : ‖c‖∞ = 1, ‖c‖1 = 60}. (4)

In other words, the challenges are ring elements consisting of exactly 60 non-
zero coefficients which are ±1.3 The l2 norm of such elements is

√
60.

If we take invertibility into consideration, then we need the difference set
C − C (excluding 0) to consist only of invertible polynomials. There are some
folklore ways of creating sets all of whose non-zero differences are invertible
(c.f. [SSTX09, BKLP15]). If the polynomial X256 + 1 splits into k irreducible
polynomials modulo p, then all of these polynomials must have degree 256/k.
It is then easy to see, via the Chinese Remainder Theorem that every non-zero
polynomial of degree less than 256/k is invertible in the ring Zp[X]/(X256 + 1).
We can therefore define the set

C′ = {c ∈ R256
p : deg(c) < 256/k, ‖c‖∞ ≤ γ},

where γ ≈ 2k−1 in order for the size of the set to be greater than 2256. The
`2 norm of elements in this set is

√
256/k · γ. If we, for example, take k = 8,

then this norm becomes
√

32 · 27 ≈ 724, which is around 90 times larger than
the norms of the challenges in the set defined in (4). It is therefore certainly not
advantageous to increase the norm of the challenge by this much only to decrease
the running time of the computation. In particular, the security of the scheme
will decrease and one will need to increase the ring dimension to compensate,
which will in turn negate any savings in running time. For example, the extracted
solution to the SIS instance in (3) is c̄s′ − s̄, and its size heavily depends on the
size of the coefficients in c̄. A much more desirable solution would be to have the
polynomial Xn + 1 split, but still be able to use the challenge set from (4).

1.2 Our Contribution

Our main result is a general theorem (Theorem 1.1) about the invertibility of
polynomials with small coefficients in polynomial rings Zp[X]/(Φm(X)), where
Φm(X) is the mth cyclotomic polynomial. The theorem states that if a non-zero
polynomial has small coefficients (where “small” is related to the prime p and

3 The size of this set is
(
256
60

)
· 260 > 2256.
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the number of irreducible factors of Φm(X) modulo p), then it’s invertible in
the ring Zp[X]/(Φm(X)). For the particular case of Φm(X) = Xn + 1, we show
that the polynomial Xn + 1 can split into several (in practice up to 8 or 16)
irreducible factors and we can still use the optimal challenge sets, like ones of
the form from (4). This generalizes and extends a result in [LN17] which showed
that one can use the optimal set when Xn + 1 splits into two factors. We also
show, in Section 3.3, some methods for creating challenge sets that are slightly
sub-optimal, but allow for the polynomial to split further.

The statement of Theorem 1.1 uses notation from Definition 2.1, while the
particular case of Xn + 1 in Corollary 1.2 is self-contained. We therefore re-
commend the reader to first skim the Corollary statement. The proofs of the
Theorem and the Corollary are given at the end of Section 3.2. For complete-
ness, we also state sufficient conditions for invertibility based on the `2-norm of
the polynomial. This is an intermediate result that we need on the way to obtai-
ning our main result about the invertibility of polynomials with small coefficients
(i.e. based on the `∞ norm of the polynomial), but it could be of independent
interest.

Theorem 1.1. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei. If

p is a prime such that p ≡ 1 (mod z) and ordm(p) = m/z, then the polynomial
Φm(X) factors as

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p)

for distinct rj ∈ Z∗p where Xm/z − rj are irreducible in the ring Zp[X]. Further-
more, any y in Zp[X]/(Φm(X)) that satisfies either

0 < ‖y‖∞ <
1

s1(z)
· p1/φ(z)

or

0 < ‖y‖ <
√
φ(m)

s1(m)
· p1/φ(z)

has an inverse in Zp[X]/(Φm(X)).

The above theorem gives sufficient conditions for p so that all polynomials
with small coefficients in Zp[X]/(Φm(X)) are invertible, but it does not state
anything about whether there exist such p. In Theorem 2.5, we show that if
we additionally put the condition on m and z that 8|m ⇒ 4|z, then there are
indeed infinitely many primes p that satisfy these conditions. In practical lattice
constructions involving zero-knowledge proofs, we would normally use a modulus
of size at least 220, and we experimentally confirmed (for various cyclotomic
polynomials) that one can indeed find many such primes that are of that size.

Specializing the above to the ring Zp[X]/(Xn + 1), we obtain the following
corollary:
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Corollary 1.2. Let n ≥ k > 1 be powers of 2 and p = 2k + 1 (mod 4k) be a
prime. Then the polynomial Xn + 1 factors as

Xn + 1 ≡
k∏
j=1

(Xn/k − rj) (mod p)

for distinct rj ∈ Z∗p where Xn/k − rj are irreducible in the ring Zp[X]. Further-
more, any y in Zp[X]/(Xn + 1) that satisfies either

0 < ‖y‖∞ <
1√
k
· p1/k

or

0 < ‖y‖ < p1/k

has an inverse in Zp[X]/(Xn + 1).

As an application of this result, suppose that we choose k = 8 and a prime
p congruent to 17 (mod 32) such that p > 220. Furthermore, suppose that we
perform our zero-knowledge proofs over the ring Zp[X]/(Xn + 1) (where n is a
power of 2 greater than 8), and prove the knowledge of s̄, c̄ such that f(s̄) = c̄t
where ‖c̄‖∞ ≤ 2 (i.e. the challenges c are taken such that ‖c‖∞ = 1). Then
the above theorem states that Xn + 1 factors into 8 polynomials and c̄ will be
invertible in the ring since 1√

8
· p1/8 > 2.

Having p > 220 is quite normal for the regime of zero-knowledge proofs, and
therefore having the polynomial Xn + 1 split into 8 factors should be possible
in virtually every application. If we would like it to split further into 16 or 32
factors, then we would need p > 248 or, respectively, p > 2112. In Section 3.3
we describe how our techniques used to derive Theorem 1.1 can also be used
in a somewhat “ad-hoc” fashion to create different challenge sets C that are
nearly-optimal (in terms of the maximal norm), but allow Xn + 1 to split with
somewhat smaller moduli than implied by Theorem 1.1.

In Section 4, we describe how one would combine the partially-splitting FFT
algorithm with a Karatsuba multiplication algorithm to efficiently multiply in
a partially-splitting ring. For primes of size between 220 and 229, one obtains a
speed-up of about a factor of 2 by working over rings where Xn + 1 splits into
8 versus just 2 factors.

In addition to the speed improvement, there are applications whose usability
can be improved by the fact that we work over rings Zp[X]/(Xn + 1) where
Xn + 1 splits into more factors. For example, [BKLP15] constructed a commit-
ment scheme and zero-knowledge proofs of knowledge that allows to prove the
fact that c = ab when Commit(a), Commit(b), Commit(c) are public (the same
holds for addition). An application of this result is the verifiability of circuits.
For this application, one only needs commitments of 0’s and 1’s, thus if we work
over a ring where Xn + 1 splits into k irreducible factors, one can embed k bits
into each Chinese Remainder coefficient of a and b, and therefore proving that
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c = ab implies that all k multiplications of the bits were performed correctly.
Thus the larger k is, the more multiplications one can prove in parallel. Unfortu-
nately k cannot be set too large without ruining the necessary property that the
difference of any two distinct challenges is invertible or increasing the `2-norm
of the challenges as described in Section 1.1. Our result therefore allows to prove
products of 8 (or 16) commitments in parallel without having to increase the
parameters of the scheme to accommodate the larger challenges.
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2 Cyclotomics and Lattices

2.1 Cyclotomic Polynomials

Definition 2.1. For any integer m > 1, we write

φ(m) = m ·
∏

p is prime ∧ p |m

p− 1

p

δ(m) =
∏

p is prime ∧ p |m

p

τ(m) =

{
m, if m is odd

m/2, if m is even

s1(m) = largest singular value of the matrix in (7)

ordm(n) = min{k : k > 0 and nk mod m = 1}

The function φ(m) is the Euler phi function, δ(m) is sometimes referred to as the
radical of m, and τ(m) is a function that sometimes comes into play when wor-
king with the geometry of cyclotomic rings. The function ordm(n) is the order
of an element n in the multiplicative group Z∗m. In the special case of m = 2k,
we have φ(m) = τ(m) = 2k−1 and δ(m) = 2.

The mth cycltomic polynomial, written as Φm(X), is formally defined to be

Φm(X) =

φ(m)∏
i=1

(X − ωi),

where ωi are the mth complex primitive roots of unity (of which there are φ(m)
many). Of particular interest in practical lattice cryptography is the cyclotomic

polynomial Φ2k(X) = X2k−1

+ 1.
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If p is some prime and r1, . . . , rφ(m) are elements in Z∗p such that ordp(rj) =
φ(m), then one can write

Φm(X) ≡
φ(m)∏
j=1

(X − rj) (mod p).

For any m > 1, it is known that we can express the cyclotomic polynomial
Φm(X) as

Φm(X) = Φδ(m)

(
Xm/δ(m)

)
, (5)

and the below Lemma is a generalization of this statement.

Lemma 2.2. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei.

Then
Φm(X) = Φz(X

m/z).

Proof. By (5), and the fact that δ(m) = δ(z), we can rewrite Φm(X) as

Φm(X) = Φδ(m)(X
m/δ(m)) = Φδ(m)(X

z/δ(m))(Xm/z)

= Φδ(z)(X
z/δ(z))(Xm/z) = Φz(X

m/z). (6)

ut

2.2 The Splitting of Cyclotomic Polynomials

In Theorem 2.3, we give the conditions on the prime p such that the polynomial
Φm(X) splits into irreducible factors Xm/k − r modulo p. In Theorem 2.5, we
then show that when m and k satisfy an additional relation, there are infinitely
many p that satisfy the necessary conditions of Theorem 2.3.

Theorem 2.3. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei. If

p is a prime such that p ≡ 1 (mod z) and ordm(p) = m/z, then the polynomial
Φm(X) factors as

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p)

for distinct rj ∈ Z∗p where Xm/z − rj are irreducible in Zp[X].

Proof. Since p is a prime and p ≡ 1 (mod z), there exists an element r such
that ordp(r) = z. Furthermore, for all the φ(z) integers 1 < i < z such that
gcd(i, z) = 1, we also have ordp(r

i) = z. We therefore have, by definition of Φ,
that

Φz(X) ≡
φ(z)∏
j=1

(X − rj) (mod p).
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Applying Lemma 2.2, we obtain that

Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p).

We now need to prove that the termsXm/z−rj are irreducible modulo p. Suppose
they are not and Xm/z − rj has an irreducible divisor f of degree d < m

z . Then
f defines an extension field of Zp of degree d, i.e. a finite field with pd elements

that all satisfy Xpd = X. Hence f divides Xpd−X. Now, from ordm(p) = m
z > d

it follows that we can write pd = am+ b where b 6= 1. Thus

Xpd −X = Xam+b −X = X(Xam+(b−1) − 1).

If we now consider an extension field of Zp in which f splits, the roots of f are
also roots of Xam+(b−1)− 1 and therefore have order dividing am+ (b− 1). This
is a contradiction. As a divisor of Xm/z − rj (and therefore of Φm), f has only
roots of order m. ut

In the proof of Theorem 2.5 we need a small result about the multiplicative
order of odd integers modulo powers of 2. Since we also need this later in the
proof of Corollary 1.2, we state this result in the next lemma.

Lemma 2.4. Let a ≡ 1 + 2f (mod 2f+1) for f ≥ 2. Then the order of a in the
group of units modulo 2e for e ≥ f is equal to 2e−f , i.e. ord2e(a) = 2e−f .

Proof. We can write a = 1 + 2fk1 with some odd k1 ∈ Z. Then notice a2 = 1 +
2f+1k1+22fk21 = 1+2f+1(k1+2f−1k21) = 1+2f+1k2 with odd k2 = k1+2f−1k21.

It follows iteratively that a2
e−f

= 1 + 2ek2e−f ≡ 1 (mod 2e), which implies the

order of a modulo 2e divides 2e−f , but a2
e−f−1

= 1 + 2e−1k2e−f−1 6≡ 1 (mod 2e)
since k2e−f−1 is odd. So, the multiplicative order of a modulo 2e must be 2e−f .

Theorem 2.5. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei.

Furthermore, assume that if m is divisible by 8, then z is divisible by 4. Then
there are infinitely many primes p such that p ≡ 1 (mod z) and ordm(p) = m/z.

Proof. First we show that an integer not necessarily prime exists that fulfills the
two conditions. By the Chinese remainder theorem it suffices to find integers ai
such that ai mod pfii = 1 and ordpeii

(ai) = pei−fii . First consider the odd primes
pi 6= 2. It is easy to show that if g is a generator modulo pi then either g or
g+pi, say g′, is a generator modulo every power of pi (c.f. [Coh00, Lemma 1.4.5]).

Define ai = (g′)(pi−1)p
fi−1

i . Then, since g′ has order (pi−1)pfi−1i modulo pfii and

order (pi − 1)pei−1i mod peii , it follows that ai mod pfii = 1 and

ordpeii
(ai) =

(pi − 1)pei−1i

(pi − 1)pfi−1i

= pei−fii

as we wanted. Next, consider p = 2 and the case where m is divisible by 8; that
is, e1 ≥ 3. This implies f1 ≥ 2. From Lemma 2.4 we see that 5 is a generator of a
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cyclic subgroup of Z×2e of index 2 for every e ≥ 3, i.e. ord2e(5) = 2e−2. Therefore,

52
f1−2

mod 2f1 = 1 and

ord2e1 (52
f1−2

) =
2e1−2

2f1−2
= 2e1−f1 .

Hence a1 = 52
f1−2

is a valid choice in this case. If e1 = 2, note that 3 is a

generator modulo 4 and a1 = 32
f1−1

is readily seen to work. When e1 = f1 = 1,
take a1 = 1. So, there exists an integer a that fulfills our two conditions and
in fact every integer congruent to a mod m does. By Dirichlet’s theorem on
arithmetic progressions, there are infinitely many primes among the a + lm
(l ∈ Z). ut

As an experimental example consider m = 22337 = 756 and z = 2 ·3 ·7 = 42.
Then Φm splits into 12 polynomials modulo primes of the form in Theorem 2.5.
There are 2058 primes of this form between 220 and 221.

2.3 The Vandermonde Matrix

To each cyclotomic polynomial Φm(X) with roots of unity ω1, . . . , ωφ(m), we
associate the Vandermonde matrix

Vm =


1 ω1 ω2

1 . . . ω
φ(m)−1
1

1 ω2 ω2
2 . . . ω

φ(m)−1
2

. . .

1 ωφ(m) ω2
φ(m) . . . ω

φ(m)−1
φ(m)

 ∈ Cφ(m)×φ(m). (7)

The important property for us in this paper is the largest singular value of
Vm, which we write as

s1(m) = max
u∈Cφ(m)

‖Vmu‖
‖u‖

. (8)

It was shown in [LPR13, Lemma 4.3] that when m = pk for any prime p and
positive integer k, then

s1(m) =
√
τ(m). (9)

We do not know of a theorem analogous to (9) that holds for all m, and so
we numerically computed s1(m) for all m < 3000 and observed that s1(m) ≤√
τ(m) was always satisfied. Furthermore, for most m, we still had the equality

s1(m) =
√
τ(m). The only exceptions where s1(m) <

√
τ(m) were integers that

have at least 3 distinct odd prime factors. As an example, Table 1 contains a
list of all such values up to 600 for which s1(m) <

√
τ(m). We point out that

while it appears that having three prime factors is a necessary condition for m
to appear in the table, it is not sufficient. For example, 255 = 3 · 5 · 17, but still
s1(255) =

√
τ(255) =

√
255.

For all practical sizes of m used in cryptography, the value s1(m) is fairly
easy to compute numerically using basic linear algebra software (e.g. MATLAB,
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m s1(m)
√
τ(m)/s1(m)

105 = 3 · 5 · 7 9.952 1.0296172

165 = 3 · 5 · 11 12.785 1.0046612

195 = 3 · 5 · 13 13.936 1.0019718

210 = 2 · 3 · 5 · 7 9.952 1.0296172

315 = 32 · 5 · 7 17.237 1.0296172

330 = 2 · 3 · 5 · 11 12.785 1.0046612

390 = 2 · 3 · 5 · 13 13.936 1.0019718

420 = 22 · 3 · 5 · 7 14.074 1.0296172

495 = 32 · 5 · 11 22.145 1.0046612

525 = 3 · 52 · 7 22.253 1.0296172

585 = 32 · 5 · 13 24.139 1.0019718

Table 1. Values of m less than 600 for which s1(m) 6=
√
τ(m).

Scilab, etc.), and we will state all our results in terms of s1(m). Nevertheless,
being able to relate s1(m) to τ(m) certainly simplifies the calculation. Based on
our numerical observations, we formulate the following conjecture:

Conjecture 2.6. For all positive integers m, s1(m) ≤
√
τ(m).

2.4 Cyclotomic Rings and Ideal Lattices

Throughout the paper, we will writeRm to be the cyclotomic ring Z[X]/(Φm(X))
and Rm,p to be the ring Zp[X]/(Φm(X)), with the usual polynomial addition and
multiplication operations. We will denote by normal letters elements in Z and
by bold letters elements in Rm. For an odd p, an element w ∈ Rm,p can always

be written as
φ(m)−1∑
i=0

wiX
i where |wi| ≤ (p− 1)/2. Using this representation, for

w ∈ Rm,p (and in Rm), we will define the lengths of elements as

‖w‖∞ = max
i
|wi| and ‖w‖ =

√∑
i

|wi|2.

Just as for vectors over Z, the norms satisfy the inequality ‖w‖ ≤
√
φ(m)·‖w‖∞.

Another useful definition of length is with respect to the embedding norm of
an element in Rm. If ω1, . . . , ωφ(m) are the complex roots of Φm(X), then the
embedding norm of w ∈ Rm is

‖w‖e =

√∑
i

w(ωi)2.
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If we view of w =


w0

w1

. . .
wφ(m)−1

 as a vector over Zφ(m), then the above defini-

tion is equivalent to

‖w‖e =

√∑
i

w(ωi)2 = ‖Vmw‖

due to the fact that the ith position of Vmw is w(ωi). This gives a useful
relationship between the ‖ · ‖e and ‖ · ‖ norms as

‖w‖e ≤ s1(m) · ‖w‖. (10)

An integer lattice of dimension n is an additive sub-group of Zn. For the
purposes of this paper, all lattices will be full-rank. The determinant of a full-
rank integer lattice Λ of dimension n is the size of the quotient group |Zn/Λ|.
We write λ1(Λ) to denote the Euclidean length of the shortest non-zero vector
in Λ.

If I is an ideal in the polynomial ring Rm, then it is also an additive sub-
group of Zφ(m), and therefore a φ(m)-dimensional lattice (it can be shown that
such lattices are always full-rank). Such lattices are therefore sometimes referred
to as ideal lattices. For any ideal lattice Λ of the ring Rm, there exists a lower
bound on the embedding norm of its vectors (c.f. [PR07, Lemma 6.2])

∀w ∈ Λ, ‖w‖e ≥
√
φ(m) · det(Λ)1/φ(m).

Combining the above with (10) yields the following lemma:

Lemma 2.7. If Λ is an ideal lattice in Rm, then

λ1(Λ) ≥
√
φ(m)

s1(m)
· det(Λ)1/φ(m).

3 Invertible Elements in Cyclotomic Rings

The main goal of this section is to prove Theorem 1.1. To this end, we first
prove Lemma 3.1, which proves the Theorem for the `2 norm. Unfortunately
directly applying this Lemma to prove the `∞ part of the Theorem 1.1 by using
the relationship between the `2 and `∞ norms is sub-optimal. In Section 3.2 we
instead show that by writing elements of partially-splitting rings Rm,p as sums
of polynomials over smaller, fully-splitting rings, one can obtain a tighter bound.
We prove in Lemma 3.2 that if any of the parts of y ∈ Rm,p is invertible in the
smaller fully-splitting ring, then the polynomial y is invertible in Rm,p. The full
proof of Theorem 1.1 will follow from this Lemma, the special case of Lemma
3.1 applicable to fully-splitting rings, and Theorem 2.3.
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3.1 Invertibility and the `2 Norm

Our main result only needs a special case of the below Lemma corresponding to
when Φm(X) fully splits, but we prove a more general statement since it doesn’t
bring with it any additional complications.

Lemma 3.1. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei such

that

Φm(X) ≡
φ(z)∏
i=1

(Xm/z − ri) (mod p)

for some distinct ri ∈ Z∗p where Xm/z − ri are irreducible in Zp[X], and let y be

any element in the ring Rm,p. If 0 < ‖y‖ <
√
φ(m)

s1(m) · p
1/φ(z), then y is invertible

in Rm,p.

Proof. Suppose that y is not invertible in Rm,p. By the Chinese Remainder
Theorem, this implies that for (at least) one i, y mod

(
Xm/z − ri, p

)
= 0. For

an i for which y mod
(
Xm/z − ri, p

)
= 0 (if there is more than one such i, pick

one of them arbitrarily) define the set

Λ =
{

z ∈ Rm : z mod
(
Xm/z − ri, p

)
= 0
}
.

Notice that Λ is an additive group. Also, because Xm/z−ri is a factor of Φm(X)
modulo p, for any polynomial z ∈ Λ, the polynomial z ·X ∈ Rm is also in Λ. This
implies that Λ is an ideal of Rm, and so an ideal lattice in the ring Rm. By looking
at the Chinese Remainder representation modulo p of all the elements in Λ (they
have 0 in the coefficient corresponding to modulo Xm/z−ri, and are arbitrary in
all other coefficients), one can see that

∣∣Zφ(m)/Λ
∣∣ = pm/z = pφ(m)/φ(z), which is

the determinant of Λ. By Lemma 2.7, we then know that λ1(Λ) ≥
√
φ(m)

s1(m) ·p
1/φ(z).

Since y mod
(
Xm/z − ri, p

)
= 0 and 0 < ‖y‖, we know that y is a non-zero

vector in Λ. But we also have by our hypothesis that ‖y‖ <
√
φ(m)

s1(m) · p
1/φ(z) ≤

λ1(Λ), which is impossible.
ut

One can see that a direct application of Lemma 3.1 gives a weaker bound
than what we are claiming in Theorem 1.1 – we can only conclude that all vectors
y such that

‖y‖∞ ≤
1

s1(m)
· p1/φ(z)

are invertible. Since z � m, having s1(m) vs. s1(z) in the denominator makes
a very noticeable difference in the tightness of the result (for example, if m, z
are powers of 2, then s1(m) =

√
m/2 and s1(z) =

√
z/2). In Section 3.2, we

instead break up y into a sum of elements in smaller rings Rz,p and prove that
only some of these parts, need to be invertible in Rz,p in order for the entire
element y to be invertible in Rm,p.
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We point out that Lemma 3.1 was already implicit in [SS11, Lemma 8] for
Φm(X) = Xn + 1. To obtain a bound in the `∞ norm, the authors of that work
then applied the norm inequality between the `2 and `∞ norms to obtain the
bound that we described above. Using the more refined approach in the current
paper, however, that bound can be tightened and would immediately produce an
improvement in the main result of [SS11] which derives the statistical closeness
of a particular distribution to uniform. Such applications are therefore another
area in which our main result can prove useful.

3.2 Partially-Splitting Rings

In this section, we will be working with rings Rm,p where p is chosen such
that the polynomial Φm(X) factors into k irreducible polynomials of the form
Xφ(m)/k − ri. Theorem 2.3 states the sufficient conditions on m, k, p in order to
obtain such a factorization. Throughout this section, we will use the following
notation: suppose that

y =

φ(m)−1∑
j=0

yjX
j

is an element of the ring Rm,p, where the value p is chosen as above. Then for
all integers 0 ≤ i < φ(m)/k − 1, we define the polynomials y′i as

y′i =

k−1∑
j=0

yjφ(m)/k+iX
j . (11)

For example, if φ(m) = 8 and k = 4, then for y =
7∑
i=0

yiX
i, we have y′0 =

y0 + y2X + y4X
2 + y6X

3 and y′1 = y1 + y3X + y5X
2 + y7X

3.
The intuition behind the definition in (11) is that one can write y in terms

of the y′i as

y =

φ(m)/k−1∑
i=0

y′i(X
φ(m)/k) ·Xi.

Then to calculate y mod (Xφ(m)/k − rj) where (Xφ(m)/k − rj) is one of the
irreducible factors of Φm(X) modulo p, we have

y mod (Xφ(m)/k − rj) =

φ(m)/k−1∑
i=0

y′i(rj) ·Xi (12)

simply because we plug in rj for every Xφ(m)/k.

Lemma 3.2. Let m =
∏
peii for ei ≥ 1 and z =

∏
pfii for any 1 ≤ fi ≤ ei, and

suppose that we can write
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Φm(X) ≡
φ(z)∏
j=1

(Xm/z − rj) (mod p) (13)

for distinct rj ∈ Z∗p where (Xm/z − rj) are irreducible in Zp[X]. Let y be a
polynomial in Rm,p and define the associated y′i as in (11), where k = φ(z). If
some y′i is invertible in Rz,p, then y is invertible in Rm,p.

Proof. By the Chinese Remainder Theorem, the polynomial y is invertible in
Rm,p if and only if y mod (Xm/z − rj) 6= 0 for all r1, . . . , rk. When we use
k = φ(z), (12) can be rewritten as

y mod (Xm/z − rj) =

m/z−1∑
i=0

y′i(rj) ·Xi.

To show that y is invertible, it is therefore sufficient to show that

∃i s.t ∀j, y′i(rj) mod p 6= 0.

Let i be such that y′i is invertible in the ring Rz,p. From (13) and Lemma
2.2 we have that

Φz(X) ≡
φ(z)∏
j=1

(X − rj) (mod p),

and so the ring Rz,p is fully-splitting. Since y′i is invertible in Rz,p, the Chinese
Remainder Theorem implies that for all 1 ≤ j ≤ φ(z), y′i(rj) mod p 6= 0, and
therefore y is invertible in Rm,p.

ut

Theorem 1.1 now follows from the combination of Theorem 2.3, and Lemmas
3.1 and 3.2.

Proof (Theorem 1.1). For the conditions on m, z, and p, it follows from Theorem
2.3 that the polynomial Φm(X) can be factored into irreducible factors modulo

p as
φ(z)∏
j=1

(Xm/z−rj). Lemma 2.2 then states that Φz(X) ≡
φ(z)∏
j=1

(X−rj) (mod p).

For any y ∈ Rm,p, let the y′i be defined as in (11) where k = φ(z). If
0 < ‖y‖∞ < 1

s1(z)
· p1/φ(z), then because each y′i consists of φ(z) coefficients, we

have that for all i, ‖y′i‖ <
√
φ(z)

s1(z)
· p1/φ(z). Since y 6= 0, it must be that for some

i, y′i 6= 0.
Lemma 3.1 therefore implies that the non-zero y′i is invertible in Rz,p. In

turn, Lemma 3.2 implies that y is invertible in Rm,p. ut

Proof. (Of Corollary 1.2) If n ≥ k > 1 are powers of 2, then we set m = 2n
and z = 2k in Theorem 1.1. Then Φm(X) = Xn + 1 and the condition that
p ≡ 2k + 1 (mod 4k), i.e. p ≡ z + 1 (mod 2z), implies p ≡ 1 (mod z). Now we

15



need to show that ordm(p) = m/z, but this follows immediately from Lemma 2.4
by setting m = 2e and z = 2f and noting that f ≥ 2. Finally, from (9) we have
s1(z) =

√
τ(z) =

√
z
2 =
√
k and s1(m) =

√
n. Therefore the upper bounds for

the ‖ · ‖∞ and ‖ · ‖ inequalities read 1√
k
p1/k = 1

s1(z)
p1/k and p1/k =

√
n

s1(m)p
1/k,

respectively, as in Theorem 1.1. ut

3.3 Example of “Ad-hoc” Applications of Lemma 3.2

Using Lemma 3.2, as we did in the proof of Theorem 1.1 above, gives a clean
statement as to a sufficient condition under which polynomials are invertible in
a partially-splitting ring. One thing to note is that putting a bound on the `∞
norm does not take into account the other properties that our challenge space
may have. For example, our challenge space in (4) is also sparse, in addition
to having the `∞ norm bounded by 1. Yet we do not know how to use this
sparseness to show that one can let Φm(X) split further while still maintaining
the invertibility of the set C − C.

In some cases, however, there are ways to construct challenge sets that are
more in line with Lemma 3.2 and will allow further splitting. We do not see a
simple way in which to systematize these ideas, and so one would have to work
out the details on a case-by-case basis. Below, we give such an example for the
case in which we are working over the ring Zp[X]/(X256 + 1) and would like to
have the polynomial X256 + 1 split into 16 irreducible factors. If we would like
to have Xn+ 1 split into 16 factors modulo p and the set C −C to have elements
whose infinity norm is bounded by 2, then applying Theorem 1.1 directly implies
that we need to have 2 < 1√

16
· p1/16, which implies p > 248.

We will now show how one can lower the requirement on p in order to achieve
a split into 16 factors by altering the challenge set C in (4).

For a polynomial y ∈ Zp[X]/(X256 + 1), define the y′i as in (11). Define D as

D = {y ∈ Zp[X]/(X256 + 1) : ‖yi‖∞ = 1 and ∀ 1 ≤ i ≤ 16 , ‖y′i‖ = 2} (14)

In other words, D is the set of polynomials y, such that every y′i has exactly 4

non-zero elements that are ±1. The size of D is
((

16
4

)
· 24
)16 ≈ 2237, which should

be enough for practical quantum security. The `2 norm of every element in D is
exactly

√
64 = 8. For a fair comparison, we should redefine the set C so that it

also has size 2237. The only change that one must make to the definition in (4)
is to lower the `1 norm to 53 from 60. Thus all elements in C have `2 norm

√
53.

The elements in set D therefore have norm that is larger by a factor of about
1.1. It then depends on the application as to whether having Xn+1 split into 16
rather than 8 factors is worth this modest increase. We will now prove that for
primes p > 230.5 of a certain form, X256 + 1 will split into 16 irreducible factors
modulo p and all the non-zero elements in D − D will be invertible. Therefore
if our application calls for a modulus that is larger than 230.5 but smaller than
248, we can use the challenge set D and the below lemma.
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Lemma 3.3. Suppose that p > 216 log2

√
14 ≈ 230.5 is a prime congruent to 33

(mod 64). Then the polynomial X256 + 1 splits into 16 irreducible polynomials
of the form X16 + rj modulo p, and any non-zero polynomial y ∈ D − D (as
defined in (14)) is invertible in the ring Zp[X]/(X256 + 1).

Proof. The fact that X256 + 1 splits into 16 irreducible factors follows directly
from Theorem 2.3. Notice that for any y ∈ D − D, the maximum `2 norm of
y′i is bounded by 4. Furthermore, the degree of each y′i is 256/16 = 16. Thus
an immediate consequence of Lemmas 3.2 and 3.1 is that if p > 232, then any
non-zero element in D − D is invertible. To slightly improve the lower bound,
we can observe that the y′i of norm 4 are polynomials in Zp[X]/(X16 + 1) with
exactly four 2’s in them. But such elements can be written as a product of 2
and a polynomial with 4 ±1’s in it. So if both of those are invertible, so is the
product. The maximum norm of these polynomials is 2 and so they are not the
elements that set the lower bound. The next largest element in D − D is one
that has three 2’s and two ±1’s. The norm of such elements is

√
14. Thus for all

p > 216·log2(
√
14) ≈ 230.5, the y′i will be invertible in Zp[X]/(X16 + 1), and thus

every non-zero element in D −D will be invertible in Zp[X]/(X256 + 1). ut

4 Polynomial Multiplication Implementation

We now describe in more detail the computational advantage of having the
modulus Φm split into as many factors as possible and present our experimental
results. We focus on the case where m is a power of two and write n = φ(m) =
m/2. In this case one can use the standard radix-2 FFT-trick to speed up the
multiplication. Note that for other m, one can also exploit the splitting in a
divide-and-conquer fashion similar to the radix-2 FFT.

Suppose that Zp contains a fourth root of unity r so that we can write

Xn + 1 = (Xn/2 + r)(Xn/2 − r).

Then, in algebraic language, the FFT (or NTT) is based on the Chinese remain-
der theorem, which says that Rm,p = Zp[X]/(Xn+1) is isomorphic to the direct
product of Zp[X]/(Xn/2 + r) and Zp[X]/(Xn/2 − r). To multiply two polyno-
mials in Rm,p one can first reduce them modulo the two factors of the modulus,
then multiply the resulting polynomials in the smaller rings, and finally invert
the Chinese remainder map in order to obtain the product of the original po-
lynomials. This is called the (radix-2) FFT-trick (see [Ber01] for a very good
survey). Note that reducing a polynomial of degree less than n modulo the two
sparse polynomials Xn/2 ± r is very easy and takes only n

2 multiplications, n
2

additions and n
2 subtractions. If Zp contains higher roots so that Xn + 1 splits

further, then one can apply the FFT-trick recursively to the smaller rings. What
is usually referred to as the number theoretic transform (NTT) is the case where
Zp contains a 2n-th root of unity so that Xn + 1 splits completely into linear
factors. This reduces multiplication in Rm,p to just multiplication in Zp.

17



Primes
Number of FFT levels 220 − 214 + 1 223 − 213 + 1 225 − 212 + 1 227 − 211 + 1

0 123677 123717 134506 144913
1 83820 83778 91775 97641
2 55378 55700 63148 65778
3 38111 38061 43116 43282
4 27374 27626 31782 30836
5 21968 21955 26406 24937
6 17076 17007 21518 19811
7 15149 15144 20483 18026
8 16875 16893 22329 20299

Table 2. CPU cycles of our FFT-accelerated multiplication algorithm for
Zp[X]/(X256 + 1) using Karatsuba multiplication for the base case. Both the FFT
and Karatsuba are plain C implementations.

As we are interested in the case where the modulus does not split completely,
we need to be able to multiply in rings of the form Zp[X]/(Xn/k−rj) with k < n.
As is common in cryptographic applications (see, for example [BCLvV17]), we
will use the Karatsuba multiplication algorithm to perform this operation. For
both the FFT and the Karatsuba multiplication, we have written a relatively
straight-forward C implementation.

In Table 2 we give the measurements of our experiments. We have performed
multiplications in R512,p = Zp[X]/(X256+1) for four completely splitting primes
between 220 and 230. For each prime we have used between 0 and 8 levels of FFT
before switching to Karatsuba multiplication. 0 levels of FFT means that no FFT
stage was used at all and the input polynomials were directly multiplied via
Karatsuba multiplication. In the other extreme of 8 levels of FFT, no Karatsuba
multiplication was used and the corresponding measurements reflect the speed
of our full number theoretic transform down to linear factors with pointwise
multiplication as the base case. As one more example, when performing 3 levels
of FFT, we were multiplying 8 polynomials each of degree less then 32 via
Karatsuba multiplication. The listed numbers are numbers of CPU cycles needed
for the whole multiplication. They are the medians of 10000 multiplications each.
The tests where performed on a laptop equipped with an Intel Skylake i7 CPU
running at 3.4 GHz. The cycle counter in this CPU ticks at a constant rate of
2.6GHz. As one can see, being able to use a prime p so that Xn + 1 splits into
more than two factors is clearly advantageous. For instance, by allowing Xn + 1
to split into 8 factors compared to just 2, we achieve a speedup of about a factor
of two.

We have also experimented with highly-optimized polynomial multiplication
algorithms provided by a popular computer algebra library FLINT [HJP13] and
PARI [The16]. FLINT employs various forms of Kronecker substitution for the
task of polynomial multiplication. For these experiments we used a fast vectori-
zed FFT implementation written in assembler language with AVX2 instructions.
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Primes
Number of FFT levels 220 − 214 + 1 223 − 213 + 1 225 − 212 + 1 227 − 211 + 1

0 28245 31574 33642 35397
1 27168 29343 31419 32613
2 20989 23158 24915 25677
3 20521 22038 23582 23757
4 22543 23695 25016 24628
5 24473 24715 25337 30366
6 13578 13572 14307 13543
7 13981 14020 14522 13986
8 3873 3844 3847 3857

Table 3. CPU cycles of our FFT-accelerated multiplication algorithm for
Zp[X]/(X256 + 1) using FLINT for base case multiplication. The FFT implementa-
tion is a highly optimized AVX2-based implementation.

For completeness, Table 3 gives the measurements for the tests with FLINT. Un-
fortunately, each call of the FLINT multiplication function produces additional
overhead costs such as deciding on one of several algorithms and computing com-
plex roots for the FFT used in Kronecker substitution. These additional costs
are highly significant for our small polynomials. So for every additional stage of
our FFT, one needs to multiply twice as many polynomials with FLINT, and
hence FLINT spends twice as much time on these auxiliary tasks that one would
not have in an actual cryptographic implementation specialized to a particular
prime and modulus. This is especially inefficient when the number of FFT levels
is large. There nearly all of the time is spend on these tasks as one can see in
Table 3 by comparing the cycle counts of 7 and 8 stages of FFT. Note that for
7 stages of FFT, FLINT is used for the trivial task of multiplying polynomials
of degree one.

While we were not able to do a meaningful analysis for the combination of
our highly-optimized FFT with FLINT, one can see that at level 0 (where the
amount of overhead it does is the lowest), FLINT outperforms our un-optimized
Karatsuba multiplication by a factor between 4 and 5, while looking at Level
8 shows that our AVX-optimized FFT outperforms the non-optimized version
by approximately the same margin. It is then reasonable to assume that one
can improve non-FFT multiplication by approximately the same factor as we
improved the FFT multiplication, and therefore the improvement going from
level 1 and 3 would still be approximately a factor 2 in a routine where both
Karatsuba and FFT multiplication were highly optimized.
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