
k-Round Multiparty Computation from
k-Round Oblivious Transfer

via Garbled Interactive Circuits

Fabrice Benhamouda1 and Huijia Lin2

1 IBM Research, Yorktown Heights, US
2 University of California, Santa Barbara, US

Abstract. We present new constructions of round-efficient, or even
round-optimal, Multi-Party Computation (MPC) protocols from Oblivious
Transfer (OT) protocols. Our constructions establish a tight connection
between MPC and OT: In the setting of semi-honest security, for any
k ≥ 2, k-round semi-honest OT is necessary and complete for k-round
semi-honest MPC. In the round-optimal case of k = 2, we obtain 2-round
semi-honest MPC from 2-round semi-honest OT, resolving the round
complexity of semi-honest MPC assuming weak and necessary assumption.
In comparison, previous 2-round constructions rely on either the heavy
machinery of indistinguishability obfuscation or witness encryption, or
the algebraic structure of bilinear pairing groups. More generally, for
an arbitrary number of rounds k, all previous constructions of k-round
semi-honest MPC require at least OT with k′ rounds for k′ ≤ bk/2c.
In the setting of malicious security, we show: For any k ≥ 5, k-round
malicious OT is necessary and complete for k-round malicious MPC. In
fact, OT satisfying a weaker notion of delayed-semi-malicious security
suffices. In the common reference string model, for any k ≥ 2, we obtain k-
round malicious Universal Composable (UC) protocols from any k-round
semi-malicious OT and non-interactive zero-knowledge. Previous 5-round
protocols in the plain model, and 2-round protocols in the common
reference string model all require algebraic assumptions such as DDH or
LWE.
At the core of our constructions is a new framework for garbling interactive
circuits. Roughly speaking, it allows for garbling interactive machines
that participates in interactions of a special form. The garbled machine
can emulate the original interactions receiving messages sent in the clear
(without being encoded using secrets), and reveals only the transcript of
the interactions, provided that the transcript is computationally uniquely
defined. We show that garbled interactive circuits for the purpose of
constructing MPC can be implemented using OT. Along the way, we
also propose a new primitive of witness selector that strengthens witness
encryption, and a new notion of zero-knowledge functional commitments.

1 Introduction

A Multi-Party Computation (MPC) protocol allows m mutually distrustful parties
to securely compute a functionality f(x̄) of their corresponding private inputs

2 Fabrice Benhamouda and Huijia Lin

x̄ = x1, . . . , xm, such that party Pi receives the i-th component of f(x̄). The
semi-honest security guarantees that honest-but-curious parties who follow the
specification of the protocol learn nothing more than their prescribed outputs.
The stronger malicious security guarantees that even malicious parties who may
deviate from the protocol, cannot learn more information nor manipulate the
outputs of the honest parties. MPC protocols for computing general functionalities
are central primitives in cryptography and have been studied extensively. An
important question is: “how many rounds of interactions do general MPC protocols
need, and under what assumptions?”

The round complexity of 2-Party Computation (2PC) was resolved more than
three decades ago: Yao [44,45] gave a construction of general semi-honest 2PC
protocols that have only two rounds of interaction (where parties have access to
a simultaneous broadcast channel3), using garbled circuits and a 2-message semi-
honest Oblivious Transfer (OT) protocol. The round complexity is optimal, as
any one-round protocol is trivially broken. Moreover, the underlying assumption
of 2-message semi-honest OT is weak and necessary.4

In contrast, constructing round-efficient MPC protocols turned out to be
more challenging. The first general construction [32] requires a high number of
rounds, O(d), proportional to the depth d of the computation. Later, Beaver,
Micali, and Rogaway (BMR) reduced the round complexity to a constant using
garbled circuits [5]. However, the exact round complexity of MPC remained open
until recently. By relying on specific algebraic assumptions, a recent line of works
constructed i) 2-round MPC protocols relying on trusted infrastructure (e.g., a
common reference string) assuming LWE [2, 14, 21, 39, 41] or DDH [9–11], and
ii) 2-round protocols in the plain model from indistinguishability obfuscation or
witness encryption with NIZK [16,22,24,28,35], or bilinear groups [29]. However,
all these constructions heavily exploit the algebraic structures of the underlying
assumptions, or rely on the heavy machinery of obfuscation or witness encryption.

The state-of-the-art for malicious security is similar. Garg, Mukherjee, Pandey,
Polychroniadou [27] showed that 4 round is optimal for malicious MPC. So far,
there are constructions of i) 5-round protocols from DDH [1], and ii) 4-round
protocols from subexponentially secure DDH [1], or subexponentially secure LWE
and adaptive commitments5 [12]. In general, for any number of round k, all
known constructions of semi-honest or malicious MPC require at least k′ round
OT for k′ ≤ bk/2c. We ask the question,

3 Using the simultaneous broadcast channel, every party can simultaneously broadcast
a message to all other parties. A malicious adversary can rush in the sense that in
every round it receives the messages broadcast by honest parties first before choosing
its own messages. In the 2PC setting, if both parties receive outputs, Yao’s protocols
need simultaneous broadcast channel.

4 A 2-round OT protocol consists of one message from the receiver, followed by another
one from the sender. It is implied by 2-round 2PC protocols using the simultaneous
broadcast channel.

5 That is, CCA commitments introduced in [17].

k-Round MPC from k-Round OT via Garbled Interactive Circuits 3

Can we have round-optimal MPC protocols from weak and necessary
assumptions?

We completely resolve this question in the semi-honest setting, constructing
2-round semi-honest MPC from 2-round semi-honest OT, and make significant
progress in the malicious setting, constructing 5-round malicious MPC from
5-round delayed-semi-malicious OT, a weaker primitive than malicious OT. Our
results are obtained via a new notion of garbling interactive circuits. Roughly
speaking, classical garbling turns a computation, given by a circuit C and an
input x, into another one (Ĉ, x̂) that reveals only the output C(x). Our new
notion considers garbling a machine participating in an interaction: Let C (with
potentially hardcoded input x) be an interactive machine that interacts with an
oracle O, which is a non-deterministic algorithm that computes its replies to C’s
messages, depending on some witnesses w̄. Garbling interactive machine turns C
into Ĉ, which can emulate the interaction between C and O, given the witnesses
w̄ in the clear (without any secret encoding). It is guaranteed that Ĉ reveals only
the transcript of messages in the interaction and nothing else, provided that the
transcript is computationally uniquely defined, that is, it is computationally hard
to find two different witnesses w̄, w̄′ that lead to different transcripts.

1.1 Our Contributions

Semi-Honest Security: We construct 2-round semi-honest MPC protocols
in the plain model from 2-round semi-honest OT. Our construction can be
generalized to an arbitrary number of rounds, establishing a tight connection
between MPC and OT: For any k, k-round OT is necessary and complete for
k-round MPC.6

Theorem 1.1 (Semi-Honest Security). For any k ≥ 2, there is a k-round
semi-honest MPC protocol for any functionality f , from any k-round semi-honest
OT protocol.

The above theorem resolves the exact round complexity of semi-honest MPC based
on weak and necessary assumptions, closing the gap between the 2-party and
multi-party case. In the optimal 2-round setting, by instantiating our construction
with specific 2-round OT protocols, we obtain 2-round MPC protocols in the
plain model from a wide range of number theoretic and algebraic assumptions,
including CDH [6], factoring [6],7 LWE [42],8 and constant-noise LPN with a
6 We recall that for MPC, we suppose that parties have access to a simultaneous
broadcast channel. Furthermore a k-round OT with simultaneous broadcast channel
can be transformed into a k-round OT where each round consists a single message or
flow either from the receiver to the sender or the other way round. This is because in
the last round there is no point for the receiver to send a message to the sender.

7 This follows from the fact that CDH in the group of quadratic residues is as hard as
factoring [8, 38,43].

8 The scheme in [42] uses a CRS, but in the semi-honest setting, the sender can generate
the CRS and send it to the receiver.

4 Fabrice Benhamouda and Huijia Lin

sub-exponential security [31, 46]. This broadens the set of assumptions that
round-optimal semi-honest MPC can be based on.
Malicious Security: Going beyond semi-honest security, we further strengthen
our protocols to achieve the stronger notion of semi-malicious security, as a
stepping stone towards malicious security. Semi-malicious security proposed
by [2] considers semi-malicious attackers that follow the protocol specification,
but may adaptively choose arbitrary inputs and random tapes for computing each
of its messages. We enhance our semi-honest protocols to handle such attackers.

Theorem 1.2 (Semi-Malicious Security). For any k ≥ 2, there is a k-round
semi-malicious MPC protocol for any functionality f , from any k-round semi-
malicious OT protocol.

Previous semi-malicious protocols have 3 rounds based on LWE [2,12], 2 rounds
based on bilinear maps [29], or 2 rounds based on LWE but in the common
reference string model [39]. We obtain the first 2-round construction from any
2-round semi-malicious OT, which is necessary and can be instantiated from
a variety of assumptions, including DDH [40], QR, and N-th residuosity [36].
Furthermore, following the compilation paradigms in recent works [1,2, 12], we
immediately obtain maliciously secure Universal Composable (UC) protocols in
the common reference string model [15,18], using non-interactive zero-knowledge
(NIZK).

Corollary 1.3 (Malicious Security in the CRS Model). For any k ≥ 2,
there is a k-round malicious UC protocol in the common reference string model
for any functionality f , from any k-round semi-malicious OT protocol and NIZK.

Moving forward to malicious MPC protocols in the plain model, we show
that, for any k ≥ 5, k-round malicious MPC protocols can be built from k-round
delayed-semi-malicious OT, which is implied by k-round malicious OT.

Theorem 1.4 (Malicious Security in the Plain Model). For any k ≥ 5,
there is a k-round malicious MPC protocol for every functionality f , from any
k-round delayed-semi-malicious OT protocol.

This theorem is obtained by first showing that our k-round semi-malicious MPC
protocols satisfy a stronger notion of delayed-semi-malicious security, when instan-
tiated with a k-round OT protocol satisfying the same notion. Here, delayed-semi-
malicious security guards against a stronger variant of semi-malicious attackers,
and is still significantly weaker than malicious security. For instance, delayed-
semi-malicious OT provides only indistinguishability-based privacy guarantees,
whereas malicious OT supports extraction of inputs and simulation. In the
second step, we transform our k-round delayed-semi-malicious MPC protocols
into k-round malicious MPC protocols, assuming only one-way functions. This
transformation relies on specific structures of our protocols. In complement, we
also present a generic transformation that starts with any (k − 1)-round delayed
semi-malicious MPC protocol.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 5

Previous 5-round malicious protocols rely on LWE and adaptive commit-
ments [12], or DDH [1]. Our construction weakens the assumptions, and in par-
ticular adds factoring-based assumptions into the picture. Our result is one-step
away from constructing round-optimal malicious MPC from weak and necessary
assumptions. So far, 4-round protocols can only be based on subexponential
DDH [1] or subexponential LWE and adaptive commitments [12]. A clear open
question is constructing 4-round malicious MPC from 4-round OT.
Garbled Interactive Circuits, and More: Along the way of constructing
our MPC protocols, we develop new techniques and primitives that are of
independent interest: We propose a new notion of garbling interactive circuits, a
new primitive of witness selector that strengthens witness encryption [26], and a
new notion of zero-knowledge functional commitment. Roughly speaking,

– As mentioned above, garbling interactive machine transforms an interactive
machine C talking to a non-deterministic oracle O(w̄) using some witnesses,
into a garbled interactive machine Ĉ that upon receiving the witnesses
w̄ in the clear (without any secret encoding) reveals the transcript of the
interaction between C andO(w̄) and nothing else, provided that the transcript
is computationally uniquely defined.

– Witness selector strengthens witness encryption [26] in the dimension that
hiding holds when it is computationally hard to find a witness that enables
decryption, as opposed to when no such witnesses exist.

– Finally, we enhance standard (computationally binding and computationally
hiding) commitment schemes with the capability of partially opening a
commitment c to the output f(v) of a function f evaluated on the committed
value v, where the commitment and partial decommitment reveal nothing
more than the output f(v).

To construct 2-round MPC, we use garbled interactive circuits and functional
commitments to collapse rounds of any multi-round MPC protocols down to 2,
and implement garbled interactive circuits using witness selector and classical
garbled circuits. Our technique generalizes the novel ideas in recent works on
constructing laconic OT from DDH [19], identity based encryption from CDH
or factoring [13,23], and 2-round MPC from bilinear pairing [29]. These works
can be rephrased as implementing special-purpose garbled interactive circuits
from standard assumptions, and applying them for their specific applications. In
this work, we implement the garbled interactive circuits, witness selector, and
functional commitments needed for our constructions of MPC, from OT. The
generality of our notions gives a unified view of the techniques in this and prior
works.

1.2 Organization

We start with an overview of our techniques in Section 2. Then, after some classical
preliminaries in Section 3, we formally define garbled interactive circuit schemes
in Section 4. In Section 5, we build 2-round semi-honest MPC protocols from any

6 Fabrice Benhamouda and Huijia Lin

semi-honest MPC protocols and (zero-knowledge) functional commitment scheme
with an associated garbled interactive circuit scheme. In Section 6, we define
witness selector schemes and show that they imply garbled interactive circuit
schemes. The construction of a functional commitment scheme with witness
selector from any 2-round OT (which concludes the construction of 2-round
semi-honest MPC protocols from 2-round OT), as well as the extensions to
k-round OT and to the semi-malicious and malicious settings are in the full
version [7].

1.3 Concurrent Work

In a concurrent and independent work [30], Garg and Srinivasan also built k-round
semi-honest MPC from k-round semi-honest OT. In the malicious setting, they
obtained a stronger result in the CRS model, constructing 2-round UC-secure
MPC from 2-round UC-secure OT in the CRS model (without requiring NIZK
contrary to us). On the other hand, they did not consider malicious MPC in
the plain model, whereas we constructed k-round malicious MPC from k-round
delayed-semi-malicous OT for any k ≥ 5. While both works leverage the novel
ideas in [13, 19, 23, 29], the concrete techniques are different. In our language,
if we see their protocols in the lens of garbled interactive circuits, each step of
their garbled interactive circuit performs a NAND gate on the state of one of
the parties, while each of our steps performs a full MPC round, thanks to the
functional commitment. Our approach can also be seen as more modular by
the introduction of garbled interactive circuits, witness selector, and functional
commitments, which we believe are of independent interest.

2 Overview

Garg et. al. [24] introduced a generic approach for collapsing any MPC protocol
down to 2 rounds, using indistinguishability obfuscation [4,25]. Later, Gordon,
Liu, and Shi [35] showed how to perform round collapsing using garbled circuits,
witness encryption, and NIZK. Very recently, Garg and Srinivasan [29] further
showed how to do collapse rounds using garbled protocols, which can be imple-
mented from bilinear pairing groups. In this work, we perform round collapsing
using our new notion of garbled interactive circuits; this notion is general and
enables us to weaken the assumption to 2-round OT. (See the full version [7] for
a more detailed comparison with prior works.) Below, we give an overview of our
construction in the 2-round setting; construction in the multi-round setting is
similar.

2.1 Round-Collapsing via Obfuscation

The basic idea is natural and simple: To construct 2-round MPC protocols for a
function f , take any multi-round MPC protocols for f , referred to as the inner
MPC protocols, such as, the Goldreich-Micali-Wigderson protocol [32], and try to

k-Round MPC from k-Round OT via Garbled Interactive Circuits 7

eliminate interaction. Garg, Gentry, Halevi, and Raykova (GGHR) [24] showed
how to do this using indistinguishability obfuscation. The idea is to let each
player Pi obfuscate their next-step circuit Nexti(xi, ri, ?) in an execution of the
inner MPC protocol Π for computing f , where Nexti(xi, ri, ?) has Pi’s private
input xi and random tape ri hardcoded, and produces Pi’s next message m`

i in
round `, on input the messages m̄<` = {m`′

j }j,`′<` broadcast by all parties in the
previous rounds,

Nexti(xi, ri, m̄<`) = m`
i . (1)

Given all obfuscated circuits {iO(Next(xi, ri, ?)j)}, each party Pi can emulate
the execution of Π in its head, eliminating interaction completely.

The above idea achieves functionality, but not security. In fact, attackers,
given the obfuscated next-step circuits of honest parties, can evaluate the residual
function f({xi}honest i, ?) with the inputs of honest parties hardcoded, or even
evaluate honest parties’ next-step circuits on arbitrary “invalid” messages. To
avoid this, the protocol requires each party to commit to its input and random
tape in the first round, ci R← Com(xi, ri). Then, in the second round, each party
obfuscates an augmented next-step circuit AugNexti that takes additionally a
NIZK proof π`′j for each messagem`′

j it receives, and verifies the proof π`′j thatm`′

j

is generated honestly from inputs and random tapes committed in cj (it aborts
otherwise). This way, only the unique sequence of honestly generated messages
is accepted by honest parties’ obfuscated circuits. In the security proof, by the
security of indistinguishability obfuscation and NIZK, this unique sequence can
even be hardcoded into honest parties’ obfuscated circuits, enabling simulation
using the simulator of the inner MPC protocol.

2.2 Garbled Interactive Circuits

The fact that it suffices and is necessary that the honest parties’ obfuscated
circuits only allow for a single meaningful “execution path” (determined by the
unique sequence of honest messages), suggests that we should rather use garbling
instead of obfuscation for hiding honest parties’ next-step circuits. However, the
challenge is that the next-step circuits Nexti are not plain circuits: They are
interactive in the sense that they takes inputs (i.e., MPC messages) generated by
other parties that cannot be fixed at time of garbling. To overcome the challenge,
we formalize the MPC players as interactive circuits, and propose a new notion
called Garbled Interactive Circuits (GIC).
Interactive Circuits: The interaction with an interactive circuit is captured
via a non-deterministic (poly-size) oracle O that on inputs a query q and some
witness w returns an answer a = O(q, w) (or ⊥ if w is not accepting). (Note
that O is non-deterministic in the sense that without a valid witness, one cannot
evaluate O.) An interactive circuit iC consists of a list of L next-step circuits
{iC`}`∈[L]. Its execution with oracle O on input a list of witnesses w̄ = {w̄`}
proceeds in L iterations as depicted in Fig. 1: In round `, iC` on input the state
st`−1 output in the previous round, as well as the answers ā`−1 = {a`−1

k } from

8 Fabrice Benhamouda and Huijia Lin

O to queries q̄`−1 = {q`−1
k } produced in the previous round, outputs the new

state st` and queries q̄` = {q`k}, and a (round) output o`.

∀`, iC`(st`−1, ā`−1) = (st`, q̄`, o`) , where ∀k, a`−1
k = O(q`−1

k , w`−1
k) .

The output of the execution is the list of round outputs ō = {o`}`, and the
transcript of the execution is the list of all queries, answers, and outputs
trans(iC, w̄) = {(q̄`, ā`, o`)}`. In the case that any oracle answer is a`k = ⊥,
the execution is considered invalid. For simplicity of this high-level overview, we
consider only valid executions and valid transcript; see Section 4 for more details.

iC1

o1

iC2

o2

. . .

. . .

iCL

oL

O

w̄1

O

w̄2 . . .

O

w̄L−1

st1 st2 stL−1

q̄1
ā1 q̄2

ā2 q̄L−1
āL−1

Fig. 1: Execution of an interactive circuit iC with witnesses w̄

Garbled Interactive Circuit Scheme: A Garbled Interactive Circuit (GIC)
scheme GiC allows us to garble an interactive circuit îC R← GiC.Garble(iC), s.t.

Correctness: We can evaluate îC with the oracle O and a list w̄ of witnesses
(in the clear) to obtain each round output o` = GiC.Eval(îC, w̄<`). This
significantly differs from classical garbling techniques where inputs of the
computation must be encoded using secrets (such as, mapping them to
corresponding input keys or labels).

Simulation Security for Unique Transcripts Distribution: Security guar-
antees that îC reveals only the transcript of execution, including all outputs,
queries, and answers, and nothing else, that is, it can be simulated by
ĩC R← GiC.Sim(trans), provided that there is a unique transcript of execution.

The requirement on unique transcript is necessary, otherwise, security is ill-defined
as there may exist different transcripts produced by using different witnesses,
and the simulator cannot hardcode them all. Furthermore, garbled interactive
circuit schemes are meant to be different from obfuscation and hides only a single
execution path. To formalize this, there are two options:

– Statistically Unique Transcript. The easier option is requiring sim-
ulation security only for interactive circuits iC that have unique transcript

k-Round MPC from k-Round OT via Garbled Interactive Circuits 9

no matter what witnesses are used, that is, for all w̄, w̄′, trans(iC,O, w̄) =
trans(iC,O, w̄′). This is, however, a strong requirement.

– (Default:) Computationally Unique Transcript. The more general
option is considering a distribution iD over (iC, w̄) that has computationally
unique transcripts, in the sense that given (iC, w̄), it is hard to find w̄′ that
leads to a different valid transcript, trans(iC,O, w̄) 6= trans(iC,O, w̄′).9

GIC for a computational or statistical unique-transcript distribution ensures:{
GiC.Garble(iC) : (iC, w̄) R← iD

}
≈{

GiC.Sim(trans(iC,O, w̄)) : (iC, w̄) R← iD
}

Looking ahead, our 2-round MPC protocols from 2-round semi-honest obliv-
ious transfer crucially rely on the stronger notion of GIC for computationally
unique transcripts. If using GIC for statistically unique transcripts, we would need
a 2-round OT protocol where the receiver’s message statistically binds its input
bit, which is not a necessary assumption for constructing 2-round semi-honest
MPC protocols.

2.3 Constructing GIC from Witness Selector

We start with the warm-up case of building GIC for statistically unique transcripts
by combining plain garbled circuits and witness encryption. Witness Encryption
(WE) proposed by Garg, Gentry, Sahai, and Waters [26], enables one to encrypt
a message under an instance x of an NP language L to obtain a ciphertext
ct R←WE.Enc(x,M); later this ciphertext can be decrypted using any witness w
of x, M = WE.Dec(ct,w). The idea of combining garbled circuits and witness
encryption has already appeared in three recent works by Gordon, Liu, and
Shi [35], Cho et al. [19], and Döttling and Garg [23]. Our garbled interactive
circuit scheme can be viewed as a generalization of their ideas for capturing the
full power of this combination. As we explain shortly, to handle computationally
unique transcripts, we need to rely on a new primitive called Witness Selector,
which strengthens WE.10

Warm-Up: GIC for Statistically Unique Transcript from WE: To
garble an interactive circuit iC = {iC`}`, a natural first attempt is garbling each
next-step circuit iC` as a plain circuit, yielding L garbled circuits {îC`, key`}`,
where each input wire of îC` has two keys, (key`[k, 0], key`[k, 1]), one for this
input bit being 0 and one for 1. The difficulty is that, to evaluate îC`, the
9 The distribution may output some additional auxiliary information, and it is hard
to find witnesses that lead to a different valid transcript even given the auxiliary
information. See Section 4 for more details.

10 We mention that the work of Döttling and Garg [23] defined what is called chameleon
encryption scheme, which can be viewed as a special case of our witness selector for
a specific language.

10 Fabrice Benhamouda and Huijia Lin

evaluator must obtain keys corresponding to the honestly generated state st`−1

and answers ā`−1 produced in the previous round; denote these keys as key`[st`−1]
and key`[ā`−1].11 We show how to enable this by modifying the garbled circuits
{îC`} as follows.

– The first idea is embedding all keys key` for one garbled circuit îC` in the
previous one îC`−1, so that, îC`−1 can output directly the keys key`[st`−1] for
the state st`−1 it produces. This idea, however, does not apply for selecting
keys for answers ā`−1, as îC`−1 only computes queries q̄`−1 but not answers
as it does not necessarily know the corresponding witnesses w̄`−1.

– The second idea is using WE as a “translator.” To illustrate the idea, assume
that there is a single query q`−1 and it has a Boolean answer a`−1. In this
case, let îC`−1 output a pair of WE ciphertexts (ct0, ct1), where ctb encrypts
the key key`[k, b] for the answer a`−1 being b, under the statement xb that the
oracle outputs b, O(q`−1, w′b) = b, for some witness w′b. Now, the evaluator
after evaluating îC`−1 obtains ct0, ct1. Using the witness w` it receives as
input, it can decrypt the WE ciphertext ct`−1

a`−1 for a`−1 = O(q`−1, w`−1),
obtaining the right key key`[a`−1] for evaluating the next garbled circuit.

To show security, it boils down to argue that for each garbled circuit îC`, only
one key for each input wire is revealed. The security of îC`−1 ensures that only
keys key`[st`−1] for the right state is revealed. On the other hand, to argue that
only keys key`[k, a`−1] for the right answers are revealed, it crucially relies on the
fact that the transcript including the answer is statistically unique. Thus, the
ciphertext ct1−a`−1 is encrypted under a false statement, and by security of WE,
the label key`[k, 1 − a`−1] is hidden. We emphasize that if the transcript were
only computationally unique, both WE ciphertexts ct0, ct1 would potentially be
encrypted under true statements, as there may exist two witnesses w0, w1 that
make the oracle output 0 and 1, O(q`−1, w0) = 0, O(q`−1, w1) = 1, even though it
is computationally hard to find them; and the security of WE would be vacuous.
General Case: GIC from Witness Selector: To handle computationally
unique transcripts, WE is not the right tool. We propose a new primitive called
Witness Selective (WS), which strengthens WE in two ways:

Correctness: WS is defined for a non-deterministic oracle O. One can encrypt a
set of keys key = {key[k, b]}k∈[l],b∈{0,1} under a query q, ct←WS.Enc(q, key),
which can later be decrypted using a witness w revealing the keys selected
according to the output a = O(q, w), that is, {key[k, ak]}k = WS.Dec(ct, w).

Semantic Security for Unique Answers: The security guarantee is that the
WS ciphertext ct hides all the keys key[k, 1 − ak], provided that a is the
computationally unique answer. Clearly, if it were easy to find two witnesses
w,w′ such that, (a = O(q, w)) 6= (a′ = O(q, w′)), the aforementioned semantic
security cannot hold. Therefore, similarly to GIC, security is only required

11 This is a slight abuse of notation, where st`−1 and ā`−1 denote both their actual
values and the indices of the corresponding input wires.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 11

to hold for a distribution wD over (q, w) that has computationally unique
answers in the sense that given (q, w), it is hard to find w′ that makes O
output a different valid answer. Then,{

WS.Enc(q, key) : (q, w) R← wD
}
≈{

WS.Enc(q, key) : (q, w) R← wD; a = O(q, w); ∀k, key[k, 1− ak] = 0
}
.

We can construct general GIC scheme for computationally unique transcript by
replacing WE in the warm-up construction with WS. Slightly more precisely, each
garbled circuit îC`−1 outputs a WS ciphertext ct encrypting keys {key[k, b]} for
all wires corresponding to the oracle answer a`−1, under the query q`−1 (if there
are multiple queries, simply generate one WS ciphertext for each query); then,
the evaluator can use the witness w`−1 to decrypt and obtain keys {key[k, a`−1

k]}
selected according to the oracle answer a`−1 = O(q`−1, w`−1). Since the oracle
answer (as a part of the transcript) is computationally unique, semantic security
of WS ensures that the other keys {key[k, 1− a`−1

k]} remain hidden, and hence
we can invoke the security of the garbled circuits to argue the security of GIC.
Relation between WS, WE, and Extractable WE: As discussed above,
WS is stronger than WE. For instance, one can use WS to encrypt a set of keys
key under a query q = (h, y = h(v)) for a randomly sampled collision-resistant
hash function h. With respect to the de-hashing oracle O(q, v′) that outputs v′ if
y = h(v′), a WS ciphertext reveals only keys {key[k, vk]} selected by v, and hides
others. In contrast, WE provides no security in this case. On the other hand, WS
is weaker than the notion of extractable WE [33]. Roughly speaking, extractable
WE guarantees that for every attacker A, there is an extractor E, such that, if
A can decrypt a ciphertext encrypted under statement x, then E can output a
witness of x. Extractable WE implies WS, and is strictly stronger as it requires
knowledge extraction.

We note that so far there is no construction of general-purpose WE, let alone
WS or extractable WE, from standard assumptions. This is also not the goal of
this work. Instead, we show below how to construct special-purpose WS that
suffices to construct 2-round MPC protocols.

2.4 Round-Collapsing via Garbled Interactive Circuits

We now revisit the round-collapsing approach, by replacing obfuscation with
garbled interactive circuits. First, we observe that each player Pi in the inner
MPC protocol can be viewed as an interactive circuit {P `i }, interacting with an
oracle O representing the other parties {Pj}, as described in Fig. 2.

The important details are: In each round `, P `i obtains through the oracle O
all messages m̄`−1 = {m`−1

j }
j
output in the previous round, and additionally, it

outputs a proof π`i that the message m`
i it outputs is generated honestly from its

input xi and random tape ri committed in ci. The message and proof are exactly
the witness w`i = (m`

i , π
`
i) for the query q`i that players P `j make in round ` to

the oracle O for obtaining Pi’s message a`i = m`
i for the next round.

12 Fabrice Benhamouda and Huijia Lin

Pi as an interactive circuit {P `i }

– The non-deterministic oracle O (representing all other parties) receives
queries of form q`j = (cj , G`j), consisting of Pj ’s commitment and its next-
step circuit with all messages in the first `− 1 rounds hardcoded, G`j(?, ?) =
Nextj(?, ?, m̄<`). On input such a query and a witness w`j = (m`

j , π
`
j), O

computes:

a`j = O(q`j , (m`
j , π

`
j)) =

m`
j if π`j proves that the values (xj , rj)

committed in cj satisfy m`
j = G`j(xj , rj)

⊥ otherwise
.

– P `i proceeds similarly as Nexti in Eq. (1) (page 7), except that, it additionally
outputs one query q`j = (cj , G`j) for each player Pj ’s message m`

j , and a proof
π`i that its next message is indeed m`

i . (The proof system is described later.)

P `i (xi, ri,

st`−1︷ ︸︸ ︷
m̄<`−1,

ā`−1︷ ︸︸ ︷
{m`−1

j }
j
) = (

st`︷︸︸︷
m̄<`,

q̄`︷ ︸︸ ︷
{q`j}j ,

o`︷ ︸︸ ︷
(m`

i , π
`
i)) ,

Fig. 2: Each player Pi can be formalized as an interactive circuit Pi = {P `i }.

Our 2-Round MPC Protocol: Therefore, we can use a GIC scheme to garble
the interactive circuit representing each player Pi to collapse round:
1. In the first round of MPC, each Pi broadcasts a commitment ci to its input
xi and random tape ri, and

2. in the second round, each Pi sends the garbled interactive circuit P̂ i R←
GiC.Garble({P `i }), and

3. each Pi emulates the execution of inner MPC in its head, by evaluat-
ing all {P̂ j} round by round: In round `, it evaluates o`j = (m`

j , π
`
j) =

GiC.Eval(P̂ j , w̄<`), using the outputs obtained in previous rounds as wit-
nesses, w<` = o<` = {(m`′

k , π
`′

k)}k,`′<`. Pi obtains its output when the inner
MPC execution completes.

We observe that the transcript of execution of each {P `i } is indeed computationally
unique, as the commitments {cj} have unique committed values {xj , rj} by the
computational binding property, and lead to unique next messages {m`

j}, by the
soundness of proofs {π`j}. Therefore, the GIC scheme guarantees that the garbled
interactive circuits reveals only their outputs, queries, and answers, summing
up to all commitments {cj}, inner MPC messages {m`

j}, and proofs {π`j}, all of
which can be made simulatable.
First Attempt of Instantiation: The MPC messages can be simulated by
the simulator of the inner MPC protocol. To make commitments and proofs
simulatable, the easiest way is using a standard non-interactive commitment
scheme and a NIZK system, which however 1) requires a common reference
string, and 2) makes the task of instantiating the associated WS scheme difficult.
Recall that to instantiate the GIC scheme, we need a WS scheme for the oracle

k-Round MPC from k-Round OT via Garbled Interactive Circuits 13

O described above, which internally verifies proofs. To solve this, we resort
to a zero-knowledge Functional Commitment (FC) scheme that has a built-in
special-purpose proof system. By minimizing the security requirements on this
commitment, we manage to construct it, together with an associated WS scheme,
from 2-message semi-honest OT (which is a necessary assumption). This gives
2-round MPC protocols in the plain model from 2-message semi-honest OT.

2.5 Functional Commitment with Witness Selector from OT

A zero-knowledge functional commitment scheme FC is computationally binding
and computationally hiding, and additionally supports functional opening that
is both binding and zero-knowledge. The notion of functional commitment was
previously proposed by Libert, Ramanna, and Yung [37] for inner product
functions, and later generalized to general functions in [3]. Here, we consider a
stronger property, namely a zero-knowledge property. On the other hand, we do
not require commitments nor functional decommitments to be of size constant
in the length of the committed value, and our binding property only holds
against semi-honest adversaries. Functional commitments were also implicitly
and informally suggested by Gorbunov, Vaikuntanathan, and Wichs in [34], as a
way to interpret their new primitive: Homomorphic Trapdoor Functions (HTDFs).
HTDFs could be used to construct our functional commitments (but the converse
is not true). However, we do not know how to construct WS associated to an FC
built from the HTDF proposed in [34].

Functional Opening: For a commitment c = FC.Com(v; ρ) and a circuit G,
one can generate a functional decommitment d to the output of G evaluated
on the committed value v, namely m = G(v), using the randomness ρ of the
commitment c,

d = FC.FOpen(c,G,m, ρ), FC.FVer(c,G,m, d) = 1 .

We say that (m, d) is a decommitment to (c,G); here, d serves as a proof
π = d that the value committed in c evaluates to m through G in our 2-round
MPC protocols.
(Semi-Honest) Functional Binding: For an honestly generated commitment
c = FC.Com(v; ρ) with random tape ρ, it is hard to find a decommitment
(m′, d′) to (c,G) for a different output m′ 6= m, even given ρ. Note this is
weaker than standard computational binding, as binding is only required
for honestly generated commitments. This corresponds to distributional
soundness of the proofs.
Simulation (i.e., Zero-Knowledge): An honestly generated commitment c R←
FC.Com(v; ρ) (with random tape ρ) and decommitment d can be simulated
together, using only the output m, (c̃, d̃) R← FC.Sim(c,G,m). This property is
weaker than standard zero-knowledge, as the statement is from a distribution
and is also simulated; only a single decommitment d can be given for each
commitment, or else simulation does not work.

14 Fabrice Benhamouda and Huijia Lin

A WS scheme associated with FC is for the oracle OFC that on input a query
(c,G) and a witness w = (m, d), outputs m if (m, d) is a valid decommitment to
(c,G), and ⊥ otherwise. The functional binding property ensures that for any
v,G, the distribution wDv,G of query q = (c,G) and decommitment w = (m, d)
for honestly generated c = FC.Com(v; ρ), produces computationally unique oracle
answer m (even given the randomness ρ as auxiliary information). Despite the
fact that functional commitments are only semi-honestly binding and one-time
simulatable, we show that, together with an associated WS scheme, they suffice
to instantiate our 2-round MPC protocols.

FC from Garbled Circuits and OT: We show how to construct a functional
commitment, and its associated WS scheme, from garbled circuits and a 2-round
string 2-to-1 semi-honest OT.

OT as semi-honest binding commitment: We start with observing that any string
2-to-1 semi-honest OT gives a commitment scheme that is semi-honest binding;
that is, given an honestly generated commitment c = Com(v; ρ) using a uniformly
random tape ρ, it is hard to find a decommitment (v′, ρ′) that opens c to a
different value v′ 6= v even given ρ. To see this, consider the parallelized version
of 2-to-1 string OT, where ot1 = pOT1(x; ρ) generates the first flows from OT
receiver for every bit xk, and ot2 = pOT2(ot1, {key[k, b]}) generates the second
flows from OT sender for every pair of inputs (key[k, 0], key[k, 1]). Combining ot2
with the randomness ρ used for generating the first flows, one can act as the OT
receiver to recover exactly one input key[k, xk] at each coordinate k. We argue
that the first flow ot1 = pOT1(x; ρ) is a semi-honest commitment to x. Suppose
that it is not the case and that it is easy to find a decommitment ρ′ to a different
value x′ 6= x. Then a semi-honest attacker acting as OT receiver can violate
the privacy of OT sender. (However, observe that pOT1(x) is not necessarily
computationally binding, as there is no security for maliciously generated first
flows of OT.)

Functional Opening: We use garbled circuits and OT (as a semi-honest binding
commitment scheme) to enable functional opening. To commit to a value v,
garble a universal circuit Uv(?) = U(v, ?) with v hardcoded, and commit to all
its input keys {key[k, b]} using pOT1:

FC.Com(v; ρ) = c = (Ûv, ot1) , where ot1[k, b] = pOT1(key[k, b]; ρ[k, b]) .

To generate a decommitment (m, d) of (c,G), simply send the keys and random-
ness used for generating the OT first flows {ot1[k,G[k]]} selected by G. More
formally, if G[k] is the k-th bit of the description of G which is used as input
to Uv:

FC.FOpen(c,G,m, ρ) = d = {key[k,G[k]], ρ[k,G[k]]} .

Verifying a decommitment d = {key′, ρ′} w.r.t. (c,G,m) involves checking that
the keys and randomness contained in d′ generate the OT first flows selected by

k-Round MPC from k-Round OT via Garbled Interactive Circuits 15

G, and the garbled universal circuit Ûv evaluates to m on input these keys.

FC.FVer(c,G,m, d) = 1 iff 1) ∀k, ot1[k,G[k]] = pOT1(key′[k]; ρ′[k]) and
2) Ûv(key′) = m .

It is easy to see that the semi-honest binding property of pOT1 implies the
semi-honest functional binding of FC, and that a pair (c, d) can be simulated
relying on the security of garbled circuits and the computational hiding property
(i.e., receiver privacy) of pOT1.
WS for FC: Next, to construct a WS scheme for the oracle OFC that verifies
the functional decommitment of FC, we again use garbled circuits to “enforce
and hide” this verification. To encrypt a set of messages M[i, b′] under a query
(c,G), our idea is to garble the following circuit V that acts as FC.FVer (without
checking 1)), and selects messages according to the output m if verification passes,

V ({key′[k]}) =
{
{M[i,mi]} if Ûv({key′[k]}) = m

⊥ otherwise
. (2)

Let V̂ be the garbled circuit, and {okeyk[j, β]}j the set of keys for the input wires
corresponding to key′[k]. (For clarity, we denote keys for V̂ as okey.)

Given a decommitment d = (key′, ρ′), correct WS decryption should recover
messages {M[i, G(v)i]} selected according to the correct output G(v) if the
decommitment is valid, and ⊥ if invalid. To enable this, what is missing is a
“translation mechanism” that can achieve the following: For every k,

– Correctness: if (key′[k], ρ′[k]) is a valid decommitment to ot1[k,G[k]], it
translates this pair into input keys of V̂ corresponding to key[k,G[k]], namely
{okeyk[j, key[k,G[k]]j]}j .

– Security: the other keys {okeyk[j, 1− key[k,G[k]]j]}j are always hidden.

With such a translation mechanism, given a valid decommitment d = {key[k,G[k]],
ρ[k,G[k]]}, one can obtain all input keys corresponding to {key[k,G[k]]}, and
can evaluate V̂ with these keys to obtain the correct output,

V̂
({
{okeyk[j, key[k,G[k]]j]}j

}
k

)
= V ({key[k,G[k]]}k) = {M[i, G(v)i]}i . (3)

The security of the translation mechanism and garbled circuit V̂ guarantees that
only the right messages {M[i, G(v)i]} are revealed.

Our key observation is that the second flows of OT is exactly such a translation
mechanism. For every OT first flows ot1[k,G[k]] selected by G, generate the OT
second flows using appropriate input keys of V̂ as sender’s inputs,

∀k, ot2[k] R← pOT2(ot1[k,G[k]], {okeyk[j, β]}j,β) . (4)

Indeed, for every k, given a valid decommitment (key[k,G[k]], ρ′) to ot1[k,G[k]],
one can act as an OT receiver to recover input keys {okeyk [j, key[k,G[k]]j]}j ,

16 Fabrice Benhamouda and Huijia Lin

achieving correct translation. On the other hand, the OT sender’s security
guarantees that the other keys {okeyk [j, 1− key[k,G[k]]j]}j remain hidden.

Summarizing the above ideas gives the following construction of WS for FC:

– WS.Enc((c,G),M): To encrypt M under (c,G), encryptor garbles the circuit
V as in Equation (2), and generates the second OT flows as in Equation (4).
The WS ciphertext is ct = (c,G, V̂ , {ot2[k]}).

– WS.Dec(ct, d) : To decrypt ct with a decommitment d = {key′, ρ′}, the
decryptor first verifies that for every k (key′[k], ρ′[k]) is a valid decommitment
of ot1[k,G[k]] in c; otherwise, abort. Then, for every k, it acts as an OT
receiver with input key′[k], randomness ρ′[k], and OT sender’s message ot2[k]
to recover input keys of V̂ corresponding to key′[k]. Finally, it evaluates
V̂ with the obtained keys and output the messages output by V̂ , as in
Equation (3).

The correctness and security of the WS scheme follows directly from the correct-
ness and security of the translation mechanism, which are in turn implied by
those of OT. See the full version [7] for more details.

Combining Sections 2.1 to 2.5, we get a construction of a 2-round semi-honest
MPC protocol from any 2-round semi-honest OT protocol using round collapsing
for an inner MPC protocol.

2.6 Semi-Malicious and Malicious Security in the CRS model

Toward achieving malicious security, we first achieve semi-malicious security.
Roughly speaking, a semi-malicious party Pj generates its messages according to
the protocol using arbitrarily and adaptively chosen inputs and random tapes.
This is formalized by letting Pj “explain” each message m`

j it sends with a pair
of input and random tape consistent with it, on a special witness tape. In the
two-round setting, the challenge in simulating the view of Pj lies in simulating
honest parties’ first messages without knowing any secret information of Pj . This
is because Pj may rush to see honest parties’ first messages before outputting
its own message, input, and random tape. (Observe that this is not an issue for
semi-honest security, as the simulator learns the inputs and random tapes of
corrupted parties first.)

Recall that in our 2-round protocols, each party Pi sends functional commit-
ments ci to its input and random tape (xi, ri) in the first round, which are later
partially decommitted to reveal Pi’s messages m in the inner MPC protocol. The
simulation property of the functional commitment scheme FC ensures that the
commitment and decommitment can be simulated together using just the message.
However, this is insufficient for achieving semi-malicious security, as the simulator
must simulate commitments in the first round with no information. To overcome
this problem, we strengthen the simulatability of FC to equivocability, that is,
simulation takes the following two steps: First, a commitment c̃ is simulated
with no information, and later it is equivocated to open to any output m w.r.t.
any circuit G. Instantiating our 2-round MPC protocols with such an equivocal

k-Round MPC from k-Round OT via Garbled Interactive Circuits 17

functional commitment scheme, and other primitives that are semi-maliciously
secure (e.g., using a semi-maliciously secure multi-round MPC protocol, and
2-round OT protocol), naturally “lift” semi-honest security to semi-malicious
security.

With a simple idea, we can transform any simulatable functional commitment
scheme FC into an equivocal one eFC: Let (OT1,OT2) be the sender and receiver’s
algorithms of a 2-out-of-1 OT scheme.

– To commit to v, generate a FC commitment c to v, and then commit to each
bit ci twice using the algorithm OT1, yielding the eFC commitment:

ec = {ot1[i, 0] = OT1(ci; r[i, 0]), ot1[i, 1] = OT1(ci; r[i, 1])}i .

– An eFC decommitment (ed,G(v)) to (ec,G) contains the FC decommitment
(d,G(v)) to (c,G), and the OT randomness {r[i, ci]} for generating the set of
first flows {ot1[i, ci]} selected by c. Note that for any ec generated according
to the above commitment algorithm, the revealed OT randomness determines
the commitment c, and then the FC decommitment d determines G(v).

– Now, a commitment can be simulated by committing to both 0 and 1 in ec,

ẽc = {ot1[i, 0] = OT1(0; r[i, 0]), ot1[i, 1] = OT1(1; r[i, 1])}i .

To decommit ẽc to output G(v), first simulate the FC commitment and de-
commitment (c̃, d̃) together using G(v), and then reveal the set of randomness
{r[i, c̃i]} selected according to the simulated commitment c̃.

The WS scheme associated with eFC can be constructed similarly as that for FC.
The above idea is conceptually simple, but leads to nested calls of pOT1 / OT1,
as a FC commitment c already contains OT first flows. This is not a problem
when using 2-round OT, but does not extend to multi-round OT. In the full
version [7], we present a more involved construction that avoids nested calls.

Malicious Security in the CRS Model. Given 2-round semi-maliciously secure
protocols, in the CRS model, we can let each party prove using NIZK that each
message is generated in a semi-malicious way (i.e., according to the protocol
w.r.t. some input and random tape) as done in [2], which immediately gives
Corollary 1.3 in the introduction. We refer the reader to [2] for more details.

Extension to k Rounds. Our 2-round semi-honest or semi-malicious constructions
so far can be extended to k-round constructions, when replacing the underlying
2-round OT protocols with semi-honest or semi-malicious k-round OT protocols.
See the full version [7] for more details.

2.7 Malicious Security in the Plain Model

From General (k − 1)-Round Delayed-Semi-Malicious MPC: We first
show a new compilation that turns any (k−1)-round MPC protocol for computing

18 Fabrice Benhamouda and Huijia Lin

f satisfying a stronger variant of semi-malicious security, called delayed-semi-
malicious security, into a k-round malicious MPC protocol for f , assuming only
one-way functions, for any k ≥ 5. Roughly speaking, a delayed-semi-malicious
party Pj acts like a semi-malicious party, except that, it only “explains” all its
messages once, before the last round (instead of explaining each of its messages
after each round). This is formalized by letting Pj output a pair of input and
random tape before the last round (on its special witness tape) which is required
to be consistent with all Pj ’s messages. We say that a protocol is delayed-semi-
malicious secure if it is secure against such adversaries. (For technical reasons, we
require the protocols to have a universal simulator.) We observe that our k-round
semi-malicious MPC protocols, when instantiated with a k-round delayed-semi-
malicious OT become secure against delayed semi-malicious attackers (and admit
a universal simulator).

To “lift” delayed-semi-malicious security to malicious security generically,
our compilation builds on techniques of [1]. To illustrate the idea, consider
compiling our 2-round delayed-semi-malicious MPC protocol Φ for f into a 5-
round malicious MPC protocol Π for f . The basic idea is running Φ for computing
f , and restricting a malicious adversary A to act as a delayed-semi-malicious one
A′ by requiring A to prove using zero-knowledge proof of knowledge (ZKPOK)
that its messages in each round of Φ are generated correctly according to some
input and random tape. Unlike the CRS model, ZKPOK in the plain model
requires at least 4 rounds. Sequentializing the two ZKPOK leads to a 8-round
protocol. But if the ZKPOK allows for delayed-input, that is, only the last
prover’s message depends on the statement and witness, then the two ZKPOK
can be partially parallelized, leading to a 5-round protocol. In addition, in order
to prevent mauling attacks, the ZKPOK must be non-malleable. Fortunately,
Ciampi, Ostrovsky, Siniscalchi, and Visconti [20] (COSV) recently constructed a
4-round delayed-input non-malleable ZKPOK protocol from one-way functions,
which suffice for our purpose. When starting from a 4-round (instead of 2-round)
protocol Φ, to obtain a 5-round malicious protocol Π, we cannot afford to prove
correctness of each round. But, if Φ is delayed-semi-malicious secure, then it
suffices to prove correctness only at the last two rounds, keeping the round
complexity at 5.

Though the high-level ideas are simple, there are subtleties in the construction
and proof. We cannot use the non-malleable ZKPOK in a black-box. This is
because simulation of non-malleable ZKPOK uses rewindings and may render
the Φ instance running in parallel insecure. In addition, the COSV non-malleable
ZKPOK is only many-many non-malleable in the synchronous setting, but in Π,
the non-malleable ZKPOKs are not completely synchronized (ending either at
the second last or the last round). Therefore, we use the COSV construction in a
non-black-box way in Π (with some simplification) as done in [1]. The specific
property of COSV non-malleable ZKPOK that we rely on is that simulation
requires only rewinding the second and third rounds, while (witness) extraction
requires only rewinding the third and forth rounds. This means Φ would be
rewound at second/third and third/fourth rounds. The security of a generic

k-Round MPC from k-Round OT via Garbled Interactive Circuits 19

delayed-semi-malicious protocol may not hold amid such rewinding. However, if
we start with a 4-round protocol, rewindings can be circumvented if Π contains
no messages of Φ in its third round. This means, in the rewindings of second/third
and third/fourth rounds, the simulator can simply replay messages of Φ in the
main thread, keeping the instance of Φ secure. See the full version [7] for details.
From Our Specific k-Round Delayed-Semi-Malicious MPC: The above
transformation is modular and general, but comes at a price — it only gives
k-round malicious MPC from (k − 1)-round delayed-semi-malicious OT, which
is not necessary. To eliminate the gap, we leverage specific structures of our
k-round delayed-semi-malicious protocols, to address the rewinding issue above.
To illustrate the ideas, lets again examine the k = 5 case.

To handle rewindings at third/fourth rounds, we observe that at the end of
fourth round, each party Pi proves using COSV non-malleable ZK that it has
acted honestly in Φ according to some input and random tape (xi, ri). If in the
malicious protocol Π, each party additionally commits to (xi, ri) in the first
two rounds using a statistically binding commitment scheme (and prove that
its messages are generated honestly using the committed value). Then, as long
as the adversary cannot cheat in the non-malleable ZK proofs, its messages in
the third/fourth rounds of Φ are determined by the commitments in the first
two rounds. Therefore, the simulator can afford to continuously rewinding the
adversary, until it repeats its messages in Φ in the main execution thread. In this
case, the simulator can simply replay the honest parties’ messages in Φ in the
main thread.

To handle rewindings at second/third rounds, the specific property of our
protocol that we rely on is that the first 2 rounds of Φ contains only instances of
OT, whose messages do not depend on parties’ inputs. The latter holds because
of the random self-reducibility of OT (hence, the sender and receiver can only
use their inputs for generating their last messages). To avoid rewinding these
OT instances in Φ, our idea is modifying the malicious protocol Π as follows:
In the first 2 rounds, for every OT instance OTj in Φ, Π runs two independent
OT instances OT0

j and OT1
j . In the third round, an random instance OTbjj for

bj ← {0, 1} is chosen to be continued, and the other OT1−bj
j aborted — they

are referred to as the real and shadow instances. Now in a rewinding of the
second/third round, to avoid rewinding the real OT instances, the simulator
replays the OT messages in the second round, and in the third round, continues
the shadow instances OT1−bj

j and aborts the real instances OTbjj . Importantly,
since for every pair (OT0

j ,OT1
j), the choice bj of which is real and which is shadow

is random and independent, the view of the adversary in a rewinding is identical
to that in the main execution thread. This guarantees that rewindings would
succeed.

We remark that this idea does not apply in general. This is because to continue
a random instance of a general protocol Φ in the third round, parties may need
to agree on that instance, which requires coin-tossing. In contrast, our protocol
Φ consists of many OT instances OTj , the decision of which of (OT0

j ,OT1
j) to

continue can be made locally by the party who is supposed to send the third

20 Fabrice Benhamouda and Huijia Lin

message of OTj in Φ. In the full version [7], we put the above two ideas together,
which gives k-round malicious OT from k-round delayed-semi-malicious OT.

A figure summarizing the results is provided in the full version [7].

3 Preliminaries

The security parameter is denoted λ. We recall the notion of polynomial-size cir-
cuit classes and families, together with the notion of statistical and computational
indistinguishability in the full version [7].

For the sake of simplicity, we suppose that all circuits in a circuit class
have the same input and output lengths. This can be achieved without loss of
generality using appropriate paddings. We recall that for any S-size circuit class
C = {Cλ}λ∈N, there exists a universal poly(S)-size circuit family {Uλ}λ∈N such
that for any λ ∈ N, any circuit C ∈ Cλ with input and output lengths n, l, and
any input x ∈ {0, 1}n, Uλ(C, x) = C(x).

We make use of garbled circuit schemes. A garbled circuit scheme GC for a poly-
size circuit class C = {Cλ}λ∈N is defined by four polynomial-time algorithms GC =
(GC.Gen,GC.Garble,GC.Eval,GC.Sim): i) key R← GC.Gen(1λ) generates input labels
key = {key[i, b]}i∈[n],b∈{0,1}; ii) Ĉ

R← GC.Garble(key, C) garbles the circuit C ∈
Cλ into Ĉ; iii) y = GC.Eval(Ĉ, key′) evaluates the garbled circuit GC.Garble
using input labels key′ = {key′[i]}i∈[n] and returns the output y ∈ {0, 1}l; iv)
(key′, C̃) R← GC.Sim(1λ, y) simulates input labels key′ = {key′[i]}i∈[n] and a
garbled circuit C̃ corresponding to the output y ∈ {0, 1}l. The formal definition
can be found in the full version [7]. We recall that garbled circuit schemes can
be constructed from one-way functions.

4 Definition of Garbled Interactive Circuit Schemes

In this section, we define Garbled Interactive Circuit (GIC) schemes. An overview
is provided in Section 2.2.

4.1 Interactive Circuits

We start by defining non-deterministic oracles and interactive circuits.

Definition 4.1 (Non-Deterministic Oracles). A non-deterministic oracle O
is a circuit that takes as input a pair of bitstrings (q, w) ∈ {0, 1}n × {0, 1}m,
called query and witness respectively, and the output is a l-bit string or a special
element ⊥, called answer : O(q, w) ∈ {0, 1}l ∪ {⊥}. A poly-size non-deterministic
oracle family is an ensemble of poly-size non-deterministic oracles O = {Oλ}λ∈N .

Definition 4.2. Let O be a non-deterministic oracle. An L-round interactive
circuit iC = {iC`}`∈[L] with oracle O consists of a list of L next-step circuits.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 21

Execution of iC with O on Witnesses w̄: An execution of iC with O and
a list of witnesses w̄ = {w̄`}`∈[L] proceeds in L iterations as follows: In round
` ∈ [L], the next-step circuit iC` on input the state st`−1 (output in the previous
round) and answers ā`−1 = {a`−1

k }
k
(to queries q̄`−1 = {q`−1

k }
k
produced in

the previous round), outputs a new state st`, queries q̄` = {q`k}k, and a (round)
output o`,

(st`, q̄`, o`) =
{

iC`(st`−1, ā`−1) if ∀k, a`−1
k = O(q`−1

k , w`−1
k) 6= ⊥

(⊥,⊥,⊥) otherwise
.

The execution terminates after L rounds, or whenever ⊥ is output. By convention,
st0 and q̄0 are empty strings.

We say that an execution is valid if it terminates after L rounds without
outputting ⊥. We call the list of witnesses w̄ the witnesses of the execution. The
output of the execution is the list of round outputs, denoted as out(iC,O, w̄) =
ō = {o`}`∈[L]. The transcript of the execution is the list of queries, answers, and
outputs, denoted as trans(iC,O, w̄) = {q̄`, ā`, o`}`∈[L]. (If the execution outputs ⊥
in round `, q̄`′ = ā`

′ = o`
′ = ⊥ for all `′ ≥ `.) Finally, we say that iC has size S if

the total size of all circuits are bounded by S. In the rest of the paper, when the
oracle O is clear from the context, we often omit it in the notations and write
out(iC, w̄) and trans(iC, w̄).

4.2 Garbling Interactive Circuits
As mentioned above, an important difference between GIC schemes and classical
garbled circuit schemes is that to evaluate a garbled (plain) circuit, one must
obtain encoded inputs, whereas a garble interactive circuit can be evaluated
with its oracle O on input an arbitrary list of witnesses, without encoding. This
provides a more powerful functionality, but poses an issue on security: There may
exist different lists of witnesses w̄, w̄′ that lead to executions with completely
different transcripts. In this case, it is unclear how simulation can be done. To
circumvent this, we only require the security of the garbling scheme to hold
for distributions iD of interactive circuits iC and witnesses w̄ (with potentially
some auxiliary information aux) that have computationally unique transcripts
trans(iC,O, w̄), in the sense that (given aux) it is hard to find another list
of witnesses w̄′ that leads to an inconsistent transcript trans(iC,O, w̄), where
inconsistency means:
Definition 4.3 (Consistent Transcripts).We say that two transcripts {q̄`, ā`,
o`}`∈[L] and {q̄′`, ā′`, o′`}`∈[L] are consistent if for every ` ∈ [L], (q̄`, ā`, o`) =
(q̄′`, ā′`, o′`) or (q̄`, ā`, o`) = (⊥,⊥,⊥) or (q̄′`, ā′`, o′`) = (⊥,⊥,⊥). Otherwise, we
say that the two transcripts are inconsistent.
Note that one can always produce a list of invalid witnesses that lead to an
invalid execution. Therefore, difference due to outputting ⊥ does not count as
inconsistency. Next, we formally define these distributions that produce unique
transcripts.

22 Fabrice Benhamouda and Huijia Lin

Definition 4.4 (Unique-Transcript Distribution). Let O = {Oλ}λ∈N be
a non-deterministic oracle family. Let iD = {iDλ,id}λ∈N,id be an ensemble of
efficiently samplable distributions over tuples (iC, w̄, aux). We say that iD is a
(computationally) unique-transcript distribution for O, if

Valid Execution: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), and any (iC, w̄,
aux) in the support of iDλ,id, the execution of iC with Oλ and w̄ is valid.

Computationally Unique Transcript: For any poly-size circuit family A =
{Aλ}λ, any sequence of indices {idλ}λ, there is a negligible function negl,
such that for any λ:

Pr
[
trans(iC,Oλ, w̄′) and trans(iC,Oλ, w̄) are inconsistent :

(iC, w̄, aux) R← iDλ,idλ ; w̄′ R← Aλ(iC, w̄, aux)
]
≤ negl(λ) .

It is a statistically unique-transcript distribution if the second property holds for
any arbitrary-size circuit family A = {Aλ}λ.

Now, we are ready to define GIC schemes.

Definition 4.5 (Garbled Interactive Circuit Schemes). Let O = {Oλ}λ∈N
be a non-deterministic oracle family, and iD = {iDλ,id}λ∈N,id be a unique-
transcript distribution for O. A garbled interactive circuit scheme for (O, iD) is a
tuple of three polynomial-time algorithms GiC = (GiC.Garble,GiC.Eval,GiC.Sim):

Garbling: îC R← GiC.Garble(1λ, iC) garbles an interactive circuit iC into a
garbled interactive circuit îC;

Evaluation: o` = GiC.Eval(îC, w̄<`) evaluates a garbled interactive circuit îC
with a partial list of witness w̄<`, and outputs the `-th round output o`;

Simulation: ĩC R← GiC.Sim(1λ, T) simulates a garbled circuit ĩC from a tran-
script T of an execution;

satisfying the following properties:

Correctness: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), any (iC, w̄, aux) in
the support of iDλ,id, it holds that

Pr
[
{GiC.Eval(îC, w̄<`)}`∈[L] = out(iC,Oλ, w̄) :

îC R← GiC.Garble(1λ, iC)
]

= 1 ;

Simulatability: The following two distributions are computationally indistin-
guishable:{

(iC, w̄, aux, îC) : (iC, w̄, aux) R← iDλ,id;
îC R← GiC.Garble(1λ, iC)

}
λ,id

,{
(iC, w̄, aux, ĩC) : (iC, w̄, aux) R← iDλ,id;

ĩC R← GiC.Sim(1λ, trans(iC,Oλ, w̄))

}
λ,id

.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 23

Remark 4.6. In this paper, we always consider perfect correctness for all primi-
tives for the sake of simplicity. We could relax this notion to correctness up to a
negligible error probability if, in addition, we ask that no non-uniform poly-time
adversary can generate inputs and randomness which would not satisfy the
correctness property, with non-negligible probability. In other words, in the case
of GIC schemes, semi-maliciously generated GIC should satisfy the correctness
property (except with negligible probability). This additional property is not
needed for our semi-honest constructions.

5 2-Round Semi-Honest MPC Protocols

In this section, we present our construction of 2-round semi-honest MPC protocols.
For that purpose, we first introduce the notion of functional commitment. We
then show the MPC construction.

5.1 New Tool: Functional Commitment

Definition 5.1 ((Zero-Knowledge) Functional Commitment). Let G =
{Gλ}λ∈N be a poly-size circuit class. A (zero-knowledge) functional commit-
ment scheme FC for G is a tuple of four polynomial-time algorithms FC =
(FC.Com,FC.FOpen,FC.FVer,FC.Sim):

Commitment: c = FC.Com(1λ, v; ρ) generates a commitment c of v ∈ {0, 1}n
using random tape ρ ∈ {0, 1}τ , for the security parameter λ, where the
random tape length τ is polynomial in λ;

Functional Opening: d = FC.FOpen(c,G, v, ρ) derives from the commitment c
and the random tape ρ used to generate it, a functional decommitment d
of c to y = G(v) for G ∈ Gλ;

Functional Verification: b = FC.FVer(c,G, y, d) outputs b = 1 if d is a valid
functional decommitment of c to y for G ∈ Gλ; and outputs b = 0 otherwise;

Simulation: (c, d) R← FC.Sim(1λ, G, y) simulates a commitment c together with
a functional decommitment d of c to y for G ∈ Gλ;

satisfying the following properties:

Correctness: For any security parameter λ ∈ N, for any v ∈ {0, 1}n, for any
circuit G ∈ Gλ, for any ρ ∈ {0, 1}τ , it holds that if c = FC.Com(1λ, v; ρ),
then:

FC.FVer(c,G,G(v),FC.FOpen(c,G, v, ρ)) = 1 ;
Semi-Honest Functional Binding: For any polynomial-time circuit family

A = {Aλ}λ∈N, there exists a negligible function negl, such that for any λ ∈ N,
for any v ∈ {0, 1}n, for any circuit G ∈ Gλ:

Pr
[
FC.FVer(c,G, y, d) = 1 and y 6= G(v) :

ρ R← {0, 1}τ ; c = FC.Com(1λ, v; ρ); (y, d) R← Aλ(1λ, c, v, ρ)
]
≤ negl(λ) ;

24 Fabrice Benhamouda and Huijia Lin

Simulatability: The following two distributions are computationally indistin-
guishable: {

(c, d) : ρ R← {0, 1}τ ; c R← FC.Com(1λ, v; ρ);
d = FC.FOpen(c,G, v, ρ)

}
λ,G,v

,{
(c, d) : (c, d) R← FC.Sim(1λ, G,G(v))

}
λ,G,v

.

Note that the simulatability property implies the standard hiding property
of commitments, if each circuit class Gλ contains a constant circuit: Consider
indeed any constant circuit C(x) = α, the fact that (c, d) can be simulated from
C and α implies that c hides the message committed inside.

Let us now define the non-deterministic oracle family associated to FC.

Definition 5.2. Let G = {Gλ}λ∈N be a poly-size circuit class. Let FC = (FC.Com,
FC.FOpen,FC.FVer,FC.Sim) be a functional commitment scheme for G. We define
the following associated non-deterministic oracle family OFC = {OFC

λ }λ∈N:

OFC
λ ((c,G), (y, d)) =

{
y if FC.FVer(c,G, y, d) = 1;
⊥ otherwise.

5.2 Construction of 2-Round Semi-Honest MPC

Tools: Let f be an arbitrary N -party functionality.12 To construct a 2-round
semi-honest MPC protocol Π̃ for f , we rely on the following tools:

– A semi-honestly secure L-round MPC protocol Π = (Next,Output) for f . We
will refer to this protocol the “inner MPC protocol”.
Recall that Next is next message function that computes the message broad-
casted by party Pi in round `, m`

i = Nexti(xi, ri, m̄<`), on input xi and
random tape ri, after receiving messages m̄<` = {m`′

j }j∈[N],`′<` broadcasted
by parties Pj on previous rounds. And Output is the output function that
computes the output of party Pi, yi = Outputi(xi, ri, m̄), after receiving all
the messages m̄ = {m`

j}j∈[N],`∈[L]. The security parameter λ is an implicit
parameter 1λ of Next and Output.

– A functional commitment scheme FC = (FC.Com,FC.FOpen,FC.FVer,FC.Sim)
for the class of all S-size circuits with a sufficiently large polynomial bound S.
We denote by OFC the associated non-deterministic oracle family defined in
Definition 5.2.

– A GIC scheme GiC = (GiC.Garble,GiC.Eval) for the oracle OFC and the
unique-transcript distribution iD = {iDλ,id}λ∈N,id that we define later.

12 Formal definitions of MPC protocol and N -party functionality are provided in the
full version [7].

k-Round MPC from k-Round OT via Garbled Interactive Circuits 25

We will show that using the constructions in Section 6 and in the full version [7],
we can construct the two last tools from 2-round (semi-honest) OT. With the
above tools, our 2-round MPC protocol Π̃ = (Ñext, Õutput) for f proceed as
follows:
The First Round: Each party Pi computes its first message m̃1

i = Ñexti(xi, r̃i,
∅), using security parameter λ, input xi, random tape r̃i, and no messages, as
follows.

1. Take a sufficient long substring ri of r̃i as the random tape for running the
inner MPC protocol Π.

2. Commit L times to (xi, ri) using the functional commitment scheme FC:
for ` ∈ [L], c`i = FC.Com(1λ, (xi, ri); ρ`i), where all the ρ`i ’s (and ri) are
non-overlapping substrings of r̃i.

3. Broadcast the first message m̃1
i = {c`i}`∈[L], and keep {ρ`i}`∈[L] secret.

The Second Round: Each party Pi computes its second message m̃2
i = Ñexti(xi,

r̃i, {m̃1
j}j∈N), using all first messages {m̃1

j}j∈N as follows:

1. Garble the interactive circuit iCi = {iC`i}`∈[L] defined in Fig. 3:
îCi R← GiC.Garble(1λ, iCi).

2. Broadcast the second message m̃2
i = îCi.

The Interactive Circuit iCi

Constants: 1λ, `, xi, ri, the `-th commitments c`j for each party Pj (part of
the first message m̃1

j), and the randomness ρ`i used in commitment c`i .
Inputs: (st`−1, ā`−1) where for ` > 1:
– The state st`−1 = m̄<`−1 contains the inner MPC messages of the first `− 1

rounds.
– The answers a`j = m`−1

j are the answers of the non-deterministic oracle
OFC to the queries q`j = (c`−1

j , G`−1
j), for j ∈ [N], where the circuit G`−1

j is
defined by G`−1

j (?, ?) = Nextj(?, ?, m̄<`−1).
These inputs define m̄<`.
Procedure:

1. Define the circuit G`j as G`j(?, ?) = Nextj(?, ?, m̄<`), for j ∈ [N].
2. Compute the `-th message of Pi in the inner MPC:

m`
i = Nexti

(
xi, ri, m̄

<`
)
.

3. Compute the associated functional decommitment of c`i :
d`i = FC.FOpen(c`i , G`i , (xi, ri), ρ`i).

4. Compute the next queries: for every j ∈ [N], q`j = (c`j , G`j).
5. Define the next state to be st` = m̄<` and the output to be o`i = (m`

i , d
`
i).

Output: (st`, q̄`, o`i).

Fig. 3: The interactive circuit iCi

26 Fabrice Benhamouda and Huijia Lin

The Output Function: Each party Pi computes its output yi = Õutputi(xi,
r̃i, {m̃1

j , m̃
2
j}j∈[N]), using all first and second messages {m̃1

j , m̃
2
j}j∈N as follows.

Proceed in L iterations to evaluate the N garbled circuits {îCj}j∈[N] in parallel.
Before iteration ` ∈ [L] starts, the following invariant holds:
Invariant: After the first (`− 1) iterations, Pi has obtained for every j ∈ [N] and
every `′ < `:

– the inner MPC message m`′

j generated in the `′-th round by party Pj , and
– the associated functional decommitment d`′j of c`′j for the circuit G`′j (?, ?) =

Nextj(?, ?, m̄<`′).

We define w̄<` = {w`′j }j,`′<` = {(m`′

j , d
`′

j)}
`′<`

.
In the first round ` = 1, all these messages and functional decommitments are

empty. Thus, the invariant holds initially. With the above, Pi does the following
in iteration `: for every j ∈ [N]: (m`

j , d
`
j) = o`j = GiC.Eval(îCj , w̄<`).

After all L iterations, Pi obtains the set of all messages m̄, and computes
the output by invoking the output function of the inner MPC protocol: yi =
Outputi (xi, ri, m̄).
Unique-Transcript Distribution: We now define the unique-transcript dis-
tribution iD = {iDλ,id}λ∈N,id (for the garbled interactive circuit iCi) as follows:
id = (i, x̄, r̄, m̄) and iDλ,id is

(iCi, w̄, ρ̄ = {ρ`j}j,`) :

∀j ∈ [N], ∀` ∈ [L],
ρ`j

R← {0, 1}|ρ
`
j |; c`j = FC.Com(1λ, (xj , rj); ρ`j);

G`j(?, ?) = Nextj(?, ?, m̄<`);
d`j = FC.FOpen(c`j , G`j , (xj , rj), ρ`j);

w̄ = {w`j = (m`
j , d

`
j)}j,`; iCi defined in Fig. 3

.

The unique-transcript property follows from the semi-honest functional bind-
ing property of FC. See the full version [7] for details.
Security: We have the following theorem proven in the full version [7].

Theorem 5.3. If the inner MPC Π = (Next,Output) is correct and secure
against semi-honest adversaries, if the functional scheme FC is correct, semi-
honest functional binding, and simulatable, if the garbled interactive circuit scheme
GiC is correct and simulatable, then the MPC protocol defined above is correct
and secure against semi-honest adversaries.

6 Garbled Interactive Circuit from Witness Selector

In this section, we show how to construct GIC from another tool we call witness
selector, which can be seen as generalization of witness encryption to languages
defined by a non-deterministic oracle family O. Contrary to witness encryption,
each query to O may have multiple answers, as long as at most one can be found
efficiently.

k-Round MPC from k-Round OT via Garbled Interactive Circuits 27

We first define the notion of computationally unique-answer distribution for O
and the notion of witness selector for such a distribution. Then we show how
to construct a garbled interactive circuit scheme for (O, iD) from any witness
selector for a unique-answer distribution for O which is consistent with the
unique-transcript distribution iD.

6.1 Witness Selector
Definition 6.1 (Unique-Answer Distribution). LetO be a non-deterministic
oracle family. Let wD = {wDλ,id}λ∈N,id be an ensemble of efficiently samplable
distributions over tuples (q, w, aux). We say that wD is a (computationally)
unique-answer distribution for O if
Non-⊥ Answer: For any λ ∈ N, any index id ∈ {0, 1}poly(λ), and any (q, w, aux)

in the support of wDλ,id, Oλ(q, w) 6= ⊥.
Computationally Unique Answer: For any poly-size circuit family A =
{Aλ}λ∈N, for any sequence of indices {idλ}λ, there exists a negligible function
negl, such that for any λ ∈ N:

Pr
[
Oλ(q, w′) 6=⊥ and Oλ(q, w′) 6= Oλ(q, w) :

(q, w, aux) R← wDλ,idλ ; w′ R← Aλ(q, w, aux)
]
≤ negl(λ) .

It is a statistically unique-answer distribution if the second property holds for
any arbitrary-size circuit family A = {Aλ}λ.
Definition 6.2 (Witness Selector). LetO = {Oλ}λ∈N be a non-deterministic
oracle family, and wD = {wDλ,id}λ∈N,id a unique-answer distribution for O. A
witness selector scheme for (O,wD) is a tuple of two polynomial-time algorithms
WS = (WS.Enc,WS.Dec):
Encryption: ct R←WS.Enc(1λ, q,M) encrypts messages M = {M[i, b]}i∈[l],b∈{0,1}

for a query q, into a ciphertext ct, where each message has the same length
|M[i, b]| = poly(λ);

Decryption: M′ = WS.Dec(ct, w) decrypts a ciphertext ct into messages M′ =
{M′[i]}i∈[l] using a witness w;

satisfying the following properties:
Correctness: For any security parameter λ ∈ N, for any index id,

for any (q, w, aux) in the support of wDλ,id, for any messages M = {M[i, b]}i,b,
for a = O(q, w):

Pr
[
WS.Dec(WS.Enc(1λ, q,M), w) = {M[i, ai]}i∈[l]

]
= 1 ;

Semantic Security: The following two distributions are indistinguishable:{
(q, w, aux,WS.Enc(1λ, q,M)) : (q, w, aux) R← wDλ,id

}
λ,id,M , (q, w, aux,WS.Enc(1λ, q,M′)) :

(q, w, aux) R← wDλ,id;
a = Oλ(q, w);
{M′[i, b]}i,b = {M[i, ai]}i,b

λ,id,M

.

28 Fabrice Benhamouda and Huijia Lin

6.2 Garbled Interactive Circuit from Witness Selector

Let O = {Oλ}λ∈N be a poly-size non-deterministic oracle family. Let iD =
{iDλ,id}λ∈N,id be an ensemble of efficiently samplable distributions over tuples
(iC, w̄, aux), where iC is an L-round interactive circuit. We suppose that iD is a
unique-transcript distribution for O. To construct a garbled interactive circuit
scheme GiC = (GiC.Garble,GiC.Eval,GiC.Sim) for (O, iD), we rely on the following
tools:

– A witness selector WS = (WS.Enc,WS.Dec) for (O,wD) where wD =
{wDλ,id} is a unique-answer distribution for O, which is consistent with
the unique-transcript distribution iD (consistency is defined below).

– A garbled circuit scheme GC = (GC.Gen,GC.Garble,GC.Eval,GC.Sim) for the
class of all S-size circuits with a sufficiently large polynomial bound S.

The naive notion of consistence would be: iD is consistent with wD if each
query q`k and its associated witness w`k follow the same distribution as wD.
Unfortunately, this is not sufficient as the adversary may learn some auxil-
iary information. Instead, we require that for any ` and k, the distribution of
(iC, w̄, aux) R← iDλ,id can be simulated from (q, w, aux) R← wDλ,id′ (for some
index id′ function of id) in such a way that q`k and w`k match q and w. A formal
definition is provided in the full version [7].

The construction proceeds as follows:

Garbling: îC R← GiC.Garble(1λ, iC) garbles the interactive circuit iC = {iC`}`∈[L]

into îC as follows: For ` from L to 1,

1. Generate input labels key` R← GC.Gen(1λ).
2. Garble the circuit iC.AugNext` defined in Fig. 4:

̂iC.AugNext` R← GC.Garble(key`, iC.AugNext`).

And output îC = { ̂iC.AugNext`}`∈[L].
Evaluation: o`′ = GiC.Eval(îC, w̄<`′) evaluates the garbled interactive circuit

îC with the partial list of witnesses w̄<`′ as follows. For ` ∈ [`′], we de-
note by key′` the set of input labels that we actually use to evaluate

̂iC.AugNext` (i.e., it contains one label per input wire; key′1 and key′L+1 are
the empty strings). key′` is composed of two parts key′`[[st`]] and key′`[[ā`]] =
{key′`[[a`k]]}k corresponding to the input wires for st` and ā` respectively:
key′` = (key′`[[st`]], {key′`[[a`k]]}k). For ` from 1 to `′, the evaluator does the
following:

1. Evaluate the garbled circuit ̂iC.AugNext`:
(key′`+1[[st`]], q̄`, c̄t`, o`) = GC.Eval(̂iC.AugNext`, key′`).

2. If ` < `′, for each k ∈ [|c̄t`|], decrypt ct`k using the witness w`k:
key′`+1[[a`k]] = WS.Dec(ct`k, w`k).

And output o`′ (except if o` = ⊥ for some ` ≤ `′).

k-Round MPC from k-Round OT via Garbled Interactive Circuits 29

Simulation: ĩC R← GiC.Sim(1λ, T) simulates a garbled interactive circuit ĩC from
a transcript T = {q̄`, ā`, o`}`∈[L] as follows. As for evaluation, for ` ∈ [L], we
denote by key′` = (key′`[[st`]], {key′`[[a`k]]}k) the set of input labels that we
actually use as inputs to ̂iC.AugNext` (i.e., it contains one label per input
wire). For ` from L to 1, the simulator does the following:

1. Define key`+1 to be such that key`+1[i, b] = key′`+1[i] for all input wire i
and all bits b ∈ {0, 1}. key′L+1 and keyL+1 are empty.

2. Encrypt the labels generated for the round `+ 1 corresponding to the
answer ā`, using the witness selector scheme: for each k,
ct`k

R←WS.Enc(1λ, q̄`, key`+1[[a`k]]). (For ` = L, c̄t` and key`+1 are empty.)
3. Simulate the garbling of ̂iC.AugNext`, using its outputs key′`+1[[st`]] =

key`+1[st`] (for ` = L, this value is empty), q̄`+1, c̄t`, and o`:
̂iC.AugNext` R← GC.Sim(1λ, (key′`+1[[st`]], q̄`, c̄t`, o`)).

The Augmented Next Message Function iC.AugNext`

Constants: 1λ, `, iC`, and the keys key`+1
i? for the (`+ 1)-th garbled circuit.

Inputs: The previous state st`−1 and the answers ā`−1 (of the non-deterministic
oracle O to the queries q̄`−1).
Procedure:

1. Compute (st`, q̄`, o`) = iC`(st`−1, ā`−1). If o` = ⊥, abort and output
(⊥,⊥,⊥,⊥). By convention, st0 and ā0 are empty strings.

2. For every k, generate using a hardcoded random tape:

ct`k = WS.Enc(1λ, q`k, key`+1[[a`k]]) ,

where key`+1[[a`k]] is the tuple of input labels key`+1[i, b] for all b ∈ {0, 1}
and for the input wires i corresponding to the input a`k of iC.AugNext`+1.
Set c̄t` = {ct`k}k. By convention, q̄` is empty if ` = L.

3. Select the input labels for the next step, corresponding to the new state st`:
key`+1[st`] = {key`+1[i, st`i]}i. By convention, st` and key`+1[st`] are empty
if ` = L.

Output: (key`+1[st`], q̄`, c̄t`, o`).

Fig. 4: The augmented next message function iC.AugNext`

Security: We prove the following security theorem in the full version [7].

Theorem 6.3. If GC is correct and simulatable, if WS is correct and semantically
secure, if wD is unique-answer, and if iD and wD are consistent, then the garbled
interactive circuit scheme GiC defined above is correct and simulatable.

30 Fabrice Benhamouda and Huijia Lin

Acknowledgments. The authors thank Yuval Ishai, Antigoni Polychroniadou,
and Stefano Tessaro for helpful discussions.
This work was supported by NSF grants CNS-1528178, CNS-1514526, CNS-
1652849 (CAREER), a Hellman Fellowship, the Defense Advanced Research
Projects Agency (DARPA) and Army Research Office (ARO) under Contract
No. W911NF-15-C-0236, and a subcontract No. 2017-002 through Galois. The
views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense, the National Science Foundation, or the
U.S. Government.

References

1. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 468–499. Springer, Heidelberg (Aug 2017)

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (Apr 2012)

3. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional encryption.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032,
pp. 557–587. Springer, Heidelberg (Dec 2016)

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (Aug 2001)

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC. pp. 503–513. ACM Press (May 1990)

6. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In:
Brassard, G. (ed.) CRYPTO’89. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg
(Aug 1990)

7. Benhamouda, F., Lin, H.: k-round MPC from k-round OT via garbled interactive
circuits. Cryptology ePrint Archive, Report 2017/1125 (2017), https://eprint.
iacr.org/2017/1125

8. Biham, E., Boneh, D., Reingold, O.: Generalized Diffie-Hellman modulo a composite
is not weaker than factoring. Cryptology ePrint Archive, Report 1997/014 (1997),
http://eprint.iacr.org/1997/014

9. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and ex-
tensions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 16. pp. 1292–1303. ACM Press (Oct 2016)

10. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: Optimizing
rounds, communication, and computation. In: Coron, J., Nielsen, J.B. (eds.) EU-
ROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Heidelberg
(May 2017)

11. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. To appear, ITCS (2018)

12. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation
without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677,
pp. 645–677. Springer, Heidelberg (Nov 2017)

https://eprint.iacr.org/2017/1125
https://eprint.iacr.org/2017/1125
http://eprint.iacr.org/1997/014

k-Round MPC from k-Round OT via Garbled Interactive Circuits 31

13. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous ibe, leakage
resilience and circular security from new assumptions. Cryptology ePrint Archive,
Report 2017/967 (2017), https://eprint.iacr.org/2017/967

14. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 190–213. Springer, Heidelberg (Aug 2016)

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001)

16. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (Mar 2015)

17. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in
the plain model from standard assumptions. In: 51st FOCS. pp. 541–550. IEEE
Computer Society Press (Oct 2010)

18. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: 34th ACM STOC. pp. 494–503. ACM
Press (May 2002)

19. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: La-
conic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Heidelberg (Aug
2017)

20. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-malleable
zero knowledge and multi-party coin tossing in four rounds. In: Kalai, Y., Reyzin,
L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 711–742. Springer, Heidelberg
(Nov 2017)

21. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 630–656. Springer, Heidelberg (Aug 2015)

22. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (Mar 2015)

23. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
537–569. Springer, Heidelberg (Aug 2017)

24. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (Feb 2014)

25. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS. pp. 40–49. IEEE Computer Society Press (Oct 2013)

26. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp.
467–476. ACM Press (Jun 2013)

27. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complex-
ity of secure computation. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (May 2016)

28. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (Mar 2015)

29. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps.
In: 58th FOCS. pp. 588–599. IEEE Computer Society Press (2017)

https://eprint.iacr.org/2017/967

32 Fabrice Benhamouda and Huijia Lin

30. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps.
Cryptology ePrint Archive, Report 2017/1004 (2017), http://eprint.iacr.org/
2017/1004

31. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The rela-
tionship between public key encryption and oblivious transfer. In: 41st FOCS. pp.
325–335. IEEE Computer Society Press (Nov 2000)

32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press (May 1987)

33. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (Aug
2013)

34. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures
from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC.
pp. 469–477. ACM Press (Jun 2015)

35. Gordon, S.D., Liu, F.H., Shi, E.: Constant-round MPC with fairness and guarantee
of output delivery. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (Aug 2015)

36. Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious
transfer. Journal of Cryptology 25(1), 158–193 (Jan 2012)

37. Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions.
In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP
2016. LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl (Jul 2016)

38. McCurley, K.S.: A key distribution system equivalent to factoring. Journal of
Cryptology 1(2), 95–105 (1988)

39. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 735–763. Springer, Heidelberg (May 2016)

40. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA. pp. 448–457. ACM-SIAM (Jan 2001)

41. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidelberg
(Oct / Nov 2016)

42. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (Aug 2008)

43. Shmuely, Z.: Composite Diffie-Hellman Public-Key Generating Systems are Hard to
Break. Tech. rep., Technion (1985), http://www.cs.technion.ac.il/users/wwwb/
cgi-bin/tr-info.cgi/1985/CS/CS0356

44. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd FOCS.
pp. 160–164. IEEE Computer Society Press (Nov 1982)

45. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS. pp. 162–167. IEEE Computer Society Press (Oct 1986)

46. Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-
noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 214–243. Springer, Heidelberg (Aug 2016)

http://eprint.iacr.org/2017/1004
http://eprint.iacr.org/2017/1004
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/1985/CS/CS0356
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/1985/CS/CS0356

	k-Round Multiparty Computation from k-Round Oblivious Transfer via Garbled Interactive Circuits
	Introduction
	Our Contributions
	Organization
	Concurrent Work

	Overview
	Round-Collapsing via Obfuscation
	Garbled Interactive Circuits
	Constructing GIC from Witness Selector
	Round-Collapsing via Garbled Interactive Circuits
	Functional Commitment with Witness Selector from OT
	Semi-Malicious and Malicious Security in the CRS model
	Malicious Security in the Plain Model

	Preliminaries
	Definition of Garbled Interactive Circuit Schemes
	Interactive Circuits
	Garbling Interactive Circuits

	2-Round Semi-Honest MPC Protocols
	New Tool: Functional Commitment
	Construction of 2-Round Semi-Honest MPC

	Garbled Interactive Circuit from Witness Selector
	Witness Selector
	Garbled Interactive Circuit from Witness Selector

