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Abstract. Two-message witness indistinguishable protocols were first
constructed by Dwork and Naor (FOCS 2000). They have since proven
extremely useful in the design of several cryptographic primitives. How-
ever, so far no two-message arguments for NP provided statistical privacy
against malicious verifiers. In this paper, we construct the first:

◦ Two-message statistical witness indistinguishable (SWI) arguments
for NP.

◦ Two-message statistical zero-knowledge arguments for NP with super-
polynomial simulation (Statistical SPS-ZK).

◦ Two-message statistical distributional weak zero-knowledge (SwZK)
arguments for NP, where the simulator is a probabilistic polyno-
mial time machine with oracle access to the distinguisher, and the
instance is sampled by the prover in the second round.

These protocols are based on quasi-polynomial hardness of two-message
oblivious transfer (OT), which in turn can be based on quasi-polynomial
hardness of DDH or QR or N th residuosity. We also show how such
protocols can be used to build more secure forms of oblivious transfer.

Along the way, we show that the Kalai and Raz (Crypto 09) transform
compressing interactive proofs to two-message arguments can be gener-
alized to compress certain types of interactive arguments. We introduce
and construct a new technical tool, which is a variant of extractable two-
message statistically hiding commitments, building on the recent work of
Khurana and Sahai (FOCS 17). These techniques may be of independent
interest.

1 Introduction

Witness indistinguishable (WI) protocols [15] allow a prover to convince a veri-
fier that some statement x belongs to an NP language L, with the following pri-
vacy guarantee: If there are two witnesses w1, w2 that both attest to the fact that
x ∈ L, then a computationally bounded verifier should not be able to distinguish
an honest prover using witness w1 from an honest prover using witness w2. WI is
a relaxation of zero-knowledge that has proven to be surprisingly useful. Because
WI is a relaxation, unlike zero-knowledge, there are no known lower bounds on
the rounds of interaction needed to build WI protocols. Indeed, in an influential
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work, Dwork and Naor [13] introduced WI protocols that only require two mes-
sages to be exchanged between the prover and verifier, and these were further
derandomized to non-interactive protocols by [6]. Due to this extremely low level
of interaction, two-message WI protocols have proven to be very useful in the de-
sign of several cryptographic primitives. Later, [20,8,23,4] achieved two message
or non-interactive WI protocols from other assumptions, namely assumptions
on bilinear maps, indistinguishability obfuscation, and quasi-polynomial DDH,
respectively.

Two-message Statistical WI. In this work, we revisit this basic question of
constructing two-message WI protocols, and ask whether it is possible to up-
grade the WI privacy guarantee to hold even against computationally unbounded
verifiers. In other words, can we construct statistical WI (SWI) protocols for NP
that require only two messages to be exchanged? This is the natural analog of
one of the earliest questions studied in the context of zero-knowledge protocols:
Are statistical zero-knowledge arguments [10] possible for NP?

Indeed, statistical security is important because it allows for everlasting pri-
vacy against malicious verifiers, long after protocols have completed execution.
On the other hand, soundness is usually necessary only in an online setting: In
order to convince a verifier of a false statement, a cheating prover must find a
way to cheat during the execution of the protocol.

The critical bottleneck to achieving two-message statistical WI has been
proving soundness. For instance, the Dwork-Naor transformation from a non-
interactive zero-knowledge (NIZK) protocol to two-message WI requires the un-
derlying NIZK to be a proof system – that is, for the NIZK to be sound against
computationally unbounded cheating provers. Of course, to achieve statistical
privacy, we must necessarily sacrifice soundness against unbounded provers.
Thus, remarkably, 17 years after the introduction of two-message WI proto-
cols, until our work, there has been no construction of two-message statistical
WI arguments. In fact, this question was open even for three-message protocols.

In our first result, we resolve this research question, constructing the first
two-message statistical WI arguments for NP, based on standard cryptographic
hardness assumptions against quasi-polynomial time adversaries (such as quasi-
poly hardness of DDH, or Quadratic Residuosity, or N ’th Residuosity). Because
two-message WI is so widely applicable, and statistical privacy is useful in many
situations where computational privacy does not suffice, we expect our two-
message SWI argument to be a useful new tool in the protocol designer’s toolkit.

Stronger two-message statistically private protocols. The techniques we
use to build two-message SWI also allow us to achieve other forms of statistical
privacy.

One of the most popular notions of privacy in proof systems is that of zero-
knowledge. This is usually formalized via simulation, by showing the existence
of a polynomial-time simulator that simulates the view of any polynomial size
(malicious) verifier. At an intuitive level, the existence of such a simulator means
that any information that a polynomial size verifier learns from an honest prover,
he could have generated on his own (in and indistinguishable manner), without
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access to such a prover. It is known [19] that zero-knowledge is impossible to
achieve in just two messages. However, other weaker variants have been shown
to be achievable in this setting.

Pass [29] was the first to construct a two-message argument with quasi-
polynomial time simulation. In his work, the simulated proofs were indistin-
guishable by distinguishers running in time significantly smaller than that of the
(uniform) simulator. Very recently, [27] constructed the first two-message argu-
ments for NP achieving super-polynomial strong simulation, where the simulated
proofs remain indistinguishable by distinguishers running in time significantly
larger than that of the (uniform) simulator. These capture the intuition that
for any information that a quasi-polynomial size verifier learns from an honest
prover, indistinguishable information could have been generated by the verifier
in a similar amount of time.

An even stronger security property would be super-polynomial statistical
simulation, where the output of the simulator is indistinguishable from real ex-
ecutions of the protocol even against distinguishers that run in an unbounded
amount of time. In this paper, we construct the first arguments satisfying this
property in two messages.1 This improves upon the work of [27] by pushing their
privacy guarantees all the way to statistical.

We note that in all these arguments, the simulator works by breaking sound-
ness of the proof, so all of the above two-message arguments are only sound
against provers running in time less than that of the simulator.

Recently, [23] showed that this caveat could be overcome, by weakening the
ZK requirement. Specifically, they constructed two-message arguments in the
delayed-input distributional setting, with distinguisher-dependent polynomial-
time simulation. These protocols only satisfy computational privacy, and a nat-
ural open question was to achieve statistical privacy. We show that our techniques
can be used to get two-message arguments for NP in the delayed-input distri-
butional setting with distinguisher-dependent simulation, where the simulator
runs in polynomial time with oracle access to the distinguisher, and achieving
statistical privacy.

Our core technique. Our key technique consists of compressing an interactive
protocol into a two-message protocol. Specifically, we start with an interactive
argument satisfying honest-verifier statistical zero-knowledge, and compress it
into a two-message argument by proving soundness of the [25] heuristic, which
builds on [7]. Actually, to obtain a two-message protocol with statistically pri-
vacy, it does not suffice to start with an honest-verifier statistical ZK protocol,
but rather we need the ZK property to hold against semi-malicious verifiers.2

We gloss over this detail in this high-level overview.

1 Achieving such two-message arguments was believed to be impossible [11], however
the work of [27] showed that the line of impossibility claims [11] for super-polynomial
simulation was surmountable.

2 A semi-malicious verifier is one who follows the prescribed algorithm but with pos-
sibly malicious randomness.
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This heuristic is believed to be insecure when applied generally to interactive
arguments (as opposed to proofs). Nevertheless, we construct a family of 4-
message interactive arguments with statistical hiding guarantees, and prove that
the [25]-heuristic is sound when applied to such protocols.

At the heart of our technique is the following idea: We devise protocols
that are almost always statistically private (and only computationally sound),
but with negligible probability, they are statistically sound. Crucially, we show
that a (computationally bounded) prover cannot distinguish between the case
when the protocol ends up being statistically private (which happens most of
the time), and the case when the protocol ends up being statistically sound
(which happens very rarely). At the heart of our construction is a new special
commitment scheme, which build upon and significantly extend commitment
schemes from [27]. We then show how to leverage this rare statistical soundness
event, to allow the soundness of the the [25]-heuristic to kick in.

This rare event helps us achieve other extraction properties that we require in
our applications. We elaborate on this below in our technical overview, providing
a detailed but still informal overview of our techniques and results. Our protocols
are based on standard cryptographic hardness assumptions with security against
quasi-polynomial time adversaries (such as the quasi-poly hardness of DDH, or
Quadratic Residuosity, or N ’th Residuosity).

New Oblivious Transfer protocols. Our techniques also have applicabil-
ity to an intriguing question about oblivious transfer (OT): The works of Naor
and Pinkas [28] and Aiello et al [2] introduced influential two-message proto-
cols for OT achieving a game-based notion of security, which offers security
against computationally unbounded malicious receivers. A natural question is:
Can we achieve a similar result offering security against computationally un-
bounded senders? Note that to achieve such a result, at least three messages must
be exchanged in the OT protocol: Indeed, suppose to the contrary that there was
a two-message OT protocol with security against an unbounded sender. Then
the first message of the protocol sent by the receiver must statistically hide the
choice bit of the receiver in order for this message to provide security against
an unbounded cheating sender. However, a non-uniform cheating receiver could
begin the protocol with non-uniform advice consisting of a valid first message m
together with honest receiver randomness r0 that explains m with regard to the
choice bit b = 0, and honest receiver randomness r1 that explains m with regard
to the choice bit b = 1. Now this receiver would be able to recover both inputs
of the honest sender by using both random values r0 and r1 on the sender’s
response message, violating OT security against a (bounded) malicious receiver.

Again remarkably, this basic question, of constructing a 3-message OT pro-
tocol with security against unbounded sender, has been open since the works
of [28,2] 17 years ago. We resolve this question, by exhibiting such a 3-message
OT protocol, based on standard cryptographic hardness assumptions with se-
curity against quasi-polynomial time adversaries (same assumptions as before).
Such an OT protocol can also be plugged into the constructions of [23] to achieve
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three-message proofs for NP (as opposed to arguments) achieving delayed-input
distributional weak ZK, witness hiding and strong witness indistinguishability.

Our techniques also apply to other well-studied questions about OT, even
in the two-message setting with security against unbounded receivers. It has
long been known that the two-message OT protocols of [28,2] do not rule out
selective failure attacks. For example, if two OTs are run in parallel, we do
not know how to rule out the possibility that the sender can cause the OTs
to abort if and only if the receiver’s two choice bits are equal. Intuitively, this
should not be possible in a secure OT, and the “gold standard” for preventing
all such attacks for OT is to prove security via simulation. For two-message OT
protocols, however, only super-polynomial simulation is possible, and this was
recently formally established in [3] but at the cost of sacrificing security against
unbounded receivers. This sacrifice seems inherent: If an OT protocol has a
super-polynomial simulator, then it seems that an unbounded malicious receiver
can just “run the simulator” to extract the inputs of the sender. This presents
a conundrum; perhaps simulation security and security against an unbounded
malicious receiver cannot be simultaneously achieved.

In fact, we show that it is possible to construct a two-message OT protocol
with both super-polynomial simulation security, and security against unbounded
receivers.

1.1 Summary of Our Results

We construct several protocols with security properties assuming the existence
of a quasi-poly secure OT, which can in turn be instantiated based on quasi-poly
hardness of the DDH assumption [28], or based on the quasi-poly hardness of
QR or the N ’th residuosity assumption [24,21]. We first construct a two-message
argument for NP with the following statistical hiding guarantees:

1. Our two-message argument is statistical witness indistinguishable. We note
that prior to this work, we did not even know how to construct a 3-message
statistical WI scheme.

2. Our two-message argument is statistical zero-knowledge with super-polynomial
time simulation.3

3. Our two-message argument is statistical weak zero-knowledge in the delayed
input setting where the simulator has oracle access to the distinguisher, and
where the instance is sampled from some distribution after the verifier sent
the first message.

We also obtain the following results on oblivious transfer:

1. We construct a three-message OT protocol simultaneously satisfying super-
polynomial simulation security, and security against a computationally un-
bounded sender.

3 We note that prior to this work, this was believed to be impossible to achieve via
black-box reductions [11].
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2. We construct a two-message OT protocol simultaneously satisfying super-
polynomial simulation security, and security against a computationally un-
bounded receiver.

1.2 Other Related Work

Two message statistical witness indistinguishable arguments were constructed
for specific languages admitting hash proof systems, by [17]. However, no two-
message statistical WI arguments were known for all of NP.

Two main approaches for reducing rounds in interactive proof systems have
appeared in the literature. The first is due to Fiat and Shamir [16], and the
second is due to [25] and is based on the [7]-heuristic for converting multi-
prover interactive proofs to two-message arguments. The [25]-heuristic is sound
when applied to a statistically sound interactive proof, assuming the existence
of a super-polynomial OT (or super-polynomially secure computational PIR)
scheme. Very recently, [26,?] showed that the Fiat-Shamir heuristic is also sound
when applied to to a statistically sound interactive proof, assuming the existence
of a symmetric encryption scheme where the key cannot be recovered even with
exponentially small probability (even after seeing encryptions of key-dependent
messages).4

The works of [23,3] are closely related to our work. They assume the ex-
istence of a quasi-poly secure oblivious transfer (OT) scheme, and show how
to convert any 3-message public-coin protocol which is zero-knowledge against
semi-malicious verifiers, into a two-message protocol, while keeping (and even
improving) the secrecy guarantees. However, these works do not yield statistical
privacy, which is the focus of the present work. More specifically, these works
apply the [25]-heuristic to 3-message public-coin proofs that are zero-knowledge
against semi-malicious verifiers, to obtain their resulting two-message protocols.
We note that since they start with a statistically sound proof they obtain only
computational hiding guarantees, and after applying the [25]-heuristic, their re-
sulting two-message protocols are only computationally sound (in addition to
being only computational hiding).

In contrast, in this work we construct two-message arguments with statistical
hiding guarantees. More specifically, we do this by constructing a 4-message
interactive argument with statistical hiding guarantees, and converting it into
a two-message computationally sound protocol by applying the [25]-heuristic to
it.

2 Overview of Techniques

Our starting point is the [25]-heuristic, which shows how to compress public
coin interactive proofs into two-message arguments. We note that this heuristic
is based on the heuristic introduced in [7] (and explored in [1]), which converts

4 Their actual assumption is a bit more complex and we refer to [?] for details.
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multi-prover interactive proofs into two-message arguments. We note that the
[25]-heuristic is only known to be sound when applies to interactive proofs (and
believed not to be sound when applied to general interactive arguments).

Recently, [23,3] proved that this heuristic also preserves (and even enhances)
privacy. Our strategy will be to follow this blueprint, but in the statistical set-
ting. This becomes quite tricky in the statistical setting because we do not have
interactive proofs for NP with statistical privacy guarantees. In particular, we do
not have an interactive proof for NP which is statistical zero-knowledge against
semi-malicious verifiers (which is the privacy guarantee needed in [23,3], but in
the computational setting).

However, we do have an interactive argument which is statistical zero-knowledge
against semi-malicious verifiers. We construct such an interactive argument of
a specific form, and prove that the [25]-heuristic is sound when applied to this
interactive argument.

We begin by reviewing the techniques from [23,3], where we take as a run-
ning example the Blum protocol for Graph Hamiltonicity, which is known to be
(computational) zero-knowledge against semi-malicious verifiers.

2.1 First Attempt: Compressing the Blum Protocol via OT

In what follows, we recall the two-message protocol from [23,3] (with computa-
tional privacy guarantees), which makes use of the following two components:

◦ A three-message proof for Graph Hamiltonicity, due to Blum [9]. Denote its
three messages by (a, e, z), which can be parsed as a = {ai}i∈[κ], e = {ei}i∈[κ]
and z = {zi}i∈[κ]. Here for each i ∈ [κ], the triplet (ai, ei, zi) are messages
corresponding to an underlying Blum protocol with a single-bit challenge
(i.e., where ei ∈ {0, 1}). We also denote by f1 and f2 the functions that
satisfy ai = f1(x,w; ri) and zi = f2(x,w, ri, ei), for answers provided by the
honest prover, and where ri is uniformly chosen randomness.

◦ Any two-message oblivious transfer protocol, denoted by (OT1,OT2), which
is secure against malicious PPT receivers, and malicious senders running in
time at most 2|z|. For receiver input b and sender input messages (M0,M1),
we denote the two messages of the OT protocol as OT1(b) and OT2(M0,M1).
We note that OT2(M0,M1) also depends on the message OT1(b) sent by
the receiver. For the sake of simplicity, we omit this dependence from the
notation.

Given these components, the two-message protocol 〈P, V 〉 (from [23,3]) is
described in Figure 1.
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Preliminary Two-Message Protocol from [23,3]

◦ For i ∈ [κ], V picks ei
$← {0, 1}, and sends OT1,i(ei) in parallel. Each ei is

encrypted with a fresh OT instance.
◦ For i ∈ [κ], P computes ai = f1(x,w; ri), z

(0)
i = f2(x,w, ri, 0), z

(1)
i =

f2(x,w, ri, 1). The prover P then sends ai,OT2,i(z
(0)
i , z

(1)
i ) in parallel for

all i ∈ [κ].

◦ The verifier V recovers z
(ei)
i from the OT, and accepts if and only if for

every i ∈ [κ], the transcript (ai, ei, z
(ei)
i ) is an accepting transcript of the

underlying Σ-protocol.

Fig. 1. Preliminary two-message protocol

Soundness It was proven in [25,23,3] that such a transformation from any
public-coin interactive proof to a two-round argument preserves soundness against
adaptive PPT provers, who may choose the instance adaptively depending upon
the message sent by the verifier.

Can we Achieve Statistical Privacy Against Malicious Verifiers? Let us
now analyze the privacy of the protocol in Figure 1. The work of [23,3] showed
that the protocol in Figure 1 satisfies computational witness indistinguishability,
as well as other stronger (computational) privacy guarantees against malicious
verifiers. Their proofs rely on the security of OT against malicious receivers,
as well as the zero-knowledge property of the underlying Blum proof, when
restricted to semi-malicious verifiers.

As we already described, the focus of this paper is achieving statistical pri-
vacy. To this end, we take a closer look at the Blum protocol.

Background. Recall that in the (parallel repetition of the) Blum protocol, for
each index i ∈ [κ], ai consists of a statistically binding commitment to a ran-
dom permutation π and the permuted graph π(G), where G denotes the input
instance with Hamiltonian cycle H. Then, if the verifier challenge ei = 0, the
prover computes zi as a decommitment to (π, π(G)), and the verifier accepts if
and only if the graph G was correctly permuted. On the other hand, if ei = 1,
the prover computes zi as a decommitment only to the edges of the Hamiltonian
Cycle π(H) in π(G), and the verifier accepts if and only if the revealed edges
are indeed a Hamiltonian Cycle.

In an quest for statistical privacy, we notice the following properties about
the protocol in Figure 1:

1. A single parallel repetition of the underlying Blum proof only satisfies com-
putational zero-knowledge. This is because it uses a statistically binding,
computationally hiding commitment to generate the first message {ai}i∈[κ].
An unbounded malicious verifier that breaks the commitment in {ai}i∈[κ]
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can in fact, extract π, and therefore obtain the witness (i.e., the Hamilto-
nian cycle) from any honest prover.

2. The underlying OT protocols [28,21] used in the protocol of Figure 1 are
already statistically private against malicious receivers. This implies that the

messages {z(1−ei)i }i∈[κ] are statistically hidden from any malicious verifier.

As a result of (1) above, the protocol in Figure 1 is also only computation-
ally private. At this point, it is clear that the main bottleneck towards achiev-
ing statistical privacy against malicious verifiers, is the computationally hiding
commitment in the message {ai}i∈[κ]. A natural first idea is then to replace this
commitment with a statistically hiding commitment.

To this end, we consider a modified version of the underlying Blum pro-
tocol, which is the same as the original Blum protocol, except that it uses a
statistically hiding, computationally binding commitment. Such a commitment
must contain two-messages in order to satisfy binding against non-uniform PPT
provers. Therefore, our modified version of the Blum protocol has four messages,
where in the first message, for i ∈ [κ], the verifier sends the first message qi of a
statistically hiding, computationally binding commitment. Next, the prover re-
sponds with ai consisting of the committer message in response to qi, committing
to values (πi, πi(G)). The next messages {ei}i∈[κ] and {zi}i∈[κ] remain the same
as before. It is not hard to see that the resulting four-message modified Blum
protocol satisfies statistical zero-knowledge against semi-malicious verifiers.

Let us again compress this four-message protocol using the same strategy as
before, via two-message OT. That is, the verifier sends in parallel {qi,OT1,i(ei)}i∈[κ],
and the prover responds with {ai,OT2,i(z

(0)
i , z

(1)
i )}i∈[κ]. In this case, because of

the statistical hiding of the commitments and the statistical sender security of
OT, the proof in [23,3] can be easily extended to achieve statistical witness in-
distinguishability.

One may now hope that the analysis in [25,23,3] can be used to prove that
the resulting protocol also remains sound against PPT provers. Unfortunately,
as we noted above, the proof of soundness [25,23,3] crucially relies on the fact
that the starting protocol is a proof (as opposed to an argument). More specif-
ically, the soundness proof in previous works goes through as follows: Consider
for simplicity the case of a single repetition, and suppose a cheating prover, on
input the verifier message OT1(e∗), outputs x∗ 6∈ L, together with a message
(a∗,OT2(z∗)), such that the verifier accepts with probability 1

2 + 1
poly(κ) . Intu-

itively, since for any x∗ 6∈ L and any a∗, there exists at most one unique value
of receiver challenge e∗, for which there exists a z∗ that causes the verifier to
accept, this means that a∗ consists of a commitment that encodes the receiver
challenge e∗. By using an OT scheme that is secure against adversaries that can
break the commitment within a∗, a cheating prover can be used to contradict re-
ceiver security of OT. This proves that a single parallel execution of the protocol
in Figure 1 has soundness 1

2 +negl(κ). The same argument can be generalized to
prove that no adaptive PPT prover P ∗ can cheat with non-negligible probability
when we perform κ parallel repetitions. More specifically, the reduction can use
any prover that cheats with non-negligible probability to guess the κ-bit chal-
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lenge e with non-negligible probability, contradicting the security of κ parallel
repetitions of OT.

This proof crucially relies on the fact that the commitment is statistically
binding. This is no longer true for the four-message modified version of the Blum
protocol described above. In fact, the problem runs deeper: Note that what we
seem to need for this approach to work is a proof that satisfies statistical ZK
against semi-malicious verifiers, however, such proofs are unlikely to exist for
all of NP (see, e.g. [30]). Therefore, the only remaining option, if we follow this
approach, is to find a way to compress some form of statistical ZK argument
while preserving soundness.

2.2 Compressing Interactive Arguments While Preserving
Soundness

The problem of compressing general interactive arguments while preserving
soundness has been a question of broader interest, even in the context of dele-
gating computation. In this paper, unlike the setting of delegation, we are not
concerned with the succinctness of our arguments. Yet, there are no previously
known approaches to compressing any types of interactive argument systems
that are not also proofs.

In this paper, we develop one such approach. Our high-level idea is as fol-
lows: Since we already ruled out constructing a proof that satisfies statistical
ZK against semi-malicious verifiers, we will instead construct an argument that
satisfies statistical ZK against semi-malicious verifiers. But this argument will
have the property that with a small probability, it will in fact be a proof! Fur-
thermore, no cheating prover will be able to differentiate the case when it is
an argument from the case when it is a proof. In other words, we will ensure
that any cheating prover that outputs x∗ 6∈ L together with an accepting proof
with non-negligible probability in the original protocol, will continue to do so
with non-negligible probability even when it is in proof mode. Upon switching to
proof mode, we can apply the techniques of [25] to argue soundness and obtain
a contradiction.

Our main technical tool that will help us realize the above outline will be a
two-message statistically-hiding extractable commitment scheme, which we now
describe.

Main Tool: Statistically Hiding Extractable Commitments Our con-
struction of statistically hiding, extractable commitments is obtained by building
on the recent work of Khurana and Sahai [27].

They construct an extractable computationally hiding commitment scheme,
which is completely insecure against unbounded malicious receivers. The un-
derlying idea behind their work, which we will share, is the following: In their
commitment scheme, with a negligible probability, 2−m for m = Ω(log κ), the
message being committed to is transmitted to the receiver. Otherwise, with
overwhelming probability 1− 2−m, the receiver obtains an actual (statistically-
binding) commitment to the message. Crucially, the committer does not know
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which case occurs – whether its message was transmitted to the receiver or not.
In this way, their commitment can be seen as an unusually noisy erasure channel.
Our commitment will work to achieve the same goal, but crucially we will seek
to achieve a statistically hiding commitment.

The reason why the work of [27] was inherently limited to achieving only
computational hiding is because of the way they implement the erasure channel
described above: In their work, this was implemented using a two-message secure
computation protocol, that implemented a coin-flipping procedure to provide the
randomness underlying the erasure channel. Such two-message secure computa-
tion protocols only achieve computational hiding. Therefore, in our work, we
must depart fundamentally from this method of implementing the erasure chan-
nel.

Basic Construction. In order to obtain a construction that essentially imple-
ments the erasure channel described above, we go back to the drawing board.
Instead of implementing a sophisticated two-party computation using garbled
circuits, we consider the following basic commitment scheme (Figure 2) imple-
mented using game-based oblivious transfer [28,2,24,21], with statistical sender
security. We make the following observations about this protocol:

◦ Assuming statistical sender security of OT, this scheme is 1/2-hiding against
malicious receivers (i.e., r 6= ch happens with probability 1

2 , and in this case
the message is statistically hidden from any malicious receiver).

◦ Assuming computational receiver security of OT, this scheme is computa-
tionally binding. That is, no malicious PPT committer, upon generating a
commitment transcript, can successfully decommit it to two different values
M̃1 6= M̃2, except with negligible probability. This is because given such
a committer, the reduction can use this committer to deduce that r 6= ch,
which should be impossible except with negligible probability5. A formal
analysis can be found in the full version of the paper.

Our Construction. Recall that we would like a scheme where most transcripts
(1−2−m fraction of them) should be statistically hiding and the message should
be completely lost. Moreover, we would like a 2−m fraction of transcripts to
be statistically binding: in fact, it will suffice to directly reveal the message
being committed in these transcripts to the receiver. Starting with the basic
construction above, a natural way to achieve this is to commit to an XOR secret
sharing of the message M via m parallel executions of the basic scheme described
above. Formally, our construction is described in Figure 3. This scheme satisfies
the following properties:

◦ It remains computationally binding against malicious PPT committers, just
like the basic scheme.

5 We note that this is different from guessing ch, which can be done with probability
1
2
: however, a cheating committer can not only guess ch but also certify via two

valid decommitments to different messages that it guessed ch correctly, which is not
allowed except with negligible probability

11



Committer Input: Message M ∈ {0, 1}p, where p = poly(κ).
Commit Stage:
Receiver Message.

◦ Pick challenge string ch
$←{0, 1}.

◦ Compute and send the first OT message OT1(ch, r1) using uniform random-
ness r1.

Committer Message.

◦ Sample a random string r
$←{0, 1}. Set Mr = M,M1−r $←{0, 1}p.

◦ Compute o2 = OT2(M0,M1; r2) with uniform randomness r2.
◦ Send (r, o2).

Reveal Stage: The committer reveals M , and both values (M0,M1) as well as
the randomness r2. The receiver accepts the decommitment to message M if and
only if:

1. o2 = OT2(M0,M1; r2),
2. Mr = M .

Fig. 2. Basic Construction of a Two-Message Statistically Hiding Commitment

◦ Because the underlying OT is statistically hiding, our scheme is now (1 −
2−m)-statistically hiding against malicious receivers (i.e., it is not statisti-
cally hiding only in the case that r 6= ch, which happens with probability
2−m).

◦ Most importantly, because of receiver security of the OT, no malicious PPT
committer can distinguish the case where r = ch from the case where r 6= ch.6

Modifying Blum to use Statistically Hiding Extractable Commitments
Now, instead of plugging in any statistically hiding commitment scheme, we
plug in the extractable statistically hiding commitment scheme of Figure 3 to
generate messages {qi, ai}i∈[κ], with m = Ω(log κ). This is formally described
in Section 5.1. By statistical hiding of the commitment, the resulting protocol
is a statistical ZK argument. On the other hand, by the extractability of the
commitment, (more specifically in the case where r = ch), the protocol, in fact,
becomes a proof. Furthermore, no cheating PPT prover can distinguish the case
when r = ch from when r 6= ch. Looking ahead, like we already alluded to at the
beginning of the overview, we will compress this while simultaneously ensuring
that any malicious prover outputting an accepting transcript corresponding to
x 6∈ L with noticeable probability when r 6= ch, must continue to do so even
when r 6= ch. We will now analyze the soundness of the resulting protocol.

6 This requires a more delicate argument, as well as reliance on 2m-security of the OT
to ensure that a PPT cheating committer cannot bias r away from ch all the time.
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Extraction parameter: m.
Committer Input: Message M ∈ {0, 1}p.
Commit Stage:
Receiver Message.

◦ Pick challenge string ch
$←{0, 1}m.

◦ Sample uniform randomness {r1,i}i∈[m].
◦ Compute and send {OT1(chi, r1,i)}i∈[m] using m instances of two-message

OT.

Committer Message.

◦ Sample a random string r
$←{0, 1}m.

For every i ∈ [m] and every b ∈ {0, 1}, sample Mb
i

$← {0, 1}p subject to⊕
i∈[m]M

ri
i = M .

◦ For every i ∈ [m] compute o2,i = OT2(M0
i ,M

1
i ; r2,i) with uniform random-

ness r2,i.
◦ Send (r, {o2,i}i∈[m]).

Reveal Stage: The committer reveals M , and all values {M0
i ,M

1
i }i∈[m] as well

as the randomness r2,i. The receiver accepts the decommitment to message M if
and only if:

1. For all i ∈ [m], o2,i = OT2(M0
i ,M

1
i ; r2,i),

2.
⊕

i∈[m]M
ri
i = M .

Fig. 3. Our Extractable Commitments

Arguing Soundness of the Compressed Protocol We show that the re-
sulting protocol remains sound against cheating PPT provers. While we also
achieve a variant of adaptive soundness, for the purposes of this overview we re-
strict ourselves to proving soundness against non-adaptive provers that output
the instance x before the start of the protocol.

At a high level, we will begin by noting that a cheating prover that first out-
puts x 6∈ L together with an accepting proof with probability p = 1

poly(κ) , cannot

distinguish the case when r = ch from the case when r 6= ch by the property of
the extractable commitment. Moreover, such a prover must continue to gener-
ate accepting transcripts for x 6∈ L with probability at least 1

poly(κ) even in case

r = ch7 Although the event r = ch only occurs with negligible probability, we use
the extractor of extcom to amplify this probability by making many queries to
the prover. The extractor then outputs a transcript of the proof (corresponding

7 Ensuring this requires the decommit phase of the extractable commitment to be pub-
licly verifiable, without the receiver needing to maintain any state from the commit
phase. This is for technical reasons, specifically, public verifiability of the decommit
phase is required to check whether a transcript is accepting or rejecting even while
obtaining the receiver message for the extractable commitment, externally.
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to r = ch), together with the values committed in all messages corresponding to
the extractable commitment. This requires the oblivious transfer used for such
compression to be hard against adversaries running in time large enough to en-
able extraction from the extcom. Additional details of our construction can be
found in Section 5.2.

In fact, we notice that our technique is more generally applicable. In particu-
lar, we focus on applications to some natural questions about oblivious transfer.

2.3 Applications to OT

OT Secure against Unbounded Senders While we have long known two-
message OT protocols with game-based security against unbounded malicious
receivers and PPT malicious senders [28,2,24,21], the following natural, ex-
tremely related question has remained unanswered so far. Can we construct
three-message oblivious transfer with game-based security against unbounded
malicious senders and non-uniform PPT malicious receivers?

It is clear that a minimum of three rounds is required for this task, since
in any two message protocol in the plain model secure against non-uniform
receivers, the first message must unconditionally bind a malicious receiver to
a single choice bit (as otherwise a cheating receiver may obtain non-uniformly,
a receiver message as well as randomness that allows opening this message to
two different bits). In order to achieve such oblivious transfer, we explore a very
natural approach: [32] suggested the following way to information-theoretically
reverse any ideal OT protocol (with receiver message denoted by OTR and sender
message denoted OTS), by adding single round (Refer to Figure 4).

Sender Input: Message bits x0, x1. Receiver Input: Choice bit b.

◦ Sender Message. Sample x′0, x
′
1

$←{0, 1}2 and rS uniformly at random. Set
c = x′0 ⊕ x′1, and send mS = OTR(c; rS).

◦ Receiver Message.
• Sample input (single-bit) messages m0,m1 uniformly at random such

that m0 ⊕m1 = b.
• Send mR = OTS(m0,m1; rR).

◦ Sender Message.
• Obtain output a of the two-message OT using (mR, rS).
• Send z = a⊕ x′0, z0 = x′0 ⊕ x0, z1 = x′1 ⊕ x1.

◦ Receiver Output: The receiver outputs y = (z ⊕ zb ⊕m0).

Fig. 4. Oblivious Transfer Reversal

If we did manage to somehow reverse the two-message OT protocols of [28,2,24,21]
using such a reversal, then clearly we would obtain a three-message protocol with
game-based security against unbounded senders and malicious PPT receivers.
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However, surprisingly, proving game-based security of the protocol obtained by
reversing [28,2,24,21] appears highly non-trivial, and in fact it is not clear if such
security can be proven at all. More specifically, the security reduction against a
malicious receiver for the resulting 3 round protocol must make use of a cheat-
ing receiver to contradict an assumption. To do this, it must obtain the sender’s
first message externally, but since the reduction no longer knows the random-
ness used for computing this message, it is unclear how such a reduction would
be able to complete the third message of the protocol in Figure 4. Indeed, this
problem occurs because the original OT lacks any form of simulation security
against malicious senders.

Our solution is to strengthen security of the underlying OT in order to make
this transformation go through. As we already noted, this also turns out to be
related to the problem of preventing selective failure attacks in 2-message OT.

We construct a two-message simulatable variant of oblivious transfer, with
security against unbounded receivers, as well as (super-polynomial) simulation
security against both malicious senders and malicious receivers 8.

Given such a protocol, the security reduction described above is able to use
the underlying simulator to extract the inputs of the adversary, in order to
complete the three-message OT reversal described in Figure 4.

Simulation-Secure Two-Message Oblivious Transfer The first question
is, whether it is even possible to obtain two-message oblivious transfer, with
unbounded simulation security against malicious senders as well as malicious re-
ceivers, while preserving security against unbounded malicious receivers. We will
achieve this by bootstrapping known protocols that already satisfy superpoly-
nomial simulation security against malicious receivers, to also add simulation
security against malicious senders.

At first, such a definition may appear self-contradictory: if there exists a
black-box simulator against that is able to extract both inputs of the malicious
sender, then in a two-message protocol, an unbounded receiver may also be
able to learn both inputs of the sender by running such a simulator – thereby
blatantly violating sender security.

Our key differentiation between the simulator and a malicious receiver, that
will block the above intuition from going through, will again be that the simu-
lator can access the sender superpolynomially many times, while an unbounded
malicious receiver will only be able to participate in (unbounded, but) polyno-
mially many interactions with the sender.

That is, our protocol will be designed such that, with a small probability 2−m,
the sender will be forced to reveal both his inputs to the receiver9. On the other
hand, with probability 1 − 2−m, the sender message that does not correspond
to the receiver’s choice bit, will remain statistically hidden. And again, most

8 We note that existing two-message protocols [28,2,24,21] with security against un-
bounded receivers do not satisfy simulation-based security against malicious senders.

9 This will be achieved by having the sender send a statistically private argument
described in the previous section, proving that he computed the message correctly.
Such an argument will also enable extraction of the witness with probability 2−m
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importantly, a malicious sender will not be able to distinguish between the case
where he was forced to reveal both inputs, and the case where he was not.

As a result, the simulator against a malicious sender will run approximately
2m executions with the malicious senders, waiting for an event where the sender
is forced to reveal both inputs: and it will just use this execution to output the
sender view. We will show, just like the case of statistically hiding extractable
commitments, that a cheating sender will not be able to distinguish such views
from views that did not allow extraction. Finally, when m = Ω(log n), the re-
sulting protocol will still satisfy statistical security against unbounded receivers,
while simultaneously allowing approximately 2m-time simulation. Please refer to
Section 6 for formal details of our techniques.

2.4 On the Relationship with Non-Malleability

Another way to interpret some of our results is via the lens of non-malleability:
in any two-message protocol between Alice and Bob, where Alice sends the first
message and Bob sends the second, we show how to enforce that the input used
by Bob to generate his message remain independent of the input used by Alice.

One way to accomplish such a task is to set parameters so that the security
of Bob’s message is much weaker than that of Alice, in a way that it is possible
to break security of Bob’s message via brute-force, and extract Bob’s input in
time T , while arguing that Alice’s input remained computationally hidden, even
against T -time adversaries. However, this would crucially require Bob’s message
to only be computationally hidden, so that it would actually be recoverable
via brute-force. This was used in several works, including [29] which gave the
first constructions of computational zero-knowledge with superpolynomial time
simulation.

In this paper, building on the recent work of [27], we essentially prove that it
is possible to achieve similar guarantees while keeping Bob’s message statistically
hidden. Indeed, this is the main reason that our proofs of soundness go through.

3 Preliminaries

Notation. Throughout this paper, we will use κ to denote the security pa-
rameter, and negl(κ) to denote any function that is asymptotically smaller than

1
poly(κ) for any polynomial poly(·).

The statistical distance between two distributionsD1, D2 is denoted by∆(D1, D2)
and defined as:

∆(D1, D2) =
1

2
Σv∈V |Prx←D1

[x = v]− Prx←D2
[x = v]|.

We say that two families of distributions D1 = {D1,κ}, D2 = {D2,κ} are statis-
tically indistinguishable if ∆(D1,κ, D2,κ) = negl(κ). We say that two families of
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distributions D1 = {D1,κ}, D2 = {D2,κ} are computationally indistinguishable
if for all non-uniform probabilistic polynomial time distinguishers D,∣∣Prr←D1,κ

[D(r) = 1]− Prr←D2,κ
[D(r) = 1]

∣∣ = negl(κ).

Let Π denote an execution of a protocol. We use ViewA(Π) to denote the
view, including the randomness and state of party A in an execution Π. We use
OutputA(Π) to denote the output of party A in an execution of Π.

Remark 1. In what follows, we define several 2-party protocols. We note that
in all these protocols both parties take as input the security parameter 1κ. We
omit this from the notation for the sake of brevity.

Definition 1 (Σ-protocols). Let L ∈ NP with corresponding witness relation
RL. A protocol Π = 〈P, V 〉 is a Σ-protocol for relation RL if it is a three-round
public-coin protocol which satisfies:

◦ Completeness: For all (x,w) ∈ RL, Pr[OutputV 〈P (x,w), V (x)〉 = 1] =
1− negl(κ), assuming P and V follow the protocol honestly.

◦ Special Soundness: There exists a polynomial-time algorithm A that given
any x and a pair of accepting transcripts (a, e, z), (a, e′, z′) for x with the
same first prover message, where e 6= e′, outputs w such that (x,w) ∈ RL.

◦ Semi-malicious verifier zero-knowledge: There exists a probabilistic
polynomial time simulator SΣ such that for all (x,w) ∈ RL, the distributions
{SΣ(x, e)} and {ViewV 〈P (x,w(x)), V (x, e)〉} are statistically indistinguish-
able, where SΣ(x, e) denotes the output of simulator S upon receiving input x
and the verifier’s random tape, denoted by e.

3.1 Oblivious Transfer

Definition 2 (Oblivious Transfer). Oblivious transfer is a protocol between
two parties, a sender S with input messages (m0,m1) and a receiver R with
input a choice bit b. The correctness requirement is that R obtains output mb at
the end of the protocol (with probability 1). We let 〈S(m0,m1), R(b)〉 denote an
execution of the OT protocol with sender input (m0,m1) and receiver input bit
b. We require OT that satisfies the following properties:

◦ Computational Receiver Security. For any non-uniform PPT sender S∗

and any (b, b′) ∈ {0, 1}, the views ViewS∗(〈S∗, R(b)〉) and ViewS∗(〈S∗, R(b′)〉)
are computationally indistinguishable.

We say that the OT scheme is T -secure if any poly(T )-size malicious sender S∗

has a distinguishing advantage less than 1
poly(T ) .

◦ (1− δ)-Statistical Sender Security. For any receiver R∗ that outputs re-
ceiver message mR∗ , there exists bit b such that for all m0,m1, the distribu-
tion ViewR∗〈S(m0,m1), R∗〉 is (1−δ) statistically close to ViewR∗〈S(mb,mb), R

∗〉.
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Such two-message protocols have been constructed based on the DDH as-
sumption [28], and a stronger variant of smooth-projective hashing, which can
be realized from DDH as well as the N th-residuosity and Quadratic Residuosity
assumptions [24,22]. Such two-message protocols can also be based on witness
encryption or indistinguishability obfuscation (iO) together with one-way per-
mutations [31].

Finally, we define bit OT as oblivious transfer where the sender inputs bits
instead of strings.

Definition 3 (Bit Oblivious Transfer). We say that an oblivious transfer
protocol according to Definition 2 is a bit oblivious transfer if the senders mes-
sages m0,m1 are each in {0, 1}.

3.2 Proof Systems

Delayed-Input Interactive Protocols. An n-message delayed-input inter-
active protocol for deciding a language L with associated relation RL proceeds
in the following manner:

◦ At the beginning of the protocol, P and V receive the size of the instance
and security parameter, and execute the first n− 1 messages.

◦ Before sending the last message, P receives input (x,w) ∈ RL. P sends x
to V together with the last message of the protocol. Upon receiving the last
message from P , V outputs 1 or 0.

An execution of this protocol with instance x and witness w is denoted by
〈P (x,w), V (x)〉. A delayed-input interactive protocol is a protocol satisfying the
completeness and soundness condition in the delayed input setting. One can
consider both proofs – with soundness against unbounded (cheating) provers,
and arguments – with soundness against computationally bounded (cheating)
provers. In particular, a delayed-input interactive argument satisfies adaptive
soundness against malicious PPT provers. That is, soundness is required to hold
even against PPT provers who choose the statement adaptively (maliciously),
depending upon the first n− 1 messages of the protocol.

Definition 4 (Delayed-Input Interactive Arguments). An n-message delayed-
input interactive protocol (P, V ) for deciding a language L is an interactive ar-
gument for L if it satisfies the following properties:

◦ Completeness: For every (x,w) ∈ RL,

Pr
[
OutputV 〈P (x,w), V (x)〉 = 1

]
= 1− negl(κ),

where the probability is over the random coins of P and V , and where in the
protocol V receives x together with the last message of the protocol.
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◦ Adaptive Soundness: For every (non-uniform) PPT prover P ∗ that given
1κ chooses an input length 1p, and then chooses x ∈ {0, 1}p \ L adaptively,
depending upon the transcript of the first n− 1 messages,

Pr
[
OutputV 〈P ∗, V 〉(x) = 1

]
= negl(κ),

where the probability is over the random coins of V .

Witness Indistinguishability. A proof system is witness indistinguishable if
for any statement with at least two witnesses, proofs computed using different
witnesses are indistinguishable. In this paper, we only consider statistical witness
indistinguishability, which we formally define below.

Definition 5 (Statistical Witness Indistinguishability). A (delayed-input)
interactive argument (P, V ) for a language L is said to be statistical witness-
indistinguishable if for every unbounded verifier V ∗, every polynomially bounded
function n = n(κ) ≤ poly(κ), and every (xn, w1,n, w2,n) such that (xn, w1,n) ∈
RL and (xn, w2,n) ∈ RL and |xn| = n, the following two ensembles are statisti-
cally indistinguishable:{

ViewV ∗〈P (xn, w1,n), V ∗(xn)〉
}

and
{
ViewV ∗〈P (xn, w2,n), V ∗(xn)〉

}
Delayed-Input Distributional Weak Zero Knowledge. Zero knowledge
(ZK) requires that for any adversarial verifier, there exists a simulator that can
produce a view that is indistinguishable from the real one to every distinguisher.
Weak zero knowledge (WZK) relaxes the standard notion of ZK by reversing the
order of quantifiers, and allowing the simulator to depend on the distinguisher.

We consider a variant of WZK, namely, distributional WZK [18,14], where the
instances are chosen from some distribution over the language. Furthermore, we
allow the simulator’s running time to depend upon the distinguishing probability
of the distinguisher. We refer to this as distributional ε-WZK, which says that for
every TD-time distinguisher D and every distinguishing advantage ε (think of ε as
an inverse polynomial) there exists a simulator, that is an oracle machine running
in time poly(κ, 1/ε) with oracle access to the distinguisher, that generates a view
that D cannot distinguish from the view generated by the real prover. This
notion was previously considered in [14,12,23].

When considering delayed-input interactive protocols it is natural to con-
sider a delayed input version of secrecy. In what follows, we define delayed-input
distributional statistical ε-WZK.

Definition 6 (Delayed-Input Distributional Statistical ε-Weak Zero Knowl-
edge). A delayed-input interactive argument (P, V ) for a language L is said
to be delayed-input distributional statistical ε-weak zero knowledge if for every
polynomially bounded function n = n(κ) ≤ poly(κ), and for every efficiently
samplable distribution (Xκ,Wκ) on RL, i.e., Supp(Xκ,Wκ) = {(x,w) ∈ RL :

x ∈ {0, 1}n(κ)}, every unbounded verifier V ∗ that obtains the instance from the
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prover in the last message of the protocol, every unbounded distinguisher D, and
every ε (which will usually be set to 1/poly(κ) for some polynomial poly(·)), there
exists a simulator S that runs in time poly(κ, 1/ε) and has oracle access to D
and V ∗, such that:∣∣∣∣∣ Pr

(x,w)←(Xκ,Wκ)

[
D(x,ViewV ∗ [〈P (x,w), V ∗(x)〉] = 1

]

− Pr
(x,w)←(Xκ,Wκ)

[
D(x,SV

∗,D(x)) = 1
]∣∣∣∣∣ ≤ ε(κ),

where the probability is over the random choices of (x,w) as well as the random
coins of the parties.

Zero-Knowledge with Super-polynomial Simulation. We now define zero-
knowledge with super-polynomial simulation in the same way as [29], except that
we define statistical security against malicious verifiers.

Definition 7 (Statistical ZK with Super-polynomial Simulation). We
say that a delayed input two message argument (P, V ) for an NP language L is
statistical zero-knowledge with super-polynomial TSim-time simulation, if there
exists a (uniform) simulator S that runs in time TSim, such that for every
polynomial n = n(κ) ≤ poly(κ), and for every (xn, wn) ∈ RL where each
|xn| = n, and every unbounded verifier V ∗, the two distributions SV ∗(xn) and
ViewV ∗〈P (xn, wn), V ∗(xn)〉 are statistically close.

4 Extractable Commitments

4.1 Definitions

Our notion of extractable commitments tailors the definition in [27] to the setting
of statistically hiding commitments. We begin by (re-)defining the notion of a
commitment scheme. As before, we use κ to denote the security parameter, and
we let p = poly(κ) be an arbitrary fixed polynomial such that the message space
is {0, 1}p.

We restrict ourselves to commitments with non-interactive decommitment,
and where the (honest) receiver is not required to maintain any state at the end of
the commit phase in order to execute the decommit phase. Our construction will
satisfy this property and this will be useful in our applications to constructing
statistically private protocols.

Definition 8. [Statistically Hiding Commitment Scheme] A commitment 〈C,R〉
is a two-phase protocol between a committer C and receiver R, consisting of a
tuple of algorithms

Commit,Decommit,Verify.
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At the beginning of the protocol, C obtains as input a message M ∈ {0, 1}p.
Next, C and R execute the commit phase, and obtain a commitment transcript,
denoted by τ , together with a private state for C, denoted by stateC,τ . We use the
notation

(τ, stateC,τ )← Commit〈C(M),R〉.

Later, C and R possibly engage in a decommit phase, where the committer
C computes and sends message y = Decommit(τ, stateC,τ ) to R. At the end, R
computues Verify(τ, y) to output ⊥ or a message M̃ ∈ {0, 1}p.10

A statistically hiding commitment scheme is required to satisfy three proper-
ties:

◦ (Perfect) Completeness. If C,R honestly follow the protocol, then for
every M ∈ {0, 1}p:

Pr[Verify(τ,Decommit(τ, stateC,τ )) = M ] = 1

where the probability is over (τ, stateC,τ )← Commit〈C(M),R〉.
◦ Statistical Hiding. For every two messages M1,M2 ∈ {0, 1}2p, every un-

bounded malicious receiver R∗ and honest committer C, a commitment is
δ(κ)-statistically hiding if the statistical distance between the distributions
ViewR∗(Commit〈C(M1),R∗〉) and ViewR∗(Commit〈C(M2),R∗〉) is at most
δ(κ). The scheme is statistically hiding if δ(κ) ≤ 1

poly(κ) for every polyno-

mial poly(·).
◦ Computational Binding. Consider any non-uniform PPT committer C∗

that produces τ ← Commit〈C∗,R〉, and then outputs y1, y2. Let M̃1 = Verify(τ, y1)

and M̃2 = Verify(τ, y2). Then, we require that

Pr
[
(M̃1 6= ⊥) ∧ (M̃2 6= ⊥) ∧ (M̃1 6= M̃2)] = negl(κ),

over the randomness of sampling τ ← Commit〈C∗,R〉.

In the following, we define a PPT oracle-aided algorithm Samp such that for
all C∗, SampC

∗
samples τ ← Commit〈C∗,R〉 generated by a malicious committer

C∗ using uniform randomness for the receiver.
We also define an extractor E that given black-box access to C∗, outputs

some transcript generated by C∗, and then without executing any decommitment
phase with C∗, outputs message M̃e: we require “correctness” of this extracted
message M̃e. We also require that for any non-uniform PPT C∗, the distribution
of τ generated by SampC

∗
is indistinguishable from the distribution output by

EC∗ . This is formally defined in Definition 9.

Definition 9. [T -Extractable Commitment Scheme] We say that a statistically
hiding commitment scheme is T -extractable if there exists a T · poly(κ)-time

10 We note that in our definition,R does not need to keep a state from the commitment
phase in order to execute the decommitment phase.
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uniform oracle machine E such that the following holds. Let C∗ be any non-
uniform PPT adversarial committer, that before starting the commitment phase,
outputs auxiliary information denoted by z, and at the end of the commitment
phase outputs auxiliary information denoted by aux. Then, the following holds.

◦ There exists a PPT oracle sampling algorithm SampC
∗

that samples (τC∗ , aux)←
Commit〈C∗,R〉. Let ExpSampC

∗ = (τC∗ , aux) be the output of SampC
∗
.

◦ EC∗ outputs (τC∗ , aux, M̃), while only making oracle calls to C∗ during the
commit phase (without ever running the decommit phase). We denote by
ExpEC∗ = (τC∗ , aux).

We require that:

◦ Indistinguishability. The distributions (ExpSampC
∗ , z) and (ExpEC∗ , z) are

computationally indistinguishable.
◦ Correctness of Extraction. Consider any non-uniform PPT C∗ and let

(τ, aux, M̃) denote the output of EC∗ . Then for any string y1, denoting M̃1 =
Verify(τ, y1),

Pr
[
(M̃ 6= ⊥) ∧ (M̃1 6= ⊥) ∧ (M̃ 6= M̃1)

]
= negl(κ),

where the probability is over (τ, aux, M̃)← EC∗ .

4.2 Protocol

In this section, we construct two-message statistically hiding, extractable com-
mitments according to Definition 9. Our construction is described in Figure 5.

Let OT = (OT1,OT2) denote a two-message string oblivious transfer pro-
tocol according to Definition 2. Let OT1(b; r1) denote the first message of the
OT protocol with receiver input b and randomness r1, and let OT2(M0,M1; r2)
denote the second message of the OT protocol with sender input strings M0,M1

and randomness r2.11

In the full version of this paper, we prove the following main theorem.

Theorem 1. Set T = (2m ·κlog κ). Assuming that the underlying OT protocol is
T -secure against malicious senders, (1− δOT) secure against malicious receivers
according to Definition 2, the scheme in Figure 5 is a (1−2m−δOT) statistically
hiding, T -extractable commitment scheme according to Definition 9.

We prove this theorem by showing statistical hiding, computational binding,
and extractability. The proof of statistical hiding follows by (1 − δ)-statistical
sender security of the OT. To prove computational binding, we build a reduction
to the receiver security of OT according to Definition 2. The proof of extractabil-
ity follows by building

We build the following extractor E for Definition 9, in Figure 6. In the figure,
we denote the first message of transcript τ by τ1 and the second message by τ2. E
will obtain oracle access to C∗, and the running time of EC∗ will be T = 2m ·κlog κ.

11 Note that OT2 also depends on OT1. We omit this dependence in our notation for
brevity.
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Extraction parameter: m.a

Committer Input: Message M ∈ {0, 1}p.
Commit Stage:
Receiver Message.

◦ Pick challenge string ch
$←{0, 1}m.

◦ Sample uniform randomness {r1,i}i∈[m].
◦ Compute and send {OT1(chi, r1,i)}i∈[m] using m instances of two-message

OT.

Committer Message.

◦ Sample a random string r
$←{0, 1}m.

For every i ∈ [m] and every b ∈ {0, 1}, sample Mb
i

$← {0, 1}p subject to⊕
i∈[m]M

ri
i = M .

◦ For every i ∈ [m] compute o2,i = OT2(M0
i ,M

1
i ; r2,i) with uniform random-

ness r2,i.
◦ Send (r, {o2,i}i∈[m]).

Reveal Stage: The committer reveals M , and all values {M0
i ,M

1
i }i∈[m] as well

as the randomness r2,i. The receiver accepts the decommitment to message M if
and only if:

1. For all i ∈ [m], o2,i = OT2(M0
i ,M

1
i ; r2,i),

2.
⊕

i∈[m]M
ri
i = M .

a The value m will determine the running time T = 2m · κlog κ of the extractor.
The protocol will have statistical receiver security 1 − 2−m − δOT, when the
underlying OT has statistical sender security 1− δOT.

Fig. 5. Extractable Commitments

The analysis of the extractor builds on the analysis of [27], and can be found
in the full version of the paper.

5 Two-Message Arguments with Statistical Privacy

5.1 Modified Blum Protocol

We begin by describing a very simple modification to the Blum Σ-protocol for
Graph Hamiltonicity. The protocol we describe will have soundness error 1

2 −
negl(κ) against adaptive PPT provers, and will satisfy statistical zero-knowledge.
Since Graph Hamiltonicity is NP-complete, this protocol can also be used to
prove any statement in NP via a Karp reduction. This protocol is described in
Figure 7.

We give an overview of the protocol here. Note that the only modification to
the original protocol of Blum [9] is that we use statistically hiding, extractable
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EC
∗

repeats the following 2m · κlog κ times. If it reaches the end of 2m · κlog κ

iterations, it outputs ⊥. We will call each iteration a trial.

1. Choose ch
$←{0, 1}m. Compute τ1 = OT1(chi, Ri) using uniform randomness

R = {Ri}i∈[m].
2. Query the oracle C∗ in the Commit phase with τ1, and obtain response

(τ2, aux), where τ2 also contains r. If C∗ aborts or sends an invalid message,
do the following.
◦ If this is the first iteration, output (τ1, τ2, aux,⊥) and stop.
◦ If this is not the first iteration, go to Step 1 and start a new trial.

3. Else, C∗ did not abort. If r 6= ch, go to Step 1 and start a new trial.
4. Else, C∗ did not abort and r = ch (this iteration is considered a success).

Then use R to obtain {M chi
i }i∈[m]. Next, compute M̃ =

⊕
i∈[m]{M̃

chi
i }i∈[m].

Output (R, τ1, τ2, aux, M̃).

Fig. 6. Description of the Extractor EC
∗

commitments instead of statistically binding commitments. The proofs of sound-
ness and statistical zero-knowledge are fairly straightforward. They roughly fol-
low the same structure as [9], replacing statistically binding commitments with
statistically hiding commitments.

In the full version of the paper, we prove that the rotocol in Figure 7 satisfies
soundness against PPT provers that may choose x adaptively in the second
round of the protocol. We also prove that assuming that extcom is statistically
hiding, the protocol in Figure 7 satisfies statistical zero-knowledge.

5.2 Compressing Four Message Argument to a Two Message
Argument

In Figure 8, we describe the construction of a two-message argument, using
extractable commitments (with two messages denoted by ext-com1, ext-com2)
according to Definition 9. This essentially consists of compressing the modified
Blum argument from Figure 7 into a two-message argument.

Let OT = (OT1,OT2) denote a two-message bit oblivious transfer protocol
according to Definition 2. Let OT1(b) denote the first message of the OT protocol
with receiver input b, and let OT2(m0,m1) denote the second message of the OT
protocol with sender input bits m0,m1.

Let Σ = (q, a, e, z) denote the four messages of a the modified Blum protocol
from Figure 7. Here (q, a) denote the messages of the extractable commitment.
We will perform a parallel repetition of this protocol, thus for each i ∈ [κ],
(qi, ai, ei, zi) are messages corresponding to an underlying modified Blum proto-
col with a single-bit challenge (i.e., where ei ∈ {0, 1}). We denote by f1 and f2
the functions that satisfy ai = f1(x,w; ri) and zi = f2(x,w, ri, ei), where ri is
uniformly chosen randomness.
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Modified Blum Argument

1. Verifier Message: The verifier does the following:
◦ Send the first message extcom1,i,j for independent instances of the ex-

tractable commitment, where i, j ∈ [p(κ)]× [p(κ)].
◦ Send an additional first message extcom1,P for another independent in-

stance of the extractable commitment.
2. Prover Message: The prover gets input graph G ∈ {0, 1}p(κ)×p(κ) repre-

sented as an adjacency matrix, with (i, j)th entry denoted by G[i][j]), Hamil-
tonian cycle H ⊆ G. Here p(·) is an a-priori fixed polynomial. The prover
does the following:
◦ Sample a random permutation π on p(κ) nodes, and compute cP =

extcom2,P (π) as a commitment to π using extcom.
◦ Compute π(G), which is the adjacency matrix corresponding to the

graph G when its nodes are permuted according to π. Compute ci,j =
extcom2,i,j(π(G)[i][j]) for (i, j) ∈ [p(κ)]× [p(κ)].

◦ Send G, cP , ci,j for (i, j) ∈ [p(κ)]× [p(κ)].

3. Verifier Message: Sample and send c
$←{0, 1} to the prover.

4. Prover Message: The prover does the following:
◦ If c = 0, send π and the decommitments of extcomP , extcomi,j for (i, j) ∈

[p(κ)]× [p(κ)].
◦ If c = 1, send the decommitment of extcomi,j for all (i, j) such that
π(H)[i][j] = 1.

5. Verifier Output: The verifier does the following:
◦ If c = 0, accept if and only if all extcom openings were accepted and
π(G) was computed correctly by applying π on G.

◦ If c = 1, accept if and only if all extcom openings were accepted and all
the opened commitments form a Hamiltonian cycle.

Fig. 7. Modified Blum SZK Argument

We state our main lemma here, which we prove in the full version of the
paper.

Lemma 1. Assuming that extcom is a 2m·κlog κ-extractable commitment scheme
according to Definition 9 and that OT is 2κm · κlog κ-secure, the protocol in Fig-
ure 8 satisfies soundness against PPT malicious provers.

Furthermore, assuming that the distributions ExpEC∗ and ExpSampC
∗ corre-

sponding to extcom, Definition 9, are indistinguishable by T ′-size distinguishers,
the protocol in Figure 8 satisfies adaptive soundness against all PPT provers,
when the instance is chosen from a language that is decidable by T ′-size circuits.

Remark 2. Our proof also generalizes to executing only Ω(log κ) parallel ex-
ecutions of the Blum protocol, while still yeilding negligible soundness error.
Furthermore, we will see that statistical privacy guarantees will hold even when
m = Ω(log κ). Therefore, the protocol in Figure 8 can be realized only relying
on quasi-polynomially secure oblivious transfer according to Definition 2.
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Two-Message Argument

◦ Verifier Message:
• Pick {qi}i∈[κ] and pick challenge {ei}i∈[κ] for the modified Blum Proto-

col.
• Compute {o1,i = OT1,i(ei)}i∈[κ].
• Send {qi, o1,i}i∈[κ] in parallel.

◦ Prover Message:
• Obtain input x ∈ L, witness w such that RL(x,w) = 1.
• Compute {ai}i∈[κ] according to the strategy in Figure 7.
• Compute {z0i }i∈[κ] according to the strategy in Figure 7, using (qi, ai, e

′
i)

corresponding to verifier challenge bit e′i = 0.
• Compute {z1i }i∈[κ] according to the strategy in Figure 7, using (qi, ai, e

′
i)

and corresponding to verifier challenge bit e′i = 1.
• Compute o2,i = OT2,i(z

0
i , z

1
i ) and send {ai, o2,i}i∈[κ].

◦ Verifier Output: The verifier V recovers zi as the output of OT1,i,OT2,i for
i ∈ [κ], and outputs accept if for all i ∈ [κ], (qi, ai, ei, zi)i∈[κ] is an accepting
transcript of the underlying modified Blum protocol.

Fig. 8. Two Message Argument System for NP

Similar to the extractability of commitments, we also define an additional
property of two-message arguments, that we call extractability. Roughly, this
property requires the existence of a super-polynomial time uniform oracle ma-
chine E that extracts the witness used by any prover generating accepting proofs.
It is somewhat more subtle to define, and we refer the reader to the full version
for a formal definition. This property is useful in our applications to obtaining
stronger forms of OT, and we believe will also be useful for other future ap-
plications. We show that the scheme in Figure 8 is also extractable, where the
extractor for the argument can extract a transcript with a witness, from any
prover, by relying the extractor of the commitment scheme extcom.

5.3 Proofs of Privacy

Lemma 2. The protocol in Figure 8 satisfies statistical zero-knowledge with su-
perpolynomial simulation, according to Definition 7.

Proof. The simulation strategy is straightforward: the simulator obtains {qi, o1,i}i∈[κ]
externally. It runs in super-polynomial time to break the receiver message OT1

via brute-force to extract {ei}i∈[κ]. Given {ei}i∈[κ], it runs the semi malicious ver-
ifier ZK simulator for modified Blum on input {ai, ei}i∈[κ]. It obtains {ai, zi,ei}i∈[κ]
from the semi malicious verifier ZK simulator. Finally, it sends for i ∈ [κ], ai
together with OT2,i(zi,ei , zi,ei).

Statistical zero-knowledge then follows because of statistical zero knowledge
of the underlying four-message protocol, and from the statistical security of OT
against unbounded verifiers.
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This also yields the following lemma.

Lemma 3. The protocol in Figure 8 satisfies statistical witness indistinguisha-
bility against all malicious verifiers.

Proof. (Sketch.) This claim follows by a simple hybrid argument, where in an
intermediate hybrid, the challenger generates the proof via the superpolynomial
simulator of Lemma 2 (without using any witness). By Lemma 2, this interme-
diate hybrids is statistically close to any hybrid where a specific witness is used.
This proves witness indistinguishability of the protocol. Refer to [3] for a more
detailed proof.

Lemma 4. The protocol in Figure 8 satisfies distributional statistical delayed-
input ε-weak zero-knowledge according to Definition 6.

Following [23], we develop an inductive analysis and a simulation strategy that
learns the receiver’s challenge bit-by-bit. The proof follows the strategy in [23],
and can be found in the full version of the paper.

Therefore, we have the following main theorem.

Theorem 2. Assuming quasi-polynomially secure oblivious transfer according
to Definition 2, there exists a two-message argument system that satisfies statis-
tical witness indistinguishability (Definition 5), statististical zero-knowledge with
super-polynomial simulation (Definition 6), and statistical weak distributional
ε-zero-knowledge for delayed-input statements (Definition 7).

We also observe that all our two-message arguments can be made resettable
statistical witness indistinguishable by applying [5].

6 Oblivious Transfer: Stronger Security and Reversal

In this section, we build OT protocols, in the two-message and three-message
setting, that satisfy stronger security properties than previously known. Because
of space restrictions, we only describe the protocols and defer proofs to the full
version of the paper.

6.1 Simulation-Secure Two-Message Oblivious Transfer

We first construct an oblivious transfer protocol with unbounded simulation-
based security against both malicious receivers and malicious senders. We define
this variant below.

Definition 10 (Simulation-Secure Oblivious Transfer). As in Definition 2,
we let 〈S(m0,m1), R(b)〉 denote an execution of the OT protocol with sender in-
put (m0,m1) and receiver input bit b. We consider OT that satisfies the following
properties (which are both defined using simulation-based security definitions):

27



◦ Computational Receiver Security. There exists a TSim-time oracle-aided
simulator SimS∗ that interacts with any non-uniform malicious PPT sender
S∗ and outputs View(SimS∗). It also extracts and sends S∗’s inputs m0,m1

to an ideal functionality Fot, which obtains choice bit b from the honest re-
ceiver R and outputs OutputIdeal = mb to R. Then, we require that for every

non-uniform PPT S∗, the joint distributions (View(SimS∗),OutputIdeal) and
(ViewS∗〈S∗, R(b)〉,OutputR〈S∗, R(b)〉) are computationally indistinguishable.

◦ Statistical Sender Security. There exists a (possibly unbounded) oracle-

aided simulator SimR∗ that interacts with any unbounded adversarial receiver
R∗, and with an ideal functionality Fot on behalf of R∗. Here Fot is an oracle
that obtains the inputs (m0,m1) from S and b from SimR∗ (simulating the

malicious receiver), and outputs mb to SimR∗ . Then we require that for all

m0,m1, SimR∗ outputs a receiver view that is statistically indistinguishable
from the real view of the malicious receiver ViewR∗〈S(m0,m1, z), R

∗〉.

Our construction of two-message OT satisfying Definition 10 is described in
Figure 9. It uses a two-message OT scheme according to Definition 2, whose
messages are denoted by OT1 and OT2. It also uses a statistical SPS zero-
knowledge stat-sps-zk according to Definition 7, whose first and second messages
are denoted by stat-sps-zk1 and stat-sps-zk2.

Sender Input: Message bits x0, x1. Receiver Input: Choice bit b.

◦ Receiver Message.

• Sample rR
$←{0, 1}∗ and send mR = OT1(b; rR).

• Sample and send stat-sps-zk1.
◦ Sender Message.
• Send mS = OT2(mR, x0, x1; rS).
• Send stat-sps-zk2 proving that ∃(x0, x1, rS) such that mS =

OT2(mR, x0, x1; rS).
◦ Receiver Output.
• If stat-sps-zk does not verify, output ⊥ and abort.
• Else obtain output a of the two-message OT using (mS , rR). Output a.

Fig. 9. Simulation Secure Oblivious Transfer

6.2 Reversing Oblivious Transfer

We first construct an oblivious transfer protocol with unbounded simulation-
based security against both malicious receivers and malicious senders. We define
this variant below.

Definition 11 (Simulation-Secure Oblivious Transfer Against Unbounded
Senders). As in Definition 2, we let 〈S(m0,m1), R(b)〉 denote an execution of
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the OT protocol with sender input (m0,m1) and receiver input bit b. We consider
OT that satisfies the following properties (which are both defined using real-ideal
security definitions):

◦ Computational Sender Security. There exists an oracle-aided simulator
SimR∗ that interacts with any non-uniform malicious PPT recceiver R∗ and
interacts with the ideal functionality Fot on behalf of R∗. Here Fot is an ora-
cle that obtains the inputs (m0,m1) from S and b from SimR∗ (simulating the

malicious receiver), and outputs mb to SimR∗ . Then we require that for all

m0,m1, SimR∗ outputs a receiver view that is computationally indistinguish-
able from the real view of the malicious receiver ViewR∗(〈S(m0,m1, z), R

∗〉).
◦ Statistical Receiver Security. There exists a (possibly unbounded) oracle-

aided simulator SimS∗ that interacts with any unbounded adversarial sender
S∗, and with an ideal functionality Fot on behalf of S∗. Here Fot is an ora-
cle that obtains the inputs (m0,m1) from SimS∗ and b from R and outputs
OutputIdeal = mb to R. Then, we require that for every unbounded S∗, the two

joint distributions (View(SimS∗),OutputIdeal) and (ViewS∗〈S∗, R(b)〉,OutputS∗〈S∗, R(b)〉)
are statistically indistinguishable.

We now describe a three-message (bit) oblivious transfer protocol with simulation-
based security against malicious receivers and unbounded malicious senders, ac-
cording to Definition 11.

This is obtained by reversing a two-message (bit) oblivious transfer protocol
with simulation security against unbounded malicious receivers and PPT mali-
cious senders, according to Definition 10, constructed in Figure 9. Let OTR(b; rR)
denote the receiver message of such an oblivious transfer protocol computed as
a function of input bit b and randomness rR, and let OTS(mR, x0, x1; rS) denote
the sender message of such a protocol computed as a function of receiver mes-
sage mR, sender inputs x0, x1 and randomness rS . Our protocol is described in
Figure 10.

Sender Input: Message bits x0, x1. Receiver Input: Choice bit b.

◦ Sender Message. Sample x′0, x
′
1

$←{0, 1}2 and rS uniformly at random. Set
c = x′0 ⊕ x′1, and send mS = OTR(c; rS).

◦ Receiver Message.
• Sample input (single-bit) messages m0,m1 uniformly at random such

that m0 ⊕m1 = b.
• Send mR = OTS(m0,m1; rR).

◦ Sender Message.
• Obtain output a of the two-message OT using (mR, rS).
• Send z = a⊕ x′0, z0 = x′0 ⊕ x0, z1 = x′1 ⊕ x1.

◦ Receiver Output: The receiver outputs y = (z ⊕ zb ⊕m0).

Fig. 10. Oblivious Transfer Reversal
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