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Abstract. We provide a structure-preserving signature (SPS) scheme
with an (almost) tight security reduction to a standard assumption.
Compared to the state-of-the-art tightly secure SPS scheme of Abe et
al. (CRYPTO 2017), our scheme has smaller signatures and public keys
(of about 56%, resp. 40% of the size of signatures and public keys in Abe
et al.’s scheme), and a lower security loss (of O(logQ) instead of O(λ),
where λ is the security parameter, and Q = poly(λ) is the number of
adversarial signature queries).
While our scheme is still less compact than structure-preserving signa-
ture schemes without tight security reduction, it significantly lowers the
price to pay for a tight security reduction. In fact, when accounting for a
non-tight security reduction with larger key (i.e., group) sizes, the com-
putational efficiency of our scheme becomes at least comparable to that
of non-tightly secure SPS schemes.
Technically, we combine and refine recent existing works on tightly secure
encryption and SPS schemes. Our technical novelties include a modular
treatment (that develops an SPS scheme out of a basic message authenti-
cation code), and a refined hybrid argument that enables a lower security
loss of O(logQ) (instead of O(λ)).

Keywords: Structure-preserving signatures, tight security.

1 Introduction

Structure-preserving signatures (SPSs). Informally, a cryptographic
scheme (such as an encryption or signature scheme) is called structure-
preserving if its operation can be expressed using equations over a (usually
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pairing-friendly) cyclic group. A structure-preserving scheme has the ad-
vantage that we can reason about it with efficient zero-knowledge proof
systems such as the Groth-Sahai non-interactive zero-knowledge (NIZK)
system [31]. This compatibility is the key to constructing efficient anony-
mous credential systems (e.g., [10]), and can be extremely useful in voting
schemes and mix-nets (e.g., [30]).

In this work, we are concerned with structure-preserving signature
(SPS) schemes. Since popular tools such as “structure-breaking” collision-
resistant hash functions cannot be used in a structure-preserving scheme,
constructing an SPS scheme is a particularly challenging task. Still, there
already exist a variety of SPS schemes in the literature [29, 18, 5, 19, 17,
35, 44, 39, 4, 2, 37, 6] (see also Table 1 for details on some of them).

Tight security for SPS schemes. A little more specifically, in this
work we are interested in tightly secure SPS schemes. Informally, a cryp-
tographic scheme is tightly secure if it enjoys a tight security reduction,
i.e., a security reduction that transforms any adversary A on the scheme
into a problem-solver with about the same runtime and success proba-
bility as A, independently of the number of uses of the scheme.3 A tight
security reduction gives security guarantees that do not degrade in the
size of the setting in which the scheme is used.

Specifically, tight security reductions allow to give “universal” keylength
recommendations that do not depend on the envisioned size of an applica-
tion. This is useful when deploying an application for which the eventual
number of uses cannot be reasonably bounded a priori. Moreover, this
point is particularly vital for SPS schemes. Namely, an SPS scheme is usu-
ally combined with several other components that all use the same cyclic
group. Thus, a keylength increase (which implies changing the group, and
which might be necessary for a non-tightly secure scheme for which a se-
cure keylength depends on the number of uses) affects several schemes,
and is particularly costly.

In recent years, progress has been made in the construction of a variety
of tightly4 secure cryptographic schemes such as public-key encryption

3We are only interested in reductions to well-established and plausible computa-
tional problems here. While the security of any scheme can be trivially (and tightly)
reduced to the security of that same scheme, such a trivial reduction is of course not
very useful.

4Most of the schemes in the literature are only “almost” tightly secure, meaning
that their security reduction suffers from a small multiplicative loss (that however is
independent of the number of uses of the scheme). In the following, we will not make
this distinction, although we will of course be precise in the description and comparison
of the reduction loss of our own scheme.
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schemes [11, 35, 42, 43, 34, 25, 33], identity-based encryption schemes [21,
14, 36, 8, 27, 20], and signature schemes [16, 35, 3, 21, 14, 42, 34, 6].
However, somewhat surprisingly, only few SPS schemes with tight security
reductions are known. Moreover, these tightly secure SPS schemes [35, 6]
are significantly less efficient than either “ordinary” SPS or tightly secure
signature schemes (see Table 1). One reason for this apparent difficulty
to construct tightly secure SPS schemes is that tight security appears
to require dedicated design techniques (such as a sophisticated hybrid
argument over the bits of an IBE identity [21]), and most known such
techniques cannot be expressed in a structure-preserving manner.

Scheme |M | |σ| |pk | Sec. loss Assumption
HJ12 [35] 1 10`+ 6 13 8 DLIN
ACDKNO16 [2] (n1, 0) (7, 4) (5, n1 + 12) Q SXDH, XDLIN
LPY15 [44] (n1, 0) (10, 1) (16, 2n1 + 5) O(Q) SXDH, XDLINX
KPW15 [39] (n1, 0) (6, 1) (0, n1 + 6) 2Q2 SXDH
JR17 [37] (n1, 0) (5, 1) (0, n1 + 6) Q logQ SXDH
AHNOP17 [6] (n1, 0) (13, 12) (18, n1 + 11) 80λ SXDH
Ours (unilateral) (n1, 0) (8, 6) (2, n1 + 9) 6 logQ SXDH
AGHO11 [5] (n1, n2) (2, 1) (n1, n2 + 2) — generic
ACDKNO16 [2] (n1, n2) (8, 6) (n2 + 6, n1 + 13) Q SXDH, XDLIN
KPW15 [39] (n1, n2) (7, 3) (n2 + 1, n1 + 7) 2Q2 SXDH
AHNOP17 [6] (n1, n2) (14, 14) (n2 + 19, n1 + 12) 80λ SXDH
Ours (bilateral) (n1, n2) (9, 8) (n2 + 4, n1 + 9) 6 logQ SXDH
Table 1: Comparison of standard-model SPS schemes (in their most efficient
variants). We list unilateral schemes (with messages over one group) and bilateral
schemes (with messages over both source groups of a pairing) separately. The
notation (x1, x2) denotes x1 elements in G1 and x2 elements in G2. |M |, |σ|, and
|pk | denote the size of messages, signatures, and public keys (measured in group
elements). “Sec. loss” denotes the multiplicative factor that the security reduction
to “Assumption” loses, where we omit dominated and additive factors. (Here,
“generic” means that only a proof in the generic group model is known.) For the
tree-based scheme HJ12, ` denotes the depth of the tree (which limits the number
of signing queries to 2`). Q denotes the number of adversarial signing queries, and
λ is the security parameter.

1.1 Our contribution

Overview. We present a tightly secure SPS scheme with significantly
improved efficiency and tighter security reduction compared to the state-
of-the-art tightly secure SPS scheme of Abe et al. [6]. Specifically, our sig-
natures contain 14 group elements (compared to 25 group elements in [6]),
and our security reduction loses a factor of only O(logQ) (compared to
O(λ)), where λ denotes the security parameter, and Q = poly(λ) denotes
the number of adversarial signature queries. When accounting for loose
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reductions through an appropriate keylength increase, the computational
efficiency of our scheme even compares favorably to that of state-of-the-art
non-tightly secure SPS schemes.

In the following, we will detail how we achieve our results, and in
particular the progress we make upon previous techniques. We will also
compare our work to existing SPS schemes (both tightly and non-tightly
secure).

Central idea: a modular treatment. A central idea in our work (that
in particular contrasts our approach to the one of Abe et al.) is a modular
construction. That is, similar to the approach to tight IBE security of
Blazy, Kiltz, and Pan [14], the basis of our construction is a tightly secure
message authentication code (MAC). This tightly secure MAC will then be
converted into a signature scheme by using NIZK proofs, following (but
suitably adapting) the generic MAC-to-signatures conversion of Bellare
and Goldwasser [12].

Starting point: a tightly secure MAC. Our tightly secure MAC will
have to be structure-preserving, so the MAC used in [14] cannot be em-
ployed in our case. Instead, we derive our MAC from the recent tightly se-
cure key encapsulation mechanism (KEM) of Gay, Hofheinz, and Kohl [26]
(which in turn builds upon the Kurosawa-Desmedt PKE scheme [41]). To
describe their scheme, we assume a group G = 〈g〉 of prime order p, and
we use the implicit notation [x] := gx from [24]. We also fix an integer k
that determines the computational assumption to which we want to re-
duce.5 Now in (a slight simplification of) the scheme of [26], a ciphertext
C with corresponding KEM key K is of the form

C = ( [t], π ), K = [(k0 + µk1)
>t] (for µ = H([t])), (1)

where H is a collision-resistant hash function, and k0,k1, t ∈ Z2k
p and π

are defined as follows. First, k0,k1 ∈ Z2k
p comprise the secret key. Next,

t = A0r for a fixed matrix A0 (given as [A0] in the public key) and a
random vector r ∈ Zkp chosen freshly for each encryption. Finally, π is a
NIZK proof that proves that t ∈ span(A0) ∪ span(A1) for another fixed
matrix A1 (also given as [A1] in the public key). The original Kurosawa-
Desmedt scheme [41] is identical, except that π is omitted, and k = 1.
Hence, the main benefit of π is that it enables a tight security reduction.6

5For k = 1, we can reduce to DDH in G, and for k > 1, we can reduce to the
k-Linear assumption, and in fact even to the weaker Matrix-DDH assumption [24].

6Actually, the scheme of [26] uses an efficient designated-verifier NIZK proof π that
is however not structure-preserving (and thus not useful for our case), and also induces
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We can view this KEM as a MAC scheme simply by declaring the MAC
tag for a message M to be the values (C,K) from (1), only with µ :=M
(instead of µ = H([t])). The verification procedure of the resulting MAC
will check π, and then check whether C really decrypts toK. (Hence, MAC
verification still requires the secret key k0,k1.) Now a slight adaptation of
a generic argument of Dodis et al. [22] reduces the security of this MAC
tightly to the security of the underlying KEM scheme. Unfortunately, this
resulting MAC is not structure-preserving yet (even if the used NIZK
proof π is): the message M = µ is a scalar (from Zp).7

Abstracting our strategy into a single “core lemma”. We can
distill the essence of the security proof of our MAC above into a single
“core lemma”. This core lemma forms the heart of our work, and shows
how to randomize all tags of our MAC. While this randomization follows a
previous paradigm called “adaptive partitioning” (used to prove the tight
security of PKE [33, 26] and SPS schemes [6]), our core lemma induces
a much smaller reduction loss. The reason for this smaller reduction loss
is that previous works on tightly secure schemes (including [33, 26, 6])
conduct their reduction along the individual bits of a certain hash value
(or message to be signed). Since this hash value (or message) usually
has O(λ) bits, this induces a hybrid argument of O(λ) steps, and thus
a reduction loss of O(λ). In contrast, we conduct our security argument
along the individual bits of the index of a signing query (i.e., a value from
1 to Q, where Q is the number of signing queries). This index exists only
in the security proof, and can thus be considered as an “implicit” way to
structure our reduction.8

From MACs to signatures and structure-preserving signatures.
Fortunately, our core lemma can be used to prove not only our MAC
scheme, but also a suitable signature and SPS scheme tightly secure. To
construct a signature scheme, we can now use an case-tailored (and heav-
ily optimized) version of the generic transformation of Bellare and Gold-
wasser [12]. In a nutshell, that transformation turns a MAC tag (that re-
quires a secret key to verify) into a publicly verifiable signature by adding
a NIZK proof to the tag that proves its validity, relative to a public com-
mitment to the secret key. For our MAC, we only need to prove that the

an additional term inK. For our purposes, we can think of π as a (structure-preserving)
Groth-Sahai proof.

7A structure-preserving scheme should have group elements (and not scalars) as
messages, since Groth-Sahai proofs cannot (easily) be used to prove knowledge of
scalars.

8A reduction loss of O(logQ) has been achieved in the context of IBE schemes [20],
but their techniques are different and rely on a composite-order group.
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given keyK really is of the formK = [(k0+µk1)
>t]. This linear statement

can be proven with a comparatively simple and efficient NIZK proof π′.
For k = 1, an optimized Groth-Sahai-based implementation of π, and an
implicit π′ (that uses ideas from [38, 40]), the resulting signature scheme
will have signatures that contain 14 group elements.

To turn our scheme into an SPS scheme, we need to reconsider the
equation K = [(k0 + µk1)

>t] from (1). In our MAC (and also in the
signature scheme above), we have set µ =M ∈ Zp, which we cannot afford
to do for an SPS scheme. Our solution consists in choosing a different
equation that fulfills the following requirements:
(a) it is algebraic (in the sense that it integrates a message M ∈ G), and
(b) it is compatible with our core lemma (so it can be randomized quickly).
For our scheme, we start from the equation

K = [k>0 t+ k>
(
M
1

)
] (2)

for uniform keys k0,k. We note that a similar equation has already been
used by Kiltz, Pan, and Wee [39] for constructing SPS schemes, altough
with a very different and non-tight security proof. We can plug this equa-
tion into the MAC-to-signature transformation sketched above, to obtain
an SPS scheme with only 14 group elements (for k = 1) per signature.

Our security proof will directly rely on our core lemma to first ran-
domize the k>0 t part of (2) in all signatures. After that, similar to [39], an
information-theoretic argument (that only uses the pairwise independence
of the second part of (2), when viewed as a function ofM) shows security.

Our basic SPS scheme is unilateral, i.e., its messages are vectors over
only one source group of a given pairing. To obtain a bilateral scheme
that accepts “mixed” messages over both source groups of an asymmetric
pairing, we can use a generic transformation of [39] that yields a bilateral
scheme with signatures of 17 group elements (for k = 1).

1.2 Related work and efficiency comparison

In this subsection, we compare our work to the closest existing work
(namely, the tightly secure SPS scheme of Abe et al. [6]) and other, non-
tightly secure SPS schemes.
Comparison to the work of Abe et al.. The state of the art in
tightly secure SPS schemes (and in fact currently the only other efficient
tightly secure SPS scheme) is the recent work of Abe et al. [6]. Technically,
their scheme also uses a tightly secure PKE scheme (in that case [33]) as
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Scheme |M | PPEs Pairings Pairings Sec. |G1| |σ|
(plain) (batched) loss (bits) (bits)

KPW [39] (n1, 0) 3 n1 + 11 n1 + 10 2Q2 322 2576
JR [37] (n1, 0) 2 n1 + 8 n1 + 6 Q logQ 270 1890
AHNOP [6] (n1, 0) 15 n1 + 57 n1 + 16 80λ 226 8362
Ours (UL) (n1, 0) 6 n1 + 29 n1 + 11 6 logQ 216 4320
KPW [39] (n1, n2) 4 n1 + n2 + 15 n1 + n2 + 14 2Q2 322 4186
AHNOP [6] (n1, n2) 16 n1 + n2 + 61 n1 + n2 + 18 80λ 226 9492
Ours (BL) (n1, n2) 7 n1 + n2 + 33 n1 + n2 + 15 6 logQ 216 5400
Table 2: Comparison of the computational efficiency of state-of-the-art SPS
schemes (in their most efficient, SXDH-based variants) with our SXDH-based
schemes in the unilateral (UL) and bilateral (BL) version. With “PPEs” and
“Pairings”, we denote the number of those operations necessary during verifica-
tion, where “batched” denotes optimized figures obtained by “batching” verification
equations [13]. The “|M |” and “Sec. loss” columns have the same meaning as in
Table 1. The column “ |G1|” denotes the (bit)size of elements from the first source
group in a large but realistic scenario (under some simplifying assumptions), see
the discussion in Section 1.2. “|σ| (bits)” denotes the resulting overall signature
size, where we assume that the bitsize of G2 elements is twice the bitsize of G1-
elements.

an inspiration. However, there are also a number of differences in our
approaches which explain our improved efficiency and reduction.

First, Abe et al.’s scheme involves more (and more complex) NIZK
proofs, since they rather closely follow the PKE scheme from [33]. This
leads to larger proofs and thus larger signatures. Instead, our starting
point is the much simpler scheme of [26] (which only features one com-
paratively simple NIZK proof in its ciphertext).

Second, while the construction of Abe et al. is rather monolithic, our
construction can be explained as a modification of a simple MAC scheme.
Our approach thus allows for a more modular exposition, and in particular
we can outsource the core of the reduction into a core lemma (as explained
above) that can be applied to MAC, signature, and SPS scheme.

Third, like previous tightly secure schemes (and in particular the PKE
schemes of [33, 26]), Abe et al. conduct their security reduction along
the individual bits of a certain hash value (or message to be signed).
As explained above, our reduction is more economic, and uses a hybrid
argument over an “implicit” counter value.

Efficiency comparison. We give a comparison to other SPS schemes in
Table 1. This table shows that our scheme is still significantly less efficient
in terms of signature size than existing, non-tightly secure SPS schemes.
However, when considering computational efficiency, and when accounting
for a larger security loss in the reduction with larger groups, things look
differently.
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The currently most efficient non-tightly secure SPS schemes are due
to Jutla and Roy [37] and Kiltz, Pan, and Wee [39]. Table 2 compares the
computational complexity of their verification operation with the tightly
secure SPSs of Abe et al. and our schemes. Now consider a large scenario
with Q = 230 signing queries and a target security parameter of λ = 100.
Assume further that we use groups that only allow generic attacks (that
require time about the square root of the group size). This means that we
should run a scheme in a group of size at least 22(λ+logL), where L denotes
the multiplicative loss of the respective security reduction. Table 2 shows
the resulting group sizes in column “|G1|” (in bits, such that |G1| = 200
denotes a group of size 2200).

Now very roughly, the computational complexity of pairings can be
assumed to be cubic in the (bit)size of the group [7, 28, 23, 9]. Hence, in the
unilateral setting, and assuming an optimized verification implementation
(that uses “batching” [13]) the computational efficiency of the verification
in our scheme is roughly on par with that in the (non-tightly secure)
state-of-the-art scheme of Jutla and Roy [37], even for small messages. For
larger messages, our scheme becomes preferable. In the bilateral setting,
our scheme is clearly the most efficient known scheme.

Roadmap

We fix some notation and recall some preliminaries in Section 2. In Sec-
tion 3, we present our basic MAC and prove it secure (using the mentioned
core lemma). In Section 4 and Section 5, we present our signature and SPS
schemes. Due to lack of space, for some proofs (including the more techni-
cal parts of the proof of the core lemma, and a full proof for the signature
scheme) we refer to the full version.

2 Preliminaries

In this section we provide the preliminaries which our paper builds upon.
First, we want to give an overview of notation used throughout all sections.

2.1 Notation

By λ ∈ N we denote the security parameter. We always employ negl : N→
R≥0 to denote a negligible function, that is for all polynomials p ∈ N[X]
there exists an n0 ∈ N such that negl(n) < 1/p(n) for all n ≥ n0. For any
set S, by s←R S we set s to be a uniformly at random sampled element
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from S. For any distribution D by d ← D we denote the process of sam-
pling an element d according to the distribution D. For any probabilistic
algorithm B by out← B(in) by out we denote the output of B on input in.
For a deterministic algorithm we sometimes use the notation out := B(in)
instead. By p we denote a prime throughout the paper. For any element
m ∈ Zp, we denote by mi ∈ {0, 1} the i-th bit of m’s bit representation
and by m|i ∈ {0, 1}i the bit string comprising the first i bits of m’s bit
representation.

It is left to introduce some notation regarding matrices. To this end
let k, ` ∈ N such that ` > k. For any matrix A ∈ Z`×kp , we write

span(A) := {Ar | r ∈ Zkp} ⊂ Z`p,

to denote the span of A.
For a full rank matrix A ∈ Z`×kp we denote by A⊥ a matrix in Z`×(`−k)p

with A>A⊥ = 0 and rank ` − k. We denote the set of all matrices with
these properties as

orth(A) := {A⊥ ∈ Z`×(`−k)p | A>A⊥ = 0 and A⊥ has rank `− k}.

For vectors v ∈ Zk+np (n ∈ N), by v ∈ Zkp we denote the vector
consisting of the upper k entries of v and accordingly by v ∈ Znp we
denote the vector consisting of the remaining n entries of v.

Similarly, for a matrix A ∈ Z2k×k
p , by A ∈ Zk×kp we denote the upper

square matrix and by A ∈ Zk×kp the lower one.

2.2 Pairing groups and Matrix Diffie-Hellman assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on
input 1λ returns a description PG = (G1,G2, GT , p, P1, P2, e) of asym-
metric pairing groups where G1, G2, GT are cyclic group of order p for a
2λ-bit prime p, P1 and P2 are generators of G1 and G2, respectively, and
e : G1 × G2 → GT is an efficiently computable (non-degenerate) bilinear
map. Define PT := e(P1, P2), which is a generator of GT . We use implicit
representation of group elements. For i ∈ {1, 2, T} and a ∈ Zp, we define
[a]i = aPi ∈ Gi as the implicit representation of a in Gi . Given [a]1, [a]2,
one can efficiently compute [ab]T using the pairing e. For two matrices A,
B with matching dimensions, we define e([A]1, [B]2) := [AB]T ∈ GT .

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH)
assumption from [24].

9



Definition 1 (Matrix distribution). Let k, ` ∈ N, with ` > k and p be
a 2λ-bit prime. We call a PPT algorithm D`,k a matrix distribution if it
outputs matrices in Z`×kp of full rank k.

Note that instantiating D2,1 with a PPT algorithm outputting ma-

trices
(
1
a

)
for a ←R Zp, D2,1-MDDH relative to G1 corresponds to the

DDH assumption in G1. Thus, for PG = (G1,G2, GT , p, P1, P2, e), assum-
ing D2,1-MDDH relative to G1 and relative to G2, corresponds to the
SXDH assumption.

In the following we only consider matrix distributions D`,k, where for
all A ←R D`,k the first k rows of A form an invertible matrix. We also
require that in case ` = 2k for any two matrices A0,A1 ←R D2k,k the
matrix (A0 | A1) has full rank with overwhelming probability. In the
following we will denote this probability by 1−∆D2k,k

. Note that if (A0 |
A1) has full rank, then for any A⊥0 ∈ orth(A0), A⊥1 ∈ orth(A1) the matrix
(A⊥0 | A⊥1 ) ∈ Z2k×2k

p has full rank as well, as otherwise there would exists
a non-zero vector v ∈ Z2k

p \{0} with (A0 | A1)
>v = 0. Further, by similar

reasoning (A⊥0 )
>A1 ∈ Zk×kp has full rank.

The D`,k-Matrix Diffie-Hellman problem in Gi, for i ∈ {1, 2, T}, is to
distinguish the between tuples of the form ([A]i, [Aw]i) and ([A]i, [u]i),
for a randomly chosen A←R D`,k, w←R Zkp and u←R Z`p.

Definition 2 (D`,k-Matrix Diffie-Hellman D`,k-MDDH). Let D`,k be
a matrix distribution. We say that the D`,k-Matrix Diffie-Hellman (D`,k-
MDDH) assumption holds relative to a prime order group Gi for i ∈
{1, 2, T}, if for all PPT adversaries A,

Advmddh
PG,Gi,D`,k,A(λ) := |Pr[A(PG, [A]i, [Aw]i) = 1]

−Pr[A(PG, [A]i, [u]i) = 1]| ≤ negl(λ),

where the probabilities are taken over PG := (G1,G2,GT , p, P1, P2) ←
GGen(1λ), A←R D`,k,w←R Zkp,u←R Z`p.

For Q ∈ N, W ←R Zk×Qp and U ←R Z`×Qp , we consider the Q-fold
D`,k-MDDH assumption, which states that distinguishing tuples of the
form ([A]i, [AW]i) from ([A]i, [U]i) is hard. That is, a challenge for the
Q-fold D`,k-MDDH assumption consists of Q independent challenges of
the D`,k-MDDH assumption (with the same A but different randomness
w). In [24] it is shown that the two problems are equivalent, where the
reduction loses at most a factor `− k.
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Lemma 1 (Random self-reducibility of D`,k-MDDH, [24]). Let `, k,
Q ∈ N with ` > k and Q > `−k and i ∈ {1, 2, T}. For any PPT adversary
A, there exists an adversary B such that T (B) ≈ T (A) +Q · poly(λ) with
poly(λ) independent of T (A), and

AdvQ-mddh
PG,Gi,D`,k,A(λ) ≤ (`− k) ·Advmddh

PG,Gi,D`,k,B(λ) +
1
p−1 .

Here

AdvQ-mddh
PG,Gi,D`,k,A(λ) := |Pr[A(PG, [A]i, [AW]i) = 1]

−Pr[A(PG, [A]i, [U]i) = 1]| ,

where the probability is over PG := (G1,G2,GT , p, P1, P2) ← GGen(1λ),
A←R D`,k,W←R Zk×Qp and U←R Z`×Qp .

For k ∈ N we define Dk := Dk+1,k.
The Kernel-Diffie-Hellman assumption Dk-KMDH [45] is a natural

computational analogue of the Dk-MDDH Assumption.

Definition 3 (Dk-Kernel Diffie-Hellman assumption Dk-KMDH).
Let Dk be a matrix distribution. We say that the Dk-Kernel Diffie-Hellman
(Dk-KMDH) assumption holds relative to a prime order group Gi for i ∈
{1, 2} if for all PPT adversaries A,

Advkmdh
PG,Gi,D`,k,A(λ) : = Pr[c>A = 0 ∧ c 6= 0 | [c]3−i ←R A(PG, [A]i)]

≤ negl(λ),

where the probabilities are taken over PG := (G1,G2,GT , p, P1, P2) ←
GGen(1λ), and A←R Dk.

Note that we can use a non-zero vector in the kernel of A to test
membership in the column space of A. This means that the Dk-KMDH
assumption is a relaxation of the Dk-MDDH assumption, as captured in
the following lemma from [45].

Lemma 2 ([45]). For any matrix distribution Dk, Dk-MDDH ⇒ Dk-
KMDH.

2.3 Signature schems and message authentication codes

Definition 4 (MAC). A message authentication code (MAC) is a tuple
of PPT algorithms MAC := (Gen,Tag,Ver) such that:

11



Gen(1λ): on input of the security parameter, generates public parameters
pp and a secret key sk .

Tag(pp, sk ,m): on input of public parameters pp, the secret key sk and
a message m ∈M, returns a tag tag.

Ver(pp, sk ,m, tag): verifies the tag tag for the message m, outputting a
bit b = 1 if tag is valid respective to m, and 0 otherwise.

We say MAC is perfectly correct, if for all λ ∈ N,all m ∈ M and all
(pp, sk)← Gen(1λ) we have

Ver(pp, sk ,m,Tag(pp, sk ,m)) = 1.

Definition 5 (UF-CMA security). Let MAC := (Gen,Tag,Ver) be a
MAC. For any adversary A, we define the following experiment:

Expuf-cma
MAC,A (λ):

(pp, sk)← Gen(1λ)
Qtag := ∅
(m?, tag?)← ATagO(·)(pp)
if m? /∈ Qtag and VerO(m?, tag?) = 1

return 1
else return 0

TagO(m):
Qtag := Qtag ∪ {m}
tag← Tag(pp, sk ,m)
return tag

VerO(m, tag):
b← Ver(pp, sk ,m, tag)
return b

The adversary is restricted to one call to VerO. We say that a MAC
scheme MAC is UF-CMA secure, if for all PPT adversaries A,

Advuf-cma
MAC,A(λ) := Pr[Expuf-cma

MAC,A(λ) = 1] ≤ negl(λ).

Note that in our notion of UF-CMA security, the adversary gets only one
forgery attempt. This is due to the fact that we employ the MAC primarily
as a building block for our signature. Our notion suffices for this purpose,
as an adversary can check the validity of a signature itself.

Definition 6 (Signature). A signature scheme is a tuple of PPT algo-
rithms SIG := (Gen, Sign,Ver) such that:

Gen(1λ): on input of the security parameter, generates a pair (pk , sk) of
keys.

Sign(pk , sk ,m): on input of the public key pk , the secret key sk and a
message m ∈M, returns a signature σ.

Ver(pk ,m, σ): verifies the signature σ for the message m, outputting a
bit b = 1 if σ is valid respective to m, and 0 otherwise.

12



We say that SIG is perfectly correct, if for all λ ∈ N,all m ∈ M and
all (pk , sk)← Gen(1λ),

Ver(pk ,m,Sign(pk , sk ,m)) = 1.

In bilinear pairing groups, we say a signature scheme SIG is structure-
preserving if its public keys, signing messages, signatures contain only
group elements and verification proceeds via only a set of pairing product
equations.

Definition 7 (UF-CMA security). For a signature scheme SIG := (Gen,
Sign,Ver) and any adversary A, we define the following experiment:

Expuf-cma
SIG,A (λ):

(pk , sk)← Gen(1λ)
Qsign := ∅
(m?, σ?)← ASignO(·)(pk)
if m? /∈ Qsign and Ver(pk ,m?, σ?) = 1

return 1
else return 0

SignO(m):
Qsign := Qsign ∪ {m}
σ ← Sign(pk , sk ,m)
return σ

We say that a signature scheme SIG is UF-CMA, if for all PPT adver-
saries A,

Advuf-cma
SIG,A (λ) := Pr[Expuf-cma

SIG,A (λ) = 1] ≤ negl(λ).

2.4 Non-interactive zero-knowledge proof (NIZK)

The notion of a non-interactive zero-knowledge proof was introduced in
[15]. In the following we present the definition from [32]. Non-interactive
zero-knowledge proofs will serve as a crucial building block for our con-
structions.

Definition 8 (Non-interactive zero-knowledge proof [32]).We con-
sider a family of languages L = {Lpars} with efficiently computable wit-
ness relation RL. A non-interactive zero-knowledge proof for L is a tuple
of PPT algorithms PS := (PGen,PTGen,PPrv,PVer,PSim) such that:

PGen(1λ, pars) generates a common reference string crs.
PTGen(1λ, pars) generates a common reference string crs and addition-
ally a trapdoor td .

PPrv(crs, x, w) given a word x ∈ L and a witness w with RL(x,w) = 1,
outputs a proof Π ∈ P.

PVer(crs, x,Π) on input crs, x ∈ X and Π outputs a verdict b ∈ {0, 1}.

13



PSim(crs, td , x) given a crs with corresponding trapdoor td and a word
x ∈ X , outputs a proof Π.

Further we require the following properties to hold.

Completeness: For all possible public parameters pars, for all words
x ∈ L, and all witnesses w such that RL(x,w) = 1, we have

Pr[PVer(crs, x,Π) = 1] = 1,

where the probability is taken over (crs, psk) ← PGen (1λ, pars) and
Π ← PPrv(crs, x, w).

Composable zero-knowledge?: For all PPT adversaries A we have
that

AdvkeygenPS,A (λ) :=
∣∣∣Pr[A(1λ, crs) = 1 | crs ← PGen(1λ, pars)]

−Pr[A(1λ, crs) = 1 | (crs, td)← PTGen(1λ, pars)]
∣∣∣

is negligible in λ.
Further for all public parameters pars, all pairs (crs, td) in the range
of PTGen(1λ), all words x ∈ L, and all witnesses w with RL(x,w) = 1,
we have that the outputs of

PPrv(crs, x, w) and PSim(crs, td , x)

are statistically indistinguishable.
Perfect soundness: For all crs in the range of PGen(1λ, pars), for all

words x /∈ L and all proofs Π it holds PVer(crs, x,Π) = 0.

Remark. We will employ a weaker notion of composable zero-knowledge
in the following. Namely:

Composable zero-knowledge: For a PPT adversary A, we define

AdvzkPS,A(λ) :=

∣∣∣∣Pr
b′ = b

∣∣∣∣∣∣∣∣
crs0 ←R PGen(1λ, pars);
(crs1, td)←R PTGen(1λ, pars);
b←R {0, 1};
b′ ←R AProve(·,·)(1λ, crsb)

− 1
2

∣∣∣∣.
Here Prove(x,w) returns ⊥ if RL(x,w) = 0 or Πb if RL(x,w) = 1,
where Π0 ←R PPrv(crs0, x, w) and Π1 ←R PSim(crs1, td , x). We say
that PS satisfies composable zero-knowledge if AdvzkPS,A(λ) is negligible
in λ for all PPT A.
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PGen(1λ, pars):
D←R Dk, z←R Zk+1

p \span(D)
//recall Dk := Dk+1,k

crs := (pars, [D]2, [z]2)
return crs

PPrv(crs, [x]1, r):
let b ∈ {0, 1} s.t. [x]1 = [Ab]1 · r
v←R Zkp
[z1−b]2 := [D]2 · v
// ([D]2, [z1−b]2) trapdoor crs
[zb]2 := [z]2 − [z1−b]2
// crs guaranteeing soundness
S0,S1 ←R Zk×kp

[Cb]2 := Sb · [D]>2 + r · [zb]>2
//commitment to r with rand. Sb
[Πb]1 := [Ab]1 · Sb
//proof for x = Abr
[C1−b]2 := S1−b · [D]>2
//commitment to 0 with rand. S1−b
[Π1−b]1 := [A1−b]1 · S1−b − [x]1 · v>
//trapdoor proof for x = A1−br
return ([z0]2, ([Ci]2, [Πi]1)i∈{0,1})

PTGen(1λ, pars):
D←R Dk, u←R Zkp
z := D · u
crs := (pars, [D]2, [z]2), td := u
return (crs, td)

PVer(crs, [x]1, ([z0]2, ([Ci]2, [Πi]1)i∈{0,1})):
[z1]2 := [z]2 − [z0]2
if for all i ∈ {0, 1} it holds
e([Ai]1, [Ci]2)
=e([Πi]1, [D]>2 ) + e([x]1, [zi]

>
2 )

//check Ci ·Ai
?
= Πi ·D> + x · z>i

return 1
else return 0

PSim(crs, td , [x]1):
parse td =: u
v←R Zkp
[z0]2 := [D]2 · v
[z1]2 := [z]2 − [z0]2
S0,S1 ←R Zk×kp

[C0]2 := S0 · [D]>2
[Π0]1 := [A0]1 · S0 − [x]1 · v>
[C1]2 := S1 · [D]>2
[Π1]1 := [A1]1 · S1 − [x]1 · (u− v)>

return ([z0]2, ([Ci]2, [Πi]1)i∈{0,1})

Fig. 1: NIZK argument for L∨A0,A1
([31],[46]).

Note that the original definition of composable zero-knowledge tightly
implies our definition of composable zero-knowledge. We choose to work
with the latter in order to simplify the presentation of our proofs. Note
that for working with this definition in the tightness setting, it is crucial
that AdvzkPS,A(λ) is independent of the number of queries to the oracle
Prove.

2.5 NIZK for our OR-language

In this section we recall an instantiation of a NIZK for an OR-language
implicitly given in [31] and [46]. This NIZK will be a crucial part of all
our constructions, allowing to employ the randomization techniques from
[6, 26, 33] to obtain a tight security reduction.
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Public parameters. Let PG ← GGen(1λ). Let k ∈ N. Let A0,A1 ←R

D2k,k. We define the public parameters to comprise

pars := (PG, [A0]1, [A1]1).

We consider k ∈ N to be chosen ahead of time, fixed and implicitly known
to all algorithms.
OR-proof ([31],[46]). In Figure 1 we present a non-interactive zero-
knowledge proof for the OR-language

L∨A0,A1
:= {[x]1 ∈ Z2k

p | ∃r ∈ Zkp : [x]1 = [A0]1 · r ∨ [x]1 = [A1]1 · r}.

Note that this OR-proof is implicitly given in [31] and [46]. We recall
the proof in the full version.

Lemma 3. If the Dk-MDDH assumption holds in the group G2, then the
proof system PS := (PGen,PTGen,PPrv,PVer,PSim) as defined in Figure
1 is a non-interactive zero-knowledge proof for L∨A0,A1

. More precisely,
for every adversary A attacking the composable zero-knowledge property
of PS, we obtain an adversary B with T (B) ≈ T (A) +Qprove · poly(λ) and

AdvzkPS,A(λ) ≤ Advmddh
PG,G2,Dk,B(λ).

Gen(1λ):
PG ← GGen(1λ)
A0,A1 ← D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)
k0,k1 ←R Z2k

p

pp := (PG, [A0]1, crs)
sk := (k0,k1)
return (pp, sk)

Tag(pp, sk , µ ∈ Zp):
parse pp =: (PG, [A0]1, crs)
r←R Zkp
[t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)
[u]1 := (k0 + µk1)

>[t]1
tag := ([t]1, Π, [u]1)
return tag

Ver(pp, sk , µ ∈ Zp, tag) :
parse tag =: ([t]1, Π, [u]1)
b← PVer(crs, [t]1, Π)
if b = 1 and [u]1 6= [0]1

and [u]1 = (k0 + µk1)
>[t]1

return 1
else return 0

Fig. 2: Tightly secure MAC MAC := (Gen,Tag,Ver) from the D2k,k-MDDH as-
sumption.
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3 Tightly secure message authentication code scheme

Let k ∈ N and let PS := (PGen,PTGen,PPrv,PSim) a non-interactive
zero-knowledge proof for L∨A0,A1

as defined in Section 2.5. In Figure 2
we provide a MAC MAC := (Gen,Tag,Ver) whose security can be tightly
reduced to D2k,k-MDDH and the security of the underlying proof system
PS.

Instead of directly proving UF-CMA security of our MAC, we will first
provide our so-called core lemma, which captures the essential random-
ization technique from [6, 26, 33]. We can employ this lemma to prove
the security of our MAC and (structure-preserving) signature schemes.
Essentially, the core lemma shows that the term [k>0 t]1 is pseudorandom.
We give the corresponding formal experiment in Figure 3.

Expcore
β,A(λ), for β ∈ {0, 1}:

ctr := 0
PG ← GGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)
k0,k1 ←R Z2k

p

pp := (PG, [A0]1, crs)
tag← ATagO()(pp)
return VerO(tag)

TagO():
ctr := ctr + 1
r←R Zkp
[t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)

[u′]1 := (k0 +β · F(ctr) )>[t]1
tag := ([t]1, Π, [u

′]1)
return tag

VerO(tag) :
parse tag = ([t]1, Π, [u

′]1)
b← PVer(crs, [t]1, Π)
if b = 1 and ∃ctr′ ≤ ctr :

[u′]1 = (k0 +β · F(ctr′) )>[t]1
return 1

else return 0

Fig. 3: Experiment for the core lemma. Here, F : Zp → Z2k
p is a random function

computed on the fly. We highlight the difference between Expcore
0,A and Expcore

1,A in
gray.

Lemma 4 (Core lemma). If the D2k,k-MDDH assumption holds in G1

and the tuple of algorithms PS := (PGen,PTGen,PPrv,PVer) is a non-
interactive zero-knowledge proof system for L∨A0,A1

, then going from exper-
iment Expcore0,A (λ) to Expcore1,A (λ) can (up to negligible terms) only increase
the winning chances of an adversary. More precisely, for every adver-
sary A, there exist adversaries B, B′ with running time T (B) ≈ T (B′) ≈
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T (A) +Q · poly(λ) such that

Advcore0,A (λ) ≤ Advcore1,A (λ) +∆core
A (λ),

where

∆core
A (λ) :=(4kdlogQe+ 2) ·Advmddh

PG,G1,D2k,k,B(λ)

+ (2dlogQe+ 2) ·AdvZKPS,B′(λ)

+ dlogQe ·∆D2k,k
+ 4dlogQe+2

p−1 + dlogQe·Q
p .

Recall that by definition of the distribution D2k,k (Section 2.2), the term
∆D2k,k

is statistically small.

Proof outline. Since the proof of Lemma 4 is rather complex, we first
outline our strategy. Intuitively, our goal is to randomize the term u′ used
by oracles TagO and VerO (i.e., to change this term from k>0 t to (k0 +
F(ctr))>t for a truly random function F). In this, it will also be helpful to
change the distribution of t ∈ Z2k

p in tags handed out by TagO as needed.
(Intuitively, changing t can be justified with theD2k,k-MDDH assumption,
but we can only rely on the soundness of PS if t ∈ span(A0) ∪ span(A1).
In other words, we may assume that t ∈ span(A0) ∪ span(A1) for any of
A’s VerO queries, but only if the same holds for all t chosen by TagO.)

We will change u′ using a hybrid argument, where in the i-th hybrid
we set u′ = (k>0 +Fi(ctr|i))

>t for a random function Fi on i-bit prefixes,
and the i-bit prefix ctr|i of ctr. (That is, we introduce more and more
dependencies on the bits of ctr.) To move from hybrid i to hybrid i+1, we
proceed again along a series of hybrids (outsourced into the full version),
and perform the following modifications:
Partitioning. First, we choose t ∈ span(Actri+1) in VerO, where ctri+1

is the (i + 1)-th bit of ctr. As noted above, this change can be jus-
tified with the D2k,k-MDDH assumption, and we may still assume
t ∈ span(A0) ∪ span(A1) in every TagO query from A.

Decoupling. At this point, the values u′ computed in TagO and VerO
are either of the form u′ = (k>0 + Fi(ctr|i))

>A0r or u′ = (k>0 +

Fi(ctr|i))
>A1r (depending on t). Since Fi : {0, 1}i → Z2k

p is truly
random, and the matrix A0||A1 ∈ Z2k×2k

p has linearly independent
columns (with overwhelming probability), the two possible subterms
Fi(ctr|i)

>A0 and Fi(ctr|i)
>A1 are independent. Thus, switching to

u′ = (k>0 + Fi+1(ctr|i+1))
>t does not change A’s view at all.

After these modifications (and resetting t), we have arrived at the (i+1)-
th hybrid, which completes the proof. However, this outline neglects a
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number of details, including a proper reasoning of PS proofs, and a careful
discussion of the decoupling step. In particular, an additional complication
arises in this step from the fact that an adversary may choose t ∈ span(Ab)
for an arbitrary bit b not related to any specific ctr. This difficulty is the
reason for the somewhat surprising “∃ctr′ ≤ ctr” clause in VerO.

Proof (of Lemma 4). We proceed via a series of hybrid games G0, . . . ,
G3.dlogQe, described in Figure 4, and we denote by εi the advantage of A
to win Gi, that is Pr[Gi(A, 1λ) = 1], where the probability is taken over
the random coins of Gi and A.

G0, G1, G2, G3.i :

ctr := 0
PG ← GGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)

(crs, td)← PTGen(1λ, pars)

k0,k1 ←R Z2k
p

pp := (PG, [A0]1, crs)
tag← ATagO()(pp)
return VerO(tag)

TagO():
ctr := ctr + 1
r←R Zkp
[t]1 := [A0]1r

[t]1 ←R G2k
1

Π ← PPrv(crs, [t]1, r)

Π ← PSim(crs, td , [t]1)

[u′]1 := (k0 +Fi(ctr|i) )
>[t]1

return tag := ([t]1, Π, [u
′]1)

VerO(tag):
parse tag =: ([t]1, Π, [u

′]1)
b← PVer(crs, [t]1, Π)
if b = 1 and ∃ctr′ ≤ ctr :

[u′]1 = (k0 + Fi(ctr
′
|i) )

>[t]1

return 1
else return 0

Fig. 4: Games G0,G1,G2,G3.i for i ∈ {0, . . . , dlogQe − 1}, for the proof of the
core lemma (Lemma 4). Fi : {0, 1}i → Z2k

p denotes a random function, and ctr|i
denotes the i-bit prefix of the counter ctr written in binary. In each procedure,
the components inside a solid (dotted, gray) frame are only present in the games
marked by a solid (dotted, gray) frame.

G0: We have G0 = Expcore0,A (λ) and thus by definition:

ε0 = Advcore0,A (λ).

G0  G1: Game G1 is as G0, except that crs is generated by PTGen
and the proofs computed by TagO are generated using PSim instead
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of PPrv. This change is justified by the zero-knowledge of PS. Namely,
let A be an adversary distinguishing between G0 and G1. Then we can
construct an adversary B on the composable zero-knowledge property of
PS as follows. The adversary B follows G0, except he uses the crs obtained
by its own experiment instead of calling PGen. B answers tag queries
following the tag oracle, but instead of computing Π itself it asks its own
oracle Prove. Now B simulates G0 in case it was given a real crs and
it simulates G1 in case it was given a crs generated by PTGen. B is thus
such that T (B) ≈ T (A) +Q · poly(λ) and

|ε0 − ε1| ≤ AdvZKPS,B(λ).

G1  G2: We can switch [t]1 to random over G1 by applying the D2k,k

assumption. More precisely, let A be an adversary distinguishing between
G1 and G2 and let B be an adversary given aQ-fold D2k,k-MDDH challenge
(PG, [A0]1, [z1]1, . . . , [zQ]1) as input. Now B sets up the game forA similar
to G1, but instead choosingA0 ←R D2k,k, it uses its challenge matrix [A0]1
as part of the public parameters pars. Further, to answer tag queries B
sets [ti]1 := [zi]1 and computes the rest accordingly. This is possible as
the proof Π is simulated from game G1 on. In case B was given a real
D2k,k-challenge, it simulates G1 and otherwise G2. Lemma 1 yields the
existence of an adversary B1 with T (B1) ≈ T (A) +Q · poly(λ) and

|ε1 − ε2| ≤ k ·Advmddh
PG,G1,D2k,k,B1(λ) +

1
p−1 .

G2  G3.0: As for all ctr ∈ N we have F0(ctr|0) = F0(ε) and k0 is
distributed identically to k0 + F0(ε) for k0 ←R Z2k

p we have

ε2 = ε3.0.

G3.i  G3.(i+1): For the proof of this transition we refer to the full
version. We obtain: For every adversary A there exist adversaries Bi, B′i
such that T (Bi) ≈ T (B′i) ≈ T (A) +Q · poly(λ), and

ε3.i ≤ε3.(i+1) + 4k ·Advmddh
PG,G1,D2k,k,Bi(λ) + 2AdvZKPS,B′i

(λ)

+∆D2k,k
+ 4

p−1 + Q
p .

G3.dlogQe  Expcore
1,A (λ): It is left to reverse the changes introduced in

the transitions from game G0 to game G2 to end up at the experiment
Expcore1,A (1λ).
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In order to do so we introduce an intermediary game G4, where we
set [t] := [A0]1r for r ←R Zkp. This corresponds to reversing transition
G1  G2. By the same reasoning for every adversary A we thus obtain an
adversary B3.dlogQe with T (B3.dlogQe) ≈ T (A) +Q · poly(λ) such that

|ε3.dlogQe − ε4| ≤ k ·Advmddh
PG,G1,D2k,k,B3.dlogQe(λ) +

1
p−1 .

As [t]1 is now chosen from span([A0]1) again, we can switch back to
honest generation of the common reference string crs and proofs Π. As
in transition G0  G1 for an adversary A we obtain an adversary B4 with
T (B4) ≈ T (A) +Q · poly(λ) and

|ε4 −Advcore1,A (λ)| ≤ AdvZKPS,B4(λ).

Theorem 1 (UF-CMA security of MAC). If the D2k,k-MDDH assump-
tions holds in G1, and the tuple PS := (PGen,PTGen,PPrv,PVer) is a
non-interactive zero-knowledge proof system for L∨A0,A1

, then the MAC
MAC := (Gen,Tag,Ver) provided in Figure 2 is UF-CMA secure. Namely,
for any adversary A, there exists an adversary B with running time T (B) ≈
T (A) + Q · poly(λ), where Q is the number of queries to TagO, poly is
independent of Q, and

Advuf-cma
MAC,A(λ) ≤ ∆core

B (λ) + Q
p .

Proof. We employ an intermediary game G0 to prove UF-CMA security of
the MAC. By ε0 we denote the advantage of A to win game G0, that is
Pr[G0(A, 1λ) = 1], where the probability is taken over the random coins
of G0 and A.

Expuf-cma
A (λ)  G0: Let A be an adversary distinguishing between

Expuf-cma
A (λ) and G0. Then we construct an adversary B with T (B) ≈

T (A)+Q ·poly(λ) allowing to break the core lemma (Lemma 4) as follows.
On input pp from Expcoreβ (1λ,B) the adversary B forwards pp to A. Then,
B samples k1 ←R Z2k

p . Afterwards, on a tag query µ from A, B queries
its own TagO oracle (which takes no input), receives ([t]1, Π, [u′]1), com-
putes [u]1 := [u′]1 + µk>1 [t]1, and answers with ([t]1, Π, [u]1). Finally,
given the forgery

(
µ?, tag? := ([t]1, Π, [u

?]1)
)
from A, if µ? /∈ Qtag and

[u?]1 6= [0]1, then the adversary B sends tag′ := ([t]1, Π, [u
?]1+µk

>
1 [t]1) to

its experiment (otherwise an invalid tuple). Then we have Advuf-cma
MAC,A(λ) =

Advcore0,B (λ) and ε0 = Advcore1,B (λ). The core lemma yields

Advcore0,B (λ) ≤ Advcore1,B (λ) +∆core
B (λ)
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Expuf-cma
A (λ), G :

Qtag := ∅
ctr := 0
PG ← GGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)
k0,k1 ←R Z2k

p

pp := (PG, [A0]1, crs)
(µ?, tag?)← ATagO(·)(pp)
if µ? /∈ Qtag

and VerO(µ?, tag?) = 1
return 1

else return 0

TagO(µ):
Qtag := Qtag ∪ {µ}
ctr := ctr + 1

r←R Zkp
[t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)

[u]1 := (k0 + µk1 +F(ctr) )>[t]1

tag := ([t]1, Π, [u]1)
return tag

VerO(µ?, tag?) :
parse tag? =: ([t]1, Π, [u]1)
b← PVer([t]1, Π)

if b = 1 and [u]1 6= [0]1 and ∃ctr′ ≤ ctr :

[u]1 = (k0 + µ?k1 +Fi(ctr
′) )>[t]1

return 1
else return 0

Fig. 5: The UF-CMA security experiment and game G for the UF-CMA proof of
MAC in Figure 2. F : {0, 1}dlogQe → Z2k

p denotes a random function, applied on
ctr written in binary. In each procedure, the components inside a gray frame are
only present in the games marked by a gray frame.

and thus altogether we obtain

Advuf-cma
MAC,A(λ) ≤ ε0 +∆core

B (λ).

Game G0: We now prove that any adversary A has only negligible
chances to win game G0 using the randomness of F together with the
pairwise independence of µ 7→ k0 + µk1.

Let
(
µ?, tag?

)
be the forgery of A. we can replace k1 by k1 − v for

v←R Z2k
p , as both are distributed identically. Next, for all j ≤ Q we can

replace F(j) by F(j)+µ(j) ·v for the same reason. This way, TagO(µ(j))
computes

[u(j)]1 : = [(k0 + µ(j)k1 −µ(j)v + F(j) +µ(j)v )>t(j)]1

= [(k0 + µ(j)k1 + F(j)>t(j)]1,

and VerO
(
[µ?]2, tag

? := ([t]1, Π, [u])
)
checks if there exists a counter

i ∈ Qtag such that:

[u]1 = [(k0 + µ?k1 −µ?v + F(i) +µ(i)v )>t]1
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= [(k0 + µ?k1 + F(i)>t?]1 +[(µ(i) − µ?)v>t]1 .

For the forgery to be successful, it must hold µ? /∈ Qtag and [u] 6=
0 (and thus [t]1 6= [0]1). Therefore, each value computed by VerO is
(marginally) uniformly random over G1.

As the verification oracle checks for all counters i ≤ Q, applying the
union bound yields

ε0 ≤ Q
p .

Gen(1λ):
PG ← GGen(1λ)
A0,A1 ← D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(1λ, pars)
A←R Dk
K0,K1 ←R Z2k×(k+1)

p

pk := (PG, [A0]1, crs,
[A]2, [K0A]2, [K1A]2)

sk := (K0,K1)
return (pk , sk)

Sign(pk , sk , µ ∈ Zp):
r←R Zkp
[t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)
[u]1 := (K0 + µK1)

>[t]1
σ := ([t]1, Π, [u]1)
return σ

Ver(pk , µ ∈ Zp, σ) :
parse tag =: ([t]1, Π, [u]1)
b← PVer(crs, [t]1, Π)
if b = 1 and [u]1 6= [0]1 and e([u]>1 , [A]2)

= e([t]>1 , [K0A]2 + µ[K1A]2)
return 1

else return 0

Fig. 6: Tightly UF-CMA secure signature scheme SIG.

4 Tightly secure signature scheme

In this section, we present a signature scheme SIG for signing messages
from Zp, described in Figure 6, whose UF-CMA security can be tightly
reduced to the D2k,k-MDDH and Dk-MDDH assumptions.

SIG builds upon the tightly secure MAC from Section 3, and func-
tions as a stepping stone to explain the main ideas of the upcoming
structure-preserving signature in Section 5. Recall that our MAC outputs
tag = ([t]1, Π, [u]1), where Π is a (publicly verifiable) NIZK proof of the
statement t ∈ span(A0) ∪ span(A1), and u = (k0 + µk1)

>t has an affine
structure. Hence, alternatively, we can also view our MAC as an affine
MAC [14] with t ∈ span(A0)∪ span(A1) and a NIZK proof for that. Sim-
ilar to [14], we use (tuned) Groth-Sahai proofs to make [u]1 publicly ver-
ifiable. Similar ideas have been used to construct efficient quasi-adaptive
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NIZK for linear subspace [40, 38], structure-preserving signatures [39], and
identity-based encryption schemes [14]. In the following theorem we state
the state the security of SIG. For a proof we refer to the full version.

Theorem 2 (Security of SIG). If PS := (PGen,PPrv,PVer,PSim) is
a non-interactive zero-knowledge proof system for L∨A0,A1

, then the sig-
nature scheme SIG described in Figure 6 is UF-CMA secure under the
D2k,k-MDDH and Dk-MDDH assumptions. Namely, for any adversary A,
there exist adversaries B,B′ with running time T (B) ≈ T (B′) ≈ T (A)+Q·
poly(λ), where Q is the number of queries to SignO, poly is independent
of Q, and

Advuf-cma
SIG,A (λ) ≤ Advuf-cma

MAC,B(λ) + Advmddh
PG,G2,Dk,B′(λ).

5 Tightly secure structure-preserving signature scheme

In this section we present a structure-preserving signature scheme SPS,
described in Figure 7, whose security can be tightly reduced to the D2k,k-
MDDH and Dk-MDDH assumptions. It builds upon the tightly secure
signature presented in Section 4 by using a similar idea of [39]. Precisely,
we view µ as a label and the main difference between both schemes is that
in the proof we do not need to guess which µ the adversary may reuse for
its forgery, and thus our security proof is tight.

Gen(1λ):
PG ← GGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs ← PGen(pars, 1λ)
A←R Dk
K0 ←R Z2k×(k+1)

p

K←R Z(n+1)×(k+1)
p

pk := (PG, [A0]1, crs, [A]2,
[K0A]2, [KA]2)

sk := (K0,K)
return (pk , sk)

Sign(pk , sk , [m]1 ∈ Gn1 ):
r←R Zkp [t]1 := [A0]1r
Π ← PPrv(crs, [t]1, r)

[u]1 := K>0 [t]1 +K>
[
m
1

]
1

return σ := ([t]1, Π, [u]1)

Ver(pk , σ, [m]1):
parse σ := ([t]1, Π, [u]1)
b← PVer(pk , [t]1, Π)
if b = 1 and e([u]>1 , [A]2) =
e([t]>1 , [K0A]2)

+e(

[
m
1

]>
1

, [KA]2)

return 1
else return 0

Fig. 7: Tightly UF-CMA secure structure-preserving signature scheme SPS with
message space Gn1 .
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G0, G1, G2, G3, G4 :

Qsign := ∅
ctr := 0 , c̃tr←R [Q]

PG ← GGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
A←R Dk
a⊥ ∈ orth(A)

crs ← PGen(pars, 1λ)

K0 ←R Z2k×(k+1)
p

k0 ←R Z2k
p

K←R Z(n+1)×(k+1)
p

pk := (crs, pars, [A]2,
[K0A]2, [KA]2)

sk := (K0,K)
([m?]1, σ

?)←R ASignO(·)(pk)
if [m?]1 /∈ Qsign

and VerO([m?]1, σ
?) = 1

return 1
else return 0

SignO([m]1 ∈ Gn1 ):
Qsign := Qsign ∪ {[m]1}
ctr := ctr + 1

r←R Zkp, r←R (Zkp)∗ , [t]1 := [A0]1r

Π ← PPrv(crs, [t]1, r)

[u]1 := K>0 [t]1 +K>
[
m
1

]
1

+a⊥(k0 +F(ctr) )>[t]1

return σ := ([t]1, Π, [u]1)

VerO([m?]1, σ
?):

parse σ =: ([t]1, Π, [u]1)
b← PVer(pk , [t]1, Π)

if b = 1 and ∃ctr′ ≤ ctr :

ctr′ = c̃tr and

[u]1 = K>0 [t]1 +K>
[
m
1

]
1

+a⊥(k0 +F(ctr′) )>[t]1

return 1
else return 0

Fig. 8: Games G0 to G2 for proving Theorem 3. Here, F : Zp → Z2k
p is a random

function. In each procedure, the components inside a solid (dotted, double, gray)
frame are only present in the games marked by a solid (dotted, double, gray)
frame.

Theorem 3 (Security of SPS). If PS := (PGen,PTGen,PVer,PSim) is
a non-interactive zero-knowledge proof system for L∨A0,A1

, the signature
scheme SPS described in Fig. 7 is UF-CMA secure under the D2k,k-MDDH
and Dk-MDDH assumptions. Namely, for any adversary A, there exist
adversaries B,B′ with running time T (B) ≈ T (B′) ≈ T (A) +Q · poly(λ),
where Q is the number of queries to SignO, poly is independent of Q, and

Advuf-cma
SPS,A (λ) ≤ ∆core

B (λ) + Advmddh
PG,G2,Dk,B′(λ) +

Q
pk

+ Q
p .

When using PS from Section 2.5, we obtain

Advuf-cma
SPS,A (λ) ≤(4kdlogQe+ 2) ·Advmddh

PG,G1,D2k,k,B(λ)

+ (2dlogQe+ 3) ·Advmddh
PG,G2,Dk,B′(λ) + dlogQe ·∆D2k,k

+ 4dlogQe+2
p−1 + (Q+1)dlogQe+Q

p + Q
pk
.
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Strategy. In a nutshell, we will embed a “shadow MAC” in our signature
scheme, and then invoke the core lemma to randomize the MAC tags
computed during signing queries and the final verification of A’s forgery.
A little more specifically, we will embed a term k>0 t into the A-orthogonal
space of each u computed by SignO and VerO. (Inuitively, changes to
this A-orthogonal space do not influence the verification key, and simply
correspond to changing from one signing key to another signing key that
is compatible with the same verification key.) Using our core lemma, we
can randomize this term k>0 t to (k0 +F(ctr))>t for a random function F
and a signature counter ctr. Intuitively, this means that we use a freshly
randomized signing key for each signature query. After these changes, an
adversary only has a statistically small chance in producing a valid forgery.

Proof (of Theorem 3). We proceed via a series of hybrid games G0 to G2,
described in Figure 8. By εi we denote the advantage of A to win Gi.

Expuf-cma
SPS,A(λ)  G0: Here we change the verification oracle as described

in Fig. 8.
Note that a pair (µ?, σ?) that passes VerO in G0 always passes the

VerO check in Expuf-cma
SPS,A (λ). Thus, to bound |Advuf-cma

SPS,A (λ)− ε0|, it suf-
fices to bound the probability that A produces a tuple (µ?, σ?) that
passes VerO in Expuf-cma

SPS,A (λ), but not in G0. For the signature σ? =:

([t]1, Π, [u]1) we can write the verification equation in Expuf-cma
SPS,A (λ) as

e([u]>1 , [A]2) = e([t]>1 , [K0A]2) + e(

[
m
1

]>
1

, [KA]2)

⇔ e([u]1 − [t]>1 K0 −
[
m
1

]>
1

K, [A]2) = 0

Observe that for any (µ?, ([t]1, Π, [u]1)) that passes the verification
equation in the experiment Expuf-cma

SPS,A (λ), but not the one in G0, the value

[u]1 − [t]>1 K0 −
[
m
1

]>
1

K

is a non-zero vector in the kernel of A. Thus, from A we can construct an
adversary B against the Dk-KMDH assumption. Finally, Lemma 2 yields
an adversary B′ with T (B′) ≈ T (A) +Q · poly(λ) such that

|Advuf-cma
SPS,A (λ)− ε0| ≤ Advmddh

PG,G2,Dk,B(λ).
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G0  G1: We can replace K0 by K0 + k0(a
⊥)> for a⊥ ∈ orth(A) and

ki ←R Z2k
p , as both are distributed identically. Note that this change does

not show up in the public key pk . Looking ahead, this change will allow
us to use the computational core lemma (Lemma 4). This yields

ε0 = ε1.

G1  G2: Let A be an adversary playing either G1 or G2. We build an
adversary B such that T (B) ≈ T (A) +Q · poly(λ) and

Pr[Expcore0,B (1λ) = 1] = ε1 and Pr[Expcore1,B (1λ) = 1] = ε2.

This implies, by the core lemma (Lemma 4), that

ε1 ≤ ε2 +∆core
B (λ).

We now describe B against Expcoreβ,B (1
λ) for β equal to either 0 or 1.

First, B receives pp := (PG, [A0]1, crs) from Expcoreβ,B (1
λ), then, B samples

A ←R Dk, a⊥ ∈ orth(A), K0 ←R Z2k×(k+1)
p , K ←R Z(n+1)×(k+1)

p and
forwards pk := (PG, [A0]1, crs, [A]2, [K0A]2, [KA]2) to A.

To simulate SignO([m]1), B uses its oracle TagO, which takes no
input, and gives back ([t]1, Π, [u]1). Then, B computes [u]1 := K>0 [t]1 +

a⊥[u]1 +K>
[
m
1

]
1

, and returns σ := ([t]1, Π, [u]1) to A.

Finally, given the forgery
(
[m?]1, σ

?) with corresponding signature
σ? := ([t?]1, Π

?, [u?]1), B first checks if [m?]1 /∈ Qsign and [u?]1 6= [0]1. If
it is not the case, then B returns 0 to A. If it is the case, with the knowl-
edge of a⊥ ∈ Zp, B efficiently checks whether there exists [u?]1 ∈ G1 such

that [u?]1−K>0 [t?]1−K>
[
m?

1

]
1

= [u?]1a
⊥. If it is not the case, B returns

0 to A. If it is the case, B computes [u?]1 (it can do so efficiently given
a⊥), sets tag := ([t?]1, Π

?, [u?]1), calls its verification oracle VerO(tag),
and forwards the answer to A.

G2  G3: In game G2 the vectors r sampled by SignO are uniformly
random over Zkp, while they are uniformly random over (Zkp)∗ = Zkp\{0}
in G3. Since this is the only difference between the games, the difference
of advantage is bounded by the statistical distance between the two dis-
tributions of r. A union bound over the number of queries yields

ε2 − ε3 ≤ Q
pk
.
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G3  G4: These games are the same except for the extra condition
c̃tr = ctr′ in G4, which happens with probability 1

Q over the choice of
c̃tr←R [Q]. Since the adversary view is independent of c̃tr, we have

ε4 =
ε3
Q .

Game G4: We prove that ε4 ≤ 1
p .

First, we can replace K by K + v(a⊥)> for v ←R Zn+1
p , and {F(i) :

i ∈ [Q], i 6= c̃tr} by {F(i) + wi : i ∈ [Q], i 6= c̃tr} for wi ←R Z2k
p . Note

that this does not change the distribution of the game.
Thus, for the i-th signing query with i 6= c̃tr the value u is computed

by SignO([mi]1) as

[u]1 = K>0 [t]1 + (K> +a⊥v> )

[
mi

1

]
1

+a⊥(k0+F(i) +wi )
>[t]1,

with [t]1 := [A0]1r, r←R (Zkp)∗. This is identically distributed to

[u]1 = K>0 [t]1 +K>
[
mi

1

]
1

+ γi · a⊥, with γi ←R Zp.

For the c̃tr’th signing query, we have

[u]1 = K>0 [t]1 + (K> +a⊥v> )

[
mc̃tr

1

]
1

+ a⊥(k0 + F(c̃tr))>[t]1.

Assuming A succeeds in producing a valid forgery, VerO computes

[u?]1 = K>0 [t
?]1 + (K> +a⊥v> )

[
m?

1

]
1

+a⊥(k0+F(c̃tr))>[t]1.

Since m? 6= mc̃tr by definition of the security game, we can use the

pairwise independence of m 7→ v>
[
m
1

]
1

to argue that v>
[
m?

1

]
1

and

v>
[
mc̃tr

1

]
1

are two independent values, uniformly random over G1. Thus,

the verification equation is satisfied with probability at most 1
p , that is

ε4 ≤ 1
p .
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Bilateral structure-preserving signature scheme. Our structure-
preserving signature scheme, SPS, defined in Figure 7 can sign only mes-
sages from Gn

1 . By applying the generic transformation from [39, Section
6], we can transform our SPS to sign messages from Gn1

1 × Gn2
2 using

their two-tier SPS, which is a generalization of [1]. The transformation is
tightness-preserving by Theorem 6 of [39] and costs additional k elements
from G1 and k + 1 elements from G2 in the signature. For the SXDH as-
sumption (k = 1), our bilateral SPS scheme requires additional 1 element
from G1 and 2 elements from G2 in the signature.
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