
The Wonderful World of Global Random Oracles

Jan Camenisch1, Manu Drijvers1,2, Tommaso Gagliardoni1,
Anja Lehmann1, and Gregory Neven1

1 IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
{jca,mdr,tog,anj,nev}@zurich.ibm.com

2 Department of Computer Science, ETH Zurich, 8092 Zürich, Switzerland

Abstract. The random-oracle model by Bellare and Rogaway (CCS’93)
is an indispensable tool for the security analysis of practical crypto-
graphic protocols. However, the traditional random-oracle model fails to
guarantee security when a protocol is composed with arbitrary protocols
that use the same random oracle. Canetti, Jain, and Scafuro (CCS’14)
put forth a global but non-programmable random oracle in the General-
ized UC framework and showed that some basic cryptographic primitives
with composable security can be efficiently realized in their model. Be-
cause their random-oracle functionality is non-programmable, there are
many practical protocols that have no hope of being proved secure using
it. In this paper, we study alternative definitions of a global random or-
acle and, perhaps surprisingly, show that these allow one to prove GUC-
secure existing, very practical realizations of a number of essential crypto-
graphic primitives including public-key encryption, non-committing en-
cryption, commitments, Schnorr signatures, and hash-and-invert signa-
tures. Some of our results hold generically for any suitable scheme proven
secure in the traditional ROM, some hold for specific constructions only.
Our results include many highly practical protocols, for example, the
folklore commitment scheme H(m‖r) (where m is a message and r is
the random opening information) which is far more efficient than the
construction of Canetti et al.

1 Introduction

The random-oracle model (ROM) [3] is an overwhelmingly popular tool in cryp-
tographic protocol design and analysis. Part of its success is due to its intuitive
idealization of cryptographic hash functions, which it models through calls to an
external oracle that implements a random function. Another important factor
is its capability to provide security proofs for highly practical constructions of
important cryptographic building blocks such as digital signatures, public-key
encryption, and key exchange. In spite of its known inability to provide provable
guarantees when instantiated with a real-world hash function [14], the ROM
is still widely seen as convincing evidence that a protocol will resist attacks in
practice.

Most proofs in the ROM, however, are for property-based security notions,
where the adversary is challenged in a game where he faces a single, isolated

instance of the protocol. Security can therefore no longer be guaranteed when
a protocol is composed. Addressing this requires composable security notions
such as Canetti’s Universal Composability (UC) framework [10], which have the
advantage of guaranteeing security even if protocols are arbitrarily composed.

UC modeling. In the UC framework, a random oracle is usually modeled as
an ideal functionality that a protocol uses as a subroutine in a so-called hybrid
model, similarly to other setup constructs such as a common reference string
(CRS). For example, the random-oracle functionality FRO [21] simply assigns a
random output value h to each input m and returns h. In the security proof, the
simulator executes the code of the subfunctionality, which enables it to observe
the queries of all involved parties and to program any random-looking values
as outputs. Setup assumptions play an important role for protocols in the UC
model, as many important cryptographic primitives such as commitments simply
cannot be achieved [13]; other tasks can, but have more efficient instantiations
with a trusted setup.

An important caveat is that this way of modeling assumes that each instance
of each protocol uses its own separate and independent instance of the subfunc-
tionality. For a CRS this is somewhat awkward, because it raises the question of
how the parties should agree on a common CRS, but it is even more problematic
for random oracles if all, supposedly independent, instances of FRO are replaced
in practice with the same hash function. This can be addressed using the Gen-
eralized UC (GUC) framework [12] that allows one to model different protocol
instances sharing access to global functionalities. Thus one can make the setup
functionality globally available to all parties, meaning, including those outside
of the protocol execution as well as the external environment.

Global UC random oracle. Canetti, Jain, and Scafuro [15] indeed applied the
GUC framework to model globally accessible random oracles. In doing so, they
discard the globally accessible variant of FRO described above as of little help
for proving security of protocols because it is too “strict”, allowing the simulator
neither to observe the environment’s random-oracle queries, nor to program its
answers. They argue that any shared functionality that provides only public
information is useless as it does not give the simulator any advantage over the
real adversary. Instead, they formulate a global random-oracle functionality that
grants the ideal-world simulator access to the list of queries that the environment
makes outside of the session. They then show that this shared functionality can
be used to design a reasonably efficient GUC-secure commitment scheme, as
well as zero-knowledge proofs and two-party computation. However, their global
random-oracle functionality rules out security proofs for a number of practical
protocols, especially those that require one to program the random oracle.

Our Contributions. In this paper, we investigate different alternative formu-
lations of globally accessible random-oracle functionalities and protocols that
can be proven secure with respect to these functionalities. For instance, we show

that the simple variant discarded by Canetti et al. surprisingly suffices to prove
the GUC-security of a number of truly practical constructions for useful cryp-
tographic primitives such as digital signatures and public-key encryption. We
achieve these results by carefully analyzing the minimal capabilities that the
simulator needs in order to simulate the real-world (hybrid) protocol, while
fully exploiting the additional capabilities that one has in proving the indistin-
guishability between the real and the ideal worlds. In the following, we briefly
describe the different random-oracle functionalities we consider and which we
prove GUC-secure using them.

Strict global random oracle. First, we revisit the strict global random-oracle
functionality GsRO described above and show that, in spite of the arguments of
Canetti et al. [15], it actually suffices to prove the GUC-security of many practical
constructions. In particular, we show that any digital signature scheme that is
existentially unforgeable under chosen-message attack in the traditional ROM
also GUC-realizes the signature functionality with GsRO, and that any public-
key encryption (PKE) scheme that is indistinguishable under adaptive chosen-
ciphertext attack in the traditional ROM GUC-realizes the PKE functionality
under GsRO with static corruptions.

This result may be somewhat surprising as it includes many schemes that,
in their property-based security proofs, rely on invasive proof techniques such
as rewinding, observing, and programming the random oracle, all of which are
tools that the GUC simulator is not allowed to use. We demonstrate, however,
that none of these techniques are needed during the simulation of the protocol,
but rather only show up when proving indistinguishability of the real and the
ideal worlds, where they are allowed. A similar technique was used It also does
not contradict the impossibility proof of commitments based on global setup
functionalities that simply provide public information [12, 13] because, in the
GUC framework, signatures and PKE do not imply commitments.

Programmable global random oracles. Next, we present a global random-oracle
functionality GpRO that allows the simulator as well as the real-world adversary
to program arbitrary points in the random oracle, as long as they are not yet
defined. We show that it suffices to prove the GUC-security of Camenisch et al.’s
non-committing encryption scheme [8], i.e., PKE scheme secure against adaptive
corruptions. Here, the GUC simulator needs to produce dummy ciphertexts that
can later be made to decrypt to a particular message when the sender or the
receiver of the ciphertext is corrupted. The crucial observation is that, to embed
a message in a dummy ciphertext, the simulator only needs to program the
random oracle at random inputs, which have negligible chance of being already
queried or programmed. Again, this result is somewhat surprising as GpRO does
not give the simulator any advantage over the real adversary either.

We also define a restricted variant GrpRO that, analogously to the observ-
able random oracle of Canetti et al. [15], offers programming subject to some
restrictions, namely that protocol parties can check whether the random oracle

was programmed on a particular point. If the adversary tries to cheat by pro-
gramming the random oracle, then honest parties have a means of detecting this
misbehavior. However, we will see that the simulator can hide its programming
from the adversary, giving it a clear advantage over the real-world adversary. We
use it to GUC-realize the commitment functionality through a new construction
that, with only two exponentiations per party and two rounds of communication,
is considerably more efficient than the one of Canetti et al. [15], which required
five exponentiations and five rounds of communication.

Programmable and observable global random oracle. Finally, we describe a global
random-oracle functionality GrpoRO that combines the restricted forms of pro-
grammability and observability. We then show that this functionality allows us
to prove that commitments can be GUC-realized by the most natural and effi-
cient random-oracle based scheme where a commitment c = H(m‖r) is the hash
of the random opening information r and the message m.

Transformations between different oracles. While our different types of oracles
allow us to securely realize different protocols, the variety in oracles partially
defies the original goal of modeling the situation where all protocols use the
same hash function. We therefore explore some relations among the different
types by presenting efficient protocol transformations that turn any protocol
that securely realizes a functionality with one type of random oracle into a
protocol that securely realizes the same functionality with a different type.

Other related work. Dodis et al. [17] already realized that rewinding can
be used in the indistinguishability proof in the GUC model, as long as it’s not
used in the simulation itself. In a broader sense, our work complements existing
studies on the impact of programmability and observability of random oracles
in security reductions. Fischlin et al. [18] and Bhattacharyya and Mukherjee [6]
have proposed formalizations of non-programmable and weakly-programmable
random oracles, e.g., only allowing non-adaptive programmability. Both works
give a number of possibility and impossibility results, in particular that full-
domain hash (FDH) signatures can only be proven secure (via black-box reduc-
tions) if the random oracle is fully programmable [18]. Non-observable random
oracles and their power are studied by Ananth and Bhaskarin [1], showing that
Schnorr and probabilistic RSA-FDH signatures can be proven secure. All these
works focus on the use of random oracles in individual reductions, whereas our
work proposes globally re-usable random-oracle functionalities within the UC
framework. The strict random oracle functionality GsRO that we analyze is com-
parable to a non-programmable and non-observable random oracle, so our result
that any unforgeable signature scheme is also GUC-secure w.r.t. GsRO may seem
to contradict the above results. However, the GsRO functionality imposes these
restrictions only for the GUC simulator, whereas the reduction can fully program
the random oracle.

Summary. Our results clearly paint a much more positive picture for global
random oracles than was given in the literature so far. We present several formu-
lations of globally accessible random-oracle functionalities that allow to prove
the composable security of some of the most efficient signature, PKE, and com-
mitment schemes that are currently known. We even show that the most natural
formulation, the strict global random oracle GsRO that was previously considered
useless, suffices to prove GUC-secure a large class of efficient signature and en-
cryption schemes. By doing so, our work brings the (composable) ROM back
closer to its original intention: to provide an intuitive idealization of hash func-
tions that enables to prove the security of highly efficient protocols. We expect
that our results will give rise to many more practical cryptographic protocols
that can be proven GUC-secure, among them known protocols that have been
proven secure in the traditional ROM model.

2 Preliminaries

In the rest of this work, we use “iff” for “if and only if”, “w.l.o.g.” for “without
loss of generality”, and n ∈ N to denote the security parameter. A function
ε(n) is negligible if it is asymptotically smaller than 1/p(n) for every polynomial
function p. We denote by x $←−X that x is a sample from the uniform distribution
over the set X. When A is a probabilistic algorithm, then y := A(x; r) means that
y is assigned the outcome of a run of A on input x with coins r. Two distributions
X and Y over a domain Σ(n) are said to be computationally indistinguishable,
written X ≈ Y , if for any PPT algorithm A, |A(X(s)) −A(Y (s))| is negligible
for all s ∈ Σ(n).

2.1 The Basic and Generalized UC Frameworks

Basic UC. The universal composability (UC) framework [10, 9] is a framework to
define and prove the security of protocols. It follows the simulation-based security
paradigm, meaning that security of a protocol is defined as the simulatability
of the protocol based on an ideal functionality F . In an imaginary ideal world,
parties hand their protocol inputs to a trusted party running F , where F by
construction executes the task at hand in a secure manner. A protocol π is
considered a secure realization of F if the real world, in which parties execute
the real protocol, is indistinguishable from the ideal world. Namely, for every
real-world adversary A attacking the protocol, we can design an ideal-world
attacker (simulator) S that performs an equivalent attack in the ideal world. As
the ideal world is secure by construction, this means that there are no meaningful
attacks on the real-world protocol either.

One of the goals of UC is to simplify the security analysis of protocols, by
guaranteeing secure composition of protocols and, consequently, allowing for
modular security proofs. One can design a protocol π assuming the availability
of an ideal functionality F ′, i.e., π is a F ′-hybrid protocol. If π securely realizes
F , and another protocol π′ securely realizes F ′, then the composition theorem

guarantees that π composed with π′ (i.e., replacing π′ with F ′) is a secure
realization of F .

Security is defined through an interactive Turing machine (ITM) Z that
models the environment of the protocol and chooses protocol inputs to all par-
ticipants. Let EXECπ,A,Z denote the output of Z in the real world, running
with protocol π and adversary A, and let IDEALF,S,Z denote its output in the
ideal world, running with functionality F and simulator S. Protocol π securely
realizes F if for every polynomial-time adversary A, there exists a simulator S
such that for every environment Z, EXECπ,A,Z ≈ IDEALF,S,Z .

Generalized UC. A Basic UC protocol using random oracles is modeled as a FRO-
hybrid protocol. Since an instance of a Basic UC functionality can only be used
by a single protocol instance, this means that every protocol instance uses its
own random oracle that is completely independent of other protocol instances’
random oracles. As the random-oracle model is supposed to be an idealization
of real-world hash functions, this is not a very realistic model: Given that we
only have a handful of standardized hash functions, it’s hard to argue their
independence across many protocol instances.

To address these limitations of Basic UC, Canetti et al [12] introduced the
Generalized UC (GUC) framework, which allows for shared “global” ideal func-
tionalities (denoted by G) that can be used by all protocol instances. Addi-
tionally, GUC gives the environment more powers in the UC experiment. Let
GEXECπ,A,Z be defined as EXECπ,A,Z , except that the environment Z is no
longer constrained, meaning that it is allowed to start arbitrary protocols in
addition to the challenge protocol π. Similarly, GIDEALF,S,Z is equivalent to
IDEALF,S,Z but Z is now unconstrained. If π is a G-hybrid protocol, where
G is some shared functionality, then Z can start additional G-hybrid protocols,
possibly learning information about or influencing the state of G.

Definition 1. Protocol π GUC-emulates protocol ϕ if for every adversary A
there exists an adversary S such that for all unconstrained environments Z,
GEXECπ,A,Z ≈ GEXECϕ,S,Z .

Definition 2. Protocol π GUC-realizes ideal functionality F if for every adver-
sary A there exists a simulator S such that for all unconstrained environments
Z, GEXECπ,A,Z ≈ GIDEALF,S,Z .

GUC gives very strong security guarantees, as the unconstrained environment
can run arbitrary protocols in parallel with the challenge protocol, where the dif-
ferent protocol instances might share access to global functionalities. However,
exactly this flexibility makes it hard to reason about the GUC experiment. To
address this, Canetti et al. also introduced Externalized UC (EUC). Typically, a
protocol π uses many local hybrid functionalities F but only uses a single shared
functionality G. Such protocols are called G-subroutine respecting, and EUC
allows for simpler security proofs for such protocols. Rather than considering
unconstrained environments, EUC considers G-externally constrained environ-
ments. Such environments can invoke only a single instance of the challenge pro-

tocol, but can additionally query the shared functionality G through dummy par-
ties that are not part of the challenge protocol. The EUC experiment is equivalent
to the Basic UC experiment, except that it considers G-externally constrained
environments: A G-subroutine respecting protocol π EUC-emulates a protocol ϕ
if for every polynomial-time adversary A there is an adversary S such that for
every G-externally constrained environment EXECGπ,A,Z ≈ EXECGϕ,S,Z . Fig-
ure 2(b) depicts EUC-emulation and shows that this setting is much simpler
to reason about than GUC-emulation: We can reason about this static setup,
rather than having to imagine arbitrary protocols running alongside the chal-
lenge protocol. Canetti et al. prove that showing EUC-emulation is useful to
obtain GUC-emulation.

Theorem 1. Let π be a G-subroutine respecting protocol, then protocol π GUC-
emulates protocol ϕ if and only if π G-EUC-emulates ϕ.

Conventions. When specifying ideal functionalities, we will use some conventions
for ease of notation. For a non-shared functionality with session id sid, we write
“On input x from party P”, where it is understood the input comes from machine
(P, sid). For shared functionalities, machines from any session may provide input,
so we always specify both the party identity and the session identity of machines.
In some cases an ideal functionality requires immediate input from the adversary.
In such cases we write “wait for input x from the adversary”, which is formally
defined by Camenisch et al. [7].

2.2 Basic Building Blocks

One-Way Trapdoor Permutations. A (family of) one-way trapdoor permutations
is a tuple OWTP := (OWTP.Gen,OWTP.Sample,OWTP.Eval,OWTP.Invert) of
PPT algorithms. On input n; OWTP.Gen outputs: a permutation domain Σ
(e.g., ZN for an RSA modulus N), and efficient representations of, respectively,
a permutation ϕ in the family (e.g., an RSA public exponent e), and of its inverse
ϕ−1 (e.g., an RSA secret exponent d). Security requires that no PPT adversary
can invert a point y = ϕ(x) for a random challenge template (Σ,ϕ, y) with non-
negligible probability. We will often use OWTPs to generate public and secret
keys for, e.g., signature schemes or encryption schemes by, e.g., setting pk =
(Σ,ϕ) and sk = ϕ−1. W.l.o.g. in the following we assume that the representation
of Σ also includes the related security parameter n, and secret keys also include
the public part. Notice that, in general, OWTP.Invert also takes ϕ as input,
although in practice this might be unnecessary, depending on the particular
OWTP in exam.

Signature Schemes. A (stateless) signature scheme is a tuple SIG = (KGen,Sign,
Verify) of polynomial time algorithms, where KGen and Sign can be probabilis-
tic and Verify is deterministic. On input the security parameter, KGen outputs a
public/secret key pair (pk, sk). Sign takes as input sk (and we write this as a short-
hand notation Signsk) and a message m, and outputs a signature σ. Verify takes

GsRO – functionality for the strict global random oracle.

Parameters: output size `(n)
Variables: initially empty list ListH

1. Query: on input (HashQuery,m) from a machine (P, sid), proceed as follows.

– Find h such that (m,h) ∈ ListH. If no such h exists, let h $←−{0, 1}`(n) and store
(m,h) in ListH.

– Output (HashConfirm, h) to (P, sid).

Fig. 1: The strict global random oracle functionality GsRO that does not give any
extra power to anyone (mentioned but not defined by Canetti et al. [15]).

as input a public key pk (and we write this as a shorthand notation Verifypk),
a message m and a signature σ, and outputs a single bit denoting acceptance
or rejection of the signature. The standard security notion we assume for signa-
ture schemes is existential unforgeability under chosen message attacks (EUF-
CMA) [20], which we recall here briefly. In such game-based security notion, an
adversary is allowed to perform a number of signature queries, adaptively, on
messages of his choice for a secret key generated by a challenger. Then, he wins
the game if he manages to output a valid signature for a fresh message for that
key. We say that a signature scheme is EUF-CMA secure if no PPT adversary
can win this game with more than negligible probability.

Public-Key Encryption Schemes. A public-key encryption scheme is a tuple
of PPT algorithms Π = (KGen,Enc,Dec). On input n, KGen outputs a pub-
lic/private key pair (pk, sk). Enc takes as input a public key pk (and we write
this as a shorthand notation Encpk) and a plaintext m, and outputs a ciphertext
c. Dec takes as input a secret key sk (and we write this as a shorthand notation
Decsk) and a ciphertext c, and outputs either ⊥m or a message m. The standard
security notion we assume for public-key encryption schemes is indistinguisha-
bility under adaptive chosen message attacks (IND-CCA2) [2], which we recall
here briefly. In such game-based security notion, an adversary sends a challenge
plaintext of his choice to an external challenger, who generates a key pair and
either responds to the adversary with an encryption of the challenge plaintext,
or with the encryption of a random plaintext (having the same leakage as the
original plaintext, in case we are considering corruption models), the goal of the
adversary being to distinguish which is the case. We say that a PKE scheme is
IND-CCA2 secure if no PPT adversary can win this game with more than neg-
ligible advantage over guessing, even if allowed to query adaptively a decryption
oracle on any ciphertext of his choice – except the challenge ciphertext.

3 Strict Random Oracle

This section focuses on the so-called strict global random oracle GsRO depicted
in Figure 1, which is the most natural definition of a global random oracle: on a

(a) Local random oracle: the simulator
simulates the RO and has full control.

(b) Global random oracle: the random or-
acle is external to the simulator.

Fig. 2: The UC experiment with a local random oracle (a) and the EUC experi-
ment with a global random oracle (b).

Fig. 3: Reduction B from a real-world adversary A and a black-box environment
Z, simulating all the ideal functionalities (even the global ones) and playing
against an external challenger C.

fresh input m, a random value h is chosen, while on repeating inputs, a consistent
answer is given back. This natural definition was discussed by Canetti et al. [15]
but discarded as it does not suffice to realize FCOM. While this is true, we will
argue that GsRO is still useful to realize other functionalities.

The code of GsRO is identical to that of a local random oracle FRO in UC.
In Basic UC, this is a very strong definition, as it gives the simulator a lot of
power: In the ideal world, it can simulate the random oracle FRO, which gives
it the ability to observe all queries and program the random oracle on the fly
(cf. Figure 2(a)). In GUC, the global random oracle GsRO is present in both worlds
and the environment can access it (cf. Figure 2(b)). In particular, the simulator is
not given control of GsRO and hence cannot simulate it. Therefore, the simulator
has no more power over the random oracle than explicitly offered through the
interfaces of the global functionality. In the case of GsRO, the simulator can
neither program the random oracle, nor observe the queries made.

As the simulator obtains no relevant advantage over the real-world adversary
when interacting with GsRO, one might wonder how it could help in security
proofs. The main observation is that the situation is different when one proves
that the real and ideal world are indistinguishable. Here one needs to show that
no environment can distinguish between the real and ideal world and thus, when
doing so, one has full control over the global functionality. This is for instance the
case when using the (distinguishing) environment in a cryptographic reduction:

as depicted in Figure 3, the reduction algorithm B simulates the complete view
of the environment Z, including the global GsRO, allowing B to freely observe
and program GsRO. As a matter of facts, B can also rewind the environment
here – another power that the simulator S does not have but is useful in the
security analysis of many schemes. It turns out that for some primitives, the
EUC simulator does not need to program or observe the random oracle, but
only needs to do so when proving that no environment can distinguish between
the real and the ideal world.

This allows us to prove a surprisingly wide range of practical protocols se-
cure with respect to GsRO. First, we prove that any signature scheme proven
to be EUF-CMA in the local random-oracle model yields UC secure signatures
with respect the global GsRO. Second, we show that any public-key encryption
scheme proven to be IND-CCA2 secure with local random oracles yields UC
secure public-key encryption (with respect to static corruptions), again with the
global GsRO. These results show that highly practical schemes such as Schnorr
signatures [23], RSA full-domain hash signatures [3, 16], RSA-PSS signatures [5],
RSA-OAEP encryption [4], and the Fujisaki-Okamoto transform [19] all remain
secure when all schemes share a single hash function that is modeled as a strict
global random oracle. This is remarkable, as their security proofs in the local
random-oracle model involve techniques that are not available to an EUC simula-
tor: signature schemes typically require programming of random-oracle outputs
to simulate signatures, PKE schemes typically require observing the adversary’s
queries to simulate decryption queries, and Schnorr signatures need to rewind
the adversary in a forking argument [22] to extract a witness. However, it turns
out, this rewinding is only necessary in the reduction B showing that no dis-
tinguishing environment Z can exist and we can show that all these schemes
can safely be used in composition with arbitrary protocols and with a natural,
globally accessible random-oracle functionality GsRO.

3.1 Composable Signatures using GsRO

Let SIG = (KGen,Sign,Verify) be an EUF-CMA secure signature scheme in the
ROM. We show that this directly yields a secure realization of UC signatures
FSIG with respect to a strict global random oracle GsRO. We assume that SIG

uses a single random oracle that maps to {0, 1}`(n). Protocols requiring multi-
ple random oracles or mapping into different ranges can be constructed using
standard domain separation and length extension techniques.

We define πSIG to be SIG phrased as a GUC protocol. Whenever an algorithm
of SIG makes a call to a random oracle, πSIG makes a call to GsRO.

1. On input (KeyGen, sid), signer P proceeds as follows.
– Check that sid = (P, sid′) for some sid′, and no record (sid, sk) exists.
– Run (pk, sk)← SIG.KGen(n) and store (sid, sk).
– Output (KeyConf, sid, pk).

2. On input (Sign, sid,m), signer P proceeds as follows.
– Retrieve record (sid, sk), abort if no record exists.

FSIG – functionality for public-key signatures.
Variables: initially empty records keyrec and sigrec.

1. Key Generation. On input (KeyGen, sid) from a party P.
– If sid 6= (P, sid′) or a record (keyrec, sid, pk) exists, then abort.
– Send (KeyGen, sid) to A and wait for (KeyConf, sid, pk) from A. If a record

(sigrec, sid, ∗, ∗, pk, ∗) exists, abort (Consistency).
– Create record (keyrec, sid, pk).
– Output (KeyConf, sid, pk) to P.

2. Signature Generation. On input (Sign, sid,m) from P.
– If sid 6= (P, sid′) or no record (keyrec, sid, pk) exists, then abort.
– Send (Sign, sid,m) to A, and wait for (Signature, sid, σ) from A.
– If a record (sigrec, sid,m, σ, pk, false) exists, then abort.
– Create record (sigrec, sid,m, σ, pk, true) (Completeness).
– Output (Signature, sid, σ) to P.

3. Signature Verification. On input (Verify, sid,m, σ, pk′) from some party V.
– If a record (sigrec, sid,m, σ, pk′, b) exists, set f ← b (Consistency).
– Else, if a record (keyrec, sid, pk) exists, P is honest, and no record

(sigrec, sid,m, ∗, pk, true) exists, set f ← 0 (Unforgeability).
– Else, send (Verify, sid,m, σ, pk′) toA and wait for (Verified, sid, b), and set f ← b.
– Create a record (sigrec, sid,m, σ, pk′, f) and output (Verified, sid, f) to V.

Fig. 4: The signature functionality FSIG due to Canetti [11].

– Output (Signature, sid, σ) with σ ← SIG.Sign(sk,m).

3. On input (Verify, sid,m, σ, pk′) a verifier V proceeds as follows.

– Output (Verified, sid, f) with f ← SIG.Verify(pk′, σ,m).

We will prove that πSIG will realize UC signatures. There are two main ap-
proaches to defining a signature functionality: using adversarially provided al-
gorithms to generate and verify signature objects (e.g., the 2005 version of [9]),
or by asking the adversary to create and verify signature objects (e.g., [11]).
For a version using algorithms, the functionality will locally create and verify
signature objects using the algorithm, without activating the adversary. This
means that the algorithms cannot interact with external parties, and in particu-
lar communication with external functionalities such as a global random oracle
is not permitted. We could modify an algorithm-based FSIG to allow the sign
and verify algorithms to communicate only with a global random oracle, but we
choose to use an FSIG that interacts with the adversary as this does not require
special modifications for signatures with global random oracles.

Theorem 2. If SIG is EUF-CMA in the random-oracle model, then πSIG GUC-
realizes FSIG (as defined in Figure 4) in the GsRO-hybrid model.

Proof. By the fact that πSIG is GsRO-subroutine respecting and by Theorem 1, it is
sufficient to show that πSIG GsRO-EUC-realizes FSIG. We define the UC simulator
S as follows.

1. Key Generation. On input (KeyGen, sid) from FSIG, where sid = (P, sid′)
and P is honest.
– Simulate honest signer “P”, and give it input (KeyGen, sid).
– When “P” outputs (KeyConf, sid, pk) (where pk is generated according

to πSIG), send (KeyConf, sid, pk) to FSIG.
2. Signature Generation. On input (Sign, sid,m) from FSIG, where sid =

(P, sid′) and P is honest.
– Run simulated honest signer “P” with input (Sign, sid,m).
– When “P” outputs (Signature, sid, σ) (where σ is generated according to
πSIG), send (Signature, sid, σ) to FSIG.

3. Signature Verification. On input (Verify, sid,m, σ, pk′) from FSIG, where
sid = (P, sid′).
– Run f ←− SIG.Verify(pk′, σ,m), and send (Verified, sid, f) to FSIG.

We must show that πSIG realizes FSIG in the Basic UC sense, but with respect
to GsRO-externally constrained environments, i.e., the environment is now allowed
to access GsRO via dummy parties in sessions unequal to the challenge session.
Without loss of generality, we prove this with respect to the dummy adversary.

During key generation, S invokes the simulated honest signer P, so the re-
sulting keys are exactly like in the real world. The only difference is that in the
ideal world FSIG can abort key generation in case the provided public key pk
already appears in a previous sigrec record. But if this happens it means that A
has successfully found a collision in the public key space, which must be expo-
nentially large as the signature scheme is EUF-CMA by assumption. This means
that such event can only happen with negligible probability.

For a corrupt signer, the rest of the simulation is trivially correct: the ad-
versary generates keys and signatures locally, and if an honest party verifies
a signature, the simulator simply executes the verification algorithm as a real
world party would do, and FSIG does not make further checks (the unforgeability
check is only made when the signer is honest). When an honest signer signs, the
simulator creates a signature using the real world signing algorithm, and when
FSIG asks the simulator to verify a signature, S runs the real world verifica-
tion algorithm, and FSIG keeps records of the past verification queries to ensure
consistency. As the real world verification algorithm is deterministic, storing ver-
ification queries does not cause a difference. Finally, when S provides FSIG with a
signature, FSIG checks that there is no stored verification query exists that states
the provided signature is invalid. By completeness of the signature scheme, this
check will never trigger.

The only remaining difference is that FSIG prevents forgeries: if a verifier
uses the correct public key, the signer is honest, and we verify a signature on a
message that was never signed, FSIG rejects. This would change the verification
outcome of a signature that would be accepted by the real-world verification
algorithm. As this event is the only difference between the real and ideal world,
what remains to show is that this check changes the verification outcome only
with negligible probability. We prove that if there is an environment that causes
this event with non-negligible probability, then we can use it to construct a forger
B that breaks the EUF-CMA unforgeability of SIG.

Our forger B plays the role of FSIG, S, and even the random oracle GsRO, and
has black-box access to the environment Z. Then B receives a challenge public
key pk and is given access to a signing oracle OSign(sk,·) and to a random oracle
RO. It responds Z’s GsRO queries by relaying queries and responses to and from
RO. It runs the code of FSIG and S, but uses OSign(sk,m) instead of FSIG’s signature
generation interface to generate signatures. If the unforgeability check of FSIG

triggers for a cryptographically valid signature σ on message m, then we know
that B made no query OSign(sk,m), meaning that B can submit (σ,m) to win the
EUF-CMA game. ut

3.2 Composable Public-Key Encryption using GsRO

Let PKE = (KGen,Enc,Dec) be a CCA2 secure public-key encryption scheme
in the ROM. We show that this directly yields a secure realization of GUC
public-key encryption FLPKE, as recently defined by Camenisch et al. [8] and
depicted in Figure 5), with respect to a strict global random oracle GsRO and
static corruptions. As with our result for signature schemes, we require that

PKE uses a single random oracle that maps to {0, 1}`(n).
We define πPKE to be PKE phrased as a GUC protocol.

1. On input (KeyGen, sid, n), party P proceeds as follows.
– Check that sid = (P, sid′) for some sid′, and no record (sid, sk) exists.
– Run (pk, sk)← PKE.KGen(n) and store (sid, sk).
– Output (KeyConf, sid, pk).

2. On input (Encrypt, sid, pk′,m), party Q proceeds as follows.
– Set c← PKE.Enc(pk′,m) and output (Ciphertext, sid, c).

3. On input (Decrypt, sid, c), party P proceeds as follows.
– Retrieve (sid, sk), abort if no such record exist.
– Set m← PKE.Dec(sk, c) and output (Plaintext, sid,m).

Theorem 3. Protocol πPKE GUC-realizes FLPKE with static corruptions with leak-
age function L in the GsRO-hybrid model if PKE is CCA2 secure with leakage L
in the ROM.

Proof. By the fact that πPKE is GsRO-subroutine respecting and by Theorem 1,
it is sufficient to show that πPKE GsRO-EUC-realizes FLPKE.

We define simulator S as follows.

1. On input (KEYGEN, sid).
– Parse sid as (P, sid′). Note that P is honest, as S does not make KeyGen

queries on behalf of corrupt parties.
– Invoke the simulated receiver “P” on input (KeyGen, sid) and wait for

output (KeyConf, sid, pk) from “P”.
– Send (KeyConf, sid, pk) to FLPKE.

2. On input (Enc-M, sid, pk′,m) with m ∈M.
– S picks some honest party “Q” and gives it input (Encrypt, sid, pk′,m).

Wait for output (Ciphertext, sid, c) from “Q”.

FLPKE – functionality of public-key encryption with leakage function L.

Parameters: message space M
Variables: initially empty records keyrec, encrec, decrec.

1. KeyGen. On input (KeyGen, sid) from party P:
– If sid 6= (P, sid′) or a record (keyrec, sid, pk) exists, then abort.
– Send (KeyGen, sid) to A and wait for (KeyConf, sid, pk) from A.
– Create record (keyrec, sid, pk).
– Output (KeyConf, sid, pk) to P.

2. Encrypt. On input (Encrypt, sid, pk′,m) from party Q with m ∈M:
– Retrieve record (keyrec, sid, pk) for sid.
– If pk′ = pk and P is honest, then:
• Send (Enc-L, sid, pk,L(m)) to A, and wait for (Ciphertext, sid, c) from A.
• If a record (encrec, sid, ·, c) exists, then abort.
• Create record (encrec, sid,m, c).

– Else (i.e., pk′ 6= pk or P is corrupt) then:
• Send (Enc-M, sid, pk′,m) to A, and wait for (Ciphertext, sid, c) from A.

– Output (Ciphertext, sid, c) to Q.
3. Decrypt. On input (Decrypt, sid, c) from party P:
– If sid 6= (P, sid′) or no record (keyrec, sid, pk) exists, then abort.
– If a record (encrec, sid,m, c) for c exists:
• Output (Plaintext, sid,m) to P.

– Else (i.e., if no such record exists):
• Send (Decrypt, sid, c) to A and wait for (Plaintext, sid,m) from A.
• Create record (encrec, sid,m, c).
• Output (Plaintext, sid,m) to P.

Fig. 5: The PKE functionality FLPKE with leakage function L [9, 8].

– Send (Ciphertext, sid, c) to FLPKE.
3. On input (Enc-L, sid, pk, l).

– S does not know which message is being encrypted, so it chooses a
dummy plaintext m′ ∈M with L(m′) = l.

– Pick some honest party “Q” and give it input (Encrypt, sid, pk,m′), Wait
for output (Ciphertext, sid, c) from “Q”.

– Send (Ciphertext, sid, c) to FLPKE.
4. On input (Decrypt, sid, c).

– Note that S only receives such input when P is honest, and therefore S
simulates “P” and knows its secret key sk.

– Give “P” input (Decrypt, sid, c) and wait for output (Plaintext, sid,m)
from “P”.

– Send (Plaintext, sid,m) to FLPKE.

What remains to show is that S is a satisfying simulator, i.e., no GsRO-externally
constrained environment can distinguish the real protocol πPKE from FLPKE with
S. If the receiver P (i.e., such that sid = (P, sid′)) is corrupt, the simulation is
trivially correct: S only creates ciphertexts when it knows the plaintext, so it

can simply follow the real protocol. If P is honest, S does not know the message
for which it is computing ciphertexts, so a dummy plaintext is encrypted. When
the environment submits that ciphertext for decryption by P, the functionality
FLPKE will still return the correct message. Using a sequence of games, we show
that if an environment exists that can notice this difference, it can break the
CCA2 security of PKE.

Let Game 0 be the game where S and FLPKE act as in the ideal world, except
that FLPKE passes the full message m in Enc-L inputs to S, and S returns a real
encryption of m as the ciphertext. It is clear that Game 0 is identical to the
real world EXECGπ,A,Z . Let Game i for i = 1, . . . , qE, where qE is the number of
Encrypt queries made by Z, be defined as the game where for Z’s first i Encrypt
queries, FLPKE passes only L(m) to S and S returns the encryption of a dummy
message m′ so that L(m′) = L(m), while for the i+ 1-st to qE-th queries, FLPKE
passes m to S and S returns an encryption of m. It is clear that Game qE is
identical to the ideal world IDEALGF,S,Z .

By a hybrid argument, for Z to have non-negligible probability to distin-
guish between EXECGπ,A,Z and IDEALGF,S,Z , there must exist an i such that Z
distinguishes with non-negligible probability between Game (i− 1) and Game i.
Such an environment gives rise to the following CCA2 attacker B against PKE.

Algorithm B receives a challenge public key pk as input and is given access
to decryption oracle ODec(sk,·) and random oracle RO. It answers Z’s queries
GsRO(m) by relaying responses from its own oracle RO(m) and lets S use pk as
the public key of P. It largely runs the code of Game (i−1) for S and FLPKE, but
lets S respond to inputs (Dec, sid, c) from FLPKE by calling its decryption oracle
m = ODecrypt(sk,c). Note that FLPKE only hands such inputs to S for ciphertexts c
that were not produced via the Encrypt interface of FLPKE, as all other ciphertexts
are handled by FLPKE itself.

Let m0 denote the message that Functionality FLPKE hands to S as part of
the i-th Enc-L input. Algorithm B now sets m1 to be a dummy message m′

such that L(m′) = L(m0) and hands (m0,m1) to the challenger to obtain the
challenge ciphertext c∗ that is an encryption of mb. It is clear that if b = 0,
then the view of Z is identical to that in Game (i − 1), while if b = 1, it is
identical to that in Game i. Moreover, B will never have to query its decryption
oracle on the challenge ciphertext c∗, because any decryption queries for c∗ are
handled by FLPKE directly. By outputting 0 if Z decides it runs in Game (i − 1)
and outputting 1 if Z decides it runs in Game i, B wins the CCA2 game with
non-negligible probability. ut

4 Programmable Global Random Oracle

We now turn our attention to a new functionality that we call the programmable
global random oracle, denoted by GpRO. The functionality simply extends the
strict random oracle GsRO by giving the adversary (real-world adversary A and
ideal-world adversary S) the power to program input-output pairs. Because we
are in GUC or EUC, that also means that the environment gets this power.

GpRO – functionality for the programmable global random oracle.

Parameters: output size `(n)
Variables: initially empty list ListH

1. Query: on input (HashQuery,m) from a machine (P, sid), proceed as follows.

– Find h such that (m,h) ∈ ListH. If no such h exists, let h $←−{0, 1}`(n) and store
(m,h) in ListH.

– Output (HashConfirm, h) to (P, sid).
2. Program: on input (ProgramRO,m, h) from adversary A

– If ∃ h′ ∈ {0, 1}`(n) such that (m,h′) ∈ ListH and h 6= h′, then abort
– Else, add (m,h) to ListH and output (ProgramConfirm) to A

Fig. 6: The programmable global random oracle functionality GpRO.

Thus, as in the case of GsRO, the simulator is thus not given any extra power
compared to the environment (through the adversary), and one might well think
that this model would not lead to the realization of any useful cryptographic
primitives either. To the contrary, one would expect that the environment being
able to program outputs would interfere with security proofs, as it destroys many
properties of the random oracle such as collision or preimage resistance.

As it turns out, we can actually realize public-key encryption secure against
adaptive corruptions (also known as non-committing encryption) in this model:
we prove that the PKE scheme of Camenisch et al. [8] GUC-realizes FPKE against
adaptive corruptions in the GpRO-hybrid model. The security proof works out
because the simulator equivocates dummy ciphertexts by programming the ran-
dom oracle on random points, which are unlikely to have been queried by the
environment before.

4.1 The Programmable Global Random Oracle GpRO

The functionality GpRO (cf. Figure 6) is simply obtained from GsRO by adding
an interface for the adversary to program the oracle on a single point at a
time. To this end, the functionality GpRO keeps an internal list of preimage-value
assignments and, if programming fails (because it would overwrite a previously
taken value), the functionality aborts, i.e., it replies with an error message ⊥.

Notice that our GpRO functionality does not guarantee common random-oracle
properties such as collision resistance: an adversary can simply program colli-
sions into GpRO. However, this choice is by design, because we are interested
in achieving security with the weakest form of a programmable global random
oracle to see what can be achieved against the strongest adversary possible.

4.2 Public-Key Encryption with Adaptive Corruptions from GpRO

We show that GUC-secure non-interactive PKE with adaptive corruptions (often
referred to as non-committing encryption) is achievable in the hybrid GpRO model

by proving the PKE scheme by Camenisch et al. [8] secure in this model. We
recall the scheme in Figure 7 based on the following building blocks:

– a family of one-way trapdoor permutations OWTP = (OWTP.Gen,
OWTP.Sample,OWTP.Eval,OWTP.Invert), where domains Σ generated by
OWTP.Gen(1n) have cardinality at least 2n;

– a block encoding scheme (EC,DC), where EC : {0, 1}∗ → ({0, 1}`(n))∗ is
an encoding function such that the number of blocks that it outputs for a
given message m depends only on the leakage L(m), and DC its deterministic
inverse (possibly rejecting with ⊥ if no preimage exists).

πPKE – public-key encryption secure against adaptive corruptions.

Parameters: block size `(n)

1. KeyGen. On input (KeyGen, sid) from party P:
– Check that sid = (P, sid′) and no record (keyrec, sid, sk) exist.
– Sample (ϕ,ϕ−1, Σ)←− OWTP.Gen(1n).
– Set pk← (ϕ,Σ), sk← (ϕ,ϕ−1, Σ).
– Create record (keyrec, sid, pk, sk).
– Output (KeyConf, sid, pk) to P.

2. Encrypt. On input (Encrypt, sid, pk′,m) from party Q:
– Parse pk′ as (ϕ,Σ), get (m1, . . . ,mk)← EC(m) and x←− OWTP.Sample(Σ).
– Let c1 ← OWTP.Eval(Σ,ϕ,x), c2,i ← mi⊕hi, ∀ i=1, . . . , k, and c3 ← h where
h and all hi are obtained as (HashConfirm, hi)← GpRO(HashQuery, (x‖i)) and
(HashConfirm, h)← GpRO(HashQuery, (x‖k‖m)), respectively.

– Set c← (c1, c2,1, . . . , c2,k, c3).
– Output (Ciphertext, sid, c) to Q.

3. Decrypt. On input (Decrypt, sid, c) from party P:
– Check that sid = (P, sid′) and (keyrec, sid, sk) exist, if not, then abort.
– Parse sk as (ϕ,ϕ−1, Σ), and c as (c1, c2,1, . . . , c2,k, c3).
– Set x′ ←− OWTP.Invert(Σ,ϕ, ϕ−1, c1), m′i ← c2,i ⊕ h′i for i = 1, . . . , k, and
m′ ←− DC(m′1, . . . ,m

′
k), where all h′i are obtained as

(HashConfirm, h′i)← GpRO(HashQuery, (x′‖i)).
– If m′ = ⊥m or h′ 6= c3, then output (Plaintext, sid,⊥m) to P, where h′ is

obtained from (HashConfirm, h′)← GpRO(HashQuery, (x′‖k‖m′)).
– Else, output (Plaintext, sid,m) to P.

Fig. 7: Public-key encryption scheme secure against adaptive attacks [8] based
on one-way permutation OWTP and encoding function (EC,DC).

Theorem 4. Protocol πPKE in Figure 7 GUC-realizes FPKE with adaptive cor-
ruptions and leakage function L in the GpRO-hybrid model.

Proof. We need to show that πPKE GUC-realizes FLPKE, i.e., that, given any en-
vironment Z and any real-world adversary A, there exists a simulator S such

that the output distribution of Z interacting with FLPKE, GpRO, and S is indis-
tinguishable from its output distribution when interacting with πPKE, GpRO, and
A. Because πPKE is GsRO-subroutine respecting, by Theorem 1 it suffices to show
that πPKE GpRO-EUC-realizes FLPKE.

The simulator S is depicted in Figure 8. Basically, it generates an honest
key pair for the receiver and responds to Enc-M and Decrypt inputs by using
the honest encryption and decryption algorithms, respectively. On Enc-L inputs,
however, it creates a dummy ciphertext c composed of c1 = ϕ(x) for a freshly
sampled x (but rejecting values of x that were used before) and randomly cho-
sen c2,1, . . . , c2,k and c3 for the correct number of blocks k. Only when either
the secret key or the randomness used for this ciphertext must be revealed to
the adversary, i.e., only when either the receiver or the party Q who created
the ciphertext is corrupted, does the simulator program the random oracle so
that the dummy ciphertext decrypts to the correct message m. If the receiver
is corrupted, the simulator obtains m by having it decrypted by FPKE; if the
encrypting party Q is corrupted, then m is included in the history of inputs and
outputs that is handed to S upon corruption. The programming is done through
the Program subroutine, but the simulation aborts in case programming fails,
i.e., when a point needs to be programmed that is already assigned. We will
prove in the reduction that any environment causing this to happen can be used
to break the one-wayness of the trapdoor permutation.

We now have to show that S successfully simulates a real execution of the
protocol πPKE to a real-world adversary A and environment Z. To see this,
consider the following sequence of games played with A and Z that gradually
evolve from a real execution of πPKE to the simulation by S.

Let Game 0 be a game that is generated by letting an ideal functionality
F0 and a simulator S0 collaborate, where F0 is identical to FLPKE, except that
it passes the full message m along with Enc-L inputs to S0. The simulator S0
simply performs all key generation, encryption, and decryption using the real
algorithms, without any programming of the random oracle. The only difference
between Game 0 and the real world is that the ideal functionality F0 aborts
when the same ciphertext c is generated twice during an encryption query for
the honest public key. Because S0 generates honest ciphertexts, the probability
that the same ciphertext is generated twice can be bounded by the probability
that two honest ciphertexts share the same first component c1. Given that c1
is computed as ϕ(x) for a freshly sampled x from Σ, and given that x is uni-
formly distributed over Σ which has size at least 2n, the probability of a collision
occurring over qE encryption queries is at most q2E/2

n.

Let Game 1 to Game qE be games for a hybrid argument where gradually all
ciphertexts by honest users are replaced with dummy ciphertexts. Let Game i
be the game with a functionality Fi and simulator Si where the first i− 1 Enc-L
inputs of Fi to Si include only the leakage L(m), and the remaining such inputs
include the full message. For the first i − 1 encryptions, Si creates a dummy
ciphertext and programs the random oracle upon corruption of the party or the

Parameters: leakage function L, hash output length `(n)
Variables: initially empty list EncL
Subroutines: Program(m, c, r) depicted in Figure 9

1. On input (KeyGen, sid) from FLPKE:
– Sample r $←−{0, 1}n and honestly generate keys with randomness r by gener-

ating (Σ,ϕ, ϕ−1)←− OWTP.Gen(n; r) and setting pk← (Σ,ϕ), sk← ϕ−1.
– Record (pk, sk, r).
– Send (KeyConf, sid, pk) to FLPKE.

2. On input (Enc-L, sid, pk, λ) from FLPKE:
– Parse pk as (Σ,ϕ).
– Sample r $←−{0, 1}n and generate x ← OWTP.Sample(Σ; r) until x does not

appear in EncL.
– Choose a dummy plaintext m such that L(m) = λ and let k be such that

(m1, . . . ,mk)← EC(m).
– Generate a dummy ciphertext c with c1 ← OWTP.Eval(Σ,ϕ, x) and with

random c2,1, . . . , c2,k, c3
$←−{0, 1}`(n).

– Record (c,⊥m, r, x, pk) in EncL.
– Send (Ciphertext, sid, c) to FLPKE.

3. On input (Enc-M, sid, pk′,m) from FLPKE:
– Sample r $←−{0, 1}n and produce ciphertext c honestly from m using key pk′

and randomness r.
– Send (Ciphertext, sid, c) to FLPKE.

4. On input (Decrypt, sid, c) from FLPKE:
– Decrypt c honestly using the recorded secret key sk to yield plaintext m.
– Send (Plaintext, sid,m) to FLPKE.

5. On corruption of party Q, receive as input from FLPKE the history of Q’s inputs
and outputs, then compose Q’s state as follows and hand it to FLPKE:
– For every input (Encrypt, sid, pk′,m) and corresponding response

(Ciphertext, sid, c) in Q’s history:
• If pk′ 6= pk, then include the randomness r that S used in the corre-

sponding Enc-M query into Q’s state.
• If pk′ = pk, then
∗ Find (c,⊥m, r, x, pk) in EncL, update it to (c,m, r, x, pk), and in-

clude r into Q’s state.
∗ Execute Program(m, c, r).

– If Q is the receiver, i.e., sid = (Q, sid′), then include the randomness r used
at key generation into Q’s state, and for all remaining (c,⊥m, r, x, pk) in
EncL do:
• Send (Decrypt, sid, c) to FLPKE in name of Q and wait for response

(Plaintext, sid,m).
• If m 6= ⊥m, then execute Program(m, c, r).
• Update record (c,⊥m, r, x, pk) in EncL to (c,m, r, x, pk)

Fig. 8: The EUC simulator S for protocol πPKE.

On input (m, c, r) do the following:

– Parse (m1, . . . ,mk) := EC(m), and c := (c1, c2,1, . . . , c2,k′ , c3); let x :=
OWTP.Sample(Σ; r).

– For i = 1, . . . , k:
• Execute GpRO.Program(x‖i,mi ⊕ c2,i) ; abort if unsuccessful.

– Execute GpRO.Program(x‖k‖m, c3) ; abort if unsuccessful.

Fig. 9: The oracle programming routine Program .

receiver as done by S in Figure 8, aborting in case programming fails. For the
remaining Enc-L inputs, Si generates honest encryptions of the real message.

One can see that Game qE is identical to the ideal world with FLPKE and S. To
have a non-negligible advantage distinghuishing the real from the ideal world,
there must exist an i ∈ {1, . . . , qE} such that Z and A can distinguish between
Game (i− 1) and Game i. These games are actually identical, except in the case
that abort happens during the programming of the random oracle GpRO for the i-
th ciphertext, which is a real ciphertext in Game (i−1) and a dummy ciphertext
in Game i. We call this the ROABORT event. We show that if there exists an
environment Z and real-world adversary A that make ROABORT happen with
non-negligible probability ν, then we can construct an efficient algorithm B (the
“reduction”) with black-box access to Z and A that is able to invert OWTP.

Our reduction B must only simulate honest parties, and in particular must
provide to A a consistent view of their secrets (randomness used for encryption,
secret keys, and decrypted plaintexts, just like S does) when they become cor-
rupted. Moreover, since we are not in the idealized scenario, there is no external
global random oracle functionality GpRO: instead, B simulates GpRO for all the
parties involved, and answers all their oracle calls.

Upon input the OWTP challenge (Σ,ϕ, y), B runs the code of Game (i− 1),
but sets the public key of the receiver to pk = (Σ,ϕ). Algorithm B answers the
first i− 1 encryption requests with dummy ciphertexts and the (i+ 1)-st to qE-
th queries with honestly generated ciphertexts. For the i-th encryption request,
however, it returns a special dummy ciphertext with c1 = y.

To simulate GpRO, B maintains an initially empty list ListH to which pairs
(m,h) are either added by lazy sampling for HashQuery queries, or by program-
ming for ProgramRO queries. (Remember that the environment Z can program
entries in GpRO as well.) For requests from Z, B actually performs some additional
steps that we describe further below.

It answers Decrypt requests for a ciphertext c = (c1, c2,1, . . . , c2,k, c3) by
searching for a pair of the form (x‖k‖m, c3) ∈ ListH such that ϕ(x) = c1 and
m = DC(c2,1⊕h1, . . . , c2,k⊕hk), where hj = H(x‖j), meaning that hj is assigned
the value of a simulated request (HashQuery, x‖j) to GpRO. Note that at most one
such pair exists for a given ciphertext c, because if a second (x′‖k‖m′, c3) ∈ ListH
would exist, then it must hold that ϕ(x′) = c1. Because ϕ is a permutation, this
means that x = x′. Since for each j = 1, . . . , k, only one pair (x‖j, hj) ∈ ListH

can be registered, this means that m′ = DC(c2,1⊕h1, . . . , c2,k⊕hk) = m because
DC is deterministic. If such a pair (x‖k‖m, c3) exists, it returns m, otherwise it
rejects by returning ⊥m.

One problem with the decryption simulation above is that it does not neces-
sarily create the same entries into ListH as an honest decryption would have, and
Z could detect this by checking whether programming for these entries succeeds.
In particular, Z could first ask to decrypt a ciphertext c = (ϕ(x), c2,1, . . . , c2,k, c3)
for random x, c2,1, . . . , c2,k, c3 and then try to program the random oracle on any
of the points x‖j for j = 1, . . . , k or on x‖k‖m. In Game (i−1) and Game i, such
programming would fail because the entries were created during the decryption
of c. In the simulation by B, however, programming would succeed, because no
valid pair (x‖k‖m, c3) ∈ ListH was found to perform decryption.

To preempt the above problem, B checks all incoming requests HashQuery
and ProgramRO by Z for points of the form x‖j or x‖k‖m against all previous
decryption queries c = (c1, c2,1, . . . , c2,k, c3). If ϕ(x) = c1, then B immediately
triggers (by mean of appropriate HashQuery calls) the creation of all random-
oracle entries that would have been generated by a decryption of c by computing
m′ = DC(c2,1⊕H(x‖1), . . . , c2,k⊕H(x‖k)) and c′3 = H(x‖k‖m′). Only then does
B handle Z’s original HashQuery or ProgramRO request.

The only remaining problem is if during this procedure c′3 = c3, meaning
that c was previously rejected during by B, but it becomes a valid ciphertext
by the new assignment of H(x‖k‖m) = c′3 = c3. This happens with negligible
probability, though: a random value c′3 will only hit a fixed c3 with probability
1/|Σ| ≤ 1/2n. Since up to qD ciphertexts may have been submitted with the
same first component c1 = ϕ(x) and with different values for c3, the probability
that it hits any of them is at most qD/2

n. The probability that this happens
for at least one of Z’s qH HashQuery queries or one of its qP ProgramRO queries
during the entire execution is at most (qH + qP)qD/2

n.

When A corrupts a party, B provides the encryption randomness that it
used for all ciphertexts that such party generated. If A corrupts the receiver
or the party that generated the i-th ciphertext, then B cannot provide that
randomness. Remember, however, that B is running Z and A in the hope for the
ROABORT event to occur, meaning that the programming of values for the i-th
ciphertext fails because the relevant points in GpRO have been assigned already.
Event ROABORT can only occur at the corruption of either the receiver or of
the party that generated the i-th ciphertext, whichever comes first. Algorithm B
therefore checks ListH for points of the form x‖j or x‖k‖m such that ϕ(x) = y. If
ROABORT occurred, then B will find such a point and output x as its preimage
for y. If it did not occur, then B gives up. Overall, B will succeed whenever
ROABORT occurs. Given that Game (i− 1) and Game i are different only when
ROABORT occurs, and given that Z and A have non-negligible probability of
distinguishing between Game (i − 1) and Game i, we conclude that B succeeds
with non-negligible probability. ut

5 Restricted Programmable Global Random Oracles

The strict and the programmable global random oracles, GsRO and GpRO, respec-
tively, do not give the simulator any extra power compared to the real world
adversary/environment. Canetti and Fischlin [13] proved that it is impossible to
realize UC commitments without a setup assumption that gives the simulator an
advantage over the environment. This means that, while GsRO and GpRO allowed
for security proofs of many practical schemes, we cannot hope to realize even
the seemingly simple task of UC commitments with this setup. In this section,
we turn our attention to programmable global random oracles that do grant an
advantage to the simulator.

5.1 Restricting Programmability to the Simulator

Canetti et al. [15] defined a global random oracle that restricts observability only
adversarial queries, (hence, we call it the restricted observable global random
oracle GroRO), and show that this is sufficient to construct UC commitments.
More precisely, if sid is the identifier of the challenge session, a list of so-called
illegitimate queries for sid can be obtained by the adversary, which are queries
made on inputs of the form (sid, . . .) by machines that are not part of session
sid. If honest parties only make legitimate queries, then clearly this restricted
observability will not give the adversary any new information, as it contains only
queries made by the adversary. In the ideal world, however, the simulator S can
observe all queries made through corrupt machines within the challenge session
sid as it is the ideal-world attacker, which means it will see all legitimate queries
in sid. With the observability of illegitimate queries, that means S can observe all
hash queries of the form (sid, . . .), regardless of whether they are made by honest
or corrupt parties, whereas the real-world attacker does not learn anything form
the observe interface.

We recall the restricted observable global random oracle GroRO due to Canetti
et al. [15] in a slightly modified form in Fig. 10. In their definition, it allows ideal
functionalities to obtain the illegitimate queries corresponding to their own ses-
sion. These functionalities then allow the adversary to obtain the illegitimate
queries by forwarding the request to the global random oracle. Since the adver-
sary can spawn any new machine, and in particular an ideal functionality, the
adversary can create such an ideal functionality and use it to obtain the illegit-
imate queries. We chose to explicitly model this adversarial power by allowing
the adversary to query for the illegitimate queries directly.

Also in Fig. 10, we define a restricted programmable global random oracle
GrpRO by using a similar approach to restrict programming access from the real-
world adversary. The adversary can program points, but parties in session sid can
check whether the random oracle was programmed on a particular point (sid, . . .).
In the real world, the adversary is allowed to program, but honest parties can
check whether points were programmed and can, for example, reject signatures
based on a programmed hash. In the ideal world, the simulator controls the
corrupt parties in sid and is therefore the only entity that can check whether

GroRO, GrpRO, and GrpoRO – functionalities of the global random oracle with restricted
programming and/or restricted observability.

Parameters: output size function `.
Variables: initially empty lists ListH, prog.

1. Query. On input (HashQuery,m) from a machine (P, sid) or from the adversary:
– Look up h such that (m,h) ∈ ListH. If no such h exists:

• draw h $←−{0, 1}`(n)

• set ListH := ListH ∪ {(m,h)}
– Parse m as (s,m′).
– If this query is made by the adversary, or if s 6= sid, then add (s,m′, h) to

the (initially empty) list of illegitimate queries Qs.
– Output (HashConfirm, h) to the caller.

2. Observe. (GroRO and GrpoRO only) On input (Observe, sid) from the adversary:

– If Q|sid does not exist yet, then set Qsid = ∅.
– Output (ListObserve,Qsid) to the adversary.

3. Program. (GrpRO and GrpoRO only) On input (ProgramRO,m, h) with h ∈
{0, 1}`(n) from the adversary:

– If ∃ h′ ∈ {0, 1}`(n) such that (m,h′) ∈ ListH and h 6= h′, ignore this input.
– Set ListH := ListH ∪ {(m,h)} and prog := prog ∪ {m}.
– Output (ProgramConfirm) to the adversary.

4. IsProgrammed: (GrpRO and GrpoRO only) On input (IsProgrammed,m) from a ma-

chine (P, sid) or from the adversary:
– If the input was given by (P, sid), parse m as (s,m′). If s 6= sid, ignore this

input.
– Set b← m ∈ prog and output (IsProgrammed, b) to the caller.

Fig. 10: The global random-oracle functionalities GroRO, GrpRO, and GrpoRO with
restricted observability, restricted programming, and combined restricted ob-
servability and programming, respectively. Functionality GroRO contains only the
Query and Observe interfaces, GrpRO contains only the Query, Program, and
IsProgrammed interfaces, and GrpoRO contains all interfaces.

points are programmed. Note that while it typically internally simulates the
real-world adversary that may want to check whether points of the form (sid, . . .)
are programmed, the simulator can simply “lie” and pretend that no points are
programmed. Therefore, the extra power that the simulator has over the real-
world adversary is programming points without being detected.

It may seem strange to offer a new interface allowing all parties to check
whether certain points are programmed, even though a real-world hash function
does not have such an interface. However, we argue that if one accepts a pro-
grammable random oracle as a proper idealization of a clearly non-programmable
real-world hash function, then it should be a small step to accept the instantia-
tion of the IsProgrammed interface that always returns “false” to the question
whether any particular entry was programmed into the hash function.

5.2 UC-Commitments from GrpRO

We now show that we can create a UC-secure commitment protocol from GrpRO. A
UC-secure commitment scheme must allow the simulator to extract the message
from adversarially created commitments, and to equivocate dummy commit-
ments created for honest committers, i.e., first create a commitment that it can
open to any message after committing. Intuitively, achieving the equivocability
with a programmable random oracle is simple: we can define a commitment that
uses the random-oracle output, and the adversary can later change the com-
mitted message by programming the random oracle. Achieving extractability,
however, seems difficult, as we cannot extract by observing the random-oracle
queries. We overcome this issue with the following approach. The receiver of
a commitment chooses a nonce on which we query random oracle, interpreting
the random oracle output as a public key pk. Next, the committer encrypts the
message to pk and sends the ciphertext to the receiver, which forms the com-
mitment. To open, the committer reveals the message and the randomness used
to encrypt it.

This solution is extractable as the simulator that plays the role of receiver
can program the random oracle such that it knows the secret key corresponding
to pk, and simply decrypt the commitment to find the message. However, we
must take care to still achieve equivocability. If we use standard encryption, the
simulator cannot open a ciphertext to any value it learns later. The solution is to
use non-committing encryption, which, as shown in Section 4, can be achieved
using a programmable random oracle. We use a slightly different encryption
scheme, as the security requirements here are slightly less stringent than full
non-committing encryption, and care must be taken that we can interpret the
result of the random oracle as a public key, which is difficult for constructions
based on trapdoor one-way permutations such as RSA. This approach results
in a very efficient commitment scheme: with two exponentiations per party (as
opposed to five) and two rounds of communication (as opposed to five), it is
considerably more efficient than the one of [15].

Let COMGrpRO be the following commitment protocol, parametrized by a group
G = 〈g〉 of prime order q. We require an algorithm Embed that maps elements

of {0, 1}`(n) into G, such that for h $←−{0, 1}`(n), Embed(h) is statistically close
to uniform in G. Furthermore, we require an efficiently computable probabilistic
algorithm Embed−1, such that for all x ∈ G, Embed(Embed−1(x)) = x and

for x $←−G, Embed−1(x) is statistically close to uniform in {0, 1}`(n). COMGrpRO
assumes authenticated channels Fauth as defined by Canetti [9].

1. On input (Commit, sid, x), party C proceeds as follows.

– Check that sid = (C,R, sid′) for some C, sid′. Send Commit to R over
Fauth by giving Fauth input (Send, (C,R, sid, 0), “Commit”).

– R, upon receiving (Sent, (C,R, sid, 0), “Commit”) from Fauth, takes a nonce
n $←−{0, 1}n and sends the nonce back to C by giving Fauth input (Send,
(R, C, sid, 0), n).

FCOM – functionality for interactive commitments.

1. Commit: on input (Commit, sid, x) from a party C proceed as follows.
– Check that sid = (C,R, sid′).
– Store x and generate public delayed output (Receipt, sid) to R. Ignore subse-

quent Commit inputs.
2. Open: on input (Open, sid) from C proceed as follows.
– Check that a committed value x is stored.
– Generate public delayed output (Open, sid, x) to R.

Fig. 11: The commitment functionality FCOM by Canetti [9].

– C, upon receiving (Sent, (R, C, sid, 0), n), queries GrpRO on (sid, n) to ob-
tain hn. It checks whether this point was programmed by giving GroRO in-
put (IsProgrammed, (sid, n)) and aborts if GroRO returns (IsProgrammed, 1).

– Set pk← Embed(hn).
– Pick a random r $←−G and ρ ∈ Zq. Set c1 ← gr, query GrpRO on (sid, pkr)

to obtain hr and let c2 ← hr ⊕ x.
– Store (r, x) and send the commitment to R by giving Fauth input (Send,

(C,R, sid, 1), (c1, c2)).
– R, upon receiving (Sent, (C,R, sid, 1), (c1, c2)) from Fauth outputs (Receipt, sid).

2. On input (Open, sid), C proceeds as follows.
– It sends (r, x) to R by giving Fauth input (Send, (C,R, sid, 2), (r, x)).
– R, upon receiving (Sent, (C,R, sid, 1), (r, x)):
• Query GrpRO on (sid, n) to obtain hn and let pk← Embed(hn).
• Check that c1 = gr.
• Query GrpRO on (sid, pkr) to obtain hr and check that c2 = hr ⊕ x.
• Check that none of the points was programmed by giving GroRO in-

puts (IsProgrammed, (sid, n)) and (IsProgrammed, pkr) and asserting
that it returns (IsProgrammed, 0) for both queries.
• Output (Open, sid, x).

COMGrpRO is a secure commitment scheme under the computational Diffie-
Hellman assumption, which given a group G generated by g of prime order q,
challenges the adversary to compute gαβ on input (gα, gβ), with (α, β) $←−Z2

q.

Theorem 5. COMGrpRO GUC-realizes FCOM (as defined in Figure 11) in the
GroRO and Fauth hybrid model under the CDH assumption in G.

Proof. By the fact that COMGrpRO is GrpRO-subroutine respecting and by Theo-
rem 1, it is sufficient to show that COMGrpRO GrpRO-EUC-realizes FCOM.

We describe a simulator S by defining its behavior in the different corruption
scenarios. In all scenarios, whenever the simulated real-world adversary makes
an IsProgrammed query or instructs a corrupt party to make such a query on a
point that S has programmed, the simulator intercepts this query and simply
replies (IsProgrammed, 0), lying that the point was not programmed.

When both the sender and the receiver are honest, S works as follows.

1. When FCOM asks S for permission to output (Receipt, sid):

– Parse sid as (C,R, sid′) and let “C” create a dummy commitment by

choosing r $←−Zq, letting c1 = gr, choosing c2
$←−{0, 1}`(n).

– When “R” outputs (Receipt, sid), allow FCOM to proceed.

2. When FCOM asks S for permission to output (Open, sid, x):

– Program GrpRO by giving GroRO input (ProgramRO, (sid, pkr), c2⊕x), such
that the commitment (c1, c2) commits to x.

– Give “C” input (Open, sid) instructing it to open its commitment to x.

– When “R” outputs (Open, sid, x), allow FCOM to proceed.

If the committer is corrupt but the receiver is honest, S works as follows.

1. When the simulated receiver “R” notices the commitment protocol starting
(i.e., receives (Sent, (C,R, sid, 0), “Commit”) from “Fauth”):

– Choose nonce n as in the protocol.

– Before sending n, choose sk $←−Zq and set pk← gsk.

– Program GrpRO by giving GrpRO input (ProgramRO, (sid, n),Embed−1(pk)).
Note that this simulation will succeed with overwhelming probability as
n is freshly chosen, and note that as pk is uniform in G, by definition of

Embed−1 the programmed value Embed−1(pk) is uniform in {0, 1}`(n).
– S now lets “R” execute the remainder the protocol honestly.

– When “R” outputs (Receipt, sid), S extracts the committed value from
(c1, c2). Query GrpRO on (sid, csk1) to obtain hr and set x← c2 ⊕ hr.

– Make a query with FCOM on C’s behalf by sending (Commit, sid, x) on
C’s behalf to FCOM.

– When FCOM asks permission to output (Receipt, sid), allow.

2. When “R” outputs (Open, sid, x):

– Send (Open, sid) on C’s behalf to FCOM.

– When FCOM asks permission to output (Open, sid, x), allow.

If the receiver is corrupt but the committer is honest, S works as follows.

1. When FCOM asks permission to output (Receipt, sid):

– Parse sid as (C,R, sid′).

– Allow FCOM to proceed.

– When FCOM receives (Receipt, sid) from FCOM as R is corrupt, it simu-

lates “C” by choosing r $←−Zq, computing c1 = gr, and choosing c2
$←−{0, 1}`(n).

2. When FCOM asks permission to output (Open, sid, x):

– Allow FCOM to proceed.

– When S receives (Open, sid, x) from FCOM as R is corrupt, S programs
GrpRO by giving GrpRO input (ProgramRO, (sid, pkr), c2⊕x), such that the
commitment (c1, c2) commits to x.

– S inputs (Open, sid) to “C”, instructing it to open its commitment to x.

What remains to show is that S is a satisfying simulator, i.e., no GrpRO-
externally constrained environment can distinguish FCOM and S from COMGrpRO
and A. When simulating an honest receiver, S extracts the committed message
correctly: Given pk and c1 = gr for some r, there is a unique value pkr, and the
message x is uniquely determined by c2 and pkr. Simulator S also simulates an
honest committer correctly. When committing, it does not know the message,
but can still produce a commitment that is identically distributed as long as the
environment does not query the random oracle on (sid, pkr). When S later learns
the message x, it must equivocate the commitment to open to x, by programming
GrpRO on (sid, pkr), which again succeeds unless the environment makes a random
oracle query on (sid, pkr). If there is an environment that triggers such a GrpRO
with non-negligible probability, we can construct an attacker B that breaks the
CDH problem in G.

Our attacker B plays the role of FCOM, S, and GrpRO, and has black-box
access to the environment. B receives CDH problem gα, gβ and is challenged
to compute gαβ . It simulates GrpRO to return hn ← Embed−1(gα) on random
query (sid, n). When simulating an honest committer committing with respect

to this pk, set c1 ← gβ and c2
$←−{0, 1}`(n). Note that S cannot successfully

open this commitment, but remember that we consider an environment that
with non-negligible probability makes a GrpRO query on pkr(= gαβ) before the
commitment is being opened. Next, B will choose a random GrpRO query on
(sid,m). With nonnegligible probability, we have m = gαβ , and B found the
solution to the CDH challenge. ut

5.3 Adding Observability for Efficient Commitments

While the commitment scheme COMGrpRO from the restricted programmable
global random oracle is efficient for a composable commitment scheme, there
is still a large efficiency gap between composable commitments from global ran-
dom oracles and standalone commitments or commitments from local random
oracles. Indeed, COMGrpRO still requires multiple exponentiations and rounds of
interaction, whereas the folklore commitment scheme c = H(m‖r) for message m
and random opening information r consists of computing a single hash function.

We extend GrpRO to, on top of programmability, offer the restricted observ-
ability interface of the global random oracle due to Canetti et al. [15]. With this
restricted programmable and observable global random oracle GrpoRO (as shown
in Figure 10), we can close this efficiency gap and prove that the folklore com-
mitment scheme above is a secure composable commitment scheme with a global
random oracle.

Let COMGrpoRO be the commitment scheme that simply hashes the message
and opening, phrased as a GUC protocol using GrpoRO and using authenticated
channels, which is formally defined as follows.

1. On input (Commit, sid, x), party C proceeds as follows.
– Check that sid = (C,R, sid′) for some C, sid′.
– Pick r $←−{0, 1}n and query GrpoRO on (sid, r, x) to obtain c.

– Send c to R over Fauth by giving Fauth input (Send, (C,R, sid, 0), c).
– R, upon receiving (Sent, (C,R, sid, 0), c) from Fauth, outputs (Receipt, sid).

2. On input (Open, sid), C proceeds as follows.
– It sends (r, x) to R by giving Fauth input (Send, (C,R, sid, 2), (r, x)).
– R, upon receiving (Sent, (C,R, sid, 1), (r, x)) from Fauth, queries GrpoRO on

(sid, r, x) and checks that the result is equal to c, and checks that (sid, r, x)
is not programmed by giving GrpoRO input (IsProgrammed, (sid, r, x)) and
aborting if the result is not (IsProgrammed, 0). Output (Open, sid, x).

Theorem 6. COMGrpoRO GUC-realizes FCOM (as defined in Figure 11), in the
GrpoRO and Fauth hybrid model.

Proof. By the fact that COMGrpoRO is GrpoRO-subroutine respecting and by Theo-
rem 1, it is sufficient to show that COMGrpoRO GrpoRO-EUC-realizes Frpo-COM.

We define a simulator S by describing its behavior in the different corrup-
tion scenarios. For all scenarios, S will internally simulate A and forward any
messages between A and the environment, the corrupt parties, and GrpoRO. It
stores all GrpoRO queries that it makes for A and for corrupt parties. Only when
A directly or through a corrupt party makes an IsProgrammed query on a point
that S programmed, S will not forward this query to GrpoRO but instead return
(IsProgrammed, 0). When we say that S queries GrpoRO on a point (s,m) where
s is the challenge sid, for example when simulating an honest party, it does
so through a corrupt dummy party that it spawns, such that the query is not
marked as illegitimate.

When both the sender and the receiver are honest, S works as follows.

1. When Frpo-COM asks S for permission to output (Receipt, sid):
– Parse sid as (C,R, sid′) and let “C” commit to a dummy value by giving

it input (Commit, sid,⊥), except that it takes c $←−{0, 1}`(n) instead of
following the protocol.

– When “R” outputs (Receipt, sid), allow Frpo-COM to proceed.
2. When Frpo-COM asks S for permission to output (Open, sid, x):

– Choose a random r $←−{0, 1}n and program GrpoRO by giving it input
(ProgramRO, (sid, r, x), c), such that the commitment c commits to x.
Note that since r is freshly chosen at random, the probability that GrpoRO
is already defined on (sid, r, x) is negligible, so the programming will
succeed with overwhelming probability.

– Give “C” input (Open, sid) instructing it to open its commitment to x.
– When “R” outputs (Open, sid, x), allow Frpo-COM to proceed.

If the committer is corrupt but the receiver is honest, S works as follows.

1. When simulated receiver “R” outputs (Receipt, sid):
– Obtain the list Qsid of all random oracle queries of form (sid, . . .), by

combining the queries that S made on behalf of the corrupt parties and
the simulated honest parties, and by obtaining the illegitimate queries
made outside of S by giving GrpoRO input (Observe, sid).

– Find a non-programmed record ((sid, r, x), c) ∈ Qsid. If no such record is
found, set x to a dummy value.

– Make a query with Frpo-COM on C’s behalf by sending (Commit, sid, x)
on C’s behalf to Frpo-COM.

– When Frpo-COM asks permission to output (Receipt, sid), allow.
2. When “R” outputs (Open, sid, x):

– Send (Open, sid) on C’s behalf to Frpo-COM.
– When Frpo-COM asks permission to output (Open, sid, x), allow.

If the receiver is corrupt but the committer is honest, S works as follows.

1. When Frpo-COM asks permission to output (Receipt, sid):
– Parse sid as (C,R, sid′).
– Allow Frpo-COM to proceed.
– When S receives (Receipt, sid) from Frpo-COM as R is corrupt, it simulates

“C” by choosing c $←−{0, 1}`(n) instead of following the protocol.
2. When Frpo-COM asks permission to output (Open, sid, x):

– Allow Frpo-COM to proceed.
– When S receives (Open, sid, x) from Frpo-COM as R is corrupt, choose
r $←−{0, 1}n and program GrpoRO by giving Frpo-COM input (ProgramRO,
(sid, r, x), c), such that the commitment c commits to x. Note that since
r is freshly chosen at random, the probability that GrpoRO is already
defined on (sid, r, x) is negligible, so the programming will succeed with
overwhelming probability.

– S inputs (Open, sid) to “C”, instructing it to open its commitment to x.

We must show that S extracts the correct value from a corrupt commit-
ment. It obtains a list of all GrpoRO queries of the form (sid, . . .) and looks for
a non-programmed entry (sid, r, x) that resulted in output c. If this does not
exist, then the environment can only open its commitment successfully by later
finding a preimage of c, as the honest receiver will check that the point was not
programmed. Finding such a preimage happens with negligible probability, so
committing to a dummy value is sufficient. The probability that there are mul-
tiple satisfying entries is also negligible, as this means the environment found
collisions on the random oracle.

Next, we argue that the simulated commitments are indistinguishable from
honest commitments. Observe that the commitment c is distributed equally to

real commitments, namely uniform in {0, 1}`(n). The simuator can open this
value to the desired x if programming the random oracle succeeds. As it first
takes a fresh nonce r $←−{0, 1}n and programs (sid, r, x), the probability that
GrpoRO is already defined on this input is negligible. ut

6 Unifying the Different Global Random Oracles

At this point, we have considered several notions of global random oracles that
differ in whether they offer programmability or observability, and in whether this

GsRO s2ro GroRO

GpRO p2rp GrpRO rp2rpo GrpoRO

Fig. 12: Relations between different notions of global random oracles. An arrow
from G to G′ indicates the existence of simple transformation such that any
protocol that G-EUC-realizes a functionality F , the transformed protocol G′-
EUC-realizes the transformed functionality F (cf. Theorem 7).

power is restricted to machines within the local session, or also available to other
machines. Having several coexisting variants of global random oracles, each with
their own set of schemes that they can prove secure, is somewhat unsatisfying.
Indeed, if different schemes require different random oracles that in practice end
up being replaced with the same hash function, then we’re back to the problem
that motivated the concept of global random oracles.

We were able to distill a number of relations and transformations among the
different notions, allowing a protocol that realizes a functionality with access to
one type of global random oracle to be efficiently transformed into a protocol that
realizes the same functionality with respect to a different type of global random
oracle. A graphical representation of our transformation is given in Figure 12.

The transformations are very simple and hardly affect efficiency of the proto-
col. The s2ro transformation takes as input a GsRO-subroutine-respecting protocol
π and transforms it into a GroRO-subroutine respecting protocol π′ = s2ro(π) by
replacing each query (HashQuery,m) to GsRO with a query (HashQuery, (sid,m))
to GroRO, where sid is the session identifier of the calling machine. Likewise, the
p2rp transformation takes as input a GpRO-subroutine-respecting protocol π and
transforms it into a GrpRO-subroutine respecting protocol π′ = p2rp(π) by re-
placing each query (HashQuery,m) to GpRO with a query (HashQuery, (sid,m))
to GrpRO and replacing each query (ProgramRO,m, h) to GpRO with a query
(ProgramRO, (sid,m), h) to GrpRO, where sid is the session identifier of the calling
machine. The other transformation rp2rpo simply replaces HashQuery, ProgramRO,
and IsProgrammed queries to GrpRO with identical queries to GrpoRO.

Theorem 7. Let π be a GxRO-subroutine-respecting protocol and let GyRO be
such that there is an edge from GxRO to GyRO in Figure 12, where x, y ∈ {s, ro, p,
rp, rpo}. Then if π GxRO-EUC-realizes a functionality F , where F is an ideal
functionality that does not communicate with GxRO, then π′ = x2y(π) is a GyRO-
subroutine-respecting protocol that GyRO-EUC-realizes F .

Proof (sketch). We first provide some detail for the s2ro transformation. The
other transformations can be proved in a similar fashion, so we only provide an
intuition here.

As protocol π GsRO-EUC-realizes F , there exists a simulator Ss that correctly
simulates the protocol with respect to the dummy adversary. Observe that GroRO

offers the same HashQuery interface to the adversary as GsRO, and that the GroRO
only gives the simulator extra powers. Therefore, given the dummy-adversary
simulator Ss for π, one can build a dummy-adversary simulator Sro for s2ro(π) as
follows. If the environment makes a query (HashQuery, x), either directly through
the dummy adversary, or indirectly by instructing a corrupt party to make that
query, Sro checks whether x can be parsed as (sid, x′) where sid is the challenge
session. If so, then it passes a direct or indirect query (HashQuery, x′) to Ss,
depending whether the environment’s original query was direct or indirect. If x
cannot be parsed as (sid, x′), then it simply relays the query to GroRO. Simulator
Sro relays Ss’s inputs to and outputs from F . When Ss makes a (HashQuery, x′)
query to GsRO, Sro makes a query (HashQuery, (sid, x′)) to GroRO and relays the
response back to Ss. Finally, Sro simply relays any Observe queries by the envi-
ronment to GroRO. Note, however, that these queries do not help the environment
in observing the honest parties, as they only make legitimate queries.

To see that Sro is a good simulator for s2ro(π), we show that if there exists a
distinguishing dummy-adversary environment Zro for s2ro(π) and Sro, then there
also exists a distinguishing environment Zs for π and Ss, which would contradict
the security of π. The environment Zs runs Zro by internally executing the code
of GroRO to respond to Zro’s GroRO queries, except for queries (HashQuery, x)
where x can be parsed as (sid, x′), for which Zs reaches out to its own GsRO
functionality with a query (HashQuery, x′).

The p2rp transformation is very similar to s2ro and prepends sid to random or-
acle queries. Moving to the restricted programmable RO only reduces the power
of the adversary by making programming detectable to honest users through the
IsProgrammed interface. The simulator, however, maintains its power to program
without being detected, because it can intercept the environment’s IsProgrammed
queries for the challenge sid and pretend that they were not programmed. The
environment cannot circumvent the simulator and query GrpRO directly, because
IsProgrammed queries for sid must be performed from a machine within sid.

Finally, the rp2rpo transformation increases the power of both the simulator
and the adversary by adding a Observe interface. Similarly to the s2ro simulator,
however, the interface cannot be used by the adversary to observe queries made
by honest parties, as these queries are all legitimate. ut

Unfortunately, we were unable to come up with security-preserving transfor-
mations from non-programmable to programmable random oracles that apply
to any protocol. One would expect that the capability to program random-
oracle entries destroys the security of many protocols that are secure for non-
programmable random oracles. Often this effect can be mitigated by letting the
protocol, after performing a random-oracle query, additionally check whether
the entry was programmed through the IsProgrammed interface, and rejecting
or aborting if it was. While this seems to work for signature or commitment
schemes where rejection is a valid output, it may not always work for arbitrary
protocols with interfaces that may not be able to indicate rejection. We leave
the study of more generic relations and transformations between programmable
and non-programmable random oracles as interesting future work.

Acknowledgements. We thank Ran Canetti, Alessandra Scafuro, and the
anonymous reviewers for their valuable comments. This work was supported
by the ERC under grant PERCY (#321310) and by the EU under CHIST-ERA
project USE-IT.

References

1. Ananth, P., Bhaskar, R.: Non observability in the random oracle model. ProvSec
2013.

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. CRYPTO’98.

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. ACM CCS 93.

4. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. EUROCRYPT’94.
5. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with

RSA and Rabin. EUROCRYPT’96.
6. Bhattacharyya, R., Mukherjee, P.: Non-adaptive programmability of random ora-

cle. Theor. Comput. Sci. 592, 97–114 (2015)
7. Camenisch, J., Enderlein, R.R., Krenn, S., Küsters, R., Rausch, D.: Universal com-

position with responsive environments. ASIACRYPT 2016.
8. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: UC-secure non-interactive

public-key encryption. IEEE CSF 2017.
9. Canetti, R.: Universally composable security: A new paradigm for cryptographic

protocols. Cryptology ePrint Archive, Report 2000/067 (2000).
10. Canetti, R.: Universally composable security: A new paradigm for cryptographic

protocols. FOCS 2001.
11. Canetti, R.: Universally composable signature, certification, and authentication.

CSFW 2004.
12. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with

global setup. TCC 2007.
13. Canetti, R., Fischlin, M.: Universally composable commitments. CRYPTO 2001.
14. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited

(preliminary version). ACM STOC 1998.
15. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random

oracle. ACM CCS 2014.
16. Coron, J.S.: On the exact security of full domain hash. CRYPTO 2000.
17. Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable commit-

ments and zero-knowledge proofs. CRYPTO 2008.
18. Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.:

Random oracles with(out) programmability. ASIACRYPT 2010.
19. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-

cryption schemes. Journal of Cryptology 26(1) (2013).
20. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal on Computing 17(2) (1988).
21. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:

The non-committing encryption case. CRYPTO 2002.
22. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-

natures. Journal of Cryptology 13(3) (2000).
23. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology

4(3) (1991).

