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Abstract. A hash function family is called correlation intractable if for
all sparse relations, it is hard to find, given a random function from the
family, an input-output pair that satisfies the relation (Canetti et al.,
STOC 98). Correlation intractability (CI) captures a strong Random-
Oracle-like property of hash functions. In particular, when security holds
for all sparse relations, CI suffices for guaranteeing the soundness of
the Fiat-Shamir transformation from any constant round, statistically
sound interactive proof to a non-interactive argument. However, to date,
the only CI hash function for all sparse relations (Kalai et al., Crypto
17) is based on general program obfuscation with exponential hardness
properties.
We construct a simple CI hash function for arbitrary sparse relations,
from any symmetric encryption scheme that satisfies some natural struc-
tural properties, and in addition guarantees that key recovery attacks
mounted by polynomial-time adversaries have only exponentially small
success probability - even in the context of key-dependent messages
(KDM). We then provide parameter settings where ElGamal encryp-
tion and Regev encryption plausibly satisfy the needed properties. Our
techniques are based on those of Kalai et al., with the main contribu-
tion being substituting a statistical argument for the use of obfusca-
tion, therefore greatly simplifying the construction and basing security
on better-understood intractability assumptions.
In addition, we extend the definition of correlation intractability to han-
dle moderately sparse relations so as to capture the properties required
in proof-of-work applications (e.g. Bitcoin). We also discuss the applica-
bility of our constructions and analyses in that regime.

1 Introduction

The random oracle methodology [39,12] models cryptographic hash functions as
completely random functions. The model yields simple constructions of crypto-

? The full version [25] is available at https://eprint.iacr.org/2018/131.

https://eprint.iacr.org/2018/131


2 Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum

graphic primitives both in theory and practice, but is known to be inherently
unsound in principle [26,68,44,32,51]. A natural alternative is to formalize con-
crete “random-oracle-like” properties of hash functions, and then (a) construct
hash functions that provably demonstrate these properties based on established
hardness assumptions, and (b) show how security of applications follow from
these properties. Indeed, a number of such notions have been proposed and used
in the literature, with multiple applications e.g. [23,29,26,57,10,52,18,47,11].

Correlation intractability. We focus on one of such notion called correlation
intractability, defined by Canetti, Goldreich and Halevi [26]. Correlation in-
tractability attempts to capture the following property of random functions.
Consider a random function O from {0, 1}n to {0, 1}m, along with some fixed
binary relation R : {0, 1}n × {0, 1}m → {0, 1} such that for any x ∈ {0, 1}n,
the fraction of y ∈ {0, 1}m such that R(x, y) holds is at most µ. Then, the
best possible way to find x such that R(x,O(x)) holds is to randomly try dif-
ferent x’s. The probability of success after t attempts is at most tµ. A function
family is correlation intractable (CI) if it behaves similarly against polytime al-
gorithms. Specifically, a function family H is correlation intractable if, for any
relation R with negligible density µ, no polytime adversary can, given the de-
scription of a function h : {0, 1}n → {0, 1}m chosen randomly from H, find x
such that R(x, h(x)) holds, except with negligible probability. Note that there are
no secrets here: The adversary sees the entire description of h, which succinctly
encodes the values h(x) for all possible values of x.

Correlation intractability captures a large class of natural properties of ran-
dom functions. For example, the infeasibility of finding preimages of any fixed
value c in the range can be formalized as correlation intractability w.r.t. any
constant relations Rc = {(x, c) | ∀x in the domain}. The “fixed output value”
in the example can be extended to “a sufficiently long fixed prefix”, e.g. suf-
ficiently many leading 0s. Indeed, correlation intractability (in its quantitative
form) is the natural formalization of the requirements expected from the hash
function used for mining chaining values in the Bitcoin protocol [66] and other
applications relied on proof-of-work [35]. We further discuss these application
later on.

Another natural and prominent application of correlation intractable hash
functions is their use for sound realization of the Fiat-Shamir (FS) heuristic
[39]. Recall that, originally, the idea of Fiat and Shamir was to transform a
three-message, public coin identification scheme to a signature scheme by having
the signer first generate the first prover message α of the identification scheme
(incorporating the message-to-be-signed in the identity), then computing the
verifier message as β = h(α) for some public hash function h, and then having
the signature consist of (α, γ), where γ is the corresponding third message of the
identification scheme. Verification first reconstructs β = h(α) and then verifies
the identification. It can be seen that if h is modeled as a random function, then
the resulting signature scheme is unforgeable [1]. In fact, the same transform
can be used to build a non-interactive argument from any public-coin interactive
proof (even multi-round ones), as long as the initial proof is resettably sound (see
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e.g. [13]).5 Furthermore, if the original proof is honest-verifier zero-knowledge,
then the resulting non-interactive protocol (in the random oracle model) is a
non-interactive zero-knowledge argument [39,12].

It has been demonstrated that CI families that withstand arbitrary binary
relations suffice for realizing the Fiat-Shamir heuristic in the case of constant-
round proofs. That is, if the initial interactive proof is constant-round and is sta-
tistically sound, then computational soundness of the resulting non-interactive
protocol holds even when the random oracle is replaced by a CI hash function
family that withstands arbitrary binary relations (the only difference from the
original Fiat-Shamir heuristic is that now the resulting protocol has an initial
verifier message that determines the actual function h in the CI family.) Indeed,
CI families that withstand arbitrary binary relations are entropy preserving [24],
and entropy preserving families suffice for the soundness of the Fiat-Shamir
heuristic for constant-round proofs [10]. A direct proof is also implicit in [59,
Section 4]. (We note that soundness for the case of three-message proofs was
observed already in [49,36].)

Constructing correlation intractable hash functions. Canetti et al. [26] show that
there do not exist CI function families where the key is shorter than the input,
but leave open the possibility of CI functions with longer keys. Still no construc-
tion of CI functions, even for restricted cases, was known until very recently.
Furthermore, over the years evidence accumulated that coming up with CI func-
tions, and in particular a sound instantiation of the FS paradigm, would not
be easy. Goldwasser and Kalai [44] construct a public coin interactive argument
(i.e. a protocol that is only computationally sound) that becomes unsound if it
is turned into an non-interactive argument by applying the Fiat-Shamir trans-
formation with any function. Bitansky et al. show that it is impossible to prove
soundness of the FS paradigm using a black-box reduction to falsifiable assump-
tions [14].

Recently, two papers independently suggested using an obfuscated punc-
turable pseudorandom function family as a CI family. Canetti, Chen and Reyzin
[24] show that this construction is CI for relations that are computable by cir-
cuits of a priori bounded polynomial size, assuming sub-exponentially secure
puncturable pseudorandom functions and indistinguishability obfuscation, and
in addition, input hiding obfuscation for evasive functions. Kalai, Rothblum and
Rothblum [59] show that the same construction is CI for arbitrary relations,
assuming sub-exponentially secure puncturable pseudorandom functions and in-
distinguishability obfuscation, plus exponentially secure point obfuscation. In
particular, the latter result implies that this function family suffices for sound
realization of the Fiat-Shamir heuristic (when applied to constant-round inter-
active proofs).

5 In particular, every constant-round interactive proof with negligible soundness, is
resettably sound.
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1.1 Our results

We provide new constructions of CI function families for arbitrary binary re-
lations. Compared to [24,59], our constructions are dramatically more efficient,
and are based on better-understood assumptions. Furthermore, while sampling
a hash function from the family of obfuscated puncturable PRFs involves secret
randomness, we present candidates where the sampling can be done with only
public randomness.

The main tool (or, abstraction) we use is symmetric encryption with the
following two properties: First, the scheme should guarantee that polynomial
time key-recovery attacks have only exponentially small success probability even
after seeing encryptions of key-dependent messages (KDM). That is, for any
super-polynomial function s, for an arbitrary key-dependency function f (not
necessarily computable in polynomial time), any polynomial time adversary that

obtains c = Enc(k, f(k)) outputs k with probability no more than s(λ)
2λ

, where λ
is the key length.

The second property, which we refer to as universal ciphertexts, is statis-
tical. Loosely speaking, it requires that any ciphertext is “decryptable” under
any key. More precisely, the requirement is that (a) for every key, random ci-
phertexts decrypt to random messages; (b) for every key k and message m, the
encryption algorithm generates ciphertexts that are uniformly sampled from the
space of ciphertexts that are decrypted to m with key k. (The actual definition
includes also public parameters, which are omitted here for simplicity.) Given an
encryption scheme that satisfies the above requirements, we obtain the following
result:

Theorem 1 (Informally stated) Assuming the existence of encryption schemes
that have universal ciphertexts and that are exponentially KDM-secure against
polytime key-recovery attacks, there exist:

– Correlation intractable hash functions for arbitrary binary sparse relations.
– Hash functions that guarantee soundness of the Fiat-Shamir transformation,

when applied to interactive proof-systems.
– Non-interactive, publicly verifiable arguments for all languages computable

in polynomial-time and bounded polynomial space (in particular, the class
SC).

The last bullet follows by applying the Fiat-Shamir transformation to the recent
public-coin, constant-round interactive proof-system of Reingold et al. [74].

Our second main contribution is in providing concrete instantiations of Theo-
rem 1. Specifically, we show that variants of El-Gamal encryption [37] and Regev
encryption [72] satisfy the universal ciphertext property and plausibly satisfy the
foregoing exponential security against KDM key recovery.

Non-Interactive Zero Knowledge. As an additional result, we show that if the
Fiat-Shamir transformation is applied to a three-round honest-verifier zero-
knowledge proof, and the CI function family in use is programmable, then the
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resulting protocol is a Non-Interactive Zero-Knowledge (NIZK) argument, with
the description of the hash function serving as a common reference string. (Here
programmability means that, given random values a, b from the family’s domain
and range, respectively, it is possible to efficiently sample a random function
h from the family such that h(a) = b.) We also observe that the CI functions
we construct are programmable. Furthermore, if the initial three-round protocol
is delayed-input (as in, e.g., [38]), then the resulting NIZK argument is both
adaptive ZK and adaptively sound. We thus have:

Theorem 2 (Informally stated) Assuming the existence of encryption schemes
that have universal ciphertexts and that are exponentially KDM-secure against
polytime key-recovery attacks, there exist NIZK arguments for all of NP. Fur-
thermore, these NIZKs have adaptive soundness and zero-knowledge.

We note that, prior to this work, NIZK arguments for NP were not known
based on any variant of the Diffie-Hellman assumption in groups that do not
admit bilinear pairings, nor any variant of the LWE assumption — even expo-
nentially strong ones. Also, for the NIZK application we only need the CI family
to withstand relations that are exponentially sparse, which somewhat relaxes
the assumption. For example, if the soundness of the interactive proof system is
2−λ

ε

, then we can tolerate encryption schemes where the success probability of

polytime key-recovery attack is superpoly(λ)
2λ−λε

.

Quantitative correlation intractability and its connection to the Bitcoin protocol.
A central component in the Bitcoin protocol [66] is a probabilistic mechanism
for guaranteeing that the amount of influence participants have on the process
of producing the public ledger is proportional to their computing power. The
idea here is that since each individual entity has only a fraction of the overall
computing power, the influence of each entity is limited. Indeed, the core validity
of the currency (i.e., the mechanism for preventing double spending) hinges upon
that guarantee.

The Bitcoin mechanism for limiting influence was sketched earlier in the
introduction: In order to incorporate a block of new transactions in the public
registry, the individual (“miner”) is asked to present a value x such that the pair
(x, h(x)) satisfies some known relation Rw, where h is a hash function defined
by the protocol, and w is determined by the current state of the system, the
new block, and the miner’s identity. Rw is set so that it is “moderately sparse”.
That is, for any x,w the fraction of values y such that Rw(x, y) holds is small,
but not too small.

Clearly, if h were a random function then this mechanism would work well:
Given w, the best way to find x such that Rw(x, h(x)) holds is to keep guessing
random x’s until one is found. This means that the probability of success is
proportional to the number of guesses, which is correlated to the computational
power of the miner. However, when h is an explicit function with a succinct
description, it is not clear how to provide rigorous guarantees regarding the
amount of time needed to find a “wining x” given w. Indeed, “shortcut attacks”
on the Bitcoin mechanism have been reported, e.g. [53].
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We argue that correlation intractability, or more precisely a quantitative
variant of the notion, captures the properties needed from the underlying hash
function so as to guarantee the soundness of the Bitcoin mechanism for limiting
influence. Specifically, say that a binary relation R : {0, 1}n×{0, 1}m → {0, 1} is
µ-sparse if for any x ∈ {0, 1}n, the fraction of y ∈ {0, 1}m such that R(x, y) holds
is at most µ. A family H of functions h : {0, 1}n → {0, 1}m is f-correlation
intractable if for any binary µ-sparse relation R and for any adversary Adv
that runs in time t, the probability that Adv, given a random function h in H,
outputs x such that R(x, h(x)) holds is at most f(t, µ). The smaller f grows
the better the guarantee. Clearly we must have f(t, µ) ≥ tµ. A good “fudge
function” f will not grow much faster than that.

It should also be stressed that the quantitative correlation intractability, as
presented here, only bounds the success probability in solving a single challenge.
Asserting the overall stability of the protocol would require bounding the ag-
gregate success probability over multiple related challenges. Formalizing a set
of properties for concrete, non-idealized hash functions, that would suffice for
the security of Bitcoin-like applications, as well as proposing constructions with
rigorous analyses is a fascinating research direction.

1.2 Our techniques

The construction of our CI hash function is simple. Let (Enc,Dec) be an en-
cryption scheme with key space K, message space M and ciphertext space C.
The constructed hash function family H = {hc}c∈C , where hc : K → M , is
defined by hc(k) = Deck(c). That is, a function hc in the family is defined via a
ciphertext c ∈ C. Given an input k, the function hc decrypts c using key k and
returns the decrypted plaintext.

In general, key generation (i.e., choosing a random c ∈ C) is done by en-
crypting a random message with a random key. We note however that for both
of our specific candidates, choosing a random ciphertext can be done obliviously
and publicly without any secret randomness.

A high level rationale for the construction may be the following: Consider
a ciphertext c = Enc(k,m) where both k and m are random. If the encryption
scheme is good, then it should be guaranteed that, when trying to decrypt c
with any key k′ 6= k, then the result should be completely “random looking”.
Intuitively, this means that finding a key k′ such that Dec(k′, c) = m′ for some
target m′ should be hard. The universal ciphertexts property guarantees that
a random ciphertext looks like the result of encrypting a random message with
a random key. KDM security guarantees that the above intuition applies even
when considering relations that look at both the key and the corresponding
message together (as is indeed the case for correlation intractability.)

Indeed, the crux of the proof is in translating correlation intractability, which
is a requirement on the (in)ability of polynomial time adversaries to find struc-
ture in a succinctly represented public function (namely the decryption algorithm
along with a random ciphertext), to a secrecy requirement on the corresponding
encryption process.
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The actual proof is strongly inspired by that of [59]. In fact, we follow essen-
tially the same sequence of logical steps. However, the argumentation used to
move from one step to the next is different in some key places. Specifically, our
goal is to turn an adversary A that breaks correlation intractability of the hash
function into an adversary that breaks KDM security of the underlying encryp-
tion scheme. Following [59], we start by considering a conditional experiment
where we fix some random value k∗, and consider only the probability that A,
given the hash key c, outputs a key k such that the correlation R(k,Dec(k, c))
holds, and in addition k = k∗. While this probability is very small, it allows us
to move (with some loss) to a different experiment where the value c that A sees
is the result of encrypting f(k∗) with key k∗, where f is a function related to R.
We now observe that recovering the right k∗ corresponds to breaking the KDM
security of the scheme.

As in [59], the price of this analytical approach is an exponential loss in
security against guessing attacks. On the other hand, in the case of the [59]
scheme and analysis, the critical switch from one conditional experiment to an-
other relies on sub-exponentially secure indistinguishability obfuscation. Here,
in contrast, the move is purely statistical.

1.3 A closer look at the hardness assumptions

We sketch the assumptions we use and briefly discuss their plausibility.

The scheme based on ElGamal encryption. We first consider the ElGamal based
scheme. For simplicity, we discuss a restricted case where both the key and the
message are represented by group elements. (See Section 6 for a more general
construction and the associated assumption.) Assuming there exists a family
of groups G(λ) of sizes N(λ) ≈ 2λ, with a generator g and efficient group op-
erations, such that for any super-polynomial function s, any (not necessarily
efficiently computable) function f : [N ]→ [N ], and any polynomial time adver-
sary A:

Pr
k,a←[N ]

[
A
(
ga, gak+f(k)

)
= k

]
≤ s(λ)

2λ

We discuss the plausibility of this assumption. For the discrete-log problem over
F∗q , there are well-known sub-exponential time algorithms with constant success
probability [2,30]. However, a 2t-time algorithm with constant success probabil-
ity does not necessary imply a polynomial time algorithms with success proba-
bility 2−t. For example, Pollard’s rho algorithm [70] runs in time O(2λ/2) and
achieves constant success probability. But its polynomial time version only gives
polynomial advantage over simply guessing. In fact, Shoup [77] shows that any
generic algorithm (like Pollard’s rho algorithm) cannot achieve success proba-
bility better than O(T 2/2λ) if it only makes T oracle queries.

However, the index-calculus algorithm does achieve a 2−λ/c success probabil-
ity if it is allowed to have a super-polynomial preprocessing phase, keep advices
of polynomial size, and run a polynomial time online phase. We leave the algo-
rithm and analysis in Appendix A. Although it is not a complete polynomial time
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algorithm (i.e. without a super-polynomial preprocessing phase) with non-trivial
success probability, it suggests that the extra structure of the group F∗q can be
utilized even if the algorithm is restricted in polynomial time in a meaningful
model.

Still, the above assumption is plausible for the discrete-log problem over ellip-
tic curve groups (ECDLP), especially for those defined over prime fields. Over
decades, ECDLP algorithms only out-perform generic algorithms for specific
families of curves (e.g. [63,42]). Useful factor bases for index calculus algorithms
were not known for the elliptic curve groups, until the work of Semaev [76] which
proposes the use of summation polynomials, later developed by Gaudry [41] and
Diem [31]. But so far they are only known to out-perform Pollard’s rho algo-
rithm for elliptic curve groups defined over Fqn when certain relations of q and n
hold. For elliptic curve groups defined over prime fields, the recent attempts by
[69] and others provide plausible factor bases. Still, no algorithms are known to
achieve non-negligible success probability with less than O(2λ/2) running time.
See [40] for a survey of the recent progress on ECDLP.

To conclude, based on the current understanding ECDLP for curves defined
over prime fields, polytime algorithms that perform super-polynomially better
than guessing appear to be out of reach. In particular, any such algorithm must
exploit more structures in the elliptic curve groups than in generic groups [77].

The scheme based on Regev encryption. Consider the Regev scheme [73] with
an even polynomial modulus q(λ) ∈ poly(λ), and key space {0, ..., B− 1}` where
B` ∈ [2λ−log(λ), 2λ+log(λ)] and B ≤ q. The message space is {0, 1}w where w(λ) ∈
poly(λ). For the security of this scheme we make the following assumption: for
any (not necessarily efficiently computable) function f : {0, ..., B−1}` → {0, 1}w,
any super-polynomial function s, and any polynomial time adversary A:

Pr
k∈R{0,...,B−1}`

{aj∈RZ1×`
q ,ej∈R[0,q/2)∩Z}

[
A
(
{aj ,aj · k + ej + fj(k) · q/2}j∈[w]

)
= k

]
≤ s(λ)

2λ

where fj(k) denotes the jth bit of f(k).
Note that super-polynomial algorithms that break LWE with constant suc-

cess probability are known (e.g. [61,8,75,16,60], see the analyses and surveys of
[67,65,62,4,55]). Still, within this setting of parameters, especially given a poly-
nomial size modulus q and high noise magnitude q/2, we are not aware of any
polynomial time algorithms that succeed in guessing the key super-polynomially
better than a random guess.

Possible relaxations on the assumptions of success probability. The restriction on

the success probability (smaller than s(λ)
2λ

for any super-polynomial s) mentioned
in the foregoing paragraphs suffices for implying correlation intractability for all
negligible sparse relations under any given input and output length parameters.
We note that even if there are polynomial time algorithms that achieve better
success probability for these problems, our result may still apply to correlation
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intractability for certain classes of relations. For example, if a polynomial time
algorithm were found for LWE that succeeds with probability 2−λ/3, then the
Regev-based hash function may still be secure for Fiat-Shamir transformation
applied on a 3-round proof system where the length of the first message is λ,
the length of the second message is 2λ/3, and the soundness of the protocol is
2−2λ/3.

On the quantitative hardness of our assumptions. One may wonder if the El-
Gamal or Regev-like hash functions were used for proof-of-work, what are the
precise bounds of the “fudge function” f we can guarantee. For the ElGamal-
based function, as we mentioned before, the Pollard’s rho algorithm achieves
success probability O(T 2/2λ) in T steps for any group of size ≈ 2λ. So the
smallest possible f is O(T 2 · µ), which is far from the dream bound T · µ. For
LWE, when T is relatively small (say a small polynomial), the success probabil-
ities of LWE solvers are typically tiny and less studied, so the precise bound is
unclear to us. We leave to future work any additional quantitative analysis of
the possible values for f for the concrete functions.

1.4 Additional related works

Notions related to Fiat-Shamir paradigm. Hada, Tanaka [49] and Dwork et
al. [36] show that the existence of correlation intractable functions implies the
soundness of Fiat-Shamir paradigm for proofs, which in turn rules out the possi-
bility of constant-round public-coin zero-knowledge proofs for languages beyond
BPP. This means that, assuming KDM-secure encryption as defined above, there
do not exist constant-round public-coin zero-knowledge protocols with negligible
soundness error for languages beyond BPP.

Among the attempts to better capture the property of a hash function suit-
able for the Fiat-Shamir paradigm, Barak et al. define entropy-preserving hashing
and show it is sufficient for Fiat-Shamir [10]. Dodis et al. then provide a property
of condensers that is necessary for entropy-preserving hashing [33]. It is shown by
Canetti et al. that entropy-preservation is implied by correlation intractability
w.r.t. sparse relations whose memberships are not efficiently checkable [24].

A different way of reducing rounds in interactive proofs was shown by Kalai
and Raz [58]. However, in contrast to the Fiat-Shamir paradigm, the Kalai-Raz
transform inherently yields a private-coin argument-system (and in particular
does not yield NIZK proof-systems).

Background on KDM. The potential security risk of encrypting one’s own key
was noted already in the seminal work of Goldwasser and Micali [45]. Poten-
tial applications and suitable formalizations were provided by Camenisch and
Lysyanskaya [22] and Black, Rogaway and Shrimpton [15]. More recently, Gen-
try’s breakthrough construction of fully homomorphic encryption also utilizes
KDM security in a fundamental way for the “bootstrapping” process (trans-
forming somewhat homomorphic schemes to fully homomorphic ones) [43].
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Encryption schemes that are KDM secure6 with respect to the class of affine
functions were constructed by Boneh et al. [19], Applebaum et al. [6] and Brak-
erski and Goldwasser [20]. Using techniques developed in [9,21,5] the foregoing
schemes can be amplified to provide security for the class of KDM functions com-
putable by polynomial-size circuits. Canetti et al. [28] construct strong KDM-
secure encryption from multi-bit point obfuscation. However, their construction
inherently does not have the universal ciphertexts property. We also note that
fully-homomorphic encryption schemes that are KDM secure w.r.t. the identity
function are automatically KDM secure for arbitrary polynomial functions [9].
However achieving KDM secure FHE w.r.t. the identity function from standard
assumptions is an open problem.

Haitner and Holenstein [50] showed limitations to the possibility of construct-
ing KDM secure encryption schemes via blackbox techniques. They first show
that there is no fully blackbox reduction from the KDM security of an encryption
scheme (with respect to a certain class of functions) to the existence of one-way
permutations. More relevant for us is their second result, which shows that there
is no reduction from the KDM security of an encryption scheme to “essentially
any cryptographic assumption” if the adversary can obtain an encryption of an
arbitrary function g of the key, and the reduction treats both the adversary and
the function g as black boxes. A significant difference from our notion of KDM
security with respect to all functions is that [50] assume that the adversary also
obtains oracle access to the function g, which is not the case in our setting.
Namely, we only provide the adversary with an encryption of g(k), where k is
the key, but no additional access to g. Indeed, the oracle constructed by Haitner
and Holenstein becomes useless in this setting.

The works of Halevi, Krawczyk [51] and Hofheinz, Unruh [56] construct sev-
eral variants of KDM symmetric encryption assuming only pseudorandom func-
tions. However these schemes don’t achieve the level of security we require (expo-
nentially small probability of key-recovery) and we were unable to extend them
to schemes that do.

Relation to Extremely Lossy Functions (ELFs). Our work bears a high-level
similarity to the work of Zhandry [79] in terms of the motivation, constructions
and assumptions. However, the actual contributions are very different.

In terms of the motivation, both papers attempt to capture the proper-
ties of random oracles. Our paper focuses on correlation intractability and its
implication to Fiat-Shamir, whereas [79] defines the notion of k-ary output-
intractability, where the relation checks k output values and an additional aux-
iliary input w. Indeed, as was mentioned in [79], k-ary output-intractability
roughly corresponds to a special case of k-ary correlation intractability (namely,
correlation intractability where the relation R takes k pairs of values (x, y).)
However, k-ary output-intractability is interesting only for k > 1. For k = 1,

6 More precisely, the KDM security of these scheme reduces to their plain (i.e., non
key dependent) semantic security.
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output intractability is trivially satisfiable. In contrast, in this work we concen-
trate on correlation intractability with k = 1.

In terms of constructions and assumptions, both papers make exponential
hardness assumptions on discrete-log or DDH type problems. However the pre-
cise ways of making the assumptions are different. [79] assumes that for DDH
over group size B(λ) ≈ 2λ, the best attack takes time B(λ)c for some constant
c. Whereas we assume (modulo KDM) that all the polynomial time algorithm

solves discrete-log problem with success probability less than superpoly(λ)
B(λ) .

1.5 Organization

In Section 2 we provide standard notations and definitions that will be used
throughout this work. In Section 3 we give an overview of our construction,
focusing on the discrete-log based construction as a warm-up. In Section 4 we
formally define our notion of “universal ciphertexts” and strong KDM security.
In Section 5 we show how to use encryption schemes satisfying the foregoing
properties to construct correlation intractable functions. In Section 6 we describe
parameter settings where the variants of ElGamal and Regev encryption schemes
plausibly satisfy these properties. Finally, in Section 7 we show how to construct
NIZKs for NP from our correlation intractable functions.

2 Preliminaries

Notations and terminology. Denote R, Z, N as the set of reals, integers and
natural numbers. Let Zq denote Z/(qZ). For n ∈ N, let [n] denote {1, 2, ..., n}.
The rounding operation bae : Zq → Zp is defined as multiplying a by p/q and
rounding the result to the nearest integer.

In cryptography, the security parameter (denoted as λ) is a variable that
is used to parameterize the computational complexity of the cryptographic al-
gorithm or protocol, and the adversary’s probability of breaking security. An
algorithm is “efficient” if it runs in (probabilistic) polynomial time over λ.

For any definition based on computational hardness, we refer the relevant
security level to the success probability of any efficient adversary. For example,
a security notion is subexponential if for every efficient adversary there exists
ε > 0 such that the adversary’s advantage is less or equal to 2−λ

ε

.
Many experiments and probability statements in this paper contain random-

ized algorithms. When a variable v is drawn uniformly random from the set S
we denote as v∈RS or v ← U(S), sometimes abbreviated as v when the context
is clear. Distributions written in multiple lines under Pr means they are sampled
in sequence.

A function ensemble F has a key generation function g : S → K; on a seed
s ∈ S(λ), g produces a key k ∈ K(λ) for a function with domain D(λ) and range
C(λ):

F = {fk : D(λ)→ C(λ), k = g(s), s ∈ S(λ)}λ∈N
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The bit-lengths of the seed, key, input and output are denoted as σ, κ, ` and
w, unless specified otherwise.

The main object studied in this article is families of public key hash func-
tions. We assume the key k is public. For certain key generation algorithm g,
publishing k implies publishing s (e.g. when g is the identity function). We call
such functions public-coin. By default we treat the bit-length of its input as being
equal to the security parameter, i.e. |D(λ)| = 2λ.

2.1 Correlation intractability

We recall the definition of correlation intractability [27].

Definition 1 (Density of a binary relations). A binary relation R = R(λ) ⊆
{ (x, y) | x ∈ D(λ), y ∈ C(λ) } has density µ = µ(λ) if for every x ∈ D(λ) it
holds that Pry∈C(λ)[ (x, y) ∈ R(λ) ] < µ(λ). A relation R is sparse if it has
negligible density.

Definition 2 (Correlation intractability w.r.t. binary sparse relations
[27]). A family of functions H = {Hk : D(λ) → C(λ)}λ∈N is correlation in-
tractable w.r.t. binary sparse relations if for every polynomial-size adversary A
and every sparse relation R, there is a negligible function negl(·) such that:

Pr
k,

x←A(Hk)

[(
x,Hk(x)

)
∈ R

]
≤ negl(λ).

We introduce a quantitative generalization of correlation intractability.

Definition 3 (f-correlation intractability). A family of functions H = {Hk :
D(λ) → C(λ)}λ∈N is f -correlation intractable w.r.t. a function f : N × [0, 1] →
[0, 1] if for all time function T (·), for all density function µ(·), for every adver-
sary A of running time T (λ), and every relation R with density µ(λ), it holds
that

Pr
k,

x←A(Hk)

[(
x,Hk(x)

)
∈ R

]
≤ f(T, µ).

For example, random oracles satisfy f -correlation intractability for f(T, µ) =
T · µ. Definition 2 can be viewed as f -correlation intractability w.r.t. f(T, µ) =
T · µ, for all polynomial T (·), and all negligible µ(·). In the rest of the paper,
“correlation intractability” refers to Definition 2 unless explicitly stated other-
wise.

Survey of impossible parameters for correlation intractability. For some pa-
rameters relevant to the length of seed, key, input and output of the function,
correlation intractability w.r.t. binary sparse relations is impossible to achieve.
We survey some of the results.

[27] shows that a function family cannot be correlation intractable when the
bit-length of the key κ(λ) of the function is short compared to the bit-length of
the input `(λ):
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Claim 1 ([27]) Hλ is not correlation intractable w.r.t. efficiently checkable re-
lations when κ(λ) ≤ `(λ).

Proof. Consider the diagonalization relation Rdiag = {(k, hk(k))|k ∈ K(λ)}. The
attacker outputs k. ut

The impossibility result generalizes to keys that are slightly larger than the
bit-length of the input, but still smaller than the sum of the bit-length of input
plus output `(λ) + w(λ). The idea is to consider an extension of the diagonal-
ization relation s.t. the relation checks a prefix of k — as long as the key is not
too long, the relation is still sparse, albeit not necessarily efficient checkable.

Claim 2 ([27]) Hλ is not correlation intractable w.r.t. possibly inefficiently
checkable relations when κ(λ) ≤ `(λ) + w(λ)− ω(log(λ)).

We also observe when the “family size” of the function is relatively small,
precisely, when the seed length is small w.r.t. the output length, then the func-
tion family is not correlation intractable w.r.t. possibly inefficiently checkable
relations. This case is not ruled out by Claim 2 when the key is potentially long
but derived from a short seed (e.g. from applying a PRG on a short seed).

Claim 3 Hλ is not correlation intractable when the seed space S(λ) and the
range C(λ) satisfies |S(λ)| ≤ negl(λ) · |C(λ)|.

Proof. Fix the hash function family Hλ, consider the relation RH that collects
every functions in the function family RH = {(x, hk(x)) | s ∈ S, k = g(s), x ∈
D(λ)}. The density of the relation less or equal to |S(λ)|/|C(λ)| ≤ negl(λ). The
attacker simply outputs any input. ut

For the discussions of the other impossibility results, we refer the readers to
[27] for the details.

2.2 Fiat-Shamir heuristics

Definition 4 (Interactive proof-systems [46]). An interactive proof-system
for a language L is a protocol between a prover P and a verifier V . The prover’s
runtime is unbounded. The verifier runs in probabilistic polynomial time. The
protocol satisfies

– Completeness: For every x ∈ L, the verifier V accepts with probability 1
after interacting with P on common input x.

– Soundness: For every x /∈ L and every cheating prover P ∗, the verifier
accepts with negligible probability after interacting with P ∗ on common input
x.

An interactive protocol is called an argument-system if it satisfies Definition 4
except that the prover is restricted to run in (non-uniform) polynomial time. An
interactive proof or argument is called public-coin if the verifier’s messages are
random coins.
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Correlation intractability and public-coin interactive proofs. Consider a language
L and a 3-round public-coin interactive proof Π for L. Let α, β, γ be the 3
messages in the protocol (α and γ are sent by the prover P , β is sent by the
verifier V ). The relation R/∈L,Π is defined by

R/∈L,Π =
{(

(x, α), β) : x /∈ L and ∃γ s.t. V (x, α, β, γ) = Accept
}
. (1)

Observe that the relation R/∈L,Π is sparse due to the statistical soundness of
the underlying proof, i.e. the density of R/∈L,Π is equal to the soundness error
of Π.

Interestingly, correlation intractability can also capture a stronger notion of
soundness called adaptive soundness. We say that a 3 message interactive proof-
system as above has adaptive soundness, if the message α sent by the honest
prover does not depend on x, and soundness is guaranteed even if the adversary
may choose the input x 6∈ L on which to cheat after seeing β. For such protocols
we define the relation R/∈L,Π as

R/∈L,Π =
{(
α, β

)
: ∃x, γ s.t. x /∈ L ∧ V (x, α, β, γ) = Accept

}
(2)

Again, the relation R/∈L,Π is sparse due to the adaptive soundness of Π.
Correlation intractability also implies the soundness of Fiat-Shamir for gen-

eral constant-round public-coin interactive proof-systems. Without loss of gen-
erality assuming the number of rounds in the starting proof-system is 2c for
a constant c. In the resulting 2-message argument, the verifier samples c inde-
pendent correlation intractable hash functions. For i ∈ {1, 2, ..., c}, the prover
applies the ith hash function on (α1||β1||...||αi−1||βi−1||αi) to generate βi, where
αi is the ith message from the prover in the starting proof-system. The message
from the prover in the resulting 2-message argument is then (α1||β1||...||αc||βc).

It is shown that the transformation above yields a sound 2-message argument
if the hash functions are entropy preserving [10]. Given that CI families that
withstand arbitrary binary relations are entropy preserving [24], we have

Lemma 1 ([49,36,10,24]). Assuming correlation intractable function family
w.r.t. all binary sparse relations exists, then the Fiat-Shamir transformation is
sound when applied on any constant-round public-coin interactive proof-systems.

3 A warm-up construction from discrete logarithm

We present a simple construction based on the discrete-log program as a warm-
up to the general scheme. Along the way we will give the rationale of the proof
strategy adapted from the work of Kalai, Rothblum and Rothblum [59], and ex-
plain the level of KDM security we need for the underlying discrete-log problem.

Let G be a cyclic group where the discrete-log problem is hard. Assume the
size of G is roughly 2λ where λ is the security parameter. Let g be a generator of
G, A = ga, B = gb be two random elements in G. Consider the following length
preserving function H : {1, ..., |G|} → G

HA,B(x) := Ax ·B = gax+b ∈ G. (3)



Fiat-Shamir and Correlation Intractability from KDM Encryption 15

Theorem 4. Given G(λ) of sizes N(λ) ≈ 2λ, with a generator g and efficient
group operations, such that for any super-polynomial function s, any (not neces-
sarily efficiently computable) function f : [N ] → [N ], and any polynomial time
adversary A:

Pr
k,a←[N ]

[
A
(
ga, gak+f(k)

)
= k

]
≤ s(λ)

2λ
.

Then HA,B is correlation intractable w.r.t. all sparse relations.

Towards a contradiction, let R be any sparse relation with negligible density
µ(λ). Suppose there exists an efficient adversary Adv that breaks correlation
intractability w.r.t. R with non-negligible probability ν:

Pr
A,B

[(
Adv(HA,B)→ x

)
∧
((
x,HA,B(x)

)
∈ R

)]
≥ ν, (4)

where the notation Adv(HA,B)→ x simply means that we use x to refer to the
string that Adv(HA,B) outputs.

In the first step, we translate the probability of outputting some x to the
probability of outputting a particular x∗. For a random x∗ from the domain, the
probability that the adversary outputs x∗ as the answer is greater or equal to ν
divided by the domain size

Pr
x∗∈R{0,1}λ

A,B

[(
Adv(HA,B)→ x′

)
∧
(
x′ = x∗

)
∧
((
x∗, HA,B(x∗)

)
∈ R

)]
≥ ν/2λ.

(5)
Focusing on a single x∗ costs a huge loss in the success probability. The

readers may wonder what is the motivation of doing so. The purpose of fixing an
input x∗ is to prepare for replacing the winning condition

(
x∗, HA,B(x∗)

)
∈ R

by another condition that is “key independent”. Towards this goal, consider the
following sampling procedure: first sample a random y∗ from the range, then
sample the key (A′, B′) randomly under the condition HA′,B′(x

∗) = y∗. Now
we use the fact that H is a “one-universal” function, which means that for a
fixed input, a uniformly random key projects the input to a uniformly random
output. In turn, a uniformly random output corresponds to a uniformly random
key. Therefore the key (A′, B′) obtained from reverse sampling distributes the
same as before. Hence we have

Pr
x∗∈R{0,1}λ
y∗∈RG,

A′,B′ s.t. HA′,B′ (x
∗)=y∗

[(
Adv(HA′,B′) = x′

)
∧
(
x′ = x∗

)
∧
((
x∗, HA′,B′(x

∗)
)
∈ R

)]

≥ ν/2λ.
(6)

Given that y∗ = HA′,B′(x
∗), we can change the winning condition in Eqn. (6)

into one which is independent from the function HA′,B′ :

Pr
x∗∈R{0,1}λ
y∗∈RG

A′,B′ s.t. HA′,B′ (x
∗)=y∗

[(
Adv(HA′,B′) = x′

)
∧
(
x′ = x∗

)
∧
(
(x∗, y∗) ∈ R

)]
≥ ν/2λ.

(7)
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Separating the winning condition (x∗, y∗) ∈ R from the hash key paves the
way for connecting correlation intractability to a property that is only about
hiding one specific point in the key (instead of hiding a bunch of potential input-
output pairs in the relation). In the next statement, the first equality follows by
the definition of conditional probability. The inequality follows from Eqn. (7)
together with the fact that R is µ sparse:

Pr
x∗,y∗ s.t. (x∗,y∗)∈R,

A′,B′ s.t. HA′,B′ (x
∗)=y∗

[(
Adv(HA′,B′)→ x′

)
∧
(
x′ = x∗

)]

=

Pr
x∗∈R{0,1}λ
y∗∈RG

A′,B′ s.t. HA′,B′ (x
∗)=y∗

Adv(HA′,B′) = x′

x′ = x∗

(x∗, y∗) ∈ R


Pr

x∗∈R{0,1}λ
y∗∈RG

[
(x∗, y∗) ∈ R

]
≥ ν

2λ · µ(λ)

(8)

The LHS of Eqn. (8) spells out as an efficient adversary’s success probability
of finding the input x∗ embedded in A′, B′, where the key A′, B′ is sampled
conditioned on mapping some input-output pair in the relation (x∗, y∗) ∈ R.
Let’s examine A′, B′, and for simplicity consider only the constant relations
Rc = {(x, c) | ∀x ∈ {0, 1}λ}. Fix a c∗ ∈ G, a random input-output pair from Rc∗

distributes as (x∗, c∗), where x∗ is uniformly random from {0, 1}λ. For A′ = ga
′
,

B = gb
′

sampled randomly from the set {ga′ , gb′ | gz∗ := c∗ = ga
′x∗+b′}, where

z∗ is explicitly defined as the discrete-log of c∗ over base g for the convenience
of explanation. Observe that the marginal distribution of a′ is uniform, and b′

equals to z∗ − a′x∗. In other words, the adversary is asked to find x∗ given
A′ = ga

′
, B′ = gz

∗−a′x∗ where z∗ is fixed. The hardness of this problem follows
directly from the hardness of the discrete-log problem.

What is the hardness required for the underlying discrete-log problem in

order to form a contradiction? For the probability in the hypothesis ν(λ)
2λ·µ(λ) ,

where ν is a non-negligible function; µ, the density of a sparse relation, is an
arbitrary negligible function. We can form a contradiction by assuming that
every polynomial time algorithm for the discrete-log problem over G succeeds
with probability less than s(λ)/2λ for any super-polynomial function s.

What happens when we consider all sparse relations instead of only the con-
stant relations? For a general sparse relation, sampling a random pair (x∗, y∗)
from the relation may result into an output y∗ that is correlated to the in-
put x∗. Take the “fixed point” relation Rx=y := {(x, y) | x = y} as an exam-
ple. A random input-output pair from Rx=y distributes as (x∗, x∗), where x∗

is uniformly random. For A′ = ga
′
, B = gb

′
sampled randomly from the set

{ga′ , gb′ | gz∗(x∗) := x∗ = ga
′x∗+b′}, where z∗(x∗) is the discrete-log of x∗ over

base g (unlike in the previous example, now z∗ depends on the input x∗). The
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marginal distribution of a′ is still uniform, and b′ equals to z∗(x∗) − a′x∗. In
other words, the adversary is asked to find x∗ given A′ = ga

′
, B′ = gz

∗(x∗)−a′x∗

where z∗(·) is a function on x∗, a′ is independent from x∗ and uniform. The latter
corresponds to the hardness of finding the decryption key x∗ given a ciphertext
of ElGamal encryption with uniform randomness a′, and key-dependent message
z∗(x∗).

To summarize, the proof strategy translates the hardness of finding any so-
lution in a sparse relation to the hardness of finding the key from the encryption
of possibly key-dependent messages. The translation is purely statistical, but it
results into a significant cost in the final computational assumption — the suc-
cess probability for any polytime attacker has to be extremely small. To capture
arbitrary relations, arbitrary key dependency functions are considered.

4 Encryption Scheme with Universal Ciphertext and
KDM Security

Let M = {Mλ}λ∈N be an ensemble of message spaces (i.e., Mλ is the message
space with respect to security parameter λ ∈ N). An encryption scheme, with
respect to the message spaceM, consists of three probabilistic polynomial-time
algorithm PP-Gen, Enc and Dec. The public-parameter generation algorithm
PP-Gen gets as input 1λ and outputs some public-parameters pp (without loss
of generality we assume that pp contains λ). Given the public-parameters pp, a
key k ∈ {0, 1}λ and a message m ∈Mλ the encryption algorithm Enc outputs a
ciphertext c. The decryption algorithm Dec gets as input the public-parameters
pp, a key k as well as a ciphertext c and outputs a message in Mλ. We require
that (with probability 1), for every setting of the public-parameters pp, message
m ∈Mλ and key k ∈ {0, 1}λ it holds that Dec(pp, k,Enc(pp, k,m)) = m.

In many encryption schemes each ciphertext is associated with some partic-
ular key. We will be interested in schemes where this is not the case. Namely,
ciphertexts are not associated with a specific key, but rather “make sense” un-
der any possible key. We denote by Cpp the distribution obtained by encrypting
a random message using a random key. Namely, the distribution Enc(pp, k,m)
where k ∈R {0, 1}λ and m ∈RMλ.

Definition 5 (Universal Ciphertexts). We say that an encryption scheme
(PP-Gen,Enc,Dec) with respect to message space M = {Mλ}λ∈N has universal
ciphertexts if the following two conditions hold for all constant η > 0, for all
(sufficiently large) λ ∈ N and public parameters pp ∈ PP-Gen(1λ):

1. For every fixed key k∗ ∈ {0, 1}λ, a random ciphertext decrypts to a random
message. Namely, the distribution m ← Dec(pp, k∗, c), where c ← Cpp, is
2−(1+η)λ-statistically close to uniform.

2. For all k∗ ∈ {0, 1}λ and m∗ ∈Mλ, the following distributions are 2−(1+η)λ-
statistically close

– c← Cpp conditioned on Dec(pp, k∗, c) = m∗.
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– c is sampled from c ← Enc(pp, k∗,m∗) (i.e., a fresh encryption of m∗

under public parameters pp and key k∗).

Definition 6 (ε-KDM Security). Let ε = ε(λ) ∈ [0, 1]. We say that an en-
cryption scheme (PP-Gen,Enc,Dec) is ε-KDM secure, if for every polynomial-
time adversary A, for all sufficiently large values of λ and any (possibly ineffi-
cient) function f : {0, 1}λ →Mλ it holds that:

Pr
pp←PP-Gen(1λ)

k∈R{0,1}λ

[
A
(
pp,Enc(pp, k, f(k)

)
= k

]
< ε.

5 Correlation Intractability from Universal-Ciphertexts
KDM encryption

Let PP-Gen, Enc, Dec be an encryption scheme with respect to an ensemble of
message spaces M = {Mλ}λ∈N, as defined in Section 4. For public parameters
pp recall that we denote by Cpp the distribution obtained by encrypting a random
message using a random key (with respect to public parameters pp).

Construction 5 We construct a hash function family H = {Hλ : {0, 1}λ →
Mλ}λ∈N as follows.

The key generation algorithm of the hash function takes input 1λ, samples
public parameters pp of the encryption scheme and a random ciphertext c← Cpp.
The hash key is hk = (pp, c). On input the key (pp, c) and a message to be hashed
α ∈ {0, 1}λ, the hashing algorithm views α as a key of the encryption scheme
and outputs Dec(pp, α, c).

The main result that we prove in this section is if the encryption scheme
has universal ciphertexts (as per Definition 5) and is ε-KDM secure (as per
Definition 6), for sufficiently small ε = ε(λ) > 0, then Construction 5 forms a
correlation intractable hash function family.

Theorem 6. If there exists an encryption scheme with universal ciphertexts

that is ε-KDM secure for ε ≤
(
poly(λ) · 2λ · µ(λ)

)−1
, then Construction 5 is

correlation intractable for all sparse relations with negligible density µ(λ).

5.1 Proof of Theorem 6

Let R be any sparse relation with negligible density µ = µ(λ). Suppose toward
a contradiction that there exists a probabilistic polynomial-time adversary Adv
that breaks the correlation intractability of Construction 5 with non-negligible
probability ν = ν(λ). Namely,

Pr
hk

[
Adv(Hhk) outputs some α ∧

(
α,Hhk(α)

)
∈ R

]
≥ ν(λ).
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Thus, by construction of our hash function it holds that:

Pr
pp

c←Cpp

[
Adv(pp, c) outputs some α s.t.

(
α,Dec(pp, α, c)

)
∈ R

]
≥ ν(λ), (9)

where here and below we use pp to denote public parameters sampled from
PP-Gen(1λ).

For the analysis, we consider a relaxed relation R′ where (α, β) ∈ R′ if
(α, β) ∈ R or if the first blog(ν/2µ)e bits of β are all 0. The density of R′ is
bounded by µ′ ≤ 4µ/ν, which is negligible when µ is negligible. Looking ahead,
the purpose of “padding” R is so that the marginal distribution of α∗, obtained
from jointly sampling a pair (α∗, β∗) randomly from R′, is close to uniform.
More specifically, following [59, Proposition 3.4] we can bound the point-wise
multiplicative difference (or ratio) between these distributions:

Fact 7 For all α′ ∈ {0, 1}λ, β′ ∈Mλ,

Pr
α∗

β∗ s.t (α∗,β∗)∈R′

[
α∗ = α′, β∗ = β′

]
≥ 1

4
· Pr
α∗,β∗ s.t (α∗,β∗)∈R′

[
α∗ = α′, β∗ = β′

]
(10)

Since R ⊆ R′, Eq. (9) implies that:

Pr
pp←PP-Gen(1λ),

c←Cpp

[
Adv(pp, c) outputs α s.t.

(
α,Dec(pp, α, c)

)
∈ R′

]
≥ ν(λ). (11)

We will use Eq. (11) to show that Adv breaks the KDM security of our
encryption scheme, with respect to the randomized KDM function f that given
a key α∗, outputs a random β∗ such that (α∗, β∗) ∈ R′.

We now fix some setting of the public parameters pp. Using the structure of
R′, and the fact that our encryption scheme has universal ciphertexts (Property 2
of Definition 5), it holds that:

Pr
α∗

β∗ s.t (α∗,β∗)∈R′
c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]
(12)

≥ (1/4) · Pr
α∗,β∗ s.t (α∗,β∗)∈R′
c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]

≥ (1/4) ·

 Pr
α∗,β∗ s.t (α∗,β∗)∈R′

c←Cpp s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]
− 2−(1+η)λ


where the first inequality is due to Fact 7; the second is due to the universal
ciphertexts property.
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Our key step is captured by the following proposition, which relates the
adversary’s advantage of recovering the specific key α∗ in a ciphertext encrypt-
ing possibly key-dependent messages, to the advantage of outputting any α
that breaks correlation intractability. While the winning probability in the key-
recovery game is exponentially small, it is lower bounded by a function of the
success probability of breaking correlation intractability.

Proposition 1. For every setting of the public-parameters pp it holds that:

Pr
α∗,β∗ s.t (α∗,β∗)∈R′
c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]

≥2−λ

µ′
·
(

Pr
c

[
Adv(pp, c) outputs α s.t.(
α,Dec(pp, α, c)

)
∈ R′

]
− 2−ηλ

)
,

Proof. Fix the public parameters pp. By the fact that the random variables
(α∗, β∗) and c are independent, it holds that:

Pr
α∗,β∗ s.t (α∗,β∗)∈R′
c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]
= Pr

α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

∣∣ (α∗, β∗) ∈ R′
]
.

(13)

By definition of conditional probability, it holds that:

Pr
α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

∣∣ (α∗, β∗) ∈ R′
]

=

Pr α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

(α∗, β∗) ∈ R′
]

Prα∗,β∗
[
(α∗, β∗) ∈ R′

]
≥ (1/µ′) · Pr

α∗,β∗

c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗(
α∗,Dec(pp, α∗, c)

)
∈ R′

]
, (14)

where the inequality follows from the density of R′.

Claim 8 The following two distributions are 2−(1+η)λ-close:

1. (α∗, c): such that α∗ ∈R {0, 1}λ, β∗ ∈R Mλ and c ← Cpp conditioned on
Dec(pp, α∗, c) = β∗.

2. (α∗, c′): such that α∗ ∈R {0, 1}λ and c′ ← Cpp.

Proof. A different way to sample the exact same distribution as in item (2) is to
first sample α∗ ∈R {0, 1}λ, then c′′ ← Cpp and finally c′ ← Cpp conditioned on
Dec(pp, α∗, c′) = Dec(pp, α∗, c′′).

By the universal ciphertext property 5.1 of the encryption scheme, the dis-
tribution Dec(pp, α∗, c′′) is 2−(1+η)λ close to the uniform distribution over Mλ.
The claim follows. ut
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Combining Claim 8 together with Eqs. (13) and (14) yields that:

Pr
α∗,β∗ s.t (α∗,β∗)∈R′
c s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]

≥ (1/µ′) ·
(

Pr
α∗,c

[
Adv(pp, c) outputs α∗(
α∗,Dec(pp, α∗, c)

)
∈ R′

]
− 2−(1+η)λ

)
= (1/µ′) ·

(
2−λ · Pr

c

[
Adv(pp, c) outputs α s.t.(
α,Dec(pp, α, c)

)
∈ R′

]
− 2−(1+η)λ

)
= (2−λ/µ′) ·

(
Pr
c

[
Adv(pp, c) outputs α s.t.(
α,Dec(pp, α, c)

)
∈ R′

]
− 2−ηλ

)
(15)

This concludes the proof of Proposition 1. ut

Using Proposition 1 and Eq. (12) we obtain that:

Pr
pp
α∗

β∗ s.t (α∗,β∗)∈R′
c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]

= E
pp

 Pr
α∗

β∗ s.t (α∗,β∗)∈R′
c←Enc(pp,α∗,β∗)

[
Adv(pp, c) outputs α∗

]
≥ 1/4 · E

pp

 Pr
α∗,β∗ s.t (α∗,β∗)∈R′

c←Cpp s.t. Dec(pp,α∗,c)=β∗

[
Adv(pp, c) outputs α∗

]− 2−(1+η)λ

≥ 1

4 · 2λ · µ′
· E
pp

[
Pr
c

[
Adv(pp,c) outputs α s.t.(

α,Dec(pp,α,c)
)
∈R′

]
− 2−ηλ

]
− 2−(1+η)λ

=
1

4 · 2λ · µ′
·
(

Pr
pp,c

[
Adv(pp,c) outputs α s.t.(

α,Dec(pp,α,c)
)
∈R′

]
− 2−ηλ

)
− 2−(1+η)λ

≥ ν

8 · 2λ · µ′

= ω

(
poly(λ)

2λ

)
.

Thus, Adv breaks KDM security with probability ε ≥ (1/negl) · 2−λ, in contra-
diction to our assumption.

6 Candidate KDM encryption with universal ciphertexts

We present two encryption schemes that satisfy the ciphertext universality (Def-
inition 5), and plausibly satisfy ε-KDM security (Definition 6) for exponentially
small ε.
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6.1 Discrete-log based

We first present the encryption scheme based on a generic multiplicative group,
and then specify its instantiation over the elliptic curve groups. The scheme can
be viewed as a bit-encryption variant of ElGamal.

Construction 9 Fix a small constant η > 0 (e.g. η = 0.01). Let the message
space be M = {Mλ}λ∈N, where Mλ = {0, 1}w(λ) and w = w(λ) ∈ N. We
construct an encryption scheme as follows.

– Public parameters Generation PP-Gen(1λ): the key-generation algorithm se-
lects a prime N = N(λ) ≥ 2(1+2η)λ, a group G = G(λ) of size N , and a
generator g (the exact algorithm for determining these depends on the specific
group family we use - see instantiations below).
Let ext : G → {0, 1} be a deterministic efficiently computable function that
outputs 0 on dN/2e of the group elements, and 1 on the remaining bN/2c
elements.
The public-parameters pp include a concise7 description of the group G,
generator g, and function ext.

– Encrypt Enc(pp, k, y): We view k as an integer in [2λ]. Let y1 . . . yw ∈ {0, 1}
be the bit decomposition of y.
For each j ∈ [w], sample aj∈R{0, 1, ..., N − 1} and let Aj := gaj . Sample Cj
uniformly from ext−1(yj) and let Bj = Cj · Akj . Output c = (Aj , Bj)j∈[w] as
the ciphertext.

– Decrypt Dec(pp, k, c): Decompose the ciphertext c as (Aj , Bj)j∈[w]. For j ∈
[w], let Cj = Bj/A

k
j and let the jth output bit be ext(Cj).

Remark 1. To ensure the KDM problem is as hard as possible, the group order is
set to be a prime so that not only the discrete-log problem but also the decisional
Diffie-Hellman problem is plausibly hard.

Since the group order is a prime, a deterministic function that extracts a bit
from the group cannot be perfectly balanced. So we set the group order to be
slightly larger than 2(1+η)λ in order to allow 2−(1+η)λ-statistical distance for the
statistical properties.

We first show that the scheme satisfies the universal ciphertext requirement
(see Definition 5).

Proposition 2. The encryption scheme of Construction 9 has universal cipher-
texts.

Proof. The first condition in Definition 5 follows from the fact that for a fixed
encryption key k, and random ciphertext ((Aj , Bj))j∈[w], it holds that each Cj =

7 By concise description of the group, we mean a description of length poly(λ) that
allows performing group operations such as multiplication, inversion, equality testing
and sampling random elements.
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Bj/A
k
j is uniformly distributed and so we only need to account for the deviation

from ext. Overall we get that the output is at most 2−(1+η)λ-close to uniform.
The second condition in Def 5 can be verified as follows. For every j ∈ [w] and

every possible value of Aj , there are exactly |ext−1(yj)| possible values Bj that
Enc can output, and each of them is equally likely. Therefore, each pair (Aj , Bj)
subject to the condition ext(Bj ·Akj ) = wj is equally likely to be output by Enc,
and thus the distribution output by Enc is identical to a random ciphertext for
the given plaintext. ut

As noted above, we need to assume that Construction 9 is exponentially
KDM secure.

Assumption 10 (KDM security for the discrete-log based encryption)
Let λ ∈ N, w(λ) ∈ poly(λ). There exists a family of groups G(λ) (of effi-
ciently computable sizes N(λ), with efficiently computable generators, efficient
group operations, and efficient ext : G → {0, 1}) such that for all function f :
{1, . . . , 2λ} → {0, 1}w (including those that are not efficiently computable), the
following holds. For any polynomial-time adversary Adv, for a uniformly random
k ∈ {1, . . . , 2λ}; for each j ∈ [w], sample aj∈R{0, 1, ..., N}, Cj∈Rext−1(f(k)j).
The probability that adversary outputs k on input (Aj = gaj , Bj = gajk ·Cj)j∈[w]

is smaller than 1
2λ·negl(λ) , i.e.

Pr
k∈R{1,...,2λ}

{aj∈R{0,1,...,N},Cj∈Rext−1(f(k)j)}j∈[w]

{Aj=gaj ,Bj=gajk·Cj}j∈[w]

[
Adv({Aj , Bj}j∈[w]) = k

]
≤ 1

2λ · negl(λ)

Thus, using Theorem 6, we obtain the following corollary.

Corollary 1. Suppose that Assumption 10 holds. Then, there exists correlation
intractable function for all sparse relations.

Remark 2. In Assumption 10, if the function f is a constant (i.e. is independent
of the key), the problem can be reduced from the discrete-log problem over G
with the key restricted to {1, . . . , 2λ}, i.e. computing k ∈ {1, . . . , 2λ} given g,
gk ∈ G. In the reduction, the discrete-log attacker, given g, gk, and f , can
sample (Aj , Bj)j∈[w] from the correct distribution, send over to the adversary in
Assumption 10.

Remark 3. We chose bit encryption for simplicity of notation. Instead of repre-
senting messages as bits, we can represent them in any base b, as long as there is
an efficient and nearly-regular map ext from G to {0, . . . , b− 1}. The regularity
requirement, however, is quite strong: because of the first requirement in Def 5,
the preimage size of every digit under ext must be very close to the average, so
that the statistical distance between ext(G) and uniform is 2−(1+2η)λ.

We can use seeded extractors and put the seed in the public parameters.
Specifically, if we choose N to be at least 22(1+2η)λ · b and ext : G → [b] to be
a pairwise independent hash function, then for the average seed, by the leftover
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hash lemma [54, Lemma 4.8], the output will be
√
|G|/b = 2−(1+2η)λ-close to

uniform. This ensures that a good seed exists (nonconstructively). If want to
make sure the average seed is good with all but exponential probability, we can
choose N to be at least 24(1+2η)λ · b instead. Then for the average seed, the
output will be

√
|G|/b = 2−2(1+2η)λ-close to uniform, and therefore for all but a

1− 2−(1+2η)λ fraction of the seeds, it will be at least 2−(1+2η)λ-close to uniform,
as required.

An instantiation over elliptic curves groups. The group G and the extraction
function ext are chosen such that they avoid the known weakness instances of
the underlying ECDLP, and at the same time enjoy the statistical properties.

An elliptic curve group E(Fq) is represent by the curve E (in the short
Weierstrass form) over finite field Fq: E(Fq) = { (x, y) | y2 = x3+ax+b mod q }∪
O. Choose the curve (namely, choose a, b and q) so that q is an odd prime, the
order of the group #E(Fq) is a prime N > 2(1+2η)λ.

In the short Weierstrass form, if (x, y) ∈ E(Fq), then (x,−y) ∈ E(Fq). Any
point P whose y-coordinate is zero does not exist in a prime order group, since
P = (x, 0) implies the order of P is 2. So one option of the extraction function
ext : E(Fq)→ {0, 1} is to take the sign of the y-coordinate of a point P = (x, y) ∈
E(Fq). To be precise, if y ∈ {1, ..., (q−1)/2}, output 1; if y ∈ {(q+1)/2, ..., q−1},
output 0. As an exception, if P = O, output 0.

6.2 LWE based

The LWE based encryption scheme is a variant of Regev’s scheme [73]. We
remark that the hash function obtained by applying Construction 5 on Con-
struction 11 yields a variant of Ajtai’s hash function [3], in the sense that we
apply rounding on the output vector.

Construction 11 The message space isM = {Mλ}λ∈N, whereMλ = {0, 1}w(λ)

and w = w(λ) ∈ N. We construct an encryption scheme as follows.

– Public parameters generation PP-Gen(1λ): Fix an even number q(λ) as
the modulus. Select B(λ), `(λ) ∈ N such that B` ∈ [2λ−log(λ), 2λ+log(λ)] and
B ≤ q. The public-parameters pp are (B, q, `).

– Representation of the secret key: we view the secret key k ∈ {0, 1}λ as
a vector k ∈ {0, ..., B(λ)− 1}`(λ), written as a column vector.

– Encryption Enc(pp,k, y): Given a message y ∈ {0, 1}w. For j ∈ [w], sample
aj∈RZ1×`

q . compute bj = yj · q2 +ej−aj ·k (mod q), where ej ← U([0, q/2)∩
Z). Output c = (aj , bj)j∈[w] as the ciphertext.

– Decryption Dec(pp,k, c): View c as (aj , bj)j∈[w]. For j ∈ [w], let the jth

output bit be bbj + aj · k mod qe2, where b·e2 : Zq → {0, 1} outputs 0 if the
input is from [0, q/2), 1 if the input is from [q/2, q − 1].

The parameters are set according to the following constraints to minimize
the adversary’s advantage on the KDM problem, and to guarantee the statistical
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properties. The choices of parameters are guided by the reductions from the
worst case problems, as well as the known attacks (e.g. [61,8,75,16,7,60]), even
though some of the attacks were designed to achieve non-trivial (sub)exponential
running time and do not clearly achieving non-trivial success probability when
running in polynomial time.

1. q is even so that we can get perfect ciphertext-universality.
2. The error term e is sampled uniformly from [0, q/2) ∩ Z, differing from the

typical setting of discrete Gaussian distribution. Noise sampled uniformly
from a sufficiently large range is as good as Gaussian for some parameter
settings [34,64]. In particular, q/2 is sufficiently large, even larger than the
typical settings of the norm of the noise.

3. B, `, q are selected so that each coordinate of the secret vector has enough
entropy (i.e. B >

√
n), the vector dimension ` is sufficiently close to λ, B/q

is not too small (i.e. q/B ∈ poly(λ)). One way of setting the parameter is to

let q = O(λ3), B(λ) = 2blog λe, `(λ) =
⌊

λ
blog λe

⌉
.

We first show that the scheme satisfies the universal ciphertext requirement
(see Definition 5).

Proposition 3. The encryption scheme of Construction 11 has universal ci-
phertexts.

Proof. The first property (as per Def 5.1) follows immediately from the perfect
1-universality of the decryption function.

The second property (as per Def 5.2) can be verified as follows. For j ∈ [w],
the randomness in the encryption includes aj ∈ Z1×`

q and the error term ej ∈ Zq.
For all y∗j ∈ {0, 1} and k∗ ∈ {0, ..., B−1}`, (bj ,aj) ∈ Zq×Znq is sampled uniformly
random conditioned on bj+aj ·k∗ mod q ∈ y∗j ·

q
2+[0, q/2)∩Z. Viewing the equality

as a 1-universal function aj ·k∗ mod q ∈ y∗j ·
q
2 +[0, q/2)∩Z− bj with key aj , the

marginal distribution of aj is uniform over Z1×`
q . Then, ej = bj − y∗j ·

q
2 + aj · k∗

is distributed uniformly over [0, q/2) ∩ Z. ut

Assumption 12 (KDM security for LWE-based encryption) Let λ ∈ N,
w(λ) ∈ poly(λ). For all functions f : {0, ..., B − 1}` → {0, 1}w (including those
who are not efficiently computable). The probably that any polynomial time ad-
versary Adv, given {aj ,aj · k + ej + fj(k) · q/2}j∈[w] where k∈R{0, ..., B − 1}`,
aj∈RZ1×`

q , ej∈R[0, q/2) ∩ Z, outputs k is smaller than 1
2λ·negl(λ) , i.e.

Pr
k∈R{0,...,B−1}`

{aj∈RZ1×`
q ,ej∈R[0,q/2)∩Z,

bj=aj ·k+ej+fj(k)·q/2}j∈[w]

[
Adv({aj , bj}j∈[w]) = k

]
≤ 1

2λ · negl(λ)

Thus, using Theorem 6, we obtain the following corollary.

Corollary 2. Suppose that Assumption 12 holds. Then, there exists correlation
intractable function for all sparse relations.
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Remark 4. In Assumption 12, if the function f is a constant (i.e. is independent
of the key), then the problem is equivalent to search-LWE (for the same distri-
butions of secret, noise, and public matrices, and the same requirement on the
success probability as described in Assumption 12).

7 NIZK from Fiat-Shamir

In this section we show how to use our hash functions to construct non-interactive
zero-knowledge (NIZK) arguments for NP. We follow the folklore approach of ap-
plying the Fiat-Shamir transformation to a constant-round public-coin honest-
verifier zero-knowledge proof-system. The point however is that we can establish
soundness based on a concrete assumption (with a meaningful security reduc-
tion) rather than just heuristically assuming that the Fiat-Shamir transforma-
tion preserves soundness. Further, we show that if we start from an interactive
proof with adaptive soundness (where the instance x can be chosen adaptively
in the last message), as in [38]; then in the resulting NIZK, the soundness and
zero-knowledge properties hold even if the instance is chosen adaptively given
the CRS.

We remark that for this result to go through we require an additional property
from the hash function family that we use, beyond correlation intractability.
Namely, that it is possible to efficiently sample a uniformly random hash function
h from the family, conditioned on h(a) = b, for some arbitrary fixed values a
and b. We refer to this property as “programmability”.

Definition 7 (Programmability of hash function). A hash function en-
semble H = {hk : D(λ) → C(λ)}λ∈N is called programmable if there exists an
efficient algorithm M that given x ∈ D(λ) and y ∈ C(λ), outputs a uniformly
random hash function hk from the family such that hk(x) = y.

Translating the requirement to the hash function instantiated using our
KDM-secure encryption scheme, it means the encryption algorithm given a key
a and message b outputs the ciphertext efficiently.

We recall the definition of NIZK with adaptive soundness and zero-knowledge.

Definition 8 (NIZK with adaptive soundness and ZK [17,38]). Let λ ∈
N be the security parameter. A non-interactive (computational) zero-knowledge
argument system (NIZK) for an NP language L ∈ NP, with witness relation RL,
is a pair of probabilistic polynomial-time algorithms (P, V ) such that:

– Completeness: For every x ∈ L and witness w for x (i.e., (x,w ∈ RL)),
for all σ ∈ {0, 1}poly(λ),

V
(
σ, x, P (x, σ, w)

)
= 1.

– Adaptive Soundness: For every polynomial-size cheating prover P ∗, we
have

Pr
σ∈R{0,1}poly(λ)
(x,a)←P∗(σ)

[(
V (x, σ, a) = 1

)
∧
(
x /∈ L

)]
< negl(λ).
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– Adaptive Zero-Knowledge: There exists a probabilistic polynomial-time
simulator S = (S1, S2) such that for every polynomial time adversary A =
(A1, A2),∣∣∣∣∣ Pr

σ∈R{0,1}poly(λ)
(x,w,ζ)←A1(σ)
π←P (x,σ,w)

[(
A2(σ, x, π, ζ) = 1

)
∧
(
x ∈ L

)]

− Pr
σ,τ←S1(1

λ)
(x,w,ζ)←A1(σ)
π←S2(τ,x,σ)

[(
A2(σ, x, π, ζ) = 1

)
∧
(
x ∈ L

)]∣∣∣∣∣ ≤ negl(λ),

where ζ (resp., τ) denote an internal state of the adversary (resp., simula-
tor).

The random string σ received by both P and V is referred to as the common
random string or CRS.

We establish the following result.

Theorem 13. Assume there exists one-way functions and a programmable cor-
relation intractable function ensemble for all sparse relations. Then, any lan-
guage in NP has a non-interactive zero-knowledge argument-system with adaptive
soundness and adaptive zero-knowledge.

As a corollary of Theorem 13 and the results obtained in the previous sec-
tions, we obtain that:

Corollary 3. If either Assumption 10 or Assumption 12 holds, then any lan-
guage in NP has a non-interactive zero-knowledge argument-system with adaptive
soundness and adaptive zero-knowledge.

The readers are refered to the full version [25] for the Proof of Theorem 13.
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Appendices

A Success probability of polynomial time algorithms on
discrete-log problem

The discrete-log problem over F∗q can be solved by the index calculus algorithms

in heuristic subexponential time exp(C(log q)1/3(log log q)2/3).
We consider a (commonly used) variant of the index calculus algorithm with

an online phase and an offline phase. The offline (preprocessing) phase only
gets the modulus q and the generator g, the online phase gets the challenge
h ≡ gx mod q, computes x. The offline part calculates the discrete log of logg(2),
logg(3), ..., logg(B). The online phase picks a random r, try to factorize gr · h ≡
gr+x mod q in Z, see if all the factors are smaller or equal to a prescribed prime
bound B. If gr · h = 2x2 · 3x3 · ... ·BxB , then r + x ≡ logg(2) · x2 + logg(3) · x3 +
...+ logg(B) · xB mod φ(q).

The algorithm achieves O(2−
λ
c ) success probability even if the online phase is

only allowed to run in polynomial time, and the preprocessing phase is allowed to
spend super-polynomial running time, but restricted to leave polynomially many
bits as the advice for the online phase. The analysis of the success probability
relies on the estimation of the number of smooth integers Ψ(q,B), which stands
for the number of integers in the range [1, q] whose factors are all under B.
Since the online phase is forced to receive only polynomial size advice and run
in polynomial time, B will be chosen as a polynomial, whereas q ≈ 2λ.

The smooth integer bound can be derived from Rankin [71] (see the survey

of [48]) that for any A > 1, Ψ(q, log(q)A) = q1−1/A+O( 1
log log q ). This means the

probability of a number within [1, 2λ] to be O(λc) smooth is 2−
λ
c+O( λ

log λ ).
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