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Abstract. We present improved algorithms for gaussian preimage sam-
pling using the lattice trapdoors of (Micciancio and Peikert, CRYPTO
2012). The MP12 work only offered a highly optimized algorithm for the
on-line stage of the computation in the special case when the lattice mod-
ulus q is a power of two. For arbitrary modulus q, the MP12 preimage
sampling procedure resorted to general lattice algorithms with complex-
ity cubic in the bitsize of the modulus (or quadratic, but with substantial
preprocessing and storage overheads). Our new preimage sampling algo-
rithm (for any modulus q) achieves linear complexity with very mod-
est storage requirements, and experimentally outperforms the generic
method of MP12 already for small values of q. As an additional contribu-
tion, we give a new, quasi-linear time algorithm for the off-line perturba-
tion sampling phase of MP12 in the ring setting. Our algorithm is based
on a variant of the Fast Fourier Orthogonalization (FFO) algorithm of
(Ducas and Prest, ISSAC 2016), but avoids the need to precompute and
store the FFO matrix by a careful rearrangement of the operations. All
our algorithms are fairly simple, with small hidden constants, and offer a
practical alternative to use the MP12 trapdoor lattices in a broad range
of cryptographic applications.

1 Introduction

Lattice cryptography provides powerful techniques to build a wide range of ad-
vanced cryptographic primitives, like identity based encryption [32, 24, 11, 4, 2,
3], attribute based encryption [17, 16, 19, 34, 14], some types of fully homomor-
phic encryption and signatures [13, 12, 33, 36, 25], group signatures [37, 21, 45, 46,
55] and much more (e.g., see [57, 52, 10, 58, 61, 6, 47, 35]). Most of the advanced
applications of lattice cryptography rely on a notion of strong lattice trapdoor,
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introduced in [32], which allows to sample points from an n-dimensional lattice
L with a gaussian-like distribution. This gaussian sampling operation is often
the main bottleneck in the implementation of advanced cryptographic functions
that make use of strong lattice trapdoors, and improving the methods to gen-
erate and use lattice trapdoors has been the subject of several investigations [5,
32, 7, 56].

The current state of the art in lattice trapdoor generation and sampling is
given by the work of Micciancio and Peikert [52], which introduces a new notion
of lattice trapdoor, specialized to the type of q-ary lattices used in cryptogra-
phy, i.e., integer lattices L ⊆ Zn that are periodic modulo q ·Zn. The trapdoor is
then used to efficiently sample lattice points with gaussian distribution around
a given target. Building on techniques from [56], the sampling algorithm of [52]
includes both an on-line and an off-line stage, and [52] focuses on improving the
complexity of the on-line stage, which is far more critical in applications. Unfor-
tunately, the most efficient algorithms proposed in [52] for (the on-line stage of)
preimage sampling only apply to lattices with modulus q = 2k equal to a power
of 2 (or, more generally, the power q = pk of a small prime p,) which is not
compatible with the functional or efficiency requirements of many applications.
Moreover, only the on-line stage of [52] takes full advantage of the structure of
algebraic lattices [51, 49, 50] typically employed in the efficient instantiation of
lattice cryptography, and essential to reduce the running time of lattice opera-
tions from quadratic (in the lattice dimension) to quasi-linear. A straightforward
implementation of the off-line stage (e.g., using a generic Cholesky decomposi-
tion algorithm) completely destroys the algebraic structure, and degrades the
running time of the (off-line) algorithm from quasi-linear to quadratic or worse.
For lattices over “power-of-two” cyclotomic rings (the most popular class of al-
gebraic lattices used in cryptography), a much faster algorithm for the off-line
stage was proposed by Ducas and Nguyen in [28, Section 6], and subsequently
simplified, improved and extended to a more general class of cyclotomic rings
by the Fast Fourier Orthogonalization (FFO) of Ducas and Prest [29].

Our Contribution We present improved algorithms for gaussian preimage sam-
pling using the lattice trapdoors of [52]. Specifically, we present a new algorithm
(for the on-line stage) capable of handling any modulus q (including the large
prime moduli required by some applications) and still achieve the same level
of performance of the specialized algorithm of [52] for power-of-two modulus
q = 2k. This improves the running time of [52] for arbitrary modulus from cubic
log3 q (or quadratic log2 q, using precomputation and a substantial amount of
storage) to just linear in log q and with minimal storage requirements.

As an additional contribution, we present an improved algorithm for the off-
line perturbation generation problem which takes full advantage of the algebraic
structure of ring lattices. We remark that this problem can already be solved (in
quasilinear time Õ(n)) using the (FFO) algorithm of [29], which first produces
a compact representation of the orthogonalized lattice basis (or covariance ma-
trix), and then uses it to quickly generate lattice samples. We improve on the
algorithm of [29] on two fronts. First, the FFO algorithm is quasi-linear in the



MP12 MP12 This work

modulus q 2k any any

G-Sampling precomp. — O(log3 q) —

G-Sampling space O(log q) O(log2 q) O(log q)

G-Sampling time O(n log q) O(n log2 q) O(n log q)

Table 1. Running time and storage of the (G-sampling) algorithm. G-Sampling run-
ning times are scaled by a factor n to take into account that each sample requires n
independent calls to the underlying G-sampling operation.

ring dimension, but quadratic in the module dimension (which, in our applica-
tion, is log q). We combine [29] with the “sparse matrix” optimization of [9] to
yield an algorithm that is linear both in the ring dimension and log q. Moreover,
we provide a variant of the FFO algorithm that performs essentially the same
operations as [29], but without requiring the precomputation and storage of the
FFO (structured) matrix, thereby simplifying the implementation and improving
the space complexity of [29].

The G-sampling improvements are summarized in Table 1. The improve-
ments are not just asymptotic: our new algorithms are fairly simple, with small
hidden constants, and include a careful choice of the parameters that allows to
implement most steps using only integer arithmetic on very small numbers. In
Section 3.3, we provide an experimental comparison showing that the new al-
gorithm outperforms the generic method of [52] already for small values of the
moduli, making it an attractive choice for implementations even in applications
where the modulus q = nO(1) has logarithmic bit-size. For applications using
an exponentially large q = exp(n), the projected performance improvements
are dramatic. The concrete efficiency of our algorithms in the context of full
blown cryptographic applications, has been recently confirmed by independent
implementation efforts [39, 26, 38].

Technical details In order to describe our techniques, we need first to provide
more details on the lattice trapdoor sampling problem. Given a lattice L and a
target point t, the lattice gaussian sampling problem asks to generate (possibly
with the help of some trapdoor information) a random lattice point v ∈ L with
probability proportional to exp(−c‖v − t‖2). Building on techniques from [56],
this problem is solved in [52] by mapping L to a fixed (key independent) lattice
Gn, generating a gaussian sample in Gn, and then mapping the result back to
L. (The linear function T mapping Gn to L serves as the trapdoor.) Without
further adjustments, this produces a lattice point in L with ellipsoidal gaussian
distribution, with covariance which depends on the linear transformation T . In
order to produce spherical samples (as required? by applications), [52] employs
a perturbation technique of Peikert [56] which adds some noise (with comple-

? More generally, applications require samples to be generated according to a distri-
bution that does not depend on the trapdoor/secret key.



mentary covariance) to the target t, before using it as a center for the Gn-lattice
sampling operation. In summary, the sampling algorithm of [56, 52] consists of
two stages:

– an off-line (target independent) stage, which generates perturbation vectors
with covariance matrix defined by the trapdoor transformation T , and

– an on-line (target dependent) stage which generates gaussian samples from
an (easy to sample) lattice Gn.

Not much attention is paid in [52] to the perturbation generation, as it does not
depend on the target vector t, and it is far less time critical in applications.??

As for the on-line stage, one of the properties that make the lattice Gn easy to
sample is that it is the orthogonal sum of n copies of a (log q)-dimensional lattice
G. So, even using generic algorithms with quadratic running time, G sampling
takes a total of O(n log2 q) operations. For moduli q = nO(1) polynomial in the
lattice dimension n, this results in quasilinear running time O(n log2 n). How-
ever, since the G-sampling operation directly affects the on-line running time of
the signing algorithm, even a polylogarithmic term log2 q can be highly unde-
sirable. To this end, [52] gives a particularly efficient (and easy to implement)
algorithm for G-lattice sampling when the lattice modulus q = 2k is a power of 2
(or more generally, a power q = pk of a small prime p.) The running time of this
specialized G-sampling algorithm is log q, just linear in the lattice dimension,
and has minimal (constant) storage requirements. Thanks to its simplicity and
efficiency, this algorithm has quickly found its way in concrete implementations
of lattice based cryptographic primitives (e.g., see [9]), largely solving the prob-
lem of efficient lattice sampling for q = 2k. However, setting q to a power of
2 (or more generally, the power of a small prime), may be incompatible with
applications and other techniques used in lattice cryptography, like attribute
based encryption (ABE) schemes [14] and fast implementation via the number
theoretic transform [48, 50]. For arbitrary modulus q, [52] falls back to generic
algorithms (for arbitrary lattices) with quadratic complexity. This may still be
acceptable when the modulus q is relatively small. But it is nevertheless undesir-
able, as even polylogarithmic factors have a significant impact on the practical
performance of cryptographic functions (easily increasing running times by an
order of magnitude), and can make applications completely unusable when the
modulus q = exp(n) is exponentially large. The concrete example best well illus-
trates the limitations of [52] is the recent conjunction obfuscator of [20], which
requires the modulus q to be prime with bitsize log(q) = O(n) linear in the
security parameter. In this setting, the specialized algorithm of [52] (for q = 2k)
is not applicable, and using a generic algorithm slows down the on-line stage
by a factor O(n), or, more concretely, various orders of magnitude for typical
parameter settings. Another, less drastic, example is the arithmetic circuit ABE
scheme of [14] where q is O(2n

ε

) for some fixed 0 < ε < 1/2. Here the slow down
is asymptotically smaller, nε, but still polynomial in the security parameter n.

?? E.g., in lattice based digital signature schemes [32, 52], the off-line computation de-
pends only on the secret key, and can be performed in advance without knowing the
message to be signed.



Unfortunately, the specialized algorithm from [52] makes critical use of the
structure of the G-basis when q = 2k, and is not easily adapted to other mod-
uli. (See Section 3 for details.) In order to solve this problem we resort to the
same approach used in [56, 52] to generate samples from arbitrary lattices: we
map G to an even simpler lattice D using an easy to compute linear transfor-
mation T ′, perform the gaussian sampling in D, and map the result back to G.
As usual, the error shape is corrected by including a perturbation term with
appropriate covariance matrix. The main technical problem to be solved is to
find a suitable linear transformation T ′ such that D can be efficiently sampled
and perturbation terms can be easily generated. In Section 3 we demonstrate
a choice of transformation T ′ with all these desirable properties. In particular,
using a carefully chosen transformation T ′, we obtain lattices D and perturba-
tion matrices that are triangular, sparse, and whose entries admit a simple (and
efficiently computable) closed formula expression. So, there is not even a need
to store these sparse matrices explicitly, as their entries can be easily computed
on the fly. This results in a G-sampling algorithm with linear running time, and
minimal (constant) space requirements, beyond the space necessary to store the
input, output and randomness of the algorithm.

Next, in Section 4, we turn to the problem of efficiently generating the per-
turbations of the off-line stage. Notice that generating these perturbations is a
much harder problem than the one faced when mapping G to D (via T ′). The
difference is that while G,D, T ′ are fixed (sparse, carefully designed) matrices,
the transformation T is a randomly chosen matrix that is used as secret key. In
this setting, there is no hope to reduce the computation time to linear in the
lattice dimension, because even reading/writing the matrix T can in general take
quadratic time. Still, when using algebraic lattices, matrix T admits a compact
(linear size) representation, and one can reasonably hope for faster perturbation
generation algorithms. As already noted, this can be achieved using the Fast
Fourier Orthogonalization algorithm of Ducas and Prest [29], which has running
time quasilinear in the ring dimension, but quadratic in the dimension (over
the ring) of the matrix T , which is O(log q) in our setting. As usual, while for
polynomial moduli q = nO(1), this is only a polylogarithmic slow down, it can
be quite significant in practice [9]. We improve on a direct application of the
FFO algorithm by first employing an optimization of Bansarkhani and Buch-
mann [9] to exploit the sparsity of T . (This corresponds to the top level function
SamplePz in Figure 4.) This optimization makes the computation linear in the
dimension of T (log q in our setting), while keeping the quasilinear dependency on
the ring dimension n from [29]. We further improve this combined algorithm by
presenting a variant of FFO (described by the two mutually recursive functions
SampleFz/Sample2z in Figure 4) that does not require the precomputation
and storage of the FFO matrix.

Comparison with FFO Since our SamplePz function (Figure 4) uses a sub-
procedure SampleFz which is closely related to the FFO algorithm [29], we
provide a detailed comparison between the two. We recall that FFO works by
first computing a binary tree data structure [29, Algorithm 3], where the root



node is labeled by an n-dimensional vector, its two children are labeled by (n/2)-
dimensional vectors, and so on, all the way down to n leaves which are labeled
with 1-dimensional vectors. Then, [29, Algorithm 4] uses this binary tree data
structure within a block/recursive variant of Babai’s nearest plane algorithm.? ? ?

Our SampleFz is based on the observation that one can blend/interleave the
computation of [29, Algorithm 3] and [29, Algorithm 4], leading to a substantial
(asymptotic) memory saving. Specifically, combining the two algorithms avoids
the need to precompute and store the FFO binary tree data structure altogether,
which is now implicitly generated, on the fly, one node/vector at a time, and dis-
carding each node/vector as soon as possible in a way similar to a depth-first
tree traversal. The resulting reduction in space complexity is easily estimated.
The original FFO builds a tree with log n levels, where level l stores 2l vectors in
dimension n/2l. So, the total storage requirement for each level is n, giving an
overall space complexity of n log n. Our FFO variant only stores one node/vector
per level, and has space complexity

∑
l(n/2

l) = 2n, a O(log n) improvement over
the space of original FFO algorithm. Moreover, the nodes/vectors are stored
implicitly in the execution stack of the program, rather than an explicitly con-
structed binary tree data structure, yielding lower overhead and an algorithm
that is easier to implement. For simplicity we specialized our presentation to
power-of-two cyclotomics, which are the most commonly used in lattice cryptog-
raphy, but everything works equally well for the larger class of cyclotomic rings,
in the canonical embedding, considered in [29].

2 Preliminaries

We denote the complex numbers as C, the real numbers as R, the rational
numbers as Q, and the integers as Z. A number is denoted by a lower case letter,
z ∈ Z for example. We denote the conjugate of a complex number y as y∗. When
q is a positive integer, log q is short for its rounded up logarithm in base two,
dlog2 qe. A floating point number with mantissa length m representing x ∈ R is
denoted as x̄. The index set of the first n natural numbers is [n] = {1, . . . , n}.
Vectors are denoted by bold lower case letters, v, and are in column form (vT

is a row vector) unless stated otherwise. The inner product of two vectors is
〈x,y〉 = xTy. We denote matrices with bold upper case letters B or with upper
case Greek letters (for positive-definite matrices). The transpose of a matrix is
BT . The entry of B in row i and column j is denoted Bi,j . Unless otherwise
stated, the norm of a vector is the `2 norm. The norm of a matrix ‖B‖ =
maxi ‖bi‖ is the maximum norm of its column vectors. Given two probability
distributions over a countable domain D, the statistical distance between them
is ∆sd(X,Y ) = 1

2

∑
ω∈D |X(ω)−Y (ω)|. In order to avoid tracing irrelevant terms

in our statistical distance computations, we define ε̂ = ε+O(ε2).

? ? ? Technically, [29, Algorithm 4] deterministically rounds a target point to a point
in the lattice, rather than producing a probability distribution. But, as observed
in [29], the algorithm is easily adapted to perform gaussian sampling by replacing
deterministic rounding operations with probabilistic gaussian rounding.



We denote a random variable x sampled from a distribution D as x← D. A
random variable distributed as D is denoted x ∼ D. We denote an algorithm A
with oracle access to another algorithm B (distribution D) as AB (AD).

The max-log, or ML, distance between two distributions was recently intro-
duced by [54] in order to prove tighter bounds for concrete security. The ML
distance between two discrete distributions over the same support, S, as

∆ml(P,Q) = max
x∈S
| lnQ(x)− lnP(x)|.

Let P,Q be distributions over a countable domain again and let S be the support
of P.

The Rényi divergence of order infinity of Q from P is

R∞(P||Q) = max
x∈S

P(x)

Q(x)
.

Rényi divergence is used in [8] to yield a tighter security analysis than one using
statistical distance.

2.1 Linear Algebra

The (foreward) Gram-Schmidt orthogonalization of an ordered set of linearly

independent vectors B = {b1, . . . ,bk} is B̃ = {b̃1, . . . , b̃k} where each b̃i is
the component of bi orthogonal to span(b1, . . . ,bi−1) (and the backward GSO

is defined as b†i = bi ⊥ span(bi+1, . . . ,bn)). An anti-cylic matrix is an n × n
matrix of the form 

a0 −an−1 . . . −a1

a1 a0 . . . −a2

...
...

. . .
...

an−1 an−2 . . . a0

 .
For any two (symmetric) matrices Σ,Γ ∈ Rn×n, we write Σ � Γ if xT (Σ −

Γ )x ≥ 0 for all (nonzero) vectors x ∈ Rn, and Σ � Γ if xT (Σ − Γ )x > 0. It is
easy to check that � is a partial order relation. Relations � and ≺ are defined
symmetrically. When one of the two matrices Γ = sI is scalar, we simply write
Σ � s or Σ � s. A symmetric matrix Σ ∈ Rn×n is called positive definite if
Σ � 0, and positive semidefinite if Σ � 0. Equivalently, Σ is positive semidefinite
if and only if it can be written as Σ = BBT for some (square) matrix B, called
a square root of Σ and denoted B =

√
Σ. (Notice that any Σ � 0 has infinitely

many square roots B =
√
Σ.) Σ is positive definite if and only if its square root

B is a square nonsingular matrix. When B is upper (resp. lower) triangular,
the factorization Σ = BBT is called the upper (resp. lower) triangular Cholesky
decomposition of Σ. The Cholesky decomposition of any positive definite Σ ∈
Rn×n can be computed with O(n3) floating point arithmetic operations. For any
scalar s, Σ � s if and only if all eigenvalues of Σ are strictly greater than s. In
particular, positive definite matrices are nonsingular.



For any n×n matrix S and non-empty index sets I, J ⊆ {1, . . . , n}, we write
S[I, J ] for the |I| × |J | matrix obtained by selecting the elements at positions
(i, j) ∈ I × J from S. When I = J , we write S[I] as a shorthand for S[I, I].
For any nonsingular matrix S ∈ Rn×n and index partition I ∪ Ī = {1, . . . , n},
I ∩ Ī = ∅, the I × I matrix

S/I = S[I]− S[I, Ī] · S[Ī]−1 · S[Ī , I]

is called the Schur complement of S[Ī], often denoted by S/S[Ī] = S/I. In

particular, if S =

[
A B
BT D

]
then the Schur complement of A is the matrix S/A =

D−BTA−1B. For any index set I, a symmetric matrix S is positive definite if
and only if both S[I] and its Schur’s complement S/S[I] are positive definite.

Let Σ =

[
A B
BT D

]
� 0. We can factor Σ in terms of a principal submatrix,

say D, and its Schur complement, Σ/D = A−BD−1BT , as follows:

Σ =

[
I BD−1

0 I

] [
Σ/D 0

0 D

] [
I 0

D−1BT I

]
.

The next two theorems regarding the spectra of principal submatrices and
Schur complements of positive definite matrices are used in Section 4. In both
theorems, λi is the ith (in non-increasing order, with multiplicity) eigenvalue of
a symmetric matrix.

Theorem 1 (Cauchy). For any symmetric matrix S ∈ Rn×n, I ⊆ {1, . . . , n}
and 1 ≤ i ≤ |I|

λi(S) ≥ λi(S[I]) ≥ λi+n−|I|(S).

Theorem 2 ([62, Corollary 2.3]). For any positive definite Σ ∈ Rn×n, I ⊆
{1, . . . , n} and 1 ≤ i ≤ |I|

λi(Σ) ≥ λi(Σ/I) ≥ λi+n−|I|(Σ).

In other words, the eigenvalues of principal submatrices and Schur complements
of a positive definite matrix are bounded from below and above by the smallest
and largest eigenvalues of the original matrix.

2.2 Gaussians and Lattices

A lattice Λ ⊂ Rn is a discrete subgroup of Rn. Specifically, a lattice of rank
k is the integer span L(B) = {z1b1 + · · · + zkbk | zi ∈ Z} of a basis B =
{b1, . . . ,bk} ⊂ Rn (k ≤ n). There are infinitely many bases for a given lattice
since right-multiplying a basis by a unimodular transformation gives another
basis. The dual lattice of Λ, denoted by Λ∗, is the lattice {x ∈ span(Λ)| 〈x, Λ〉 ⊆
Z}. It is easy to see that B−T is a basis for L(B)∗ for a full rank lattice (n = k).



The n-dimensional gaussian function ρ : Rn → (0, 1] is defined as ρ(x) :=
exp(−π‖x‖2). Applying an invertible linear transformation B to the gaussian
function yields

ρB(x) = ρ(B−1x) = exp(−π · xTΣ−1x)

with Σ = BBT � 0. For any c ∈ span(B) = span(Σ), we also define the shifted
gaussian function (centered at c) as ρ√Σ,c(x) = ρ√Σ(x − c). Normalizing the

function ρB,c(x) by the measure of ρB,c over the span of B gives the continuous
gaussian distribution with covariance Σ/(2π), denoted by D√Σ,c. Let S ⊂ Rn
be any discrete set in Rn, then ρ√Σ(S) =

∑
s∈S ρ

√
Σ(s). The discrete gaus-

sian distribution over a lattice Λ, denoted by DΛ,
√
Σ,c, is defined by restrict-

ing the support of the distribution to Λ. Specifically, a sample y ← DΛ,
√
Σ,c

has probability mass function ρ√Σ,c(x)/ρ√Σ,c(Λ) for all x ∈ Λ. Discrete gaus-

sians on lattice cosets Λ + c, for c ∈ span(Λ), are defined similarly setting
Pr{y← DΛ+c,

√
Σ,p} = ρ√Σ,p(y)/ρ√Σ,p(Λ+ c) for all y ∈ Λ+ c. For brevity we

let DΛ+c,
√
Σ,p(y) := Pr{y← DΛ+c,

√
Σ,p}.

For a lattice Λ and any (typically small) positive ε > 0, the smoothing param-
eter ηε(Λ) [53] is the smallest s > 0 such that ρ(s·Λ∗) ≤ 1+ε. A one-dimensional
discrete gaussian with a tail-cut, t, is a discrete gaussian DZ,c,s restricted to a
support of Z ∩ [c− t · s, c+ t · s]. We denote this truncated discrete gaussian as
Dt

Z,c,s. In order to use the ML distance in Section 3, we will restrict all tail-cut
discrete gaussians to a universal support of Z∩ [c− t · smax, c+ t · smax] for some
smax.

Lemma 1 ([32, Lemma 4.2]). For any ε > 0, any s ≥ ηε(Z), and any t > 0,

Pr
x←DZ,s,c

[|x− c| ≥ t · s] ≤ 2e−πt
2

· 1 + ε

1− ε
.

More generally, for any positive definite matrix Σ and lattice Λ ⊂ span(Σ),

we write
√
Σ ≥ ηε(Λ), or Σ � η2

ε (Λ), if ρ(
√
Σ
T · Λ∗) ≤ 1 + ε. The reader is

referred to [53, 32, 56] for additional information on the smoothing parameter.
Here we recall two bounds and a discrete gaussian convolution theorem to

be used later.

Lemma 2 ([32, Lemma 3.1]). Let Λ ⊂ Rn be a lattice with basis B, and let
ε > 0. Then,

ηε(Λ) ≤ ‖B̃‖
√

log(2n(1 + 1/ε))/π.

Lemma 3 ([56, Lemma 2.5]). For any full rank n-dimensional lattice Λ, vec-
tor c ∈ Rn, real ε ∈ (0, 1), and positive definite Σ � η2

ε (Λ),

ρ√Σ(Λ+ c) ∈
[

1− ε
1 + ε

, 1

]
· ρ√Σ(Λ).

Theorem 3 ([56, Theorem 3.1]). For any vectors c1, c2 ∈ Rn, lattices Λ1, Λ2 ⊂
Rn, and positive definite matrices Σ1, Σ2 � 0, Σ = Σ1 + Σ2 � 0, Σ−1

3 =



Σ−1
1 + Σ−1

2 � 0, if
√
Σ1 � ηε(Λ1) and

√
Σ3 � ηε(Λ2) for some 0 < ε ≤ 1/2,

then the distribution

X = {x | p← DΛ2+c2,
√
Σ2
,x← DΛ1+c1,

√
Σ1,p
}

is within statistical distance ∆(X,Y ) ≤ 8ε from the discrete gaussian Y =
DΛ1+c1,

√
Σ.

Below we have the correctness theorem for the standard, randomized version
of Babai’s nearest plane algorithm. The term statistically close is the standard
cryptographic notion of negligible statistical distance. Precisely, a function f :
N→ R≥0 is negligible if for every c > 1 there exists an N such that for all n > N ,
f(n) < n−c. We emphasize that the algorithm reduces to sampling DZ,s,c.

Theorem 4 ([32, Theorem 4.1]). Given a full-rank lattice basis B ∈ Rn×n, a
parameter s ≥ ‖B̃‖ω(

√
log n), and a center c ∈ Rn, there is an O(n2)-time, with

a O(n3)-time preprocessing, probabilistic algorithm whose output is statistically
close to DL(B),s,c.

2.3 Cyclotomic Fields

Let n be a positive integer. The n-th cyclotomic field over Q is the number
field Kn = Q[x]/(Φn(x)) ∼= Q(ζ) where ζ is an n-th primitive root of unity and
Φn(x) is the minimal polynomial of ζ over Q. The nth cyclotomic ring is On =
Z[x]/(Φn(x)). Let ϕ(n) be Euler’s totient function. Kn is a ϕ(n)-dimensional
Q-vector space, and we can view Kn as a subset of C by viewing ζ as a complex
primitive n-th root of unity.

Multiplication by a fixed element f , g 7→ f · g, is a linear transforma-
tion on Kn as a Q-vector space. We will often view field elements as ϕ(n)-
dimensional rational vectors via the coefficient embedding. This is defined by

f(x) =
∑ϕ(n)−1
i=0 fix

i 7→ (f0, · · · , fϕ(n)−1)T mapping a field element to its vec-

tor of coefficients under the power basis {1, x, · · · , xϕ(n)−1} (or equivalently
{1, ζ, · · · , ζϕ(n)−1}). We can represent a field element as the matrix in Qϕ(n)×ϕ(n)

that represents the linear transformation by its multiplication in the coefficient
embedding. This matrix is called a field element’s coefficient multiplication ma-
trix. When n is a power of two, an element’s coefficient multiplication matrix is
anti-cyclic.

An isomorphism from the field F to the field K is a bijection θ : F → K
such that θ(fg) = θ(f)θ(g), and θ(f + g) = θ(f) + θ(g) for all f, g ∈ F . An
automorphism is an isomorphism from a field to itself. For example, if we view
the cyclotomic field Kn as a subset of the complex numbers, then the conjugation
map f(ζ) 7→ f(ζ)∗ = f(ζ∗) is an automorphism and can be computed in linear
time O(n). In power-of-two cyclotomic fields, the conjugation of a field element
corresponds to the matrix transpose of an element’s anti-cyclic multiplication
matrix.

Another embedding is the canonical embedding which maps an element f ∈
Kn to the vector of evaluations of f , as a polynomial, at each root of Φn(x).



When n is a power of two, the linear transformation between the coefficient
embedding and the canonical embedding is a scaled isometry.

Let n be a power of two, then the field K2n is a two-dimensional Kn-vector
space as see by splitting a polynomial f(x) ∈ K2n into f(x) = f0(x2) +x ·f1(x2)
for fi ∈ Kn. Now, we can view the linear transformation given by multiplication
by some f ∈ K2n as a linear transformation over Kn ⊕ Kn ∼= K2n. Let φ2n :
K2n → Qn×n be the injective ring homomorphism from the field to an element’s
anti-cyclic matrix. Then, we have the following relationship where P below is
a simple re-indexing matrix known as a stride permutation (increasing evens
followed by increasing odds in {0, 1, . . . , n− 1}),

Pφn(f)PT =

[
φn/2(f0) φn/2(x · f1)
φn/2(f1) φn/2(f0)

]
.

3 Sampling G-lattices

For any positive integers b ≥ 2, k ≥ 1 and non-negative integer u < bk, we write
[u]kb for the base-b expansion of u, i.e., the unique vector (u0, . . . , uk−1) with
entries 0 ≤ ui < b such that u =

∑
i uib

i. Typically, b = 2 and [u]k2 is just the
k-digits binary representation of u, but larger values of b may be used to obtain
interesting efficiency trade-offs. Throughout this section, we consider the values
of b and k as fixed, and all definitions and algorithms are implicitly parametrized
by them.

In this section we study the so-called G-lattice sampling problem, i.e., the
problem of sampling the discrete Gaussian distribution on a lattice coset

Λ⊥u (gT ) = {z ∈ Zk : gT z = u mod q}

where q ≤ bk, u ∈ Zq, k = dlogb qe, and g = (1, b, . . . , bk−1). G-lattice sam-
pling is used in many lattice schemes employing a trapdoor. Both schemes
with polynomial modulus, like IBE [18, 11, 4, 2], group signatures [45, 55, 46, 37],
and others (double authentication preventing and predicate authentication pre-
venting signuatures, constraint-hiding PRFs) [15, 22], and schemes with super-
polynomial modulus [19, 20, 34, 17, 43, 36, 1] (ABE, obfuscation, watermarking,
etc.), as well as [40], use G-lattice sampling.

A very efficient algorithm to solve this problem is given in [52] for the special
case when q = bk is a power of the base b. The algorithm, shown in Figure 1, is
very simple. This algorithm reduces the problem of sampling the k-dimensional
lattice coset Λ⊥u (gT ) for u ∈ Zq to the much simpler problem of sampling the
one-dimensional lattice cosets u+bZ for u ∈ Zb. The simplicity of the algorithm
is due to the fact that, when q = bk is an exact power of b, the lattice Λ⊥(gT )



SampleG(q = bk, s, u)
for i = 0, . . . , k − 1 :
xi ← DbZ+u,s
u := (u− xi)/b ∈ Z.

return (x0, . . . , xk−1).

Fig. 1. A sampling algorithm for G-lattices when the modulus q is a perfect power of
the base b. The algorithm is implicitly parametrized by a base b and dimension k.

has a very special basis

Bbk =



b
−1 b

−1
. . .

. . . b
−1 b


which is sparse, triangular, and with small integer entries. (In particular, its

Gram-Schmidt orthogonalization B̃bk = bI is a scalar matrix.) As a result, the
general lattice sampling algorithm of [44, 32] (which typically requiresO(k3)-time
preprocessing, and O(k2) storage and online running time) can be specialized
to the much simpler algorithm in Figure 1 that runs in linear time O(k), with
minimal memory requirements and no preprocessing at all.

We give a specialized algorithm to solve the same sampling problem when q <
bk is an arbitrary modulus. This is needed in many cryptographic applications
where the modulus q is typically a prime. As already observed in [52] the lattice
Λ⊥(gT ) still has a fairly simple and sparse basis matrix

Bq =



b q0

−1 b q1

−1
. . .

...
. . . b qk−2

−1 qk−1


where (q0, . . . , qk−1) = [q]kb = q is the base-b representation of the modulus
q. This basis still has good geometric properties, as all vectors in its (left-to-
right) Gram-Schmidt orthogonalization have length at most O(b). So, it can be
used with the algorithm of [44, 32] to generate good-quality gaussian samples
on the lattice cosets with small standard deviation. However, since the basis is
no longer triangular, its Gram-Schmidt orthogonalization is not sparse anymore,
and the algorithm of [44, 32] can no longer be optimized to run in linear time
as in Figure 1. In applications where q = nO(1) is polynomial in the security
parameter n, the matrix dimension k = O(log n) is relatively small, and the
general sampling algorithm (with O(k2) storage and running time) can still be



used with an acceptable (albeit significant) performance degradation. However,
for larger q this becomes prohibitive in practice. Moreover, even for small q, it
would be nice to have an optimal sampling algorithm with O(k) running time,
linear in the matrix dimension, as for the exact power case. Here we give such
an algorithm, based on the convolution methods of [56], but specialized with
a number of concrete technical choices that result in a simple and very fast
implementation, comparable to the specialized algorithm of [52] for the exact
power case.

The reader may notice that the alternating columns of Bq, b1,b3, . . . and
b2,b4, . . . , are pair-wise orthogonal. Let us call these sets B1 and B2, respec-
tively. Then, another basis for Λ⊥(gT ) is (B1,B2,q) and this might suggest that
the GSO of this basis is sparse. Unfortunately, this leads to a GSO of (B1,B

∗
2,q
∗)

where B∗2 is a dense, upper triangular block. Let b be the i − th vector in B2.
Then, there are 2 + i−1 non-orthogonal vectors to b preceding it in B1 and B∗2,
filling in the upper portion of b̃.

Overview The idea is the following. Instead of sampling Λ⊥u (gT ) directly, we
express the lattice basis Bq = TD as the image (under a linear transforma-
tion T) of some other matrix D with very simple (sparse, triangular) structure.
Next, we sample the discrete gaussian distribution (say, with variance σ2) on
an appropriate coset of L(D). Finally, we map the result back to the original
lattice applying the linear transformation T to it. Notice that, even if L(D) is
sampled according to a spherical gaussian distribution, the resulting distribu-
tion is no longer spherical. Rather, it follows an ellipsoidal gaussian distribution
with (scaled) covariance σ2TTT . This problem is solved using the convolution
method of [56], i.e., initially adding a perturbation with complementary co-
variance s2I − σ2TTT to the target, so that the final output has covariance
σ2TTT + (s2I−σ2TTT ) = s2I. In summary, at a very high level, the algorithm
performs (at least implicitly) the following steps:

1. Compute the covariance matrix Σ1 = TTT and an upper bound r on the
spectral norm of TTT

2. Compute the complementary covariance matrix Σ2 = r2I−Σ1

3. Sample p← DΛ1,σ
√
Σ2

, from some convenient lattice Λ1 using the Cholesky
decomposition of Σ2

4. Compute the preimage c = T−1(u− p)
5. Sample z← DL(D),−c,σ
6. Output u + Tz

The technical challenge is to find appropriate matrices T and D that lead to
a very efficient implementation of all the steps. In particular, we would like T to
be a very simple matrix (say, sparse, triangular, and with small integer entries) so
that T has small spectral norm, and both linear transformations T and T−1 can
be computed efficiently. The matrix D (which is uniquely determined by B and
T) should also be sparse and triangular, so that the discrete gaussian distribution
on the cosets of L(D) can be efficiently sampled. Finally (and this is the trickiest



part in obtaining an efficient instantiation) the complementary covariance matrix
Σ2 = r2I − Σ1 should also have a simple Cholesky decoposition Σ2 = LLT

where L is triangular, sparse and with small entries, so that perturbations can
be generated efficiently. Ideally, all matrices should also have a simple, regular
structure, so that they do not need to be stored explicitly, and can be computed
on the fly with minimal overhead.

In the next subsection we provide an instantiation that satisfies all of these
properties. Next, in Subsection 3.2 we describe the specialized sampling algo-
rithm resulting from the instantiation, and analyze its correctness and efficiency
properties.

3.1 Instantiation

In this subsection, we describe a specific choice of linear transformations and
matrix decompositions that satisfies all our desiderata, and results in a very
efficient instantiation of the convolution sampling algorithm on G-lattices.

A tempting idea may be to map the lattice basis Bq to the basis Bbk , and
then use the efficient sampling algorithm from Figure 1. However, this does not
quite work because it results in a pretty bad transformation T which has both
poor geometrical properties and a dense matrix representation. It turns out that
a very good choice for a linear transformation T is given precisely by the matrix
T = Bbk describing the basis when q is a power of b. We remark that T is used
as a linear transformation, rather than a lattice basis. So, the fact that it equals
Bbk does not seem to carry any special geometric meaning, it just works! In
particular, what we do here should not be confused with mapping Bq to Bbk .
The resulting factorization is

Bq =



b q0

−1 b q1

−1
. . .

...
. . . b qk−2

−1 qk−1

 =



b
−1 b

−1
. . .

. . . b
−1 b




1 d0

1 d1

. . .
...

1 dk−2

dk−1

 = BbkD

where the entries of the last column of D are defined by the recurrence di =
di−1+qi

b with initial condition d−1 = 0. Notice that all the di are in the range
[0, 1), and bi+1 · di is always an integer. In some sense, sampling from L(D) is
even easier than sampling from L(Bbk) because the first k− 1 columns of D are
orthogonal and the corresponding coordinates can be sampled independently in
parallel. (This should be contrasted with the sequential algorithm in Figure 1.)



We now look at the geometry and algorithmic complexity of generating per-
turbations. The covariance matrix of T = Bbk is given by

Σ1 = BbkB
T
bk =


b2 −b
−b (b2 + 1) −b

. . .
. . .

. . .

−b (b2 + 1) −b
−b (b2 + 1)

 .

The next step is to find an upper bound r2 on the spectral norm of Σ2, and com-
pute the Cholesky decomposition LLT of the complementary covariance matrix
Σ2 = r2I−Σ1. By the Gershgorin circle theorem, all eigenvalues of Σ1 are in the
range (b±1)2. So, we may set r = b+1. Numerical computations also suggest that
this choice of r is optimal, in the sense that the spectral norm of Σ1 approaches
b+ 1 as k tends to infinity. The Cholesky decomposition is customarily defined
by taking L to be a lower triangular matrix. However, for sampling purposes,
an upper triangular L works just as well. It turns out that using an upper tri-
angular L in the decomposition process leads to a much simpler solution, where
all (squared) entries have a simple, closed form expression, and can be easily
computed on-line without requiring any preprocessing computation or storage.
(By contrast, numerical computations suggest that the standard Cholesky de-
composition with lower triangular L is far less regular, and even precomputing
it requires exponentially higher precision arithmetic than our upper triangular
solution.) So, we let L be an upper triangular matrix, and set r = b+ 1.

For any r, the perturbation’s covariance matrix Σ2 = r2I−Σ1 has Cholesky
decomposition Σ2 = L·LT where L is the sparse upper triangular matrix defined
by the following equations:

L =


l0 h1

l1 h2

. . .
. . .

hk−1

lk−1

 where

l20 + h2
1 = r2 − b2

l2i + h2
i+1 = r2 − (b2 + 1) (i = 1, . . . , k − 2)
l2k−1 = r2 − (b2 + 1)
lihi = b (i = 1, . . . , k − 1)

It can be easily verified that these equations have the following simple closed
form solution:

r = b+ 1, l20 = b

(
1 +

1

k

)
+ 1, l2i = b

(
1 +

1

k − i

)
, h2

i+1 = b

(
1− 1

k − i

)
(1)

We observe that also the inverse transformation B−1
bk

has a simple, closed-form

solution: the ith column of B−1
bk

equals (0, · · · , 0, 1
b , . . . , (

1
b )k−i). Notice that this

matrix is not sparse, as it has O(k2) nonzero entries. However, there is no need
to store it and the associated transformation can still be computed in linear time
by solving the sparse triangular system Tx = b by back-substitution.



3.2 The Algorithm

The sampling algorithm, SampleG, is shown in Figure 2. It takes as input a
modulus q, an integer variance s, a coset u of Λ⊥(gT ), and outputs a sample
statistically close to DΛ⊥u (gT ),s. SampleG relies on subroutines Perturb and
SampleD where Perturb(σ) returns a perturbation, p, statistically close to
DL(Σ2),σ·

√
Σ2

, and SampleD(σ, c) returns a sample z such that Dz is statisti-
cally close to DL(D),−c,σ.

Both Perturb and SampleD are instantiations of the randomized near-
est plane algorithm [44, 32]. Consequently, both algorithms rely on a subrou-
tine SampleZt(σ, c, σmax) which returns a sample statistically close to one-
dimensional discrete gaussian with it a tail-cut t, Dt

Z,σ,c over the fixed support
of Z ∩ [c − t · σmax, c + t · σmax]. We fix the support of all one dimensional dis-
crete gaussians for compatibility with ML distance. In addition, we only feed
SampleZ centers c ∈ [0, 1) since we can always shift by an integer.

Storage The scalars ci in SampleG, representing c = B−1
bk

(u − p), and di in
SampleD, representing the last column of D, are rational numbers of the form
x/bi for a small integer x and i ∈ [k]. The numbers li, hi are positive numbers
of magnitude less than

√
2b+ 1.

A naive implementation of the algorithms store floating point numbers ci, di,
hi, and li for a total storage of 4k floating point numbers. However, this can be
adapted to constant time storage since they are determined by simple recurrence
relations (ci, di) or simple formulas (hi, li).

Time Complexity Assuming constant time sampling for SampleZ and scalar
arithmetic, SampleG runs in time O(k). Now let us consider all operations:
there are 6k integer additions/subtractions, 3k+2 integer multiplications, 3(k+1)
floating point divisions, 2k floating point multiplications, and 2k floating point
additions. The analysis below shows we can use double precision floating point
numbers for most applications.

Statistical Analysis and Floating Point Precision We now perform a statisti-
cal analysis on SampleG with a perfect one-dimensional sampler (and no tail-
bound), then with a tail-bounded imperfect sampler in terms of ML distance.
This allows us to measure loss in concrete security. We direct the reader to [54,
Section 3] for more details on the ML distance and a complete concrete security
analysis.

The following lemma is needed in order to make sense of the “Σ3 condition”
in Theorem 3.

Lemma 4. Let Σ3 be defined by Σ−1
3 = (b+1)2

s2 [Σ−1
1 + [(b + 1)2I − Σ]−1], then

its eigenvalues are Θ(s2/b). Moreover, if λi is the i−th eigenvalue of Σ1, then

the i−th eigenvalue of Σ3 is (s/[b+ 1])2 · λi[(b+1)2−λi]
(b+1)2 .

Proof. Let Σ1 = QTDQ be its diagonalization. Then, Σ−1
1 = QTD−1Q and

the rest follows from algebraic manipulations of the individual eigenvalues along
with the Gershgorin circle theorem on Σ1. ut



SampleG(s,u = [u]kb ,q = [q]kb )
σ := s/(b+ 1)
p← Perturb(σ)
for i = 0, . . . , k − 1 :
ci := (ci−1 + ui − pi)/b

z← SampleD(σ, c)
for i = 0, . . . , k − 2 :
ti := b · zi − zi−1 + qi · zk−1 + ui

tk−1 := qk−1 · zk−1 − zk−2 + uk−1

return t

Perturb(σ)
β := 0
for i = 0, . . . , k − 1 :
ci := β/li, and σi := σ/li
zi ← bcic+ SampleZt(σi, bcie[0,1), s)
β := −zihi

p0 := (2b+ 1)z0 + bz1
for i := 1, . . . , k − 1 :
pi := b(zi−1 + 2zi + zi+1)

return p

SampleD(σ, c)
zk−1 ← b−ck−1/dk−1c
zk−1 ← zk−1+ SampleZt(σ/dk−1, b−ck−1/dk−1e[0,1), s)
c := c− zk−1d
for i ∈ {0, . . . , k − 2} :
zi ← b−cic+ SampleZt(σ, b−cie[0,1), s)

return z

Fig. 2. Sampling algorithm for G-lattices for any modulus q < bk. The algorithms
take b and k as implicit parameters, and SampleG outputs a sample with distribution
statistically close to DΛ⊥u (gT ),s. Any scalar with an index out of range is 0, i.e. c−1 =
z−1 = zk = 0. SampleZt(σ, c, σmax) is any algorithm that samples from a discrete
gaussian over Z exactly or approximately with centers in [0, 1) and a fixed truncated
support Z ∩ [c− t · σmax, c+ t · σmax] (t is the tail-cut parameter). We denote x− bxc
as bxe[0,1).

Let Cε,k =
√

log(2k(1 + 1/ε))/π. Now we can easily bound s from below.
We need the following three conditions for s: s ≥ (b + 1)ηε(D),

√
Σ3 ≥ ηε(Σ2),

and s ≥ (b+ 1)ηε(L). The middle condition determines s with a lower bound of
s ≥
√

2b · (2b+ 1) · Cε,k (the last two conditions both have s = Ω(b1.5 · Cε,k)).

Corollary 1. Fix 0 < ε ≤ 1/2 and let s ≥
√

2b · (2b+ 1) ·Cε,k. Then, SampleG
returns a perturbation within a statistical distance Θ(kε̂) from DΛ⊥u (gT ),s for any

q < bk when Perturb and SampleD use a perfect one-dimensional sampler,
SampleZ. In addition, the Rényi divergence of order infinity of DΛ⊥u (gT ),s from
SampleG with a perfect one-dimensional sampler is less than or equal to 1 +
Θ(kε̂).

The statistical distance bound of Θ(kε̂) results in about a loss of log log q
bits in security if ε = 2−κ for a security parameter κ by [54, Lemma 3.1]. (The
multiplicative factor of k comes from the randomized nearest plane algorithm’s
analysis: see [32, Theorem 4.1].)

Next, we turn to the ML distance for a tighter analysis on the bits of security
lost in using SampleG with an imperfect one-dimensional sampler. Since the
centers, c, and variances, s, given to SampleZ are computed from two or three



floating point computations, we assume both c̄ and s̄ are within a relative error
of 2−m of c and s.

Proposition 1. Fix an ε > 0 and let s ≥ (b+1)·ηε(Z). For any one-dimensional
sampler SampleZt(σ̄, c̄, s) that takes as inputs approximated centers c̄ ∈ [0, 1)
and variances σ̄ ∈ [s/(b+ 1), s · b/(b+ 1)] represented as floating point numbers

with mantissa length m, ∆ml(SampleG
DtZ,σ,c ,SampleGSampleZt(σ̄,c̄)) ≤

2k[O(b2t22−m) + maxσ̄,c̄∆ml(SampleZt(σ̄, c̄, s), D
t
Z,σ̄,c̄)].

Assuming a cryptosystem using a perfect sampler for DΛ⊥u (gT ),s has κ bits
of security, we can combine the results of Corollary 1, Proposition 1, and [54,
Lemma 3.3] to conclude that swapping DΛ⊥u (gT ),s with SampleG yields about

κ− 2 log(tb2)− 3 log log q − 5 bits of security when m = κ/2,
∆ml(SampleZt(s̄, c̄), D

t
Z,s̄,c̄) < 2−κ/2, and ε = 2−κ.

3.3 Implementation and Comparison

Fig. 3. Measured clock cycles with q = {4093, 12289, 1676083, 8383498, 4295967357,≈
9 · 1018} and s = 100 averaged over 100,000 runs. The clock cycles for the last
three moduli are {19.4, 31.9, 73.9} for GPV and {5.5, 7.5, 13.1} for SampleG with
pre-computation.

In this subsection, we compare simple implementations of both SampleG
and the generic randomized nearest plane algorithm [32, Section 4] used in the
G-lattice setting. The implementations were carried out in C++ with double



precision floating point numbers for non-integers on an Intel i7-2600 3.4 GHz
CPU. Clock cycles were measured with the “time.h” library and the results are
charted in Figure 3.3.

The one-dimensional sampler, SampleZ, was an instantiation of a discrete
version of Karney’s sampler [42], which is a modified rejection sampler. The
moduli q were chosen from the common parameters subsection of [41, Section
4.2], in addition to an arbitrary 60-bit modulus. Most practical schemes require
no more than a 30-bit modulus [9] for lattice dimension (n) up to 1024. More
advanced schemes however, like ABE-encryption [14, 19], predicate encryption
[35], and obfuscation [20, 27], require a super-polynomial modulus often 90 or
more bits (assuming the circuits in the ABE and predicate schemes are of log-
depth).

For the generic, randomized nearest plane sampler, we pre-computed and
stored the Gram-Schmidt orthogonalization of the basis Bq and we only counted
the clock cycles to run the algorithm thereafter. We had two versions of Samp-
leG: the first was the algorithm as-is, and the second would store pre-computed
perturbations from Perturb(σ), one for each G-lattice sample. This version of
SampleG with pre-computation saved about a factor of two in clock cycles.

4 Perturbation Sampling in Cyclotomic Rings

The lattice preimage sampling algorithm of [52] requires the generation of n(2 +
log q)-dimensional gaussian perturbation vectors p with covariance Σp = s2 · I−
α2T ·TT where T ∈ Z(2+log q)n×n log q is a matrix with small entries serving as
a lattice trapdoor, α is a small constant factor and s is an upper bound on the
spectral norm of αT. In [52] this is accomplished using the Cholesky factoriza-
tion of Σp, which takes O(n log q)3 precomputation and O(n log q)2 storage and
running time.

The trapdoor matrix T of [52] has some additional structure: TT = [T̄T , I]
for some T̄ ∈ Z2n×n log q. Moreover, when working with algebraic lattices, T̄ =
φn(T̃) is the image (under a ring embedding φn : Rn → Zn×n) of some matrix
T̃ ∈ R2×log q

n with entries in a ring Rn of rank n. (Most commonly, Rn = O2n =
Z[x]/(xn+1) is the ring of integers of the (2n)th cyclotomic field K2n for n = 2k

a power of two.) In [9] it is observed that, using the sparsity of Σp, the pre-
processing storage and on-line computation cost of noise perturbation reduce to
O(n2 log q).† This is a factor log q improvement over a generic implementation,
but it is still quadratic in the main security parameter n. This can be a sig-
nificant improvement in practice, but the overall cost of the algorithm remains
substantial. When using generic trapdoors T̄ ∈ Z2n×n log q, there is little hope
to improve the running time below O(n2 log q), because just reading the matrix
T̄ takes this much time. However, when using algebraic lattices, the trapdoor
T̄ = φn(T̃) admits a compact representation T̃ consisting of only 2n log q in-

† Sparsity also reduces the preprocessing running time to O(log q · n2 + n3) = O(n3),
but still cubic in n.



tegers, so one may hope to reduce the running time to linear or quasi-linear in
n.

In this section we give an alternative algorithm to generate integer pertur-
bation vectors p with covariance Σp when T̄ = φn(T̃). Our algorithm takes
full advantage of the ring structure of Rn, compactly representing Σp and all
other matrices generated during the execution of the algorithm as the image
of matrices with entries in the ring Rn. In particular, similarly to [28, 29], our
algorithm has time and space complexity quasi-linear in n, but does not require
any preprocessing/storage. The algorithm can be expressed in a modular way as
the combination of three steps:

1. First, the problem of sampling a O(n log q)-dimensional integer vectors p
with covariance Σp is reduced to the problem of sampling a 2n-dimensional
integer vector with covariance expressed by a 2× 2 matrix over Rn.

2. Next, the problem of sampling an integer vector with covariance in R2×2
n is

reduced to sampling two n-dimensional integer vectors, each with a covari-
ance expressed by a single ring element in Rn.

3. Finally, if n > 1, the sampling problem with covariance in Rn is reduced
to sampling an n-dimensional perturbation with covariance expressed by a
2× 2 matrix over the smaller ring Rn/2.

Iterating the last two steps log n times reduces the original problem to sampling
in R1 = Z. Details about each step are given in the next subsections. We remark
that the algorithm is described as a recursive procedure only for simplicity of
presentation and analysis, and it can be implemented just as easily using a simple
nested loop, similarly to many FFT-like algorithms.

4.1 Discrete Perturbation Algorithm for Power of Two Cyclotomics

In this subsection we present the perturbation algorithm algorithm which pro-
duces n(2+log q)-dimensional perturbations from a discrete gaussian on Zn(2+log q)

in time Õ(n log q).
The entry point of the algorithm is the SamplePz procedure, which takes

as input two integer parameters n, q, matrices T̃ ∈ R2×log q
n , Σ2 ∈ R2×2

n , and
three positive real numbers s2, α2, z = (α−2 − s−2)−1, and is expected to pro-
duce an n(2 + log q)-dimensional vector p with (non-spherical) discrete gaussian
distribution DZn(2+log q),

√
Σp

of covariance

Σp = s2 · I− α2

[
φn(T̃)

I

]
·
[
φn(T̃)T I

]
=

[
Σ2 −α2φn(T̃)

−α2φn(T̃)T (s2 − α2)I

]
.

The algorithm calls two subroutines:

– SampleZ(s2 − α2) which samples a one-dimensional discrete gaussian vari-
able of variance s2 − α2 centered at 0, and can be implemented using any
standard technique, and



SamplePz(n, q, s, α, T̃, Σ2, z)
for i = 0, . . . , (n log q − 1) :
qi ← SampleZ(s2 − α2)

(c0, c1) := − α2

s2−α2 T̃q

c′(x) := c0(x2) + x · c1(x2))
p← Sample2z(a, b, d, c′)
return (p,q)

Sample2z(a, b, d, c)
let c(x) = c0(x2) + x · c1(x2)
q1 ← SampleFz(d, c1)
c0 := c0 + bd−1(q1 − c1)
q0 ← SampleFz(a− bd−1b∗, c0)
return (q0, q1)

SampleFz(f, c)
if dim(f) = 1 return SampleZ(f, c)
else let f(x) = f0(x2) + x · f1(x2)

(q0, q1)← Sample2z(f0, f1, f0, c)
let q(x) = q0(x2) + x · q1(x2)
return q

Fig. 4. Sampling algorithm SamplePz for integer perturbations where T = φn(T̃) is
a compact trapdoor over a power of two cyclotomic ring. Note, T̃i is a row vector over
Rn for each i ∈ {0, 1}. The algorithm uses a subroutine SampleZ(σ2, t) which samples
a discrete gaussian over Z with variance σ2 centered at t. The scalar z = (α−2−s−2)−1.

– Sample2z(a, b, d), which, on input three ring elements a, b, d compactly de-
scribing a positive definite matrix

Σ2 =

[
φn(a) φn(b)
φn(b)T φn(d)

]
,

is expected to sample a (2n)-dimensional vector p← DZ2n,
√
Σ2

.

In turn, Sample2z (also described in Figure 4) makes use of a procedure
SampleFz(f) which on input a ring element f with positive definite φn(f),
returns a sample p← DZn,

√
φn(f)

.

Efficiency Multiplications are done in the field Ki, for an element’s dimension
i ∈ {1, 2, . . . , 2n}, in time Θ(i log i) by using the Chinese remainder transform
(CRT ) [50].

By treating scalar arithmetic as constant time, SamplePz has a time com-
plexity of Θ(n log n log q) because the transformation by T̃ is Θ(n log n log q) and
SampleFz has complexity Θ(n log2 n) (represented by the recurrence R(n) =
2R(n/2) + 2 log n/2 + 4.5n). The algorithm requires 2n log q scalar storage for
the trapdoor T̃.

Note, SampleFz is even more efficient, Θ(n log n), if one were to store the
polynomials in Ki in the canonical embedding (Fourier domain). One would
change SamplePz to give Sample2z the Fourier/canonical representations of
a, b, d, c0, c1 and perform an inverse CRT/FFT on p = (p0,p1). This allows us to
use the FFT’s butterfly transformation to convert to the Fourier representation
of f(x) = f0(x2) + xf1(x2) ∈ K2n to the Fourier representation of f0, f1 ∈ Kn
and multiplication/inversion is now linear time (we would only invert the non-
zero entries in the Fourier domain since this corresponds to pulling back to the



field, inverting, then pushing forward to the cyclic ring via the embedding given
by the Chinese remainder theorem) [29, Lemma 1]. (Moving from the canonical
embedding to the FFT domain is linear time since we place zeros for the non-
primitive roots of unity [29, Section A.2].) This, however, does not change the
asymptotic time complexity of SamplePz since generating q in the canonical
embedding is now Θ(n log n log q).

Correctness One would use Peikert’s convolution theorem, Theorem 3, in an
initial attempt to prove the correctness of the algorithms in Figure 4. However,
this would only ensure the correctness of the marginal distributions of p in Sam-
plePz and q0 in Sample2z and not their respective joint distributions, (p,q)
and (q0, q1). Even if it were enough, tracking the Σ3 condition in Theorem 3
through the recursive calls of the algorithms above is tedious. Instead, we derive
a convolution lemma without a Σ3 condition for the joint distribution of our
discrete gaussian convolutions on the simple lattice Zn.

First, we show the gaussian function ρ√Σ(·) factors in a useful manner with
respect to a Schur complement decomposition.

Lemma 5. Let Σ =

[
A B
BT D

]
� 0 be a positive definite with A ∈ Rn×n and

D ∈ Rm×m and Σ/D = A−BD−1BT is D’s Schur complement, and let x1 ∈
Rn and x2 ∈ Rm be arbitrary. Then, the gaussian function ρ√Σ(x) factors as

ρ√
Σ/D

(x1 −BD−1x2) · ρ√D(x2) = ρ√Σ(x) where x = (x1,x2) ∈ Rn+m.

Proof. (Sketch) This is seen through defining the inverse of Σ in terms of Σ/D
and writing out ρ√Σ(x) in terms of Σ/D. The matrix factorization

Σ =

[
I BD−1

0 I

] [
Σ/D 0

0 D

] [
I 0

D−1BT I

]
yields the formula for Σ−1 needed to show the result. �

A consequence of the above lemma is that the gaussian sum ρ√Σ(Zn+m)
expands in terms of the gaussian functions ρ√D(·) and ρ√

Σ/D
(·),

ρ√Σ(Zn+m) =
∑

y2∈Zm
ρ√D(y2) · ρ√

Σ/D
(Zn −BD−1y2).

We will use the following lemma for the correctness proof. It states that if
a discrete gaussian on the integer lattice is wide enough in its slimmest direc-
tion, then the lower dimensional discrete gaussians with covariance shaped with
principal submatrices of the original are wide enough on their respective Zn′s.

Lemma 6. Let ε > 0, Σ � 0 be a positive definite matrix in Rn×n, and let
I0 ⊂ [n] be an arbitrary, non-empty subset. If Σ � η2

ε (Zn), then Σ[I0] � η2
ε (Z|I0|)

and Σ/Ī0 � η2
ε (Zn−|I0|) for any principal submatrix - Schur complement pair,

(Σ[I0], Σ/Ī0), of Σ.



Proof. Note, a consequence of Σ � η2
ε (Zn) is that Σ’s minimum eigenvalue,

λmin(Σ), is greater than η2
ε (Zn). Let M := Σ[I0] ∈ Rn0×n0 for n0 = |I0|. M

is diagonalizable so let M = QTΛQ be its diagonalization. Notice, we have
the following inequality from the interlacing theorems which imply λmin(M) ≥
λmin(Σ),

xTMx = xTQTΛQx = yTΛy =
∑
i∈[n0]

λiy
2
i ≥ λmin(Σ)‖y‖2 = λmin(Σ)‖x‖2.

Next, we can bound the quantity ρ√M−1((Zn0)∗) = ρ√M−1(Zn0) by 1 + ε:

ρ√M−1(Zn0) =
∑

x∈Zn0

e−πx
TMx ≤

∑
x∈Zn0

e−πλmin(Σ)‖x‖2

≤
∑
x∈Zn

e−πλmin(Σ)‖x‖2 ≤ 1 + ε.

The jump from Zn0 to Zn comes from the relation Zn0 ⊂ Zn. The proof for the
Schur complement is identical. �

Next, we state and prove our main convolution lemma.

Lemma 7. For any real 0 < ε ≤ 1/2, positive integers n,m, vector c = (c1, c2) ∈

Rn+m, and positive definite matrix Σ =

[
A B
BT D

]
� η2

ε (Zn+m), A ∈ Zn×n,

B ∈ Zn×m, and D ∈ Zm×m (where Σ/D = A−BD−1BT is the Schur comple-
ment of D) the random process

– x2 ← DZm,
√
D,c2

.
– x1 ← DZn,

√
Σ/D,c1+BD−1(x2−c2)

.

produces a vector x = (x1,x2) ∈ Zn+m such that the Rényi divergence of order
infinity of DZn+m,

√
Σ,c from x is less than or equal to 1 + 4ε.

Proof. First, we write out the probability and use Lemma 5 to simplify the
numerator. Let x′ = (x′1,x

′
2) below.

Pr[x1 = x′1,x2 = x′2] =
ρ√

Σ/D
(x′1 − c1 −BD−1(x′2 − c2)) · ρ√D(x′2 − c2)

ρ√
Σ/D

(Zn − c1 −BD−1(x′2 − c2)) · ρ√D(Zm − c2)

=
ρ√Σ(x′ − c)

ρ√
Σ/D

(Zn − c1 −BD−1(x′2 − c2)) · ρ√D(Zm − c2)

Regarding the denominator, we use Lemma 6 to see that Σ/D � η2
ε (Zn) since

Σ � η2
ε (Zn+m). Now, we can use Lemma 3 for the first gaussian sum (dependent

on x′2) in the denominator to see,

Pr[x1 = x′1,x2 = x′2] ∈ α ·DZn+m,
√
Σ,c(x′) ·

[(
1− ε
1 + ε

)
, 1

]−1



where α =
ρ√Σ(Zn+m−c)

ρ√
Σ/D

(Zn)·ρ√D(Zm−c2) .

Next, we show α ≈ 1. Using Lemma 5 we expand

ρ√Σ(Zn+m − c) =
∑

y2∈Zm
ρ√D(y2 − c2) · ρ√

Σ/D
(Zn − c1 −BD−1(y2 − c2)).

The sum ρ√
Σ/D

(Zn − c1 − BD−1(y2 − c2)) is approximately ρ√
Σ/D

(Zn)

because Σ/D � η2
ε (Zn) as a consequence of Lemma 6 and Σ � η2

ε (Zn+m). In
other words,

ρ√
Σ/D

(Zn − c1 −BD−1(y2 − c2)) ∈
[

1− ε
1 + ε

, 1

]
· ρ√

Σ/D
(Zn)

and α ∈
[(

1−ε
1+ε

)
, 1
]
.

Finally, we have the approximation

Pr[x1 = x′1,x2 = x′2] ∈
[(

1− ε
1 + ε

)
,

(
1 + ε

1− ε

)]
·DZn+m,

√
Σ,c(x′).

Given the restriction on ε ∈ (0, 1/2], we have the relation we desire

Pr[x1 = x′1,x2 = x′2] ∈ [1− 4ε, 1 + 4ε] ·DZn+m,
√
Σ,c(x′).

�

Next, we bound the Rényi divergence of order infinity between the output
of SamplePz and the desired distribution. We need to ensure each discrete
gaussian convolution in the algorithm is non-degenerate. We do not analyze the
statistical loss from the floating point computations. As shown in Lemma 7,
we need Σ/D � η2

ε (Zn0) and D � η2
ε (Zn1) at each of the n discrete gaussian

convolutions. This is met through a simple condition on Σp as hinted to in
Lemma 6.

Theorem 5. Let 0 < ε ≤ 1/2. If Σp � η2
ε (Zn(2+log q)), then SamplePz returns

a perturbation with a Rényi divergence of order infinity
R∞(DZn(2+log q),

√
Σp
||SamplePz) ≤ 1 + 12nε̂.

Proof. Since each covariance given to SampleFz is a Schur complement or a
principal submatrix of a Schur complement of Σp, Lemma 6 and the interlacing
theorems (Theorem 1 and Theorem2) imply the conditions for Lemma 7 are met.
As there are n−1 convolutions (inner nodes of a full binary tree of depth log n),
a quick induction argument shows the probability distribution of the output of
SamplePz is in the interval [(1− 4ε)3(n−1), (1 + 4ε)3(n−1)] ·DZn(2+log q),

√
Σp

(x).

Then, we have R∞(DZn(2+log q),
√
Σp
||SamplePz) ≤ (1 + 4ε)3(n−1) ≈ 1 + 12nε̂. �



For common parameters ε = 2−128 and n = 1024, we have 1−(1+4ε)3(n−1) ≈
2−114.

In summary, this shows the FFT-like recurrence in perturbation sampling
the integer lattice with an algebraic covariance in power of two cyclotomic rings
through repeated convolutions. The relative simplicity of the power of two case
relies on the fact that matrix transpose corresponds to the conjugation field au-
tomorphism. Hermitian transpose corresponds to the conjugation automorphism
in the general cyclotomic case. Therefore, we would use the canonical embedding
for efficient perturbation sampling in general cyclotomic rings.
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41. J. Howe, T. Pöppelmann, M. O’Neill, E. O’Sullivan, and T. Güneysu. Practical
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A Missing Proofs

ML Analysis Here we give the proof of Proposition 3.1. We restate the proposi-
tion for convenience.



Proposition 2. Fix an ε > 0 and let s ≥ (b+1)·ηε(Z). For any one-dimensional
sampler SampleZt(σ̄, c̄, s) that takes as inputs approximated centers c̄ ∈ [0, 1)
and variances σ̄ ∈ [s/(b+ 1), s · b/(b+ 1)] represented as floating point numbers
with mantissa length m,

∆ml(SampleG
DtZ,σ,c ,SampleGSampleZt(σ̄,c̄)) ≤

2k[O(t22−m) + maxσ̄,c̄∆ml(SampleZt(σ̄, c̄, s), D
t
Z,σ̄,c̄)].

Before we begin the proof, we note that dk−1 = q/bk ∈ [1/b, 1] since k =
dlogb qe. This implies that every variance fed to SampleZ is in the range [s/(b+
1), s ·b/(b+1)] ⊆ [s/(b+1), s]. We restrict all truncated one-dimensional discrete
gaussians to Z∩ [c− t · s, c+ t · s] since it is unclear when Z∩ [c− t ·σ, c+ t ·σ] =
Z∩ [c− t · σ̄, c+ t · σ̄] when using floating point variances σ̄. The ML distance is
undefined when these two sets are not equal.

Proof. First, we use the triangle inequality on ML distance in order to pair to-
gether terms for an easier analysis.

∆ml(SampleG
DtZ,σ,c ,SampleGSampleZt(σ̄,c̄,s)) ≤

∆ml(SampleG
DtZ,σ,c ,SampleGDtZ,σ̄,c)+∆ml(SampleG

DtZ,σ̄,c ,SampleGDtZ,σ̄,c̄)+

∆ml(SampleG
DtZ,σ̄,c̄ ,SampleGSampleZt(σ̄,c̄,s)).

Next, we use the data processing inequality on ML distance where we treat
SampleG as a function of 2k correlated samples from a one-dimensional discrete
gaussian sampler. From [Lemma 3.2, MW17], we get the following inequality:

∆ml(SampleG
DtZ,σ,c ,SampleGSampleZt(σ̄,c̄,s)) ≤

2k ·maxσi,ci [∆ml(D
t
Z,σ1,c1

, Dt
Z,σ̄1,c1

) +∆ml(D
t
Z,σ̄2,c2

, Dt
Z,σ̄2,c̄2

) +

∆ml(D
t
Z,σ̄3,c̄3

,SampleZt(σ̄3, c̄3, s))].

The maximum is taken over all ci ∈ [0, 1) and σi ∈ [s/(b + 1), s · b/(b + 1)].
Let Zt = Z ∩ [c − t · s, c + t · s]. We bound maxσ1,c1 ∆ml(D

t
Z,σ1,c1

, Dt
Z,σ̄1,c1

) as
follows:

max
σ1,c1

∆ml(D
t
Z,σ1,c1 , D

t
Z,σ̄1,c1) = max

σ1,c1,x∈Zt
| lnDt

Z,σ1,c1(x)− lnDt
Z,σ̄1,c1(x)|

= max
σ1,c1,x∈Zt

∣∣∣∣π(x− c)2

[
1

σ2
1

− 1

σ̄2
1

]
+ ln

ρσ̄1,c1(Z)

ρσ1,c1(Z)

∣∣∣∣ .
Since σ1, σ̄1 ≥ ηε(Z), we can approximate ρσ1,c(Z) ∈ [(1 − ε)2, (1 + ε)2] · σ and
ρσ̄1,c(Z) ∈ [(1 − ε)2, (1 + ε)2] · σ̄. Using the bound on the relative error of σ̄1

(σ̄1 ∈ [1 − 2−m, 1 + 2−m] · σ1), we can bound the expression with a simplified
form below.

max
σ1,c1

∆ml(D
t
Z,σ1,c1 , D

t
Z,σ̄1,c1) ≤

max
σ1

∣∣∣∣π t2s2

σ2
1

· σ̄
2
1 − σ2

1

σ2
1

+ 2ε̂+ ˆ2−m
∣∣∣∣ ≤

πt2(b+ 1)2(2−m+1 + 2−2m) + ε̂+ ˆ2−m.



The proof for ∆ml(D
t
Z,σ̄2,c2

, Dt
Z,σ̄2,c̄2

) is nearly identical except we get a term

linear in t, yielding a bound of O(t · 2−m). �

B QR Factorization for the Basis Bq

Here we show that despite Bq having a sparse R matrix in its QR-factorization,
this does not lead to an alternative Θ(log q)-time sampling algorithm for the ap-
plications we are concerned with. The QR-factorization of a non-singular matrix
S is S = QR where Q is orthogonal and R is upper-triangular.

The motivation for such an algorithm comes from generic lattice algorithms,
like BKZ lattice reduction, where we view the vector space holding our lattice
in the basis given by the upper-triangular R since Q is orthogonal. The sparsity
of R yields clear computational advantages.

In the G-lattice setting, the basis Bq = QR always has a sparse R matrix
(though Q is not sparse). This leads to a linear time algorithm to sample DL(R),s

by using the canonical randomized nearest plane algorithm and a linear time
algorithm for applications if we can view the ambient vector space in terms of
R as a basis. Unfortunately, we cannot do this in the G-lattice setting.

Recall the general G-lattice paradigm: we have a secret trapdoor matrix T
with small integer entries, a public psuedo-random matrix A = [Â|G− Â ·T],
and we want to return a short vector in Λ⊥u (A) = {x ∈ Zm : A ·x = u mod q}.
The way we sample Λ⊥u (A) is as follows:

1. sample the perturbation p ∼ DZn(2+log q),
√
s2I−MMT

where M =

[
T
I

]
2. set the new coset v := u−Ap mod q
3. sample the G-lattice y ∼ DΛ⊥(G)v,s = DL(Bq)+v,s where G = In ⊗ gT

4. return p +

[
T
I

]
y.

Next, we only consider the zero-coset of Λ⊥(G) for simplicity. Usually y =
(In ⊗Bq)z for z ∈ Zn log q. But if we were to use the sparsity of R, then

y = (In ⊗R)z = (In ⊗QTBq)z.

Therefore, we would have to apply Q′ := In⊗Q as a linear transformation to y
(Θ(n log2 q) time) yielding a quadratic increase (in log q) in the last step as well
as a quadratic increase in storage.


