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Abstract. Topology-hiding computation (THC) is a form of multi-party compu-
tation over an incomplete communication graph that maintains the privacy of the
underlying graph topology. In a line of recent works [Moran, Orlov & Richelson,
TCC’15, Hirt et al. CRYPTO’16, Akavia & Moran EUROCRYPT’17, Akavia
et al. CRYPTO’17], THC protocols for securely computing any function in the
semi-honest setting have been constructed. In addition, it was shown by Moran
et al. that in the fail-stop setting THC with negligible leakage on the topology is
impossible.
In this paper, we further explore the feasibility boundaries of THC.

– We show that even against semi-honest adversaries, topology-hiding broad-
cast on a small (4-node) graph implies oblivious transfer; in contrast, trivial
broadcast protocols exist unconditionally if topology can be revealed.

– We strengthen the lower bound of Moran et al., identifying and extending
a relation between the amount of leakage on the underlying graph topology
that must be revealed in the fail-stop setting, as a function of the number of
parties and communication round complexity: Any n-party protocol leaking
δ bits for δ ∈ (0, 1] must have Ω(n/δ) rounds.

We then present THC protocols providing close-to-optimal leakage rates, for un-
restricted graphs on n nodes against a fail-stop adversary controlling a dishonest
majority of the n players. These constitute the first general fail-stop THC proto-
cols. Specifically, for this setting we show:
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– A THC protocol that leaks at most one bit and requires O(n2) rounds.
– A THC protocol that leaks at most δ bits for arbitrarily small non-negligible
δ, and requires O(n3/δ) rounds.

These protocols also achieve full security (with no leakage) for the semi-honest
setting. Our protocols are based on one-way functions and a (stateless) secure
hardware box primitive. This provides a theoretical feasibility result, a heuristic
solution in the plain model using general-purpose obfuscation candidates, and
a potentially practical approach to THC via commodity hardware such as In-
tel SGX. Interestingly, even with such hardware, proving security requires so-
phisticated simulation techniques.

1 Introduction
Secure multiparty computation (MPC) is a fundamental research area in cryptography.
Seminal results, initiated in the 1980s [56,33,8,18], and leading to a rich field of re-
search which is still flourishing, proved that mutually distrustful parties can compute
arbitrary functions of their input securely in many settings. Various adversarial models,
computational assumptions, complexity measures, and execution environments have
been studied in the literature. However, until recently, almost the entire MPC literature
assumed the participants are connected via a complete graph, allowing any two players
to communicate with each other.

Recently, Moran, Orlov and Richelson [52] initiated the study of topology-hiding
computation (THC). THC addresses settings where the network communication graph
may be partial, and the network topology itself is sensitive information to keep hidden.
Here, the goal is to allow parties who see only their immediate neighborhood, to se-
curely compute arbitrary functions (that may depend on their secret inputs and/or on
the secret underlying communication graph). In particular, the computation should not
reveal any information about the graph topology beyond what is implied by the output.

Topology-hiding computation is of theoretical interest, but is also motivated by real-
world settings where it is desired to keep the underlying communication graph private.
These include social networks, ISP networks, vehicle-to-vehicle communications, wire-
less and ad-hoc sensor networks, and other Internet of Things networks. Examples indi-
cating interest in privacy of the network graph in these application domains include the
project diaspora*[1], which aims to provide a distributed social network with privacy
as an important goal; works such as [16,54] which try to understand the internal ISP
network topology despite the ISP’s wish to hide them; and works such as [45,25] that
try to protect location privacy in sensor network routing, among others.

There are only a few existing THC constructions, and they focus mostly on the
semi-honest adversarial setting, where the adversary follows the prescribed protocol.
In particular, for the semi-honest setting, the work of Moran et al. [52] achieves THC
for network graphs with a logarithmic diameter in the number of players, from the as-
sumptions of oblivious transfer (OT) and PKE.4 Hirt et al. [42] improve these results,

4 Alternatively, the [52] results can be interpreted as results for arbitrary graphs, but where the
adversary is limited in its corruption pattern, and not allowed to corrupt any k-neighborhoods
where k depends on the graph.
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relying on the DDH assumption, but still requiring the graph to have logarithmic di-
ameter. Akavia and Moran [3] achieve THC for other classes of graphs, in particular
graphs with small circumference. Recently, this was extended by Akavia et al. [2] to
DDH-based THC for general graphs.

In the fail-stop setting, where an adversary may abort at any point but otherwise
follows the protocol, the only known construction is one from [52], where they achieve
THC for a very limited corruption and abort pattern: the adversary is not allowed to
corrupt a full neighborhood (even a small one) of any honest party, and not allowed
an abort pattern that disconnects the graph. This result is matched with a lower bound,
proving that THC in the fail-stop model is impossible (the proof utilizes an adversary
who disconnects the graph using aborts).

In this paper, we further explore the feasibility boundaries of THC. In the semi-
honest model, we study the the minimal required computational assumptions for THC,
and in the fail-stop model we study lower and upper bounds on the necessary leakage.
All our upper bounds focus on THC for arbitrary graphs with arbitrary corruption pat-
terns (including dishonest majority). The security notion in the fail-stop setting is one
of “security with abort”, in which the adversary is allowed to abort honest parties after
receiving the protocol’s output.

1.1 Our Results
We will often describe our results in terms of the special case of Topology-Hiding
Broadcast (THB), where one party is broadcasting an input to all other parties. We
note that all our results apply both to THB and to THC (for arbitrary functionalities).
In general, THB can be used to achieve THC for arbitrary functions using standard
techniques, and for our upper bound protocols in particular the protocols can be easily
changed to directly give THC of any functionality instead of broadcast.

Lower Bounds. We first ask what is the minimal assumption required to achieve THB
in the semi-honest model. Our answer is that at the very least, OT is required (and this
holds even for small graphs). Specifically, we prove:

Theorem (informal): If there exists a 4-party protocol realizing topology-hiding
broadcast against a semi-honest adversary, then there exists a protocol for
Oblivious Transfer.

Note that without the topology-hiding requirement, it is trivial to achieve broad-
cast unconditionally in the semi honest case, as well as the fail-stop case with security
with abort. Indeed, the trivial protocol (sometimes referred to as “flooding”) consists
of propagating everything you received from your neighbors in the previous round, and
then aborting if there is any inconsistency, for sufficiently many rounds (as many as the
diameter of the graph).

We mentioned above the result of [52], who prove that THC in the fail-stop model
is impossible to achieve, since any protocol in the fail-stop model must have some non-
negligible leakage. We next refine their attack to characterize (and amplify) the amount
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of leakage required, as a function of the number of parties n and communication rounds
r of the protocol. We model the leakage of a protocol by means of a leakage oracle
L evaluated on the parties’ inputs (including graph topology) made available to the
ideal-world simulator, and say that a protocol has (δ,L)-leakage if the simulator only
accesses L with probability δ over its randomness.5

In particular, we demonstrate the following:

Theorem (informal): For an arbitrary leakage oracle L (even one which com-
pletely reveals all inputs), the existence of r-round, n-party THB with (δ,L)-
leakage implies δ ∈ Ω(n/r).

The theorem holds even if all parties are given oracle access to an arbitrary functionality,
as is the case with the secure hardware box assumption mentioned below. This improves
over the bound of [52], which corresponds to δ ∈ Ω(1/r) when analyzed in this fashion.

Upper Bounds. We start by noting that a modification of the construction in [52]
gives a scheme achieving TH computation in the semi-honest setting, for log-diameter
graphs from OT alone (rather than OT + PKE as in the original work). This matches
our lower bound above, showing THC if and only if OT, in the case of low diameter
graphs.

Our main upper bound result is a THC construction for arbitrary graph structures
and corruptions, in the fail-stop, dishonest majority setting, and (since leakage is nec-
essary), with almost no leakage.

We have two versions of our scheme. The first is a scheme in O(n2) rounds (where
n is a bound on the number of parties), which leaks at most one bit about the graph
topology (i.e., simulatable given a single-output-bit leakage oracle L). The leaked bit
is information about whether or not one given party has aborted at a given time in the
computation. This information may depend on the graph topology.

We then extend the above to a randomized scheme with arbitrarily small inverse
polynomial leakage δ, in O(n3/δ) rounds; more specifically, (δ,L)-leakage for single-
bit-output oracleL. Here the leakage fromL also consists of information about whether
or not one given party has aborted at a given time in the computation. However, roughly
speaking, the protocol is designed so that this bit depends on the graph topology only if
the adversary has chosen to obtain this information in a specific “lucky” round, chosen
at random (and kept hidden during the protocol), and thus happens with low probability.

We also point out that a simpler version of our scheme achieves full security (with
no leakage) in the semi-honest model (for arbitrary graphs and arbitrary corruption
pattern). Moreover, we leverage our stronger assumption to achieve essentially optimal
round complexity in the semi-honest model—the protocol runs in O(diam(G)) rounds
(where diam(G) is a bound on the diameter of the communication graph G) and can
directly compute any functionality (any broadcast protocol must have at least diam(G)
rounds, otherwise the information might not reach all of the nodes in the graph). In
contrast, the only previous THC protocol for general graphs [2] requires Ω(n3) rounds

5 Interestingly, this formalization is not equivalent to (and slightly weaker than) Lδ-leakage for
respective functionality Lδ that provides the output of L only with probability δ; see the full
version for details. (Note that ruling out a weaker notion means a stronger lower bound.)
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for a single broadcast; computing more complex functionalities requires composing this
with another layer of MPC on top.

Our schemes relies on the existence of one-way functions (OWF), as well as a secure
hardware box, which is a stateless “black box”, or oracle, with a fixed secret program,
given to each participant before the protocol begins. We next discuss the meaning and
implications of this underlying assumption, but first we summarize our main upper
bound results:

Theorem (informal): If OWF exist and given a secure hardware box, for any
n-node graph G and poly-time computable function f ,

– There exists an efficient topology-hiding computation protocol for f against
poly-time fail-stop adversaries, which leaks at most one bit of information
about G, and requires O(n2) rounds.

– For any inverse polynomial δ, there exists an efficient topology-hiding com-
putation protocol for f against poly-time fail-stop adversaries, which leaks
at most δ bits of information about G, and requires O(n3/δ) rounds.

We remark that the first result gives an n-party, r-round protocol with (O(n2/r),L)-
leakage, in comparison to our lower bound that shows impossibility of (o(n/r),L)-
leakage. Closing this gap is left as an intriguing open problem.

On Secure Hardware Box Assumption. A secure hardware box is an oracle with a
fixed, stateless secret program. This bears similarity to the notion of tamper-proof hard-
ware tokens, introduced by Katz [46] to achieve UC secure MPC, and used in many fol-
lowup works in various contexts, both with stateful and stateless tokens (cf. [15,37,20]
and references within).

A hardware box is similar to a stateless token, but is incomparable in terms of the
strength of the assumption. On one hand, a hardware box is worse, as we assume an
honest setup of the box (by a party who does not need to know the topology of the
graph, but needs to generate a secret key and embed the right program), while hardware
tokens are typically allowed to be generated maliciously (although other notions of
secure hardware generated honestly have been considered before, e.g. [43,19]). On the
other hand, a hardware box is better, in that, unlike protocols utilizing tokens, it does
not need to be passed around during the protocol, and the players do not need to embed
their own program in the box: there is a single program that is written to all the boxes
before the start of the protocol.

Unlike previous uses of secure hardware in the UC settings (where we know some
setup assumption is necessary for security), we do not have reason to believe that strong
setup (much less a hardware oracle) is necessary to achieve THC. However, we believe
many of the core problems of designing a THC protocol remain even given a secure
hardware oracle. For example, the lower bounds on leakage hold even in this setting.
In particular, our hardware assumption does not make the solution trivial (in fact, in
some senses the proofs become harder, since even a semi-honest adversary may query
the oracle “maliciously”). Our hope is that the novel techniques we use in constructing
the protocol, and in proving its correctness, will be useful in eventually constructing a
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protocol in the standard model. We note that this paradigm is a common one in cryptog-
raphy: protocols are first constructed using a helpful “hardware’ oracle”, and then ways
are found to replace the hardware assumption with a more standard one. Examples in-
clude the ubiquitous “random oracle”, but also hardware assumptions much more simi-
lar to ours, such as the Signature Card assumption first used to construct Proof-Carrying
Data (PCD) schemes [19]. (Signature cards contain a fixed program and a secret key,
and can be viewed as a specific instance of our secure hardware assumption.)

Thus, one way to think of our upper bound result is as a step towards a protocol in
the standard model.

At the same time, our phrasing of the assumption as “secure hardware” is inten-
tional, and physical hardware may turn out to be the most practical approach to actually
implementing a THC protocol. Because our functionality is fixed, stateless, and identi-
cal for all parties, our secure hardware box can be instantiated by a wide range of physi-
cal implementations, including general-purpose “trusted execution environments”, that
are becoming widespread in commodity hardware (for example, both ARM (TrustZone)
and Intel (SGX) have their own flavors implemented in their CPUs). We discuss a po-
tentially practical approach to THC through the use of SGX secure hardware in the full
version of this paper.

Future directions. Our work leaves open many interesting directions to further pur-
sue, such as the following.

– Obtain better constructions for the case of honest majority.
– Obtain THC in the fail-stop model from standard cryptographic assumptions. In

particular, can THC be achieved from OT alone, matching our lower bound?
– The results for THC in the fail-stop setting are in some ways reminiscent of the

results for optimally fair coin tossing. In particular, in both cases there is an im-
possibility result if no leakage or bias is allowed, and there are lower bounds
and upper bounds trading off the amount of leakage with the number of rounds
(cf. [22,23,51,24]). It would be interesting to explore whether there is a formal
connection between THC and fair coin tossing, and whether such a connection can
yield tighter bounds for THC.

– THC with security against malicious adversaries is an obvious open problem, with
no prior work addressing it (to the best of our knowledge). Could our results be
extended to achieve security in the malicious settings? More generally, could a
secure hardware box be useful towards maliciously secure THC?

1.2 Technical Overview

A starting point for our upper bound protocol is the same starting point underlying
the previous THB constructions [52,42,3]: Consider the trivial flooding protocol that
achieves broadcast with no topology hiding, by propagating the broadcasted bit to all
the neighbors repeatedly until it reaches everyone. One problem with this protocol is
that the messages received by a node leak a lot of information about the topology of the
graph (e.g., the distance to the broadcaster). Previous works mitigate that by encrypting
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the communication, and also requiring all nodes to send a bit in every round: the broad-
caster sends its bit, and the other nodes send a 0; each node then ORs all the incoming
bits, and forwards to its neighbors in the next round. However, this leaves the question
of how the bit will be decrypted to obtain the final result. This is where previous works
differ in their techniques to address this issue (using nested MPC, homomorphic en-
cryption, ideas inspired by mix-nets or onion routing to allow gradual decryption, etc),
and the different techniques imply different limitations on the allowed graph topology
(or corruption patterns) that support the solution.

We also begin with the same starting point of trying to implement flooding. We
then use the secure hardware box, which will contain a relevant secret key that allows
it to process encrypted inputs (partial transcripts propagated from different parts of the
graph) and produce an encrypted output to propagate further in the next round, as well
as decrypting the output at the end. However, we have several new technical challenges
that arise, both because of the fail-stop setting, and because of the existence of the box
itself.

First, the fail-stop setting presents a significant challenge (indeed, provably neces-
sitating some leakage). Intuitively, abort behavior by the adversary will influence the
behavior of honest parties (e.g., if an honest party is isolated by aborts in their im-
mediate neighborhood, they would not be able to communicate and will have to abort
rather than output something; aborting behavior of honest parties can in turn provide
information to the adversary about the graph topology). The hardware box will help
in checking consistency of partial transcripts, and helping honest parties manage when
and how they disclose their plan to output abort at the end of the protocol.

A second source of difficulty stems from having the secure hardware box at the
disposal of the adversary. This allows to inject a malicious aspect to the adversary’s
behavior, even in a fail-stop (or even semi-honest) setting. Indeed, since each player has
their own box, and the box is stateless, the adversary can run the boxes with arbitrary
inputs, providing different partial transcripts, abort or non-abort behavior, etc, in order
to try and learn information about the graph topology. This presents challenges that
make the proof of security much more involved and quite subtle.

Overview of our solution. Recall the core source of information leakage is from the
abort-or-not values of various parties, as a function of fail-stop aborts caused by the ad-
versary. The first idea of our construction is to limit the amount of leakage to a single bit
by ensuring that for any fail-stop abort strategy, the abort-or-not value of only a single
party will be topology dependent. This is achieved by designating a special “threshold”
round Ti for each party: if the party Pi learns of an abort somewhere in the graph before
round Ti, he will output abort at the conclusion of the protocol, and if he only learns
of an abort after this round he will output the correct bit value. By sufficiently separat-
ing these threshold rounds, and leveraging the fact that an abort will travel to all nodes
within n rounds (independent of the graph topology), we can guarantee that any given
abort structure will either reach before or after the threshold round of a single party in
a manner dependent on the topology.

Note that in the above, if the threshold rounds Ti are known, then there exists an
adversarial strategy which indeed leaks a full bit on the topology. To obtain arbitrarily
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small leakage δ, we modify the above protocol by expanding the “zone” of each party
into a collection of O(n/δ) possible threshold rounds. The value of the true threshold
for each party is determined (pseudo-)randomly during protocol execution and is hidden
from the parties themselves (who see only encrypted state vectors from their respective
secure hardware boxes). Because of this, the probability that an adversary will be able to
successfully launch a leakage attack on any single party’s threshold round will drop by
a factor of δ/n; because this attack can be amplified by attacking across several parties’
zones, the overall winning probability becomes comparable to δ. Note that such an
increase in rounds to gain smaller leakage is to be expected, based on our leakage lower
bound.

The more subtle and complex portion of our solution comes in the simulation strat-
egy, in particular for simulating the output of the hardware box on arbitrary local queries
by adversarial parties. At a high level, the simulator will maintain a collection of graph
structures corresponding to query sequences to the boxes (where outputs from previous
box queries are part of input to a later box query), and will identify a specific set of
conditions in which a query to the leakage oracle must be made. See below for a more
detailed description.

Overview of simulation strategy. Simulation consists almost entirely of answering
queries to the hardware box. As intermediate outputs from the box are encrypted, the
chief difficulty lies in determining what output to give to queries corresponding to the
final round of the protocol: either ⊥ (abort); the broadcast bit; or something else, given
partial leakage information about the graph and only the local neighborhood of the
corrupted parties.

The simulator uses a data structure to keep track of the relationship between queries
to the hardware box and outputs from previous queries. In the real world, this rela-
tionship is enforced by the unforgeability of the authenticated encryption scheme. The
simulator can use this data structure to determine whether a query is “derived,” in part,
from ‘honest’ (simulated) messages, and additionally, what initializations were used for
the non-honest parties connected to the node expecting output.

One of the major difficulties is that even a semi-honest adversary can locally query
his hardware box in malicious ways: combining new initializations in novel ways with
pieces of the honest transcript, or aborting in multiple different patterns. The bulk of the
proof is devoted to showing that all of these cases can be simulated.

One key fact utilized in this process is that if the protocol gives any output at all, then
all honest nodes must have encrypted states at round n (the maximum diameter of the
graph) that contain a complete picture of the graph, inputs, session keys, etc. Therefore,
the real hardware box will not give plaintext output if such an honest state is mixed with
states in a manner that deviates from the real protocol evaluation significantly.

An added wrinkle is that the hardware box, by virtue of the model, is required
to handle a variety of abort sequences. Moreover, the kind of output received after
certain abort timing inherently leaks information about the topology. Yet, the simulator
must decide output behavior without additional leakage queries. Here again the honest
messages will essentially “lock” an adversary into aborts that are “consistent” with the
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aborts in the real protocol evaluation. (For example, an adversary can “fast-forward” a
node after the nodes output is guaranteed by pretending all of its neighbors aborted.)

The honest messages also aid in replay attacks as they allow the simulator to only
consider connected groups of corrupt nodes. If two nodes are separated by honest nodes
in the real world, then in their replay attack no new abort information will be transmitted
from one to the other if the protocol is replayed in a locally consistent manner (modulo
aborts). (If the protocol is not locally consistent no descendent of that query will yield
plaintext output.)

Finally, if a query doesn’t have any honest ancestors, the simulator can simulate
output trivially as it knows all of the initialization information.

In short, the difficulties in the proof come from the fact that output depends on
topology and abort structure, and a fail-stop adversary can use his box to essentially
simulate malicious runs of the protocol after its completion to attempt to gain more
leakage on the topology. However, the simulator can only query the leakage oracle at
most once. Accordingly, the specific timing of its query in protocol evaluation is very
delicate: if it is too early the adversary can abort other nodes to change output behavior
in an unsimulatable manner, if it is too late then the adversary can fast-forward to get
output in an unsimulatable manner. Moreover, output behavior must be known for all
replay attacks where the simulator has incomplete initialization information (pieces of
the honest transcript are used). As a consequence, we are forced to consider elaborate
consistency conditions to bind the adversary to a specific evaluation (modulo aborts),
and prove that these conditions achieve bind the adversary while still allowing him the
freedom to actively attack the protocol using the hardware.

1.3 Related Work
We have already discussed above the prior works on topology-hiding computation in
the computational setting [52,42,3], which are the most relevant to our work.

Topology-hiding computation was also considered earlier in the information-theoretic
setting, by Hinkelmann and Jakoby [41]. They provide an impossibility result, prov-
ing that any information-theoretic THC protocol leaks information to an adversary
(roughly, when two nodes who are not neighbors communicate across the graph, some
party will be able to learn that it is on the path between them). They also provide an
upper bound, achieving information theoretic THC that leaks a routing table of the net-
work, but no other information about the graph.

There are several other lines of work that are related to communication over in-
complete networks, but in different contexts, not with the goal of hiding the topol-
ogy. For example, a line of work studied the feasibility of reliable communication
over (known) incomplete networks (cf. [26,28,27,5,48,10,7,4,14]). More recent lines
of work study secure computation with restricted interaction patterns in a few settings,
motivated by improving efficiency, latency, scalability, usability, or security. Examples
include [39,36,11,13,6,38]. Some of these works utilize a secret communication sub-
graph of the complete graph that is available to the parties as a tool to achieve their goal
(e.g. [11,13] use this idea in order to achieve communication locality).

An early use of a hidden communication graph which is selected as a subgraph of
an available known larger graph, is in the context of anonymous communication and
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protection against traffic analysis. Particularly noteworthy are the mix-net and onion
routing techniques ([17,55,53] and many follow up works), which also inspired some
of the recent THC techniques.

There is a long line of work related to the use of secure hardware in cryptography,
in various flavors with or without assuming honest generation, state, complete tamper
proofness, etc. This could be dated back to the notion of oblivious RAM ([34] and
many subsequent works). Katz [46] introduced the notion of a hardware token in the
context of UC-secure computation, and this notion has been used in many followup
works (e.g. [15,37,20] and many others). Variations on the hardware token, where the
hardware is generated honestly by a trusted setup, include signature cards [43], trusted
smartcards [40], and so called non-local-boxes [9]. The latter are similar to global hard-
ware boxes that are generated honestly and take inputs and output from multiple parties
(in contrast to our notion of a hardware box, which is local). Other variations and re-
laxations include tamper-evident seals [50], one time programs [35], and various works
allowing some limited tampering ([44,31] and subsequent works). Finally, there is a line
of works using other physical tools to perform cryptographic tasks securely, including
[29,30,32]

2 Preliminaries

2.1 Secure Hardware

We model our secure hardware box as an ideal oracle, parameterized by a stateless
program Π . The oracle query O(Π)(x) returns the value Π(x). Our definition is much
simpler than the standard secure hardware token definitions, since all parties have ac-
cess to the same program, and it is stateless—there is no need for a more complex
functionality that keeps track of the “physical location” of the token or its internal state.

2.2 Topology Hiding Computation

The work of [52] put forth two formal notions of topology hiding: a simulation-based
definition, and a weaker indistinguishability-based definition. In this work, we primarily
focus on the simulation-based definition, given below. However, some of our lower
bounds apply also to the indistinguishability-based notion.

The definition of [52] works in the Fgraph-hybrid model, for Fgraph functionality
(shown in Figure 1) that takes as input the network graph from a special “graph party”
Pgraph and returns to each other party a description of their neighbors. It then handles
communication between parties, acting as an “ideal channel” functionality allowing
neighbors to communicate with each other without this communication going through
the environment.

In a real-world implementation, Fgraph models the actual communication network;
i.e., whenever a protocol specifies a party should send a message to one of its neighbors
using Fgraph, this corresponds to the real-world party directly sending the message over
the underlying communication network.
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Fig. 1: The functionality Fgraph.

Participants/Notation:
This functionality involves all the parties P1, . . . , Pm and a special graph party
Pgraph.

Initialization Phase:
Inputs: Fgraph waits to receive the graph G = (V, E) from Pgraph.
Outputs: Fgraph outputs NG[v] to each Pv.

Communication Phase:
Inputs: Fgraph receives from a party Pv a destination/data pair (w,m) where
w ∈ N(v) and m is the message Pv wants to send to Pw. (If w is not a neighbor
of v, Fgraph does nothing.)
Output: Fgraph gives output (v,m) to Pw indicating that Pv sent the message
m to Pv.

Since Fgraph provides local information about the graph to all corrupted parties, any
ideal-world adversary must have access to this information as well (regardless of the
functionality we are attempting to implement). To capture this, we define the function-
ality FgraphInfo, that is identical to Fgraph but contains only the initialization phase. For
any functionality F , we define a “composed” functionality (FgraphInfo||F ) that adds the
initialization phase of Fgraph to F . We can now define topology-hiding MPC in the UC
framework:

Definition 1 (Topology Hiding (Simulation-Based)). We say that a protocol Π se-
curely realizes a functionality F hiding topology if it securely realizes (FgraphInfo||F ) in
the Fgraph-hybrid model.

Note that this definition can also capture protocols that realize functionalities depending
on the graph (e.g., find a shortest path between two nodes with the same input, or count
the number of triangles in the graph).

2.3 Extended Definitions of THC

We extend the simulation definition of Topology-Hiding Computation beyond the semi-
honest model, capturing fail-stop corruptions, and formalizing a measure of leakage of
a protocol.

Topology Hiding with Leakage

We consider a weakened notion of topology hiding with partial information leakage.
This is modeled by giving the ideal-world simulator access to a reactive functionality
leakage oracleL, where the type/amount of leakage revealed by the protocol is captured
by the choice of the leakage oracle L. For example, we will say a protocol “leaks a
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single bit” about the topology if it is topology hiding for some oracle L which outputs
at most 1 bit throughout the simulation.6

Definition 2 (Topology Hiding with L-Leakage). We say that a protocol Π securely
realizes a functionality F hiding topology withL-leakage if it realizes (FgraphInfo||F ||L)
in the Fgraph-hybrid model, where L is treated as an ideal (possibly reactive) function-
ality which outputs only to corrupt parties.

Note that the above functionality (FgraphInfo||F ||L) is not a “well-formed” function-
ality in the sense of [12], as the output of the functionality depends on the set of cor-
rupt parties. However, this is limited to additional information given to corrupt parties,
which does not run into the simple impossibilities mentioned in [12] (indeed, it is easier
to securely realize than (FgraphInfo||F )). The definition also extends directly to topology
hiding within different adversarial models, by replacing Fgraph with the corresponding
functionality (such as Fgraph-failstop for fail-stop adversaries; see below).

It will sometimes be convenient when analyzing lower bounds and considering frac-
tional bits of leakage to consider the following restricted notion of (δ,L)-leakage, for
probability δ ∈ [0, 1]. Loosely, a (δ,L)-leakage simulator is restricted to only utiliz-
ing the leakage oracle L with probability δ over the choice of its random coins. Note
that this notion is closely related toLδ-leakage for the oracleLδ which internally tosses
coins and decides with probability δ to respond with the output ofL. Interestingly, how-
ever, the two notions are not equivalent: in the full version of this paper we show that
there exist choices of F , δ ∈ [0, 1], oracle L, and protocols Π for which Π is a (δ,L)-
leakage secure protocol, but not Lδ-leakage secure. For our purposes, (δ,L)-leakage
will be more convenient.

Definition 3 (Topology Hiding with (δ,L)-Leakage). Let δ ∈ [0, 1] and L a leakage
oracle functionality. We say that a protocol Π securely realizes a functionality F hiding
topology with (δ,L)-leakage if it realizes (FgraphInfo||F ||L) in the Fgraph-hybrid model
with the following property: For any adversarial environment Z, it holds with proba-
bility (1 − δ) over the random coins of the simulator S, that S does not make any call
to L.

In the full version of this paper we show that this notion of (δ,L)-leakage provides
a natural form of composability.

Topology Hiding in the Fail-Stop Model

We now define security for the case that the adversary must follow the protocol (as in
the semi-honest case), but may fail nodes. Consider the functionality Fgraph-failstop given
in fig. 2, which serves as the analog of Fgraph in the semi-honest model.

As the initialization phase (and ideal-world-counterpart) of Fgraph-failstop is identical
to that of Fgraph, we denote it the same: FgraphInfo. As before, the communication phase
consists of repeated invocation of Fgraph-failstop. The fail input in the communication
phase represents failing a node, as such, it should only be invoked adversarially (not
part of normal protocol operation).

6 Note that this is related to, but a different setting than leakage-resilient protocols, where the
model considers leakage information to the adversary in the real-world execution.

12



Fig. 2: The functionality Fgraph-failstop.

Participants/Notation:
This functionality involves all the parties P1, . . . , Pm and a special graph party
Pgraph.

Initialization Phase:
Inputs: Fgraph-failstop waits to receive the graph G = (V, E) from Pgraph.
Outputs: Fgraph-failstop outputs NG[v] to each Pv.

Communication Phase:
Inputs: Fgraph-failstop may receive one of the following from a party Pv:

1. a destination/data pair (w,m) where w ∈ N(v) and m is the message Pv

wants to send to Pw. (If w is not a neighbor of v, or if either v or w has
previously sent (Fail), Fgraph-failstop ignores this message.)

2. Fail
Output: If the input is of the form:

1. (destination/data pair (w,m)) Fgraph-failstop gives output (v,m) to Pw indi-
cating that Pv sent the message m to Pv.

2. (Fail) Fgraph-failstop gives output Fail to all neighbors of Pv.

Topology-hiding security-with-abort As is the case for standard (non-topology-hiding)
MPC, when we allow active adversaries we relax the security definition to security-
with-abort. However, there are wrinkles specific to the topology-hiding setting that
make our security-with-abort definition slightly different.

In the standard extension of simulation-based security to security-with-abort, we
add a special abort command to the ideal functionality; when invoked by the ideal-
world simulator, all the honest parties’ outputs are replaced by ⊥. When the commu-
nication graph is complete, this extra functionality is trivial to add to any protocol: an
honest party will output ⊥ if it receives an abort message from any party (since honest
parties will never send abort, this allows the adversary to abort any honest party, but
does not otherwise change the protocol).

In the topology-hiding setting, this extra functionality—by itself—might already be
too strong to realize, since, depending on when the abort occurs, the “signal” might not
have time to reach all honest parties. (In fact, this is essentially the crux of the fail-stop
impossibility result of [52] and of our leakage lower bound in section 3.2).

Thus, when we define security-with-abort for topology-hiding computation, we aug-
ment the ideal functionality with a slightly more complex abort command: it now re-
ceives list of parties as input (the “abort vector”); only the outputs of those parties will
be replaced with ⊥, while the rest of the parties will output as usual.

Note that in the UC model, the environment sees the outputs of all parties, including
the honest parties. Hence, to securely realize a functionality-with-abort, the simulator
must ensure that the simulation transcript, together with the honest parties’ output, is
indistinguishable in the real and ideal worlds. In the topology-hiding case, this means
that the set of aborting parties must also be indistinguishable. Since whether or not a
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party aborts during protocol execution depends on the topology of the graph, in order
to determine the abort vector the simulator may require the aid of the leakage oracle (in
our case, this is actually the only use of the leakage oracle).

Definition 4 (Fail-stop Topology Hiding). We say that a protocolΠ securely realizes a
functionality F hiding topology against fail-stop adversaries if it realizes (FgraphInfo||F )
with abort in the Fgraph-failstop-hybrid model.

Recall that general topology hiding computation against fail-stop adversaries is im-
possible [52]; we thus consider the notion of topology hiding against fail-stop with
(δ,L)-leakage.

Definition 5 (Fail-stop Topology Hiding with Leakage). We say that a protocol Π
securely realizes a functionality F hiding topology against fail-stop adversaries with
(δ,L)-leakage if it realizes (FgraphInfo||F ||L) with abort in the Fgraph-failstop-hybrid model,
with the following property: For any adversarial environment Z, it holds with proba-
bility (1 − δ) over the random coins of the simulator S, that S does not make any call
to L.

3 Lower Bounds

We begin by exploring lower bounds on the feasibility of topology-hiding computation
protocols. In this direction, we present two results.

First, we demonstrate that topology hiding is inherently a non-trivial cryptographic
notion, in the sense that even for semi-honest adversaries and the simple goal of broad-
cast (achievable trivially when topology hiding is not a concern), topology-hiding pro-
tocols imply the existence of oblivious transfer.

We then shift to the fail-stop model, and provide a lower bound on the amount of
leakage that must be revealed by any protocol achieving broadcast, as a function of the
number of rounds and number of parties. This refines the lower bound of [52], which
shows only that non-negligible leakage must occur.

Both results rely only on the correctness guarantee of the broadcast protocol in
the “legal” setting, where a single broadcaster sends a valid message. We make no
assumptions as to what occurs in the protocol if parties supply an invalid set of inputs.
(In particular, this behavior will not be need to be encountered within our lower bounds.)

More formally, our lower bounds apply to THC protocols achieving any functional-
ity F that satisfies the following single-broadcaster-correctness property:

Definition 6 (Single-Broadcaster Correctness). An ideal n-party functionality F :
{0, 1,⊥}n → {0, 1,⊥}n will be said to satisfy single-broadcaster correctness if for any
input vector (b1, . . . , bn) ∈ {0, 1,⊥}n in which a single input b := bi is non-⊥, the
functionality F outputs b to all parties within the connected component of Pi (and no
output to all other parties).
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3.1 Semi-Honest Topology-Hiding Broadcast Implies OT
Consider the task of broadcast on a given communication graph. If parties are semi-
honest, and no topology hiding is required, then such a protocol is trivial: In each round,
every party simply passes the broadcast value to each of his neighbors; within n rounds,
all parties are guaranteed to learn the value. However, such a protocol leaks information
about the graph structure. For instance, the round in which a party receives the broadcast
bit is precisely the distance of this party to the broadcaster. It is not clear at first glance
whether this approach could be adapted unconditionally, or perhaps enhanced by tools
such as symmetric-key encryption, in order to hide the topology.

We demonstrate that such an approach will not be possible. Namely, we show that
even semi-honest topology-hiding broadcast (THB) implies the existence of oblivious
transfer. This holds even for the weaker notion of indistinguishability-based (IND-CTA)
topology-hiding security [52] ) which directly implies the same lower bound for the
simulation-based definition. As described above, our bound applies to protocols for any
functionality which satisfies single-broadcaster correctness.

Theorem 1 (THB implies OT). If there exists an n-party protocol for n ≥ 4 achieving
IND-CTA topology hiding against a semi-honest adversary, for any functionalityF with
single-broadcaster correctness, then there exists a protocol for oblivious transfer.

We note that, because both the following protocol and proof are black box with re-
spect to the IND-CTA topology-hiding broadcast protocol, the proof holds in the pres-
ence of secure hardware.

Proof. We present a protocol for semi-honest secure 2-party computation of the OR
functionality given such a semi-honest topology-hiding broadcast protocol for n = 4
parties. This implies existence of oblivious transfer [21,49,47].

First, observe that in the semi-honest setting, topology-hiding broadcast of mes-
sages of any length (even of a single bit) directly implies topology-hiding broadcast of
arbitrary-length messages, by sequential repetition.

In a secure OR computation protocol, two parties A, B begin with inputs xA, xB ∈

{0, 1}, and must output (xA ∨ xB). In our construction, each party A, B will emulate two
parties in an execution of the 4-party topology-hiding broadcast protocol Psh-broadcast for
messages of length λ: namely, A emulates PA

0 , P
A
1 , and B emulates PB

0 , P
B
1 , where PA

0 , P
B
0

are connected as neighbors and PA
1 , P

B
1 are similarly neighbors. Each of the parties A, B

will emulate an edge between its own pair of parties if and only if its protocol input bit
xA, xB ∈ {0, 1} is 1. More formally, the secure 2-party OR protocol is given in Figure 3.

We now demonstrate a simulator for the secure 2-party computation protocol. The
simulator receives as input the security parameter 1λ, the corrupted party C’s input xC

(where C ∈ {A, B}), the final output b ∈ {0, 1}, equal to the OR of xC with the (secret)
honest party input bit, and auxiliary input z. As its output, SA(1λ, xC , b, z) simulates
an execution of POR interacting with the adversary A while emulates the role of the
uncorrupted party C′ , C ∈ {A, B}, but using input b in the place of the (unknown)
input xC′ .

Denote by viewPOR
A

(1λ, (xA, xB), z) the (real) view of the adversary A within the
protocol POR on inputs xA, xB, when given auxiliary input z.
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Fig. 3: Secure 2-Party OR Protocol POR from Semi-Honest THB

Inputs: Parties A, B have inputs xA, xB ∈ {0, 1}.
Outputs: Parties A, B output (xA ∨ xB).
Protocol POR:

1. A chooses a string R← {0, 1}λ at random.
2. A, B honestly emulate an execution of Psh-broadcast, as follows:

• A emulates parties PA
0 , P

A
1 with respective neighborhoods {PB

0 }, {P
B
1 }

if xA = 0 and with neighborhoods {PA
1 , P

B
0 }, {P

A
0 , P

B
1 } if xA = 1.

• B emulates parties PB
0 , P

B
1 with respective neighborhoods {PA

0 }, {P
A
1 }

if xB = 1 and with neighborhoods {PB
1 , P

A
0 }, {P

B
0 , P

A
1 } if xB = 1.

Party PA
0 runs as the designated broadcaster, with input R. All other par-

ties run with input ⊥, indicating they are not broadcasting.
3. For each X ∈ {A, B}, b ∈ {0, 1}, denote by outX

b the output of emulated
party PX

b at the conclusion of Psh-broadcast. A, B output as follows:
• A outputs 1 iff outA

0 = outA
1 = R.

• B outputs 1 iff outB
0 = outB

1 .

Claim. For every xA, xB ∈ {0, 1}, non-uniform polynomial-time adversary A, and aux-
iliary input z, it holds that

(xA, xB, b, viewPOR
A

(1λ, (xA, xB), z))
c
� (xA, xB, b,SA(1λ, xC , b, z)).

Proof. First observe that output correctness ofPOR holds, as follows. By single-broadcaster
correctness of Psh-broadcast (note that indeed there is a single broadcaster), all parties in
the connected component of the broadcaster PA

0 within the emulated execution will out-
put the string R. In particular, this includes PB

0 : i.e., outB
0 = R. In contrast, any party

outside the connected component of PA
0 will have a view in the emulated THB protocol

that is information theoretically independent of the choice of R, and thus will output R
with negligible probability. This means outA1 and outB

1 will equal R precisely when there
exists an edge between x0

D and x1
D for at least one D ∈ {A, B}: that is, iff (xA ∨ xB) = 1.

In the case of b = 0, the simulation is perfect. In the case of b = 1, indistinguishabil-
ity of the above real-world and ideal-world distributions follows directly by the indistin-
guishability under chosen topology attack (IND-CTA) security of Psh-broadcast. Namely,
the simulation corresponds to execution of Psh-broadcast on the graph G with an edge
between the two uncorrupted parties PC′

0 , P
C′
1 , whereas depending on the value of the

honest input xC′ , the real distribution is an execution on either this graph G or the graph
G′ with this edge removed. A successful distinguisher thus breaks IND-CTA for the
challenge graphs G,G′.

3.2 Lower Bound on Information Leakage in Fail-Stop Model
The work of [52] demonstrated that non-negligible leakage on the graph topology must
occur in any broadcast protocol in the presence of fail-stop corruptions. In what follows,
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we extend this lower bound, quantifying and amplifying the amount of information
revealed.

Roughly, we prove that any protocol realizing broadcast with abort must leakΩ(n/R)
bits of information on the graph topology, where n is the number of parties, and R is the
number of rounds of interaction of the protocol.7 More formally, we demonstrate an at-
tack that successfully distinguishes between two different honest party graph structures
with advantage Ω(n/R). This, in particular, rules out the existence of (δ,L)-leakage
topology hiding for δ ∈ o(n/R), for any leakage oracle L. We compare this to our
protocol construction in Section 4.2, which achieves (δ,L)-leakage in this model for a
single-output-bit L and δ ∈ O(n2/R). We leave open the intriguing question of closing
this gap.

The proof follows an enhanced version of the attack approach of [52], requiring the
adversary to control only 4 parties, and perform only 2 fail-stop aborts. At a high level,
parties are arranged in a chain with a broadcaster at one end, 2 aborting parties in the
middle, and an additional corrupted party who is either on the same side or opposite
side of the chain as the broadcaster. In the attack, one of the 2 middle parties aborts in
round i, and the second aborts in round i + d as soon as the first’s abort message reaches
him. Parties on one end of the chain thus see a single abort at round i, whereas parties
on the other end see only an abort at round i + d. In [52] it is shown that the view of a
party given an abort in round i versus i + 1 can be distinguished with advantage Ω(1/R),
where R is the number of rounds.

We improve over [52] by separating the two aborting parties by a distance of Θ(n),
instead of distance 1. Roughly, the corrupted party’s view in the two positions will be
consistent with either an abort in round i or round i +Θ(n) of the protocol, (versus i and
i + 1 in [52]), which can be shown to yield distinguishing advantage Θ(n) better than
in [52].

As in Section 3.1, our attack does not leverage any behavior outside the scope of a
single broadcaster, and thus applies to any functionality F satisfying single-broadcaster
correctness. Further, the proof only requires that that the protocol is correct and that
information is required to travel over the network topology: that is, each node can only
transmit information to adjacent nodes in any given given round. Therefore the theorem
holds in the presence of secure hardware (which is only held locally and cannot be
jointly accessed by different parties).

Theorem 2. Let L be an arbitrary leakage oracle. Then no R-round n-party protocol
can securely emulate broadcast (with abort) in the fail-stop model while hiding topology
with (δ,L)-leakage for any δ ∈ o(n/R).

Proof. Let P be an arbitrary protocol which achieves broadcast with abort as above.
We demonstrate a pair of graphs G0,G1 and an attack strategy A such that A can
distinguish with advantage Ω(n/R) the executions of P within G0 versus G1. We then
prove this suffices to imply the theorem.

Both graphs G0,G1 are line graphs on n nodes. In graph G0, the parties appear
in order (i.e., the neighbors of Pi are Pi−1 and Pi+1). In graph G1, the parties appear

7 For simplicity we consider a fixed number of rounds R; however, the techniques can be ex-
tended to probabilistic R as well.
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in order, except with the following change: The location of parties P3, P4, P5 (in nodes
3, 4, 5 of G0) are now in nodes n−2, n−1, and n, respectively; in turn, parties Pn−2, Pn−1,
and Pn (in nodes n − 2, n − 1, and n of G0) are now in nodes 3, 4, 5.

The adversaryA will corrupt: party P1 (always at position 1 in both graphs), which
we will denote as B the broadcaster; party P4 (who is in position 4 of G0 and position
n − 1 in G1), which we will denote as D the “detective” party; and parties P7 and Pn−4
(in fixed positions 7, n − 4) who we will denote as A1 and A2 the aborting parties. For
simplicity of notation, in the following analysis, we will denote the two nodes 4, n−1 in
which D can be located as v, v′. We will further denote the distance (n− 4)− 7 between
the aborting parties A1 and A2 as m; note that m ∈ Θ(n).

Note that the neighbors of all corrupted parties are the same across G0 and G1 (this
is the purpose of moving the uncorrupted parties P3, P5 in addition to P3, as well as
maintaining a gap between the collections of relevant corrupted parties).

We define two events:

Ei := Event that the first abort occurs in round i, by either A1 or A2

Hv,b := Event that the party at node v outputs the correct broadcast bit b

(note that this depends on the protocol and the graph on which it is run)

By (single-broadcaster) correctness of P, it must hold for every broadcast bit b that
Pr[Hv,b|ER] = 1: that is, if node A1 or A2 aborts in the final round, then the news of the
abort will not reach node v, in which case the corresponding party must output in the
same (correct) fashion as if no abort occurred.

By an information argument, it must be the case for v′ that for some choice of
b ∈ {0, 1}, it holds that Pr[Hv′

`
,b|E1] ≤ 1/2. Recall that v′` lies on the opposite end of the

aborting parties compared to the broadcasting node B.
Combining the above two statements, it holds that ∃b ∈ {0, 1} such that we have

Pr[Hv,b|ER] − Pr[Hv′,b|E1] ≥ 1/2.
By telescoping and the pigeonhole principle, there must exist some m-step of rounds

between R and 1 which contains at least (m/R) of this mass:

∃b ∈ {0, 1},∃ j∗ ∈
[⌊ R

m

⌋]
s.t.

 Pr[Hv` ,b|E j∗m] − Pr[Hv′
`
,b|E( j∗−1)m] ≥ m

2R , or
Pr[Hv′

`
,b|E j∗m] − Pr[Hv` ,b|E( j∗−1)m] ≥ m

2R .
(1)

We now leverage these facts to describe an attack.
The Attack. Consider a non-uniform adversaryA hardcoded with: the b ∈ {0, 1} and

j∗ ∈ [bR/mc] from Equation (1), and whether we are in the top or the bottom of the two
cases (in which the roles of v and v′ are reversed). Suppose temporarily that we are the
first case.A proceeds as follows:

1. Corrupt the set of parties {B, A1, A2,D} from the set of n parties.
2. Execute an honest execution of protocol P up to round ( j∗ − 1)m. In the execution,

party B is initialized with input broadcast bit b, and all other emulated parties with
input ⊥ (i.e., not broadcasting).

3. At round ( j∗−1)m, abort party A2. Continue honestly simulating all other corrupted
parties for m rounds.
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4. At round j∗m, abort party A1.
5. Continue honestly simulating all other corrupted parties until the conclusion of the

protocol. Denote by outD the protocol output of the “detective” party D.
6. A outputs outD ⊕ b.

If we are instead in the setting of case 2 in Equation (1), then the attack is identical,
except that the roles of A1 and A2 in Step 2 are swapped.

Claim. A distinguishes between the execution of P on graphs G0 and G1 with advan-
tage Ω(n/R).

Proof. This argument follows a similar structure as that of [52]. Suppose wlog we are
in Case 1 of Equation (1). (Case 2 is handled in an identical symmetric manner.) Recall
that the aborting parties A1, A2 are distance m from one another. This means that A1
aborts at some round ( j∗ − 1)m, then the view of parties to his left (in particular, the
party at node v = 4) is as in the event E( j∗−1)m. However, information of this abort must
take at least m rounds in order to reach any parties to the right of A2; thus, since A2
aborts already at this round j∗m, A1’s abort is never seen by parties to the right of A2 (in
particular, the party at node v′ = m− 1), who will have view consistent with event E j∗m.

If the execution took place on G0, then D is at node v, otherwise it is at node v′. Thus,
the advantage of the adversaryA is precisely Pr[Hv` ,b|E j∗m] − Pr[Hv′

`
,b|E( j∗−1)m] ≥ m

2R .

Now, suppose that P securely realizes F sh
BC hiding topology with (δ,L)-leakage, for

some leakage oracle L. Consider the distribution S′ generated by running the (δ,L)-
leakage simulator S, but aborting and outputting ⊥ in the event that the randomness
of S indicates it will query the leakage oracle. By construction, the statistical distance
between S′ and the properly simulated distribution S with access to leakage L for any
fixed choice of real inputs (i.e., honest graph) is bounded by δ. In particular, S′ is within
δ statistical distance from both SL(G0) and SL(G1) (denoting oracle access to leakage on
the respective graphs G0,G1). By the assumed (δ,L)-leakage simulation security of the
protocol, for both b = 0, 1 it holds that SL(Gb) is computationally indistinguishable from
the adversarial view of execution of P on Gb. Combining these steps, we see that no
efficient adversary can distinguish between the executions of P on graphs G0 and G1
with advantage non-negligibly better than δ.

Therefore, combined with Claim 3.2 it follows that δ must be bounded below by
δ ∈ Ω(n/R).

4 Upper Bounds
In this section, we observe that oblivious transfer implies semi-honest topology-hiding
computation on small diameter graphs, and then present two constructions of topology-
hiding broadcast with security against fail-stop adversaries from secure hardware.

The construction of semi-honest THC for graphs with small diameter follows is a
modified variant of the protocol given in [52].

The first fail-stop secure topology-hiding broadcast protocol leaks at most one bit in
the presence of aborts, by exploiting a stratified structure where the protocol is broken
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into epochs corresponding to the parties playing. If at the end of an epoch the commu-
nication network is still intact, the corresponding party will receive output at the end
of the protocol. If the network is not intact, the party will not receive the broadcast bit.
Aborting during a given an epoch may leak a bit about the distance from some aborting
party to the one corresponding to the epoch. But by the next epoch all parties (or rather,
their secure hardware) will be aware that the network has been disrupted and no future
epochs will yield output to their corresponding parties.

The second protocol is a simple modification of the first which extends each epoch
into many smaller eras. The era that actually determines the party’s output is randomly
(and secretly) chosen by the secure hardware. So, unless the first abort occurs in this era
(leaking a single bit), all parties (namely, their secure hardware) will reach consensus
about the network being disrupted and what their output is, independently of the net-
work topology. Thus a bit is only leaked with probability that degrades inversely with
the number of eras.

4.1 OT Implies Semi-Honest THC (for Small-Diameter Graphs)
Semi-Honest THC for small-diameter graphs is, in fact, equivalent to OT. This follows
from a minor modification to the MPC-based protocol of [52]. Recall, the high-level
approach of [52] is a recursive construction:

– At the base level, nodes run the (insecure) OR-and-forward protocol, except that
every node has a key pair for a PKE scheme, and every message to node i from one
of its neighbors is encrypted under pki.

– The recursion step is to replace every node by an MPC protocol in its local neigh-
borhood (the node and all its immediate neighbors), such that its internal state is
revealed only if the entire neighborhood colludes.
The communication pattern for each of these MPCs is a star. Since leaf nodes can’t
communicate directly, they must pass messages through the center. In order to sim-
ulate private channels the leaf nodes first exchange PKE public keys (we are in the
semi-honest model, so man-in-the-middle attacks are not relevant) and then use the
PKE scheme to encrypt messages between them.
Note that the MPC simulates the node’s next-message function. All nodes receive
as input a secret-share of the state from the previous round, and output a secret
share of the updated state. In addition, the input of the central node contains the
list of messages received from its neighbors in the previous round, and its output
contains the list of messages to send to its neighbors in this round. At the end of
the MPC execution, the central node sends the messages to its neighbors (who will
then use them as part of their input in MPC executions in the next round).
This structure is the reason for requiring the messages to a node at the base level
to be encrypted—the MPC doesn’t hide the messages themselves from the central
node, hence privacy would be lost if they were unencrypted.

We will replace the PKE scheme with a key-agreement protocol and a symmetric en-
cryption scheme. Since the existence of OT implies both of these primitives, the result-
ing protocol can be build from OT (we note that, unlike the construction of OT from
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THB, this construction is not black-box in the OT primitive—the recursion step will
require non-black-box access to the OT).

For the base step, instead of using a PKE scheme, every node will perform a key-
agreement protocol with all of its neighbors. Henceforth, messages from pi to a direct
neighbor p j will be encrypted under their shared key (using the symmetric encryption
scheme). This ensures that to an adversary that does not have access to the state of either
pi or p j messages between the two are indistinguishable from random.

For the recursion step, we do the same thing except with the leaf nodes. That is,
every pair of leaf nodes pi, p j will execute the key agreement protocol, using the cen-
tral node to pass messages. Henceforth, the private channel between them in the MPC
protocol will be simulated by encrypting messages using their shared key and passing
the messages via the central node.

4.2 Constructions for Fail-Stop Adversaries
Both fail-stop protocols presented in this section achieve a standard notion of broadcast.
The broadcast functionalities considered previously were defined with respect to the
network topology, particularly its connected components. Forthwith, we will assume
the network (before failures) is fully connected.

Definition 7 (FBC). The ideal n-party broadcast functionality FBC is defined by the
following output behavior on input bi ∈ {0, 1,⊥} from every party Pi: if a exactly one
b := bi is non-⊥, then FBC outputs b to all parties; otherwise, all outputs are ⊥.

Protocol with one bit of leakage

We present a topology-hiding broadcast protocol secure against fail-stop adversaries
making static corruptions given one bit of leakage. We assume a secure hardware box
and one-way functions. We also note that the protocol presented here is secure against
semi-honest adversaries without any leakage.

In what follows we consider parties to correspond to their node in the set of all
network nodes, [n].

Our protocol has two major phases:

1. Graph Collection: Collect a description of the graph, inputs, and aliases. This
phase runs for a number of rounds proportional to the network diameter. Any abort
seen during this phase by any party will cause that part to abort in the final round.

2. Consistency Checking and Abort Segregation: Checking consistency and out-
putting. This phase has a number of subphases corresponding to the number of
parties, n.
Each subphase runs for a number of rounds proportional to the size of the network.
During subphase i, party i will no longer abort if the first abort it sees takes place
during that subphase or later. However, an abort seen by any party in {i + 1, i +

2, . . . , n} will still cause that party to abort in the final round. The intuition is that if
any party aborts in a subphase, all non-aborted parties are guaranteed to know that
an abort has occurred by the end of next subphase.
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By subphase n, if no abort has been seen, all honest parties will output correctly,
regardless of subsequent abort behaviors.

The hardware box, aside from initialization and final output, will take as input and
output authenticated-encryptions of the player’s current “state.” The plaintext state of a
party Pu with session key ku after round i, denoted si

u, contains the following informa-
tion:

– The party’s alias: idu, a random λ-length string chosen at outset.

– The round number: iu.

– Current “knowledge” of the graph: Gi
u.

– Current “knowledge” of inputs: mu,i = (mu,i
1 , . . . ,m

u,i
n ).

– Current “knowledge” of session keys: sku,i = (sku,i
1 , . . . , sku,i

n ).

– First round an abort was seen: ai
u.

– Indicator of whether or not a neighbor has aborted in a previous round: bi
u :=

(bi
v1
, . . . , bi

vd
). (This information is not strictly necesssary, but convenient when

proving security.)

– abort flag: α.

We now define the Cfs functionality that is embedded in the hardware box. As stated
above, we take network locations (typically denoted u or v) to be elements of [n]. State
information is represented as vectors over the alphabet Σ = {0, 1, ?,⊥}. We take ei(x)
to be the vector of all ?s with x ∈ {0, 1,⊥} in the ith position (the length of the vector
should be clear from context, unless otherwise specified). If the vector is in fact an m×n-
matrix, we take ei(x) to denote the vector with ?n in all rows, except i which contains
x ∈ Σn. The network (graph) is represented as an adjacency matrix, with ?s denoting
what is unknown and⊥s representing errors, or inconsistencies. In particular, the closed
neighborhood of u, N[u], is the n × n matrix with the adjacency vector of u in the uth
row and ?s elsewhere. Let H : 2Σ

m
→ Σm denote the component-wise “accumulation”

operator where the ith output symbol, for i ∈ [m], is as defined as follows:

HiX :=


1 if ∃x ∈ X ∈ [k] : xi = 1, and ∀y ∈ X : yi ∈ {1, ?}
0 if ∃x ∈ X : xi = 0, and ∀y ∈ X : xi ∈ {0, ?}
? if ∀x ∈ X : xi =?
⊥ otherwise

Finally, let R = n(n + 2) + 1 (final number of rounds).
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Fig. 4: The Functionality Cfs (Part 1: continued in figure 5).

Notation:
Let (G,E,D) denote a symmetric key authenticated encryption scheme. Let
PRF ← {PRFk}k denote a pseudorandom function with security parameter
λ, chosen randomly from some such family during setup. Additionally, let
msk← G(1λ), again chosen during setup.
We take u to denote the location in the network associated with the party, Pu,
using this instance of Cfs.
As above, we use the following to denote state information:

si
v = (v; skv; i; Gi

v; mv,i = mv,i
1 , . . . ,m

v,i
n ; skv,i = skv,i

1 , . . . , skv,i
n ; ai

v; bi
v := bi

v1
, . . . , bi

vd
, α).

Input:
• (Initialization input) x = (m, u,N[u], sku), where m should be the broad-

cast message if u is broadcaster, and ⊥ otherwise. N[u] denotes the
closed neighborhood of u. sk is a random session key.

• (Round input) d authenticated encryptions of the form:

x =
(
xu, xv1 , . . . , xvd , sku

)
where v1, . . . , vd are in N(u), additionally in numerical order, and ignored
if deg(u) < d.
For all v ∈ N[v], xv should either an encrypted state, Emsk(si

v), or Abort.
Moreover, we

Let L denote the the class of efficient leakage functions that leak one bit about the
topology of the network.

Theorem 3. The protocol Ffs-broadcast topology hiding realizes broadcast with L leak-
age with respect to static corruptions.

Remark 1. By observing that the leakage oracle is only used by the simulator in the
event of an abort, the protocol Ffs-broadcast is secure against probabilistic polynomial
time semi-honest adversaries without leakage.

Correctness. Assuming there are no aborts, correctness follows by induction on the
rounds. By inspection, local consistency checks will pass under honest evaluation if
there are no aborts. Clearly, at the end of round i, the encrypted broadcast message will
have reached all parties whose distance is at most i from the broadcaster. So by round
n + 1, all parties will have the message. Similarly, by round n + 1, all local descriptions
of the network and aliases will have reached all parties. Moreover, no abort flags will
be triggered. Thus, the global consistency checks will pass in the final round, R, and all
parties will receive the broadcast message.

By inspection, it is easy to see that if evaluation is semi-honest with possible aborts
each party will either output the unique non-⊥ input, or abort.
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Fig. 5: The Functionality Cfs (Part 2)

Computation:
If input is of “Initialization” format: I.e., x = (m, u,N[u], sku).
Let s1

u = (u; sk; 1; G1
u = N[u]; eu(mu); eu(sku);⊥; 0, . . . , 0; 0), and output:

Emsk(s1
u; PRF(x)). If N[u] is not a closed neighborhood (i.e. if there is

more than one node with more than one edge), output ⊥.
If input is of “Round” format: I.e., x = (xu, xv1 , . . . , xvd , sk) where xv =

Emsk(ŝv) or Abort, and ŝv = (v̂; ŝkv; îv; Gv; m̂v; âv; b̂v; α̂v), for v ∈ N[u]
Perform local consistency checks:
∗ If xu = Abort, output ⊥.
∗ Authenticate/decrypt all non-Abort inputs, to get ŝu, ŝv1 , . . . , ŝv` .

If authentication or encryptions fails, halt and output ⊥.
∗ If round counters (îu, îv1 , . . . , îv` ) are not all equal, halt and output
⊥.

∗ For each network location v ∈ N[u], where N[u] is extracted from
su, if v does not correspond to plaintext state input (in correct posi-
tion) or Abort, set α′ = 1.
Additionally, if some v < N[u] is associated with any input state,
output ⊥.

∗ If there exists xv , Abort but b̂u
v = 1, output ⊥.

∗ If the plain text session key input sk does not match the session key
extracted from ŝu, output ⊥.

Perform global consistency checks and accumulation:
∗ Initialize abort flag to be the same as in ŝu: α′ = α̂u.
∗ If sender keys don’t match “stored” keys, in other words ŝkv̂ =

(ŝkû
)v̂ for all input non-Abort-ing locations v̂, then set α′ := 1 (en-

crypted abort).
∗ i′ := îu + 1,
∗ Generate G′ := H{Ĝv : v ∈ N[u]}, If any component of G′ is ⊥, let
α′ := 1.

∗ m′ := H{m̂v : v ∈ N[u]}, If any component of m′ is ⊥, let α′ := 1.
∗ sk′ := H{ŝkv

: v ∈ N[u]}. If any component of sk′ is ⊥, let α′ := 1.
∗ For all v ∈ N̂(u), if xv = Abort then set b′v := 1. Otherwise, set

b′v = b̂u
v . Let b′ = (b′v1

, . . . , b′vd
).

∗ If if âu , ⊥ and either âi
v , ⊥ or xv = Abort for any v ∈ N̂[u],then

set a′ := îu. Otherwise, a′ := âu.
Check to enforce commitment:
If îu = n + 1 and Ĝu contains any ‘?’, set α′ := 1.
Output:

• if îu < R, then output: Emsk(s′; PRF(x)),
where s′ := (ûu; ˆsku; i′; G′; m′; sk′; a′; b′, α′).

• Else, if îu = R: If there exists more than one v such that (m̂u)v , ⊥,
output ⊥. If a′ ≤ (û + 1) · n or α′ = 1, output ⊥. Otherwise, output the
message corresponding to the unique non-⊥ location: (m̂u)v∗ .

• Else, output ⊥.
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Fig. 6: The protocol Ffs-broadcast in Fgraph-hybrid model.

Notation: Let O(Cfs) denote a secure hardware box (oracle) running Cfs.
Input: Each party Px receives O(Cfs). If Px is broadcaster, Px also has input

m = mx, the message to be broadcast. If Px is not broadcaster, mx is the all
zero vector.

Protocol for Broadcast:
• (Initialization) Pu chooses a random id ← {0, 1}λ. Pu computes c1

u =

O(Cfs)(mu; u; N(x); sku). Pu sends (v; c1
u) to Fgraph for all v ∈ N(u). Each

v ∈ Nu receives (u; c1
u). Pu receives (v; c1

v) for each v ∈ N(u).
• (Round i = 2 to R − 1) Pu computes ci

u = O(Cfs)(ci−1
u , ci−1

v1
, . . . , ci−1

vd
). Pu

sends (v; ci
u) to Fgraph for all v ∈ N(u). Each v ∈ N(u) receives (u; ci

u). Pu

receives (v; ci
v) for each v ∈ N(u).

• (Round R) Pu computes m̂ = O(Cfs)(cR
u , c

R
v1
, . . . , cR

vd
; sku), and outputs m̂.

Security. We start with a rough overview of simulation and why it works, with the
full proof of security given in the full version.

Crucially, the authenticated encryption of internal states makes it infeasible for an
adversary to either forge states, or glean any information about their contents. As the
simulator may have incomplete information about the graph topology, this allows it to
send fake states and simply output consistently with the real protocol. Moreover, the
unforgeability gives the simulator full knowledge of any initial information used when
querying the box, and, importantly, how these queries relate to one another (especially
whether or not they are consistent).

The difficulty in the proof is in dealing with “replay” attacks, where the adversary
combines information from the honest nodes in malicious ways with other initializa-
tions. The session keys aid in this by rendering it infeasible for the adversary to replay
as an uncorrupted party with a modified local topology. Additionally, the collection
phase implies that honest nodes have complete information about topology and initial-
ization information used in execution by round n. Thus, when this information is later
combined with initializations that do not match the execution exactly, the only plaintext
output such a malicious adversary will receive is ⊥. Together this means the simula-
tor only has to provide output when query structure matches execution almost exactly
(up to somewhat local aborts). The upshot being that the simulator can provide output
identical to a real execution, even though it has incomplete knowledge of the network
topology.

One of the dangers in simulation is if an adversary corrupts all the nodes within a
distance r of a given node, it has enough information to “fast forward” the node to get
its program outputs for the next r + 1-rounds. Additionally, after its threshold round has
occurred, an adversary can abort all the neighbors of a node, and iterate the remaining
rounds by itself to get output. However, we show that the simulator will always have
enough information to fool such adversaries.
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• For each party, Pu, generate (n + 2)n random encryptions of 0. These will constitute
the messages sent by honest parties to corrupted parties, and the output of the oracle
for queries consistent with semi-honest evaluation.

• The simulated oracle will remember all queries from the adversary in a data struc-
ture, the outputs given, and how they relate to one another (as we explain in Def. ??).
The idea is that “valid” inputs will return more encryptions of 0 until the last “round.”
Then, the simulator will use the data structure to determine the appropriate output
given the initialization queries used in conjunction with the single bit of leakage
(supposing there was an Abort in the execution, described below). We describe the
simulation of the hardware box program in more detail below in Figure ??.

Any query which isn’t an initialization input or a concatenation of previous queries
will immediately return⊥. Likewise, any combination of previous queries that corre-
spond to locally inconsistent topologies or round numbers. Moreover, after n rounds
any queries that yield an inconsistent topology (the combined the base initializations
of all queries, and the previous queries they depend on, does not yield a single con-
sistent graph) will be recognized in the real world. Thus the simulator need only
give output in the final round if all queries, including their ancestors, correspond to
consistent graph initialization.

If the first abort occurred in round i, the simulator will query to determine if the
real encrypted state of party j = bi/nc + 2 contained information “witnessed” the
abort after round ( j + 2)n. If so, the queries corresponding to the final round of
execution for parties P1, P2, . . . , P j will return the broadcast message, and Abort to
all other parties. If P j “witnessed” the abort on or before round ( j + 2)n, then the
query corresponding to P j’s final input to the black box program will return Abort
as well (all other outputs for “final” queries are unchanged from the previous case).
The simulator uses the single bit of leakage to determine if an abort reach P j in time.

• When the adversary corrupts a party once the protocol is underway, first choose a
random sk. Then, fix the oracle to yield pre-determined ciphertexts corresponding to
the honest initialization and pre-determined messages from its neighborhood.

We refer the reader to the full version of this paper for a complete description of the
simulator and hybrids.

Protocol with arbitrarily low leakage

This protocol is only a slight modification of the previous one. To achieve δ leakage,
each party is not associated with a single subphase, but instead a sequence of nd/δe
subphases of a zone. At the outset, parties provide randomness (which can be drawn
from the session keys), which will assist in selecting one of these subphases to be the
true one. Thus, the probability of an aborting adversary successfully hitting any sub-
subphase with its first abort is dependent on the graph structure is < 1/δ.

The state is identical to the previous, with one additional parameter, t, encoding the
threshold round.

The protocol here is the same as before, except now R = n(n2d1/δe + 2) + 1.
We now define Crand-fs functionality. We take notation to be consistent with the

previous construction, Cfs, where not otherwise specified.
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Fig. 7: The Functionality Crand-fs (Part 1: continued in figure 8).

Notation:
Let (G,E,D) denote a symmetric key authenticated encryption scheme. Let
PRF denote a pseudorandom function with security parameter λ, chosen ran-
domly from some such family during setup. Additionally, let msk ← G(1λ),
again chosen during setup.
Let Thresholdδ,n be a pseudorandom function such that Thresholdδ,n(u; sku)
that outputs a a pseudorandom integer in {3n + (u − 1)n2d1/δe, 4n + (u −
1)n2d1/δe, . . . , 2n + un2d1/δe}.
As above, we use the following to denote state information:

si
v = (v; skv; i; Gi

v; mv,i = mv,i
1 , . . . ,m

v,i
n ; skv,i = skv,i

1 , . . . , skv,i
n ; ai

v; bi
v := bi

v1
, . . . , bi

vd
;αv; tv).

Input:
• (Initialization input) x = (m, u,N[u], sku), where m should be the broad-

cast message if u is broadcaster, and ⊥ otherwise. N[u] denotes the
closed neighborhood of u, a binary vector representing all adjacencies
(or lack thereof). sk is a random session key.

• (Round input) d authenticated encryptions of the form:

x =
(
xu, xv1 , . . . , xvd , sku

)
where v1, . . . , vd are in N(u) and ignored if deg(u) < d.
For all v ∈ N[v], xv is either an encrypted state, Emsk(si

v), or Abort.

Theorem 4. For any δ = 1/poly(λ, n), the protocol Ffs-broadcast, when Cfs is replaced
with Crand-fs(δ), topology hiding realizes broadcast with (δ,L) leakage with respect to
static corruptions.

Correctness. The proof here is nearly identical to the preceding one.

Security. Here the simulator is nearly identical to the previous, except it chooses each
location’s random threshold itself, and only queries the leakage oracle if when the first
real abort occurs in chosen block. Here, it queries more-or-less identically to before.
For all other nodes it outputs according to whether the threshold has already occurred
or not. The leakage oracle itself will represent an identical functionality to the previous
case.

Because the distribution of thresholds is computationally indistinguishable in simu-
lated case from the real one, an adversary will be unable to distinguish. As many of the
lemmas from the previous construction hold here, we will simply bound the probability
that the leakage oracle is called (and hence, the leakage itself).
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Fig. 8: The Functionality Crand-fs (Part 2)

Computation:
If input is of “Initialization” format: I.e., x = (m, u,N[u], sku).
Let s1

u = (u; sk; 1; G1
u = N[u]; eu(mu); eu(sku);⊥; 0, . . . , 0; 0; Threshold(u; sk)),

and output: Emsk(s1
u; PRF(x)). If N[u] is not a closed neighborhood (i.e.

if there is more than one node with more than one edge), output ⊥.
If input is of “Round” format: I.e., x = (xu, xv1 , . . . , xvd ) where xv =

Emsk(ŝi
v) or Abort, and ŝi

v = (v̂; ŝkv; îv; Gv; m̂v; âv; b̂v; α̂v; t̂v), for v ∈ N[u].
Perform local consistency checks:
∗ If xu = Abort, output ⊥.
∗ Authenticate/decrypt all non-Abort inputs, to get ŝu, ŝv1 , . . . , ŝv` .

If authentication or encryptions fails, halt and output ⊥.
∗ If round counters (îu, îv1 , . . . , îv` ) are not all equal, halt and output
⊥.

∗ For each network location v ∈ N[u], where N[u] is extracted from
su, if v does not correspond to plaintext state input (in correct posi-
tion) or Abort, output ⊥.
Additionally, if some v < N[u] is associated with any input state,
output ⊥.

∗ If there exists xv , Abort but b̂u
v = 1, output ⊥.

∗ If the plain text local session key input sk does not match the session
key extracted from ŝu, output ⊥.

Perform global consistency checks and accumulation:
∗ Initialize abort flag to be the same as in ŝu: α′ = α̂u.
∗ If sender keys don’t match “stored” keys, in other words ŝkv̂ =

(ŝkû
)v̂ for all input non-Abort-ing locations v̂, then set α′ := 1 (en-

crypted abort).
∗ i′ := îu + 1,
∗ Generate G′ := H{Ĝv : v ∈ N[u]}, If any component of G′ is ⊥, let
α′ := 1.

∗ m′ := H{m̂v : v ∈ N[u]}, If any component of m′ is ⊥, let α′ := 1.
∗ sk′ := H{ŝkv

: v ∈ N[u]}. If any component of sk′ is ⊥, let α′ := 1.
∗ For all v ∈ N̂(u), if xv = Abort then set b′v := 1. Otherwise, set

b′v = b̂u
v , for all v ∈ N(u). Let b′ = (b′v1

, . . . , b′vd
).

∗ If âu , ⊥ and either âv , ⊥ or xv = Abort for any v ∈ N̂[u],then set
a′ := îu. Otherwise, a′ := âu.

Check to enforce commitment:
If îu = n + 1 and Ĝu contains any ‘?’, set α′ = 1.
Output:

• if îu < R, then output: Emsk(s′; PRF(x)),
where s′ := (ûu; ˆsku; i′; G′; m′; sk′; a′; b′;α′; t̂u).

• Else, if îu = R: If there does not exist exactly one v such that (m̂u)v , ⊥,
output ⊥. If a′ ≤ t or α′ = 1, output ⊥. Otherwise, output the message
corresponding to the unique non-⊥ location: (m̂u)v∗ .

• Else, output ⊥.
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The Simulator. As before the first the simulator first generates a non-aborting execu-
tion for each corrupt component, which will form the basis of the messages from honest
parties. Additionally, in this case, the simulator selects a threshold block uniformly for
each party’s zone. Having chosen thresholds and an execution, simulation of Crand-fs
proceeds identically to the previous protocol (Figure ??).

Lemma 1. For any probabilistic poly-time adversary, the simulator only needs to query
the leakage oracle with probability at most δ.

Proof. Recall that the simulator only needs to query the leakage oracle with respect to
at most one party.

For any fixed network location, we will bound the probability that the simulator
needs to call the leakage oracle for that location by δ/n. Then by a union bound, the
probability that the simulator needs to call the leakage oracle for any node.

Recall that by lemma ??, any non-aborting query graph induced by a threshold
node must match the non-aborting execution exactly. As a consequence to get non-
aborting output, the adversary must have run the protocol up to at least r + 1 rounds
before the node’s threshold. Thus, anything that happens before such a time will give
no information about the threshold round (beyond whether it has or has not occurred
yet). Additionally, by the time an adversary can learn whether the threshold follows
its current block, it will be to late to execute a non-simulatable abort (outside of the
corruption radius of the node).

If the first abort occurs in the i-th block of a location’s zone, then the probability the
adversary hits the chosen block is:(

1 −
i − 1
n/δ

)
︸       ︷︷       ︸

prob. threshold hasn’t occured

·

(
1

n/δ − (i − 1)

)
︸            ︷︷            ︸

cond. prob. of hitting relevant block

=
1

n/δ
=
δ

n
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