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Abstract. The random oracle paradigm allows us to analyze the secu-
rity of protocols and construction in an idealized model, where all parties
have access to a truly random function. This is one of the most successful
and well-studied models in cryptography. However, being such a strong
idealized model, it is known to be susceptible to various weaknesses when
implemented naively in “real-life”, as shown by Canetti, Goldreich and
Halevi (J. ACM 2004).

As a counter-measure, one could try to identify and implement only
one or few of the properties a random oracle possesses that are needed
for a specific setting. Such a systematic study was initiated by Canetti
(CRYPTO 1997), who showed how to implement the property that the
output of the function does not reveal anything regarding the input by
constructing a point function obfucator. This property turned out to
suffice in many follow-up works and applications.

In this work, we tackle another natural property of random oracles and
implement it in the standard model. The property we focus on is non-
malleability, where it is guaranteed that the output on an input cannot
be used to generate the output on any related point. We construct a
point-obfuscator that is both point-hiding (à la Canetti) and is non-
malleable. The cost of our construction is a single exponentiation on top
of Canetti’s construction and could be used for any application where
point obfuscators are used and obtain improved security guarantees. The
security of our construction relies on variants of the DDH and power-
DDH assumptions.

On the technical side, we introduce a new technique for proving security
of a construction based on a DDH-like assumption. We call this technique
“double-exponentiation” and believe it will be useful in the future.
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1 Introduction

The Random Oracle model [6] is one of the most well studied models in the
cryptographic literature. In this model, everyone has access to a single random
function. It is usually possible to show clean and simple constructions that are
information-theoretically secure in this idealized model. Also, in many cases it
allows to prove unconditional lower bounds.

One major question is when (and under what assumptions) can we replace the
Random Oracle with a “real life” object. It is known that such a transformation
is impossible in the general case, but the counter examples are usually quite
contrived [17,26,13]. This leaves the possibility that for specific applications of a
Random Oracle such a transformation could possibly exist. One of the obstacles
in answering the aforementioned question is that it seems hard to formalize and
list all the properties such a generic transformation should preserve. In practice,
this difficulty is circumvented by replacing the Random Oracle with an ad-hoc
“cryptogrpahic hash function” (e.g., MD5, SHA-1, SHA-256) which results with
protocols and constructions that have no provable security guarantees, and often
tend to be broken [42,41,39].

Motivated by the above, Canetti [15] initiated the systematic study of iden-
tifying useful properties of a Random Oracle and then realizing them in the
standard model. In his work, he focused on one property called “point obfus-
cation” (or “oracle hashing”). This property ensures that when the Random
Oracle is applied on an input, the output value is completely uncorrelated to the
input, and at the same time, it is possible to verify whether a given output was
generated from a given input. Canetti formally defined this notion and gave a
construction of such a primitive in the standard model based on a variant of the
decisional Diffie-Hellman assumption (DDH). Since then, other instantiations of
this primitive were suggested. Wee [43] gave a construction whose security is
based on a strong notion of one-way permutations, Goldwasser et al. [27] gave a
construction based on the Learning With Errors assumption, and more recently
Bellare and Stepanovs [7] proposed a framework for constructing point obfusca-
tors. The latter result gives a generic construction of point obfuscators based on
either (1) indistinguishability obfuscation [3,24] and any one-way function, (2)
deterministic public-key encryption [4], or (3) UCEs [5].

While hiding the point is a natural and useful goal, there are many setting
where this is not enough to replace a Random Oracle. One other natural property
we wish to realize in “real life” is that of non-malleability : given the value of a
Random Oracle on a random point x, it is infeasible to get the value of the
Random Oracle at any “related” point (e.g., the point x + 1). The work of
Canetti and Varia [19] identified this property and the goal of realizing it. Their
work provided definitions (of non-malleable obfuscation for general circuits, and
not only for point functions) and constructions of non-malleable (multi) point
obfuscators in the random oracle model.

In this work, we focus on construction of non-malleable point obfuscators in
the plain model. Observe that many of the known constructions of point obfus-
cators are malleable. For example, let us recall the construction of Canetti [15]



which involves a group G with a generator g ∈ G. For an input point x and
randomness r (interpreted as a random group element) the obfuscation is:

O(x; r) = (r, rx).

Indeed, the obfuscation of x + 1 can be computed by multiplying rx by r and
outputting the pair (r, rx+1). In other words, the obfuscation of a point is mal-
leable. The point obfuscators of Wee [43] and of Goldwasser et al. [27] admit
similar attacks (i.e., they are malleable).3

Thus, we ask whether we can remedy this situation and provide a con-
struction of a secure point obfuscator in the plain model that is provably non-
malleable under simple and concrete assumptions. We view this as a necessary
and vital step towards understanding the possibility for realizing a Random
Oracle in “real life”.

1.1 Our Results

We provide a construction of a secure point obfuscator that is non-malleable for
a wide class of mauling functions. Our notion of non-malleability is parametrized
by a distribution X over the input domain X and by a class of possible mauling
attacks F = {f : X → X}. Roughly speaking, our notion guarantees that for ev-
ery function f ∈ F , any polynomial-time adversary, when given the obfuscation
of a point x← X , cannot generate the obfuscation of the point f(x).4

We give a construction of a (public-coin5) point obfuscator that is non-
malleable for any well-spread distribution X (i.e., a distribution that has super-
logarithmic min-entropy) and the class of mauling functions F which can be
described by univariate polynomials of bounded polynomial degree (in the se-
curity parameter). Our construction involves a group G with a generator g ∈ G.
For an input point x and randomness r (interpreted as a random group element)
the obfuscation is:

O(x; r) = (r, rg
h(x)

),

where h(x) = x4 + x3 + x2 + x. We prove security and non-malleability of the
above point obfuscator under variants of the DDH and power-DDH assumptions

3 The work of [7] is an exception since it gives constructions based on generic primitives
so we need non-malleability of the underlying building block. The required notion
of non-malleability is usually very strong. Consider, for example, their construction
from DPKE, where the point function obfuscation includes a ciphertext and a public-
key (of some encryption scheme). To get non-malleability for the point obfuscator
we need non-malleability for the DPKE for an adversary that can maul not only the
ciphertext but also the public-key.

4 We also require that the obfuscation that the adversary outputs is verifiable, that is,
it looks like an obfuscation of the value f(x) (i.e., it comes from the “same family”
of circuits). This prevents trivial attacks that treat the input circuit as a black-box.

5 An obfuscator is public-coin if the random bits used for the obfuscation are given as
part of the output of the obfuscator.



(see Section 2.2). We also present two ways to support more general mauling
functions F by strengthening the underlying security assumption (yet the con-
struction remains the same). First, we show how to support a larger class of
mauling function by assuming (sub-)exponential security of the underlying as-
sumption. Second, we show that our construction is secure against any mauling
function f for which one cannot distinguish the triple (g, gx, gh(f(x))) from a
triple (g, gr1 , gr2), where r1, r2 are random exponents. We do not have a simple
characterization of the functions f for which this assumption holds.

In terms of efficiency, our construction is quite efficient: it involves only two
group exponentiation (Canetti’s construction requires a single exponentiation),
does not rely on any setup assumptions, and does not rely on expensive ma-
chinery such as zero-knowledge proofs, which are usually employed to achieve
non-malleability. Moreover, it satisfies the same privacy guarantees as of Can-
neti’s obfuscator. As such, our point obfuscator can be used in any application
where point obfuscators are used. These include encryption schemes [15], storing
passwords [40,19], reusable fuzzy extractors [16], round-efficient zero-knowledge
proofs and arguments [10], and more.

Applications to non-interactive non-malleable commitments. It is possible to
view our obfuscator as a non-interactive non-malleable commitment that is se-
cure when committing to strings that come from a distribution with super-
logarithmic entropy. To commit to a string x, compute the obfuscation of x and
that would be the commitment. The opening is x itself (and thus for security
it has to have entropy). The resulting commitment scheme is computationally
hiding by the security of the point obfuscator, and also non-malleable against a
large class of mauling functions.

Previously, constructions of non-interactive non-malleable commitments (in
the plain model, without any setup assumptions) required an ad-hoc and non-
standard primitive called “adaptive injective one-way functions” that has built-
in some form of non-malleability [34]. More recent works provide constructions
that are secure against uniform adversaries [33] or ensure limited forms of non-
malleability (“with respect to opening”) [31]. These constructions, however, al-
low to commit on worst-case inputs and handle arbitrary mauling functions.

1.2 Related Work

Non-malleable cryptography. Non-malleability was introduced as a measure to
augment and strengthen cryptographic primitives (such as encryption schemes
or commitment schemes) in such a way that it does not only guarantee privacy,
but also that it is hard to manipulate a given ciphertext (or commitment) of one
value into a ciphertext of another.

Non malleability was first defined in the seminal work of Dolev, Dwork, and
Naor [22] where they presented a non-malleable public-key encryption scheme, a
non-malleable string commitment scheme, a non-malleable zero-knowledge pro-
tocol. Since then, there has been a long line of works on non-malleability. See
[37,12,29,30,36,32,35,33,33,31] to name just a few.



A particular type of non-malleable protocols (or primitives) that may a-priori
be related to non-malleable point obfuscators are non-interactive commitments
and encryption schemes. These were the focus of multiple works (see, for ex-
ample, [22,38,21,23] and some of the references given above). However, these
notions do not imply point obfuscators as they do not support public verifi-
cation on a given input (without revealing the randomness which completely
breaks security).

In the context of obfuscation, the only work we are aware of is that of Canetti
and Varia [19] who gave several incomparable definitions for non-malleable ob-
fuscation. They also gave a construction of a (multi-bit) non-malleable point
obfuscator (under each definition), however, their construction is in the Random
Oracle model.

Obfuscation with high min-entropy. Canetti, Micciancio and Reingold [18] gave
a construction of a point obfuscator that satisfies a relaxed notion of security
where the input is guaranteed to come from a source with high min-entropy.
Their underlying assumption is any collision resistant hash function. There is a
significant (qualitative) difference between this notion and the original notion of
Canetti [15] that we consider in this work. We refer to Wee [43, Section 1.3] for
an elaborate discussion.

Boldyreva et al. [11] showed how to make the point obfuscator of [18] non-
malleable using non-interactive zero-knowledge proofs (assuming a common ref-
erence string). Following the work of Boldyreva et al., Baecher et al. [2] presented
a game-based definition of non-malleability which is very similar to ours (see also
[20]). However, they did not provide new constructions in the plain model.

1.3 Our Techniques

Our starting point is Canetti’s point function construction [15], who presented a
construction under a variant of the DDH assumption (and no random oracles).
Recall that the DDH assumption involves a group ensemble G = {Gλ}λ∈N with a
generator g and it asserts that (gx, gy, gxy) is computationally indistinguishable
from a sequence of random group elements, where x and y are chosen uniformly
at random. Canetti’s variant is that the foregoing indistinguishability holds even
if x has high enough min-entropy (yet y is completely random). For an input
point x and using randomness r, viewed as a random group element of Gλ,
Canetti’s construction is:

O(x; r) = r, rx.

As we mentioned, it is easy to modify rx to get rx+1, giving an obfuscation of
the point x+ 1. Let us first focus on the goal of modifying the construction such
that it is non-malleable against this function: f(x) = x + 1. Towards this end,
we change the construction to be:

O(x; r) = r, rx
2

.



The claim is that under a suitable variant of the power-DDH assumptions this
is a non-malleable point obfuscator against the function f . Roughly speaking,
we assume that (gx, gx

2

, gx
3

, . . .) is indistinguishable from a sequence of ran-
dom group elements, where x comes from a distribution with high enough min-
entropy. Assume first that the adversary outputs a point obfuscation of x + 1
under the same randomness r as she received. That is, on input r, w, the output
is r, w′ for an element w′ ∈ G. Later, we show how to handle adversaries that
output an obfuscation of x+ 1 under new randomness.

The point obfuscation of x + 1 under this construction (with the same ran-

domness r) is (r, w), where w = rx
2+2x+1. Suppose that there is an adversary A

that given r, rx
2

can compute w, then we show how to break the security of our
assumption. We are given a challenge (g, gz1 , gz2), where either zi = xi or zi = ri
and each ri is chosen at random. Then, we can run the adversary on the input
gs, gsz2 , for a random s to get w. We compute w′ = gs(z2+2z1+1) and compare
it to w. If w = w′ we output 1, and otherwise we output a random bit. In the
case that zi = xi, the adversary gets gs, gsx

2

which is exactly the distribution of
a point obfuscation of x and thus will output w = gs(x

2+2x+1) = w′ with some
non-negligible probability. Otherwise, the adversary gets gsr2 for a random r2
and the probability that she outputs w′ = gs(r2+2r1+1) is negligible as she has
no information regarding r2 (this is true even for an unbounded adversaries).
Overall, we have a non-negligible advantage in distinguishing the two cases.

While the above construction is non-malleable against the function f(x) =

x+1, it is malleable for the function f(x) = 2x. Indeed, given rx
2

one can simply

compute (rx
2

)4 = r4x
2

= r(2x)
2

which is a valid obfuscation of the point 2x. Our
second observation is that we can modify the construction to resist this attack
by defining:

O(x; r) = r, rx
2+x.

The proof of non-malleability is similar to the proof above; we run the adversary
A on gs, gs(z2+z1) to get w, and compute w′ = gs(4z2+2z1). If zi = xi, then the
adversary sees exactly the distribution of a point obfuscation of x and thus will
output w = gs(4z2+2z1) = w′ with some non-negligible probability. Otherwise,
the adversary gets gs(r2+r1) for random ri’s. We bound the probability that A
outputs w′ = gr(4r2+2r1). This is again an information theoretic argument where
we assume that the adversary gets r2 + r1 and needs to compute 4r2 + 2r1. The
argument follows since the adversary has only information regarding the sum
r2 + r1 which leaves the random variable corresponding to 4r2 + 2r1 with high
min-entropy (given the adversary’s view), and thus the probability of outputting
w = w′ is negligible.

One important thing to notice is that the proof relied on the fact that the
adversary only had the sum r1 +r2 which is a linear combination of (r1, r2) with
the coefficients (1, 1) but the final goal was to output a different combination
with the coefficients (4, 2), which are linearly independent of (1, 1). That is, the
key observation is that for h(x) = x2 + x the polynomial h(f(x)) for f(x) = 2x
has (non-free) coefficients which are not all the same. Generalizing this argument,



we can show that the construction is non-malleable against any linear function
f(x) = ax+ b for any constants a, b such that the function h(f(x)) written as a
polynomial over x has at least 2 different (non-free) coefficients. For non-linear
functions, a similar proof works but the running time of the security reduction
(that is, the loss in the security of our scheme) will be proportional to the degree
of f(x).

Given the above observation, we can easily check if our construction is non-
malleable for a function f by computing the polynomial h(f(x)). It turns our
that the above construction is actually malleable for a simple function such as
f(x) = 3x + 1. Indeed, h(f(x)) = (3x + 1)2 + (3x + 1) = 9x2 + 9x + 2 has
the same two non-free coefficients. In order to eliminate more functions f , we
need to add more constraints to the set of equations which translates to taking
a higher degree of polynomial h(x). That is, we define h(x) = x3 + x2 + x, and
construct the obfuscator:

O(x; r) = r, rx
3+x2+x.

For a function f to be malleable under this construction, it must hold that the
polynomial h(f(x)) has all three non-free coefficients equal. However, there is still
single function that satisfies this condition (the function is f(x) = −x− 2 · 3−1,
where 3−1 is the inverse of 3 in the relevant group). As a final step, we modify
the construction to be of one degree higher and this does eliminate all possible
functions f . Thus, we define the construction:

O(x; r) = r, rx
4+x3+x2+x.

The double exponentiation. In our exposition above, we assumed that the ad-
versary “uses the same randomness she received”. That is, on input r, w she
mauls the point and outputs r, w′. Suppose now that the adversary is allowed
to output r′, w′, where r′ might be arbitrary. Recall that the issue is that we
cannot simulate the power of w′ from the challenge under the randomness r′ to
check consistency (since we do not know the discrete log of r′). Let us elaborate
on this in the simple case where the obfuscation is r, rx (and not the degree 4
polynomial in the exponent; this is just for simplicity). When the malleability
adversary gets r, rx and returns r, w′, it is easy to check that w′ = rf(x) by
recomputing this value since we know the discrete log of r. However, when it
return r′, w′, it is hard to recompute r′f(x) since we do not know the discrete log
of r (and only get the value x in the exponent from the challenge).

In other words, we need to be able (in the security proof) to compute the
obfuscation of some input that depends on the exponents from the challenge
under randomness that comes from the adversary’s mauled obfuscation. If we
knew either the discrete log of the challenge or the discrete log of the randomness
used by the adversary we would be done.

In the description above we actually used this property. Since we assumed
that the adversary outputs the same randomness r (that we chose and know the
discrete log of), we could use r = gs to compute the obfuscation of the challenge



we received. However, if the adversary outputs randomness r′, then not only we
no longer know the discrete log of r′ (and this is hard to compute), but we also
do not have the discrete log of the challenge.

Thus, we need to modify our construction such that we can compute the ob-
fuscation of x given only gx and while given the public coins r explicitly (without
given their discrete log). Towards this end, we introduce a new technique that
we call “double exponentiation”. Consider any mapping of the group elements
Gλ → Z∗q where q is the order of Gλ (e.g., their binary representation as strings).
Then, we define the final version of our construction:

O(x; r) = r, rg
x4+x3+x2+x

.

One can observe that it is possible to compute the obfuscation of x given only
gx

4+x3+x2+x and given r by a single exponentiation. In addition, the construc-
tion is still efficient, consists of just two group elements, and involves only two
exponentiations.

A final remark about security. Proving that the resulting construction is still
a point obfuscator is not immediate a-priori. Our proof works by a reduction
to the security of Canetti’s construction via an intermediate notion of security
called virtual gray-box obfuscation [8]. We refer to Section 4 for more details.

2 Preliminaries

For a distribution X we denote by x ← X the process of sampling a value x
from the distribution X. Similarly, for a set X we denote by x← X the process
of sampling a value x from the uniform distribution over X . For a randomized
function f and an input x ∈ X , we denote by y ← f(x) the process of sampling
a value y from the distribution f(x). For an integer n ∈ N we denote by [n] the
set {1, . . . , n}.

Throughout the paper, we denote by λ the security parameter. A function
negl : N → R+ is negligible if for every constant c > 0 there exists an integer
Nc such that negl(λ) < λ−c for all λ > Nc. Two sequences of random variables
X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for
any probabilistic polynomial-time algorithm A there exists a negligible func-
tion negl(·) such that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤ negl(λ) for all

sufficiently large λ ∈ N.

2.1 Point Obfuscation

For an input x ∈ {0, 1}n, the point function Ix : {0, 1}n → {0, 1} outputs 1 on
input x and 0 everywhere else. A point obfuscator is a compiler that gets a point
x as input and outputs a circuit that has the same functionality as Ix but where
x is (supposedly) computationally hidden. Let us recall the definition of security
of Canetti [15] (called there oracle simulation).



Definition 1 (Functional equivalence). We say that two circuits C and C ′

are functionally equivalent and denote it by C ≡ C ′ if they compute the same
function (i.e., ∀x : C(x) = C ′(x)).

Definition 2 (Point obfuscation). A point obfuscator O for a domain X =
{Xλ}λ∈N of inputs is a probabilistic polynomial-time algorithm that gets as input
a point x ∈ Xλ, and outputs a circuit C such that

1. Completeness: For all λ ∈ N and all x ∈ Xλ, it holds that

Pr[O(x) ≡ Ix] = 1,

where the probabilities are over the internal randomness of O.
2. Soundness: For every probabilistic polynomial-time algorithm A, and any

polynomial function p(·), there exists a probabilistic polynomial-time simu-
lator S, such that for every x ∈ Xλ, any predicate P : Xλ → {0, 1}, and all
large enough λ ∈ N,∣∣Pr[A(O(x)) = P (x)]− Pr[SIx(1λ) = P (x)]

∣∣ ≤ 1

p(λ)
,

where the probabilities are over the internal randomness of A and O, and S,
respectively.

The obfuscation is called public coin if it publishes its internal coin tosses as
part of its output.

Indistinguishability-based secrity. Another way to formalize the security of a
point obfuscator is via an indistinguishability-based security definition (rather
than simulation-based). Canetti [15] suggested such a definition (termed distri-
butional indistinguishability there): the input comes from a distribution Xλ over
the input space Xλ and the guarantee is that for any adversary A that outputs a
single bit, the following two distributions are computationally indistinguishable:

(x,A(O(x; r))) ≈c (x,A(O(y; r))), (1)

where r is the randomness (chosen uniformly) for the point obfuscator and x
and y are chosen independently from Xλ.

One of Canetti’s results [15, Theorem 4] was that the indisinguishability-
based definition is equivalent to the simulation-based definition given in ?? if
the indisinguishability-based security holds with respect to all distributions that
have super-logarithmic min-entropy (over the message space). Such a distribu-
tion is called a well-spread distribution:

Definition 3 (Well-spread distribution). An ensemble of distributions X =
{Xλ}λ∈N, where Xλ is over {0, 1}λ, is well-spread if

1. it is efficiently and uniformly samplable – there is a probabilistic polynomial-
time algorithm that given 1λ as input, outputs a sample according to Xλ.

2. for all large enough λ ∈ N, it has super-logarithmic min-entropy. Namely,

H∞(Xλ) = − min
x∈{0,1}λ

log2 Pr[X = x] ≥ ω(log λ).



Canetti’s construction. In [15], Canetti provided a construction that satisfies
Definition 2. In his construction, the domain of inputs Xλ is Zp for prime p ≈ 2λ.
Let G = {Gλ}λ∈N be a group ensemble with uniform and efficient representa-
tion and operations, where each Gλ is a group of prime order p ∈ (2λ, 2λ+1).
The public coin point obfuscator O for points in the domain Zp is defined as
follows: O(Ix) samples a random generator r ← G∗λ and outputs the pair (r, rx).
Evaluation of the obfuscation at point z is done by checking whether rx = rz.

Canetti proved that this construction satisfies Equation 1 for any well-spread
distribution under the strong variant of the DDH assumption, that we review
below (see Assumption 3). Thereby, the result is that under the same assumption
his construction satisfies Definition 2, as well.

2.2 Hardness Assumptions

The DDH and Power-DDH assumptions. The DDH assumption says that in a
suitable group, the triple of elements (gx, gy, gxy) is pseudorandom for random x

and y. The power-DDH assumption says that the power sequence (g, gx, gx
2

, . . . ,

gx
t

) is pseudorandom, for a random x and a polynomially bounded t. While the
power-DDH assumption is less common in the literature, there are many works
that explicitly rely on it (see, for example, [28,25,14,1]). To the best of our
knowledge, the power-DDH assumption is incomparable to the DDH assumption.

Throughout this section, let G = {Gλ}λ∈N be a group ensemble with uniform
and efficient representation and operations, where each Gλ is a group of prime
order p ∈ (2λ−1, 2λ).

Assumption 1 (DDH) The DDH assumption asserts that for the group Gλ
with associated generator g, the ensembles (gx, gy, gxy) and (gx, gy, gz) are com-
putationally indistinguishable, where x, y, z ← Z∗p.

Assumption 2 (Power-DDH) The power-DDH assumption asserts that for
the group Gλ with associated generator g, for every polynomially bounded func-
tion t(·), the ensembles (g, gx, gx

2

. . . , gx
t

) and (g, gr1 , gr2 . . . , grt) are computa-
tionally indistinguishable, where x, r1, . . . , rt ← Z∗p.

We need an even stronger variant of both assumptions. The strong variant
that we need, first proposed by Canetti [15], roughly, says that DDH is hard
not only if x, y and z are chosen uniformly at random, but even if x is chosen
from a distribution with enough min-entropy (i.e., a well-spread distribution;
see Definition 3). Analogously, we define a strong variant of the power-DDH
assumption where x is chosen from such a distribution rather than from the
uniform one.

Assumption 3 (Strong DDH and power-DDH) The strong variant of the
DDH and power-DDH assumptions is when the two distributions are computa-
tionally indistinguishable even if x is chosen uniformly from a well-spread dis-
tribution Xλ (rather than from Z∗p).



3 Non-Malleable Point Obfuscation

We define non-malleability of point function obfuscators. Such obfuscators not
only hide the obfuscated point, but they also (informally) ensure that an obfus-
cation of a point x cannot be transformed into an obfuscation of a related (yet
different) point.

There are several ways to formalize this notion of security. We focus on a
notion of security where the objective of the adversary, given an obfuscation of
x, is to come up with a circuit (of prescribed structure) that is a point function
on a related point (a similar definition is given in [2]). We discuss the relation
to the notions of Canetti and Varia [19] below.

Definition 4 (Verifier). A PPT algorithm V for a point obfuscator O for the
ensemble of domains {Xλ}λ∈N domain is called a verifier if for all λ ∈ N and all
x ∈ Xλ, it holds that Pr[V(O(x)) = 1] = 1, where the probability is taken over
the randomness of V and O.

Notice that there is no guarantee as to what V is suppose to output when its
input is not a valid obfuscation. In particular, a verifier that always outputs 1 is
a legal verifier. In many cases, including the obfuscator of Canetti [15] and our
own, one can define a meaningful verifier.

Definition 5 (Non-malleable point function). Let O be a point obfusca-
tor for an ensemble of domains {Xλ}λ∈N with an associated verifier V. Let
{Fλ}λ∈N = {f : Xλ → Xλ}λ∈N be an ensemble of families of functions, and
let {Xλ}λ∈N be an ensemble of distributions over X.

The point obfuscator O is a non-malleable obfuscator for F and X if for any
polynomial-time adversary A, there exists a negligible function negl(·), such that
for any λ ∈ N it holds that:

Pr

[
V(C) = 1, f ∈ Fλ, and If(x) ≡ C

∣∣∣∣∣ x← Xλ(C, f)← A(O(x))

]
≤ negl(λ).

That is, the adversary A, given an obfuscation of a point x sampled from Xλ,
cannot output a function f ∈ Fλ and a valid-looking obfuscation of the point
f(x), except with negligible probability.

The verifier V. We require that an attacker outputs an obfuscation with a pre-
scribed structure so that it passes the verifier V. Without such a requirement,
there is a trivial attack for the adversary: use the given circuit Ĉw to create a
new circuit that gets x, computes f−1(x) and then applies Ĉw on this value. The
result is a circuit that accepts the point f(w).

In general, it might be hard to come up with a verifier V that tests whether
a given circuit is legal, but here we are interested in the case where this can
be done efficiently. In our case, it will be very easy to define V since a “valid-
looking” obfuscation will consist of all pairs of group elements (in some given
group).



Adaptivity of f . We stress that our definition is adaptive with respect to the
family Fλ. That is, the adversary first gets to see the obfuscation O(x) of the
point x and then may chose the function it wishes to maul to. This definition
is stronger than a static version in which the function f is fixed and known in
advance (before the adversary sees the challenge).

3.1 Relation to Canetti-Varia

The work of Canetti and Varia [19] presented a systematic study of non-malleable
obfuscation both specifically for point functions and also for general function-
alities. They gave two definitions for non-malleability, called functional non-
malleability and verifiable non-malleability.

The verifiable non-malleability definition is more related to ours since there
they also require that there is a verifier V that gets an alleged obfucated circuit
and checks whether it is a legitimate output of the obfuscator. Recall that the
obfuscator of Canetti (as well as ours) has this property: An obfuscation can
be verified by simply checking whether the obfuscation consists of two group
elements in the desired group.

The verifiable non-malleability notion of Canetti and Varia asserts that,
roughly, whatever mauling attack one can apply on an obfuscation, there ex-
ists a simulator that has only oracle access to the input circuit and outputs a
“similarly mauled” obfuscation. To prevent trivial attacks (that treat the input
circuit as a black-box), they allow the simulator to output a circuit that has ora-
cle gates to its own oracle (namely, to the input circuit). The verifiability ensures
that the output of the adversary (and the simulator) have a “legal” structure.
The precise definition is subtle and it captures a wide range of mauling attacks in
a meaningful way. We refer to [19] for their elaborate discussions on the matter.
We provide their formal definition, restricted to point functions next.

Definition 6 (Verifiable non-malleable point obfuscation [19]). Let O
be a point obfuscator for a domain X = {Xλ}λ∈N with an associated verifier
V. For every PPT adversary A and every polynomial p(·), there exists a PPT
simulator S such that for all sufficiently large λ ∈ N, for any input x ∈ Xλ and
any polynomial-time computable relation E : Xλ×Xλ → {0, 1} (that may depend
on x), it holds that

Pr [C 6= O(x) ∧ V(C) = 1 ∧ (∃y ∈ Xλ : Iy ≡ C ∧ E(x, y) = 1) | C ← A(O(x))]−

Pr
[
V(C) = 1 ∧

(
∃y ∈ Xλ : Iy ≡ CIx ∧ E(x, y) = 1

)
| C ← SIx(1λ)

]
≤ 1

p(λ)
.

We observe that our definition is related to the above definition albeit with
the following modifications. First, the input for our obfuscator is sampled from a
well-spread distribution, rather than being worst-case. Second, the non-malleabli-
lity in our definition is parametrized with a family of functions, whereas the above
definition requires non-malleability for all possible relations. The modified defi-
nition is given next.



Definition 7 (). Let O be a point obfuscator for a domain X = {Xλ}λ∈N with
an associated verifier V. Let {Fλ}λ∈N = {f : Xλ → Xλ}λ∈N be an ensemble
of families of functions, and let {Xλ}λ∈N be an ensemble of distributions over
X. For every PPT adversary A and every polynomial p(·), there exists a PPT
simulator S such that for all sufficiently large λ ∈ N, for any function f ∈ Fλ,
it holds that

Pr
x←Xλ

[
C 6= O(x), V(C) = 1 and If(x) ≡ C | C ← A(O(x))

]
−

Pr
x←Xλ

[
V(C) = 1 and If(x) ≡ CIx | C ← SIx(1λ)

]
≤ 1

p(λ)
.

Definition 7 is a special case of Definition 6 since it has restrictions on the
input to the obfuscator and the set of relations it supports. In the next claim,
we show that our notion of non-malleability from Definition 5 implies the notion
from Definition 7.

Claim. A point obfuscator satisfying Definition 5 with respect to an ensemble
of families of functions F and an ensemble of distributions X also satisfies Defi-
nition 7 with respect to F and X .

Proof. Let O be an obfuscator that satisfies Definition 5 with respect to the
function in F and the distribution X . Thus, for any f ∈ F , there is no PPT
adversary that can generate a valid-looking circuit C such that If(x) ≡ C for
x← X , except with negligible probability. Namely,

Pr
x←X

[
C 6= O(x), V(C) = 1 and If(x) ≡ C | C ← A(O(x))

]
≤ negl(λ).

Hence, a simulator that does nothing (say, outputs ⊥) will satisfy security re-
quirement of Definition 7.

A discussion. Our definition is thus, morally, equivalent to the strong definition
of [19], albeit with the assumption that the input comes from a well-spread
distribution and the mauling is restricted to functions rather than relations.
Getting a construction in the plain model that resolves these two issues is left
as an open problem.

Lastly, observe that in the above proof, the simulator is in fact independent of
the adversary A and independent of the distinguishability gap (the polynomial
p(·)). Thus, we actually get one simulator for all adversaries and the compu-
tational distance between the output of the adversary and the output of the
simulator is negligible.

4 Our Obfuscator

Let λ ∈ N be the security parameter and let Xλ = Z2λ be the domain. Let
Fpoly = {f : Xλ → Xλ}λ∈N be the ensemble of classes of all functions that can



be computed by polynomials of degree poly(λ), except the constant functions
and the identity function.

Let G = {Gλ}λ∈N be a group ensemble with uniform and efficient representa-
tion and operations, where each Gλ is a group of prime order q ∈ (2λ−1, 2λ). We
assume that for every λ ∈ N there is a canonical and efficient mapping between
the elements of Gλ and the domain Xλ. Let g be the generator of the group G5λ.
Our obfuscator gets as input an element x ∈ Xλ and randomness r ∈ G5λ and
computes:

O(x; r) =
(
r, rg

x4+x3+x2+x
)
.

The verifier V for a valid-looking obfuscation is the natural one: it checks
whether the obfuscation consists of merely two group elements in G5λ. In the
next two theorems we show that our obfuscator is both secure and non-malleable.
The first part is based on the strong DDH assumption (Assumptions 1 and 3)
and the second is based on (Assumptions 2 and 3). Thus, overall, our obfuscator
is both secure and non-malleable under the assumption that there is a group
where the strong DDH and strong power-DDH assumptions hold.

Theorem 4. Under the strong DDH assumption (Assumptions 1 and 3), the
obfuscator O above is a point obfuscator according to Definition 2.

Theorem 5. Let Xλ be any well-spread distribution over Xλ. Under the strong
power-DDH assumption (Assumptions 2 and 3), the obfuscator O above is non-
malleable according to Definition 5 for the family of functions Fpoly and the
distribution Xλ.

The proofs of these theorems appear in the following two subsections.

4.1 Proof of Theorem 4

For completeness, we first notice that for any x ∈ Xλ it holds that x4 + x3 +
x2 +x ≤ 25λ and thus for any distinct x, y ∈ Xλ it holds that y4 + y3 + y2 + y 6=
x4+x3+x2+x. Therefore, we get that for every x ∈ Xλ it holds that O(x) ≡ Ix,
as required.

To prove soundness, we reduce to the security of our construction to the
security of the r, rx construction of Canetti [15]. We prove the following claim
general claim regarding point function obfuscators.

Claim. Let f : Xλ → X ′λ be an injective polynomial-time computable function,
and let O be a secure point obfuscator. Then, O′(x) = O(f(x)) is also a secure
point obfuscator.

Proof. We prove that for any probabilistic polynomial-time algorithm A, there
is a probabilistic polynomial-time simulator S and a negligible function negl(·),
such that for all x ∈ Xλ and all λ ∈ N,∣∣∣∣ Pr

A,O
[A(O′(x)) = 1]− Pr

S
[SIx(1λ)) = 1]

∣∣∣∣ ≤ negl(λ),



where the probabilities are over the internal randomness of A,O and S.

Let A be such an adversary and let S be the corresponding simulator whose
existence is guaranteed by the fact that O is a secure point obfuscator. It holds
that for every x ∈ Xλ:∣∣∣∣ Pr

A,O
[A(O(x)) = 1]− Pr

S
[SIx(1λ)) = 1]

∣∣∣∣ ≤ negl(λ),

As a first step, we construct a simulator S ′ that is inefficient yet makes only
a polynomial-number of queries to its oracle (we will get rid of this assumption
later using a known transformation). We define a simulator S ′ (with oracle access
to Ix) that works by simulating S as follows. When S performs a query y to its
oracles, then S ′ finds x′ such that f(x′) = y. If no such x′ exists, then S ′ replies
with 0. Otherwise, if S ′ found such an x′, then it performs the query to its oracle
with x′ and answers with the reply of the oracle. Since f is injective, we have
that f(x) = y if and only if x′ = x. Thus, it holds that

Pr
S

[SIf(x)(1λ)) = 1] = Pr
S′

[S ′Ix(1λ)) = 1].

Thus, we get that∣∣∣∣ Pr
A,O

[A(O′(x)) = 1]− Pr
S′

[S ′Ix(1λ)) = 1]

∣∣∣∣ ≤ negl(λ).

We are left to take care of the fact that the simulator is inefficient. For this
we use a result of Bitansky and Canetti [8] who showed that this can be solved
generically. Let us elaborate.

Bitansky and Canetti called obfuscators in which the simulation is inefficient
yet the number of queries is bounded by a polynomial as gray-box obfuscation.
This is in contrast to virtual-black box obfuscation where the simulator is re-
quired to be both efficient in its running time and the number of queries and
indistinguishability obfuscation [3,24], which can be phrased as a simulation-
based definition where the simulator is unbounded in both running time and
number of queries (see [8, Proposition 3.1]). One of the main results of Bitansky
and Canetti was that for point functions, the virtual-black box and virtual-gray
box notions are equivalent: a simulator that runs in unbounded time yet makes
a polynomial number of queries can be turned into one that runs in polynomial-
time and makes a polynomial number of queries.6

Using their result for our construction we obtain a simulator that works in
polynomial-time and makes a polynomial number of queries to its oracle. This
completes the claim.

We finish the proof by applying the claim with f(x) = gx
4+x3+x2+x, noticing

that this function is injective and efficiently computable.

6 See [9] for more general families of functions where a similar equivalence holds.



4.2 Proof of Theorem 5

Assume that there exists an adversary A, and a distribution Xλ such that given
an obfuscation of a point x← Xλ, the adversary A outputs a function f ∈ Fpoly

and a valid-looking obfuscation (i.e., an obfuscation that passes the verification
of V) of f(x) with probability at least ε > 0. Denote by t = t(λ) the degree of f
(written as a polynomial over Xλ). We show how to construct an adversary A′
that breaks the strong power-DDH assumption for the power sequence of length
T = 4t.

Suppose we are given (gz0 , gz1 , . . . , gzT ), where z0 = 1 and either ∀i ∈ [T ] :
zi = xi for a random x ← Xλ or ∀i ∈ [T ] : zi = ri for random r1, . . . , rt ←
Xλ. Our goal is to show that A′ can distinguish between the two cases. The
algorithm A′, on input (gz0 , . . . , gzT ), first samples a random generator r ← G
and computes gz1+z2+z3+z4 . Then, it runs A on the input pair (r, rg

z1+z2+z3+z4
)

to get a function f and an output pair (rA, wA). We assume that we are given the
coefficients of the polynomial that represents the function f , as otherwise we can
learns these coefficients by interpolation of random evaluations of f (according
to the distribution of the inputs Xλ).

Let h(x) = x4 + x3 + x2 + x and let us write the polynomial h(f(x)) as a
polynomial of degree at most 4t with coefficients bi:

h(f(x)) = (f(x))4 + (f(x))3 + (f(x))2 + f(x) =

4t∑
i=0

bix
i.

Using these values, it computes u = g
∑T
i=0 bizi and wreal = ruA. Finally, the

adversary A′ outputs 1 if and only if wreal = wA. The precise description of A′
is given in Figure 1.

The algorithm A′(gz0 , gz1 , . . . , gzT ):

1. Choose a random generator r ← G and compute gz1+z2+z3+z4 .

2. (f, rA, wA)← A(r, rg
z1+z2+z3+z4

).
3. Compute the coefficients bi for i ∈ [T ] of h(f(x)).

4. Compute wreal = rg
∑T
i=0 bizi

A .
5. If wreal = wA, then output 1. Otherwise, output 0.

Fig. 1. The adversary A′ that breaks the power-DDH assumption.

We argue that A′ successfully breaks the power-DDH assumption.

The real case. Observe that if zi = xi for each i ∈ [T ], then the distribution that

A sees is exactly the distribution (r, rg
x4+x3+x2+x

) and thus with probability



at least ε, the adversary A will maul the point obfuscation of x to a point
obfuscation of f(x). That is,

wA = rg
h(f(x))

A = rg
∑T
i=0 bix

i

A = rg
∑T
i=0 bizi

A = wreal.

Thus, A′ will output 1 with probability at least ε.

The random case. Suppose that zi = ri is random for each i ∈ [T ]. We show
that the probability that wreal = wA is negligible (in λ). This is an information
theoretic claim that holds against unbounded adversaries. The adversaryA holds
r and rg

r1+r2+r3+r4
and let us even assume that she knows s = r1 + r2 + r3 + r4.

In order for A′ to succeed, she needs to be able to compute s′ =
∑T
i=0 biri (recall

that A′ is unbounded). We show that the min-entropy of this value s′ given all
the information of the adversary is high and therefore it cannot guess it with
noticeable probability. Denote by view(A) a random variables that correspond
to the view of A and denote by S′ a random variable that corresponds to the
value of s′.

We first show that if the degree of f (denoted above by t) is at least 2, then
the min-entropy of S′ is at least λ. This means that A′ will be able to guess it
with only negligible probability.

Claim. If t ≥ 2, then H∞(S′ | view(A)) ≥ λ.

Proof. If the degree of f is at least 2, then the degree of h(f(·)) is at least 5 and
thus there exist i > 4 such that bi 6= 0. In this case, since ri is uniform in Xλ,
then the random variable s′ has min-entropy λ given the view of A.

The case where f is a linear function (i.e., a degree 1 polynomial) is slightly
harder to handle and here we use properties of the exact choice of our degree
4 polynomial. Let f be written as f(x) = ax + b for some fixed a, b ∈ Xλ. We
expand the polynomial h(f(x)) and rewrite it by grouping terms:

h(f(x)) =(ax+ b)4 + (ax+ b)3 + (ax+ b)2 + (ax+ b)

=a4x4 + (4a3b+ a3)x3 + (6a2b2 + 3a2b+ a2)x2+

(4ab3 + 3ab2 + 2ab+ a)x+ b4 + b3 + b2 + b.

We show that the coefficients of h(f(·)) cannot be all identical.

Claim. The coefficients of h are not all identical.

Proof. If they were identical, then

a4 = 4a3b+ a3 = 6a2b2 + 3a2b+ a2 = 4ab3 + 3ab2 + 2ab+ a.

Solving this set of equations gives that the only solutions are a = 0, b = ∗ (i.e.,
b is arbitrary) and a = 1, b = 0 (i.e., the identity function). However, these are
illegal according to our definition of Fpoly: this class contains neither constant
functions nor the identity function.



Using the fact that the coefficients are not all identical, we claim that the min-
entropy of S′ is at least λ even given the view of A. Thus, again, the probability
of guessing correctly the value is negligible.

Claim. Let R1, R2, R3, R4 ← Xλ be random variable whose distribution is uni-
form from Xλ, and let their sum be S = R1 + R2 + R3 + R4 ∈ X6λ. Let
b1, b2, b3, b4 ∈ Xλ be arbitrary constants such that at least two of them are
different. Let S′ = b1R1 + b2R2 + b3R3 + b4R4. Then, H∞(S′ | S) ≥ λ.

Proof. We lower bound the min entropy by computing Pr[S′ = s′ | S = s] for
each s, s′ ∈ Xλ. This probability is exactly the fraction of possible r1, r2, r3, r4
such that r1 + r2 + r3 + r4 = s and b1r1 + b2r2 + b3r3 + b4r4 = s′. Writing this
in matrix form we have

[
1 1 1 1
b1 b2 b3 b4

]
︸ ︷︷ ︸

A

·


r1
r2
r3
r4

 =

[
s
s′

]
.

Denote by Q the size of the support of Xλ and notice that Q ≥ 2λ. Since Xλ is
well-spread, its min-entropy is super logarithmic in λ and thus the support size
is super polynomial in λ. Since not all the bi’s are equal, we have that A’s rank
is 2, and thus the solution dimension is 2 for each s′ ∈ Xλ and the number of
possible solutions is Q2 out of the total Q4 possibilities. Altogether, we get that
for every s′ ∈ Xλ, it holds that Pr[S′ = s′ | S = s] = Q2/Q4 ≤ 1/Q < 1/2λ.
Thus, the min-entropy is at least λ.

Combining the above, we get that overall, the probability of distinguishing is:∣∣∣Pr[A′(gx
1

, . . . , gx
T

) = 1]− Pr[A′(gr1 , . . . , grT ) = 1]
∣∣∣ ≥ ε− negl(λ)

which contradicts the security of the power-DDH assumption.

4.3 Supporting More Functions

In our construction above, we have shown how to get a point function obfuscator
that is non-malleable against any function that can be written as a univariate
polynomial of a polynomial degree. The reason that there is a bound on the
degree of the polynomial is that the security reduction runs in time that is
proportional to the degree. In particular, to be resilient against a function f of
degree t we had to construct gh(f(x)) in the reduction given the sequence {gxi}4ti=0

(recall that h(x) = x4 + x3 + x2 + x).

Exponential security. Suppose that the min-entropy of the inputs is k. Thus,
the support-size of the distribution is at most 2k and hence any function can be
written as a polynomial of degree at most 2k. That is, we can assume without
loss of generality that the mauling function is described by a degree t ≤ 2k



polynomial. Thus, if we assume an exponential version of the strong power-DDH
assumption, where the adversary’s running time and advantage are bounded by
2O(k) and 2−Ω(k), respectively, we can support functions of exponential degree
(in k).

Uber assumption. Instead of building the polynomial h(f(x)) in the proof mono-
mial by monomial in order to break the power-DDH assumption, we can, alter-
natively, modify our assumption to get a more direct security proof without
the large security loss. Concretely, instead of having the reduction computing
gh(f(x)) given {gzi}4ti=0, where t is the degree f , we assume an “uber” power-DDH
assumption that is parametrized by a class of functions F = {f : Zp → Zp} (and
thus can thought of as a collection of assumptions, one per f ∈ F). The assump-
tion says that for any f ∈ F , the following two distributions are computationally-
indistinguishable:

(g, gx, gh(f(x))) ≈c (g, gx, gs),

where x← X and s← Z∗p is chosen at random. Having such an assumption for
a class of mauling functions F , implies that our construction is non-malleable
for the same class F .
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