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Abstract. Private Simultaneous Message (PSM) protocols were intro-
duced by Feige, Kilian and Naor (STOC ’94) as a minimal non-interactive
model for information-theoretic three-party secure computation. While
it is known that every function f : {0, 1}k × {0, 1}k → {0, 1} admits a
PSM protocol with exponential communication of 2k/2 (Beimel et al.,
TCC ’14), the best known (non-explicit) lower-bound is 3k −O(1) bits.
To prove this lower-bound, FKN identified a set of simple requirements,
showed that any function that satisfies these requirements is subject to
the 3k −O(1) lower-bound, and proved that a random function is likely
to satisfy the requirements.

We revisit the FKN lower-bound and prove the following results:

(Counterexample) We construct a function that satisfies the FKN
requirements but has a PSM protocol with communication of 2k+O(1)
bits, revealing a gap in the FKN proof.

(PSM lower-bounds) We show that, by imposing additional require-
ments, the FKN argument can be fixed leading to a 3k−O(log k) lower-
bound for a random function. We also get a similar lower-bound for
a function that can be computed by a polynomial-size circuit (or even
polynomial-time Turing machine under standard complexity-theoretic
assumptions). This yields the first non-trivial lower-bound for an explicit
Boolean function partially resolving an open problem of Data, Prab-
hakaran and Prabhakaran (Crypto ’14, IEEE Information Theory ’16).
We further extend these results to the setting of imperfect PSM protocols
which may have small correctness or privacy error.

(CDS lower-bounds) We show that the original FKN argument applies
(as is) to some weak form of PSM protocols which are strongly related to
the setting of Conditional Disclosure of Secrets (CDS). This connection
yields a simple combinatorial criterion for establishing linear Ω(k)-bit
CDS lower-bounds. As a corollary, we settle the complexity of the Inner
Product predicate resolving an open problem of Gay, Kerenidis, and Wee
(Crypto ’15).

? This work was done while the author was at ETH Zurich.



1 Introduction

Information theoretic cryptography studies the problem of secure communication
and computation in the presence of computationally unbounded adversaries. Un-
like the case of computational cryptography whose full understanding is closely
tied to basic open problems in computational complexity, information theoretic
solutions depend “only” on non-computational (typically combinatorial or alge-
braic) objects. One may therefore hope to gain a full understanding of the power
and limitations of information theoretic primitives. Indeed, Shannon’s famous
treatment of perfectly secure symmetric encryption [30] provides an archetypi-
cal example for such a study.

Unfortunately, for most primitives, the picture is far from being complete.
This is especially true for the problem of secure function evaluation (SFE) [33],
in which a set of parties P1, . . . , Pm wish to jointly evaluate a function f over
their inputs while keeping those inputs private. Seminal completeness results
show that any function can be securely evaluated with information theoretic
security [10, 13] (or computational security [33, 19]) under various adversarial
settings. However, the communication complexity of these solutions is tied to
the computational complexity of the function (i.e., its circuit size), and it is un-
known whether this relation is inherent. For instance, as noted by Beaver, Micali,
and Rogaway [8] three decades ago, we cannot even rule out the possibility that
any function can be securely computed by a constant number of parties with
communication that is polynomial in the input length, even in the simple set-
ting where the adversary passively corrupts a single party. More generally, the
communication complexity of securely computing a function (possibly via an
inefficient protocol) is wide open, even in the most basic models.

1.1 A Minimal Model for Secure Computation

In light of the above, it makes sense to study the limitation of information
theoretic secure computation in its simplest form. In [16] Feige, Kilian and Naor
(hereinafter referred to as FKN) presented such a “Minimal Model for Secure
Computation”. In this model, Alice and Bob hold private inputs, x and y, and
they wish to let Charlie learn the value of f(x, y) without leaking any additional
information. The communication pattern is minimal. Alice and Bob each send to
Charlie a single message, a and b respectively, which depends on the party’s input
and on a random string r which is shared between Alice and Bob but is hidden
from Charlie. Given (a, b) Charlie should be able to recover f(x, y) without
learning additional information. The parties are assumed to be computationally
unbounded, and the goal is to minimize the communication complexity of the
protocol (i.e., the total number of bits sent by Alice and Bob). Following [23],
we refer to such a protocol as a private simultaneous message protocol (PSM).

Definition 1 (Private Simultaneous Messages). A private simultaneous
message (PSM) protocol Π = (ΠA, ΠB , g) for a function f : X × Y → Z is a
triple of functions ΠA : X ×R → A, ΠB : Y ×R → B, and g : A×B → Z that
satisfy the following two properties.
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Fig. 1. Schematic of a PSM protocol.

– (δ-Correctness) The protocol has correctness error of δ if for every (x, y) ∈
X × Y it holds that

Pr
r

$←R
[f(x, y) 6= g(ΠA(x, r), ΠB(y, r))] ≤ δ

– (ε-Privacy) The protocol has privacy error of ε if for every pair of inputs
(x, y) ∈ X ×Y and (x′, y′) ∈ X ×Y for which f(x, y) = f(x′, y′) the random
variables

(ΠA(x, r), ΠB(y, r)) and (ΠA(x′, r), ΠA(y′, r), (1)

induced by a uniform choice of r
$← R, are ε-close in statistical distance.

We mainly consider perfect protocols which enjoy both perfect correctness (δ =
0) and perfect privacy (ε = 0). We define the communication complexity of the
protocol to be log |A|+ log |B|.

The correctness and privacy conditions assert that, for every pair of inputs (x, y)
and (x′, y′), the transcript distributions are either close to each other when
f(x, y) = f(x′, y′), or far apart when f(x, y) 6= f(x′, y′). Hence, the joint compu-
tation of Alice and Bob, Cr(x, y) = (ΠA(x, r), ΠB(y, r)), can be also viewed as a
“randomized encoding” [24, 5] (or “garbled version”) of the function f(x, y) that
has the property of being 2-decomposable into an x-part and a y-part. Being es-
sentially non-interactive, such protocols (and their multiparty variants [23]) have
found various applications in cryptography (cf. [22, 2]). Moreover, it was shown
in [9, 6] that PSM is the strongest model among several other non-interactive
models for secret-sharing and zero-knowledge proofs.

FKN showed that any function f : {0, 1}k × {0, 1}k → {0, 1} admits a PSM
protocol [16]. The best known communication complexity is polynomial for log-
space computable functions [16] and O(2k/2) for general functions [9]. While it
seems likely that some functions require super-polynomial communication, the
best known lower-bound, due to the original FKN paper, only shows that a
random function requires 3k−O(1) bits of communication. This lower-bound is



somewhat weak but still non-trivial since an insecure solution (in which Alice
and Bob just send their inputs to Charlie) costs 2k bits of communication.
The question of improving this lower-bound is an intriguing open problem. In
this paper, we aim for a more modest goal. Inspired by the general theory of
communication complexity, we ask:

How does the PSM complexity of a function f relate to its combinatorial
properties? Is there a “simple” condition that guarantees a non-trivial
lower-bound on the PSM complexity?

We believe that such a step is necessary towards proving stronger lower-bounds.
Additionally, as we will see, this question leads to several interesting insights for
related information-theoretic tasks.

1.2 Revisiting the FKN lower-bound

Our starting point is the original proof of the 3k lower-bound from [16]. In
order to prove a lower-bound FKN relax the privacy condition by requiring
that Charlie will not be able to recover the last bit of Alice’s input. Formally,
let us denote by x̄ the string obtained by flipping the last bit of x. Then, the
privacy condition (Eq. 1) is relaxed to hold only over sibling inputs (x, y) and
(x̄, y) for which f(x, y) = f(x̄, y). We refer to this relaxation as weak privacy.
Since (standard) privacy implies weak privacy, it suffices to lower-bound the
communication complexity of weakly private PSM protocols.

To prove a lower-bound for random functions, FKN (implicitly) identify
three conditions which hold for most functions and show that if a function
f : {0, 1}k × {0, 1}k → {0, 1} satisfies these conditions then any weak PSM
for f has communication complexity of at least 3k−O(1). The FKN conditions
are:

1. The function f is non-degenerate, namely, for every x 6= x′ there exists y
for which f(x, y) 6= f(x′, y) and similarly, for every y 6= y′ there exists x for
which f(x, y) 6= f(x, y′).

2. The function is useful in the sense that for at least 1
2 − o(1) of the inputs

(x, y) it holds that f(x, y) = f(x̄, y) where x̄ denotes the string x with its
last bit flipped. (An input (x, y) for which the equation holds is referred to
as being useful.3)

3. We say that (x1, . . . , xm)× (y1, . . . , yn) is a complement similar rectangle of
f if f(xi, yj) = f(x̄i, yj) for every 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then, f has no
complement similar rectangle of size mn larger than M = 2k+1. Equivalently,
the function f ′(x, y) = f(x, y) − f(x̄, y), which can be viewed as a partial
derivative of f with respect to its last coordinate, has no 0-monochromatic
rectangle of size M .

We observe that the above conditions are, in fact, insufficient to prove a non-
trivial lower-bound. As a starting point, we note that the inner-product function

3 In the FKN terminology such an input (x, y) is referred to as being dangerous.



has low PSM complexity and has no large monochromatic rectangles. While the
inner-product function cannot be used directly as a counterexample (since it
has huge complement similar rectangles), we can construct a related function
f such that: (1) the derivative f ′ is (a variant of) the inner product function
and so f ′ has no large monochromatic rectangles; and (2) by applying some
local preprocessing on Alice’s input, the computation of f(x, y) reduces to the
computation of the inner product function. Altogether, we prove the following
theorem (see Section 3).

Theorem 1 (FKN counterexample). There exists a function f : {0, 1}k ×
{0, 1}k → {0, 1} that satisfies the FKN conditions but has a (standard) PSM of
communication complexity of 2k +O(1).

Let us take a closer look at the proof of the FKN lower-bound to see where
the gap is. The FKN proof boils down to showing that the set Sr of all possible
transcripts (a, b) sent by Alice and Bob under a random string r, has relatively
small intersection with the set Sr′ of all possible transcripts (a, b) sent by Alice
and Bob under a different random string r′. Such a collision, c = (a, b) ∈ Sr∩Sr′ ,
is counted as a trivial collision if the inputs (x, y) that generate c under r are
the same as the inputs (x′, y′) that generate c under r′. Otherwise, the collision
is counted as non-trivial. The argument mistakenly assumes that all non-trivial
collisions are due to sibling inputs, i.e., (x′, y′) = (x̄, y). In other words, it is
implicitly assumed that the transcript (a, b) fully reveals all the information
about (x, y) except for the last input of x. (In addition to the value of f(x, y)
which is revealed due to the correctness property.) Indeed, we show that the FKN
argument holds if one considers fully-revealing PSM protocols. (See Theorem 8
for a slightly stronger version.)

Theorem 2 (LB’s against weakly private fully revealing PSM). Let f :
{0, 1}k × {0, 1}k → {0, 1} be a non-degenerate function. Let M be an upper-
bound on size of the largest complement similar rectangle of f and let U be
a lower-bound on the number of useful inputs of f . Then, any weakly-private
fully-revealing PSM for f has communication complexity of at least 2 logU −
logM−O(1). In particular, for all but o(1) fraction of the functions f : {0, 1}k×
{0, 1}k → {0, 1}, we get a lower-bound of 3k −O(1).

A lower-bound of c bits against fully-revealing weakly-private PSM easily
yields a lower-bound of c− 2k + 1 bits for PSM. (Since a standard PSM can be
turned into a fully-revealing weakly-private PSM by letting Alice/Bob append
x[1 : k − 1] and y to their messages.) Unfortunately, this loss (of 2k bits) makes
the 3k bit lower-bound useless. Moreover, Theorem 1 shows that this loss is
unavoidable. Put differently, fully-revealing weakly-private PSM may be more
expensive than standard PSM. Nevertheless, as we will see in Section 1.4, lower-
bounds for fully-revealing weakly-private PSM have useful implications for other
models.



1.3 Fixing the PSM lower-bound

We show that the FKN argument can be fixed by posing stronger requirements
on f . Roughly speaking, instead of limiting the size of complement similar rect-
angles, we limit the size of any pair of similar rectangles by a parameter M . That
is, if the restriction of f to the ordered rectangle R = (x1, . . . , xm)× (y1, . . . , y`)
is equal to the restriction of f to the ordered rectangle R′ = (x′1, . . . , x

′
m) ×

(y′1, . . . , y
′
`) and the rectangles are disjoint in the sense that either xi 6= x′i for

every i, or yj 6= y′j for every j, then the size m` of R should be at most M . (See
Section 2 for a formal definition.)

Theorem 3 (perfect-PSM LB’s). Let X ,Y be sets of size at least 2, and let
f : X × Y → {0, 1} be a non-degenerate function for which any pair of disjoint
similar rectangles (R,R′) satisfies |R| ≤ M . Then, any perfect PSM for f has
communication of at least 2(log |X |+ log |Y|)− logM − 3.

The theorem is proved by a distributional version of the FKN argument which
also implies Theorem 2. (See Section 4.) As a corollary, we recover the original
lower-bound claimed by FKN.

Corollary 1. For a 1 − o(1) fraction of the functions f : {0, 1}k × {0, 1}k →
{0, 1} any perfect PSM protocol for f requires 3k − 2 log k − O(1) bits of total
communication.4

Proof. It is not hard to verify that 1 − o(1) fraction of all functions are non-
degenerate. In Section 6 we further show that, for 1− o(1) of the functions, any
pair of disjoint similar rectangles (R,R′) satisfies |R| ≤ k2 ·2k. The proof follows
from Theorem 3. ut

By partially de-randomizing the proof, we show that the above lower-bound
applies to a function that is computable by a family of polynomial-size cir-
cuits, or, under standard complexity-theoretic assumptions, by a polynomial-
time Turing machine. This resolves an open question of Data, Prabhakaran and
Prabhakaran [15] who proved a similar lower-bound for an explicit non-boolean
function f : {0, 1}k × {0, 1}k → {0, 1}k−1. Prior to our work, we could not even
rule out the (absurd!) possibility that all efficiently computable functions admit
a perfect PSM with communication of 2k + o(k).

Theorem 4. There exists a sequence of polynomial-size circuits

f =
{
fk : {0, 1}k × {0, 1}k → {0, 1}

}
such that any perfect PSM for fk has communication complexity of at least 3k−
O(log k) bits. Moreover, assuming the existence of a hitting-set generator against
co-nondeterministic uniform algorithms, f is computable by a polynomial-time
Turing machine.5

4 The constant 2 can be replaced by any constant larger than 1.
5 It is worth mentioning that the proof of Theorem 4 strongly relies on the explicit

combinatorial condition given in Theorem 3 (and we do not know how to obtain it
directly from Corollary 1). This illustrates again the importance of relating PSM
complexity to other more explicit properties of functions.



Remark 1 (On the hitting-set generator assumption). The exact definition of
a hitting-set generator against co-nondeterministic uniform algorithms is post-
poned to Section 6. For now, let us just say that the existence of such a generator
follows from standard Nissan-Wigderson type complexity-theoretic assumptions.
In particular, it suffices to assume that the class E of functions computable in
2O(n)-deterministic time contains a function that has no sub-exponential non-
deterministic circuits [28], or, more liberally, that some function in E has no
sub-exponential time Arthur-Merlin protocol [21]. (See also the discussion in [7].)

Lower-bounds for imperfect PSM’s. We extend Theorem 3 to handle imperfect
PSM protocols by strengthening the non-degeneracy condition and the non self-
similarity condition. This can be used to prove an imperfect version of Corollary 1
showing that, for almost all functions, an imperfect PSM with correctness error
δ and privacy error ε must communicate at least

min {3k − 2 log(k), 2k + log(1/ε), 2k + log(1/δ)} −O(1)

bits. An analogous extension of Theorem 4, yields a similar bound for an explicit
function. (See Section 5.)

1.4 Applications to Conditional Disclosure of Secrets

We move on to the closely related model of Conditional Disclosure of Secrets
(CDS) [18]. In the CDS model, Alice holds an input x and Bob holds an input
y, and, in addition, Alice holds a secret bit s. The referee, Charlie, holds both
x and y, but does not know the secret s. Similarly to the PSM case, Alice and
Bob use shared randomness to compute the messages a and b that are sent to
Charlie. The CDS requires that Charlie can recover s from (a, b) if and only if
the predicate f(x, y) evaluates to one.6

Definition 2 (Conditional Disclosure of Secrets). A conditional disclosure
of secrets (CDS) protocol Π = (ΠA, ΠB , g) for a predicate f : X×Y → {0, 1} and
domain S of secrets is a triple of functions ΠA : X×S×R → A, ΠB : Y×R → B
and g : X × Y ×A× B → S that satisfy the following two properties:

1. (Perfect Correctness) For every (x, y) that satisfies f and any secret s ∈ S
we have that:

Pr
r

$←R
[g(x, y,ΠA(x, s, r), ΠB(y, r)) 6= s] = 0.

2. (Perfect Privacy) For every input (x, y) that does not satisfy f and any pair
of secrets s, s′ ∈ S the distributions

(x, y,ΠA(x, s, r), ΠB(y, r)) and (x, y,ΠA(x, s′, r), ΠB(y, r)),

induced by r
$← R are identically distributed.

6 Usually, it is assumed that both Alice and Bob hold the secret s. It is not hard
to see that this variant and our variant (in which only Alice knows the secret) are
equivalent up to at most 1-bit of additional communication.



The communication complexity of the CDS protocol is (log |A| + log |B|) and
its randomness complexity is log |R|. By default, we assume that the protocol
supports single-bit secrets (S = {0, 1}).7

Intuitively, CDS is weaker than PSM since it either releases s or keeps it
private but it cannot manipulate the secret data.8 Still, this notion has found
useful applications in various contexts such as information-theoretically private
information retrieval (PIR) protocols [14], priced oblivious transfer protocols [1],
secret sharing schemes for graph-based access structures (cf. [11, 12, 31]), and
attribute-based encryption [20, 29].

The communication complexity of CDS. In light of the above, it is interesting
to understand the communication complexity of CDS. Protocols with commu-
nication of O(t) were constructed for t-size Boolean formula by [18] and were
extended to t-size (arithmetic) branching programs by [25] and to t-size (arith-
metic) span programs by [6]. Until recently, the CDS complexity of a general
predicate f : {0, 1}k × {0, 1}k → {0, 1} was no better than its PSM complexity,

i.e., O(2k/2) [9]. This was improved to 2O(
√
k log k) by Liu, Vaikuntanathan and

Wee [27]. Moreover, Applebaum et al. [4] showed that, for very long secrets, the
amortized complexity of CDS can be reduced to O(log k) bits per bit of secret.
Very recently, the amortized cost was further reduced to O(1) establishing the
existence of general CDS with constant rate [3].

Lower-bounds for the communication complexity of CDS were first estab-
lished by Gay et al. [17]. Their main result shows that the CDS communication
of a predicate f is at least logarithmic in its randomized one-way communication
complexity, and leads to an Ω(log k) lower-bound for several explicit functions.
Applebaum et al. [4] observed that weakly private PSM reduces to CDS. This
observation together with the 3k-bit FKN lower-bound for weakly private PSM
has lead to a CDS lower-bound of k − o(k) bits for some non-explicit predicate.
(The reduction loses about 2k bits.)

In this paper, we further exploit the connection between CDS and PSM
by observing that CDS protocols for a predicate h(x, y) give rise to weakly
private fully revealing PSM for the function f((x ◦ s), y) = h(x, y) ∧ s, where
◦ denotes concatenation. By using our lower-bounds for weakly private fully
revealing PSM’s we get the following theorem. (See Section 7 for a proof.)

Theorem 5. Let h : X × Y → {0, 1} be a predicate. Suppose that M upper-
bounds the size of the largest 0-monochromatic rectangle of h and that for every
x ∈ X , the residual function h(x, ·) is not the constant zero function. Then, the
communication complexity of any perfect CDS for h is at least

2 log |f−1(0)| − logM − log |X | − log |Y| − 1,

7 One may consider imperfect variants of CDS. In this paper we restrict our attention
to the (more common) setting of perfect CDS.

8 This is analogous to the relation between Functional Encryption and Attribute Based
Encryption. Indeed, CDS can be viewed as an information-theoretic one-time variant
of Attribute Based Encryption.



where |f−1(0)| denotes the number of inputs (x, y) that are mapped to zero.

Unlike the non-explicit lower-bound of [4], the above theorem provides a simple
and clean sufficient condition for proving non-trivial CDS lower-bounds. For
example, we can easily show that a random function has at least linear CDS
complexity.

Corollary 2. For all but a o(1) fraction of the predicates h : {0, 1}k×{0, 1}k →
{0, 1}, any perfect CDS for h has communication of at least k − 4− o(1).

Proof. Let h : {0, 1}k × {0, 1}k → {0, 1} be a randomly chosen predicate. Let
K = 2k and let ε = 1/

√
K. There are exactly 2K ·2K = 22K rectangles. Therefore,

by a union-bound, the probability of having a 0-monochromatic rectangle of size
M = 2K(1 + ε) is at most

22K · 2−M = 2−2εK = 2−Ω(
√
K).

Also, since h has K2 inputs, the probability of having less than ( 1
2 − ε) · K2

unsatisfying inputs is, by a Chernoff bound, 2−Ω(ε2K2) = 2−Ω(K). Finally, by
the union bound, the probability that there exists x ∈ X for which h(x, ·) is
the all-zero function is at most K · 2−K . It follows, by Theorem 5, that with

probability of 1 − 2−Ω(
√
K), the function h has a CDS complexity of at least

k − 4− o(1). ut

We can also get lower-bounds for explicit functions. For example, Gay et
al. [17] studied the CDS complexity of the binary inner product function h(x, y) =
〈x, y〉. They proved an upper-bound of k+ 1 bits and a lower-bound of Ω(log k)
bits, and asked as an open question whether a lower-bound of Ω(k) can be es-
tablished. (The question was open even for the special case of linear CDS for
which [17] proved an Ω(

√
k) lower-bound). By plugging the inner-product pred-

icate into Theorem 5, we conclude:

Corollary 3. Any perfect CDS for the inner product predicate hip : {0, 1}k ×
{0, 1}k → {0, 1} requires at least k − 3− o(1) bits of communication.

Proof. It suffices to prove the lower bound for the restriction of inner-product in
which x 6= 0n. It is well known (cf. [26]) that the largest monochromatic rectangle
is of size M = 2k, and the number of “zero” inputs is exactly S = 22k−1 − 2k.
Hence, Theorem 5 yields a lower-bound of k − 3− o(1). ut

This lower-bound matches the k + 1 upper-bound up to a constant additive
difference (of 4 bits). It also implies that in any ABE scheme for the inner-
product function which is based on the dual system methodology [32] either the
ciphertext or the secret-key must be of length Ω(k). (See [17] for discussion.)

Organization. Following some preliminaries (Section 2), we present the counter
example for the FKN lower-bound (Section 3). We then analyze the communi-
cation complexity of perfect PSM (Section 4) and imperfect PSM (Section 5).
Based on these results, we obtain PSM lower-bounds for random and explicit
functions (Section 6), as well as CDS lower-bounds (Section 7).



2 Preliminaries

For a string (or a vector) x of length n, and indices 1 ≤ i ≤ j ≤ n, we let x[i]
denote the i-th entry of x, and let x[i : j] denote the string (x[i], x[i+1] . . . , x[j]).
By convention, all logarithms are taken base 2.

Rectangles. An (ordered) rectangle of size m×n over some finite domain X ×Y
is a pair ρ = (x,y), where x = (x1, . . . , xm) ⊆ Xm and y = (y1, . . . , yn) ⊆ Yn
satisfy xi 6= xj and yi 6= yj for all i 6= j. We say that (x, y) belongs to ρ if x = xi
and y = yj for some i, j (or by abuse of notation we simply write x ∈ x and
y ∈ y). The size of an m× n rectangle ρ is mn, and its density with respect to
some probability distribution µ over X × Y, is

∑
x∈x,y∈y µ(x, y). Let ρ = (x,y)

and ρ′ = (x′,y′) be a a pair of m × n-rectangles. We say that ρ and ρ′ are
x-disjoint (resp., y-disjoint) if xi 6= x′i for all i ∈ {1, . . . ,m} (resp., if yj 6= y′j for
all j ∈ {1, . . . , n}). We say that ρ and ρ′ are disjoint if they are either x-disjoint
or y-disjoint.

As an example, consider the three 2 × 3 rectangles ρ1 =
(
(1, 2), (5, 6, 7)

)
,

ρ2 =
(
(2, 1), (6, 5, 4)

)
, and ρ3 =

(
(1, 3), (7, 5, 6)

)
. Among those, ρ1 and ρ3 are

y-disjoint but not x-disjoint, ρ2 and ρ3 are x-disjoint but not y-disjoint, and
ρ1 and ρ2 are both x-disjoint and y-disjoint. Therefore, each of these pairs is
considered to be disjoint.

If f : X × Y → Z is a function and ρ a rectangle of size m × n, we let f[ρ]
be the matrix M of size m × n whose entry Mij is f(xi, yj). A rectangle ρ is
0-monochromatic (resp., 1-monochromatic) if f[ρ] is the all-zero matrix (resp.,
all-one matrix). A rectangle ρ is similar to a rectangle ρ′ (with respect to f)
if f[ρ] = f[ρ′]. A rectangle (x = (x1, . . . , xm),y) is complement similar if it is
similar to the rectangle ((x̄1, . . . , x̄m),y), where x̄ denotes the string x with its
last bit flipped.

Probabilistic notation. We will use calligraphic letters A, B, . . . , to denote finite
sets. Lower case letters denote values from these sets, i.e., x ∈ X . Upper case
letters usually denote random variables (unless the meaning is clear from the
context).

Given two random variables A and B over the same set A, we use ‖A−B‖ to
denote their statistical distance ‖A−B‖ = 1

2

∑
a∈A |Pr[A = a]−Pr[B = a]|. The

min-entropy of A, denoted by H∞(A), is minus the logarithm of the probability
of the most likely value of A, i.e., − log maxa∈A Pr[A = a].

3 A Counterexample to the FKN lower-bound

Let T0,T1 be a pair of (k − 1)× (k − 1) non-singular matrices (over the binary
field F = GF[2]) with the property that T = T0 + T1 is also non-singular. (The
existence of such matrices is guaranteed via a simple probabilistic argument.9)

9 When k−1 is even, there is a simple deterministic construction: Take T0 (resp., T1)
to be the upper triangular matrix (resp., lower triangular matrix) whose entries on



Define the mapping L : Fk → Fk by

x 7→ (Tx[k] · x[1 : k − 1]) ◦ x[k],

where ◦ denotes concatenation. That is, if the last entry of x is zero then L
applies T0 to the k − 1 prefix x′ = x[1 : k − 1] and extends the resulting k − 1
vector by an additional 0 entry, and if x[k] = 1 then the prefix x′ is sent to T1x

′

and the vector is extended by an additional 1 entry. Note that L is a bijection
(since T0,T1 are non-singular). The function f : Fk × Fk → Fk is defined by

(x, y) 7→ 〈L(x), y〉,

where 〈·, ·〉 denotes the inner-product function over F.
In Section 3.1, we will prove that f satisfies the FKN conditions (described

in Section 1.2).

Lemma 1. The function f is (1) non-degenerate, (2) useful, and (3) its largest
complement similar rectangle is of size at most M = 2k+1.

Recall that f is non-degenerate if for every distinct x 6= x′ (resp., y 6= y′) the
residual functions f(x, ·) and f(x′, ·) (resp., f(·, y′) and f(·, y′)) are distinct.
It is useful if Prx,y[f(x, y) 6= f(x̄, y)] ≥ 1

2 , where x̄ denotes the string x with
its last entry flipped. Also, a rectangle R = (x,y) is complement similar if
f(x, y) = f(x̄, y) for every x ∈ x, y ∈ y.

In Section 3.2 we will show that f admits a PSM with communication com-
plexity of 2k +O(1).

Lemma 2. The function f has a PSM protocol with communication complexity
of 2k + 2.

Theorem 1 follows from Lemma 1 and Lemma 2.

3.1 f satisfies the FKN properties (Proof of Lemma 1)

(1) f is non-degenerate. Fix x1 6= x2 ∈ Fk and observe that L(x1) 6= L(x2) (since
L is a bijection). Therefore there exists y for which f(x1, y) = 〈L(x1), y〉 6=
〈L(x2), y〉 = f(x2, y). (In fact this holds for half of y’s). Similarly, for every
y1 6= y2 there exists v ∈ Fk for which 〈v, y1〉 6= 〈v, y2〉, and since L is a bijection
we can take x = L−1(v) and get that f(x, y1) = 〈v, y1〉 6= 〈v, y2〉 = f(x, y2).

(2) f is useful. Choose x′
$← Fk−1 and y

$← Fk and observe that f(x′ ◦0, y) =
f(x′ ◦ 1, y) if and only if

〈Tx′, y[1 : k − 1]〉+ yk = 0,

and above main diagonal (resp., on and below the diagonal) are ones and all other
entries are zero. It is not hard to verify that both matrices are non-singular. Also
T = T0 + T1 has a zero diagonal and ones in all other entries and so T has full
rank if k − 1 is even. The same construction can be used when k − 1 is odd, at the
expense of obtaining a matrix T with an almost full rank that has only minor affect
on the parameter M obtained in Lemma 1.



which happens with probability 1
2 .

(3) The largest complement similar rectangle is of size at most 2k+1. Fix some
rectangle R = (x,y), where x = (x1, . . . , xm) ∈ (Fk)m and y = (y1, . . . , yn) ∈
(Fk)n. We show that if R is complement similar then mn ≤ 2 · 2k. Since R is
complement similar for every x ∈ x, y ∈ y it holds

f(x, y) = f(x̄, y),

which by definition of f implies that

〈Tx′ ◦ 1, y〉 = 0,

where x′ is the (k− 1) prefix of x. Let d be the dimension of the linear subspace
spanned by the vectors in x, and so m ≤ 2d. Since T has full rank, the dimension
of the subspace V spanned by {(Tx[1 : k − 1] ◦ 1) : x ∈ x} is at least d− 1. (We
may lose 1 in the dimension due to the removal of the last entry of the vectors
x ∈ x.) Noting that every y ∈ y is orthogonal to V , we conclude that the
dimension of the subspace spanned by y is at most k − (d − 1). It follows that
n ≤ 2k−(d−1) and so mn < 2 · 2k. ut

3.2 PSM for f (Proof of Lemma 2)

Note that f can be expressed as applying the inner product to v and y where
v can be locally computed based on x. Hence it suffices to construct a PSM
for the inner-product function and let Alice compute v and apply the inner-
product protocol to v. (This reduction is a special instance of the so-called
substitution lemma of randomize encoding, cf. [22, 2].) Lemma 2 now follows
from the following lemma.

Lemma 3. The inner product function hip : Fk × Fk → F has a PSM protocol
with communication complexity of 2k + 2.

A proof of the lemma appears10 in [27, Corollary 3]. For the sake of self-
containment we describe here an alternative proof.

Proof. We show a PSM Π = (ΠA, ΠB , g) with communication 2k under the
promise that the inputs of Alice and Bob, x, y, are both not equal to the all
zero vector. To get a PSM for the general case, let Alice and Bob locally extend
their inputs x, y to k + 1-long inputs x′ = x ◦ 1 and y′ = y ◦ 1. Then run the
protocol Π and at the end let Charlie flip the outcome. It is easy to verify that
the reduction preserves correctness and privacy. Since the inputs are longer by
a single bit the communication becomes 2(k + 1) as promised.

We move on to describe the protocol Π. The common randomness consists
of a random invertible matrix R ∈ Fk×k. Given non-zero x ∈ Fk, Alice outputs
a = Rx where x is viewed as a column vector. Bob, who holds y ∈ Fk, outputs
b = yTR−1. Charlie outputs ba.

Prefect correctness is immediate: (yTR−1) · (Rx) = yTx, as required. To
prove perfect privacy, we use the following claim.

10 We thank the anonymous reviewer for pointing this out.



Claim 6. Let x, y ∈ Fk be non-zero vectors and denote their inner-product by
z. Then, there exists an invertible matrix M ∈ Fk×k for which Me1 = x and
vTz M−1 = yT where ei is the i-th unit vector, and vz is taken to be e1 if z = 1
and ek if z = 0.

Proof. Let us first rewrite the condition vTz M−1 = yT as vTz = yTM. Let V ⊂ Fk
be the linear subspace of all vectors that are orthogonal to y. Note that the
dimension of V is k− 1. We distinguish between two cases based on the value of
z.

Suppose that z = 0, that is, x ∈ V and vz = ek. Then set the first column of
M to be x and choose the next k − 2 columns M2, . . . ,Mk−1 so that together
with x they form a basis for V . Let the last column Mk be some vector outside
V . Observe that the columns are linearly independent and so M is invertible.
Also, it is not hard to verify that Me1 = x and that yTM = eTk .

Next, consider the case where z = 1, that is, x /∈ V and vz = e1. Then, take
M1 = x and let the other columns M2, . . . ,Mk to be some basis for V . Since
x is non-zero the columns of M are linearly independent. Also, Me1 = x and
yTM = eT1 . The claim follows. ut

We can now prove perfect privacy. Fix some non-zero x, y ∈ Fk and let
z = 〈x, y〉. We show that the joint distribution of the messages (A,B) depends
only on z. In particular, (A,B) is distributed identically to (Re1, v

T
b R−1) where

R a random invertible matrix. Indeed, letting M be the matrix guaranteed in
Claim 6 we can write

(Rx, yTR−1) = (R(Me1), (vTz M−1)R−1).

Noting that T = RM is also a random invertible matrix (since the the set
of invertible matrices forms a group) we conclude that the RHS is identically
distributed to Te1, v

T
z T−1, as claimed. ut

Remark 2. Overall the PSM for f has the following form: Alice sends a = R ·
(L(x) ◦ 1) and Bob sends b = (y ◦ 1)TR where R ∈ F(k+1)×(k+1) is a random
invertible matrix. The privacy proof shows that if the input (x, y) is mapped
to (a, b) for some R then for every (x′, y′) for which f(x, y) = f(x′, y′), there
exists R′ under which the input (x′, y′) is mapped to (a, b) as well. Hence, there
are collisions between non-sibling inputs. As explained in the introduction, this
makes the FKN lower-bound inapplicable.

4 Lower bound for perfect PSM protocols

In this Section we will prove a lower bound for perfect PSM protocols.

Definition 3. For a function f : X×Y → Z and distribution µ over the domain
X × Y with marginals µA and µB, define

α(µ) = max
(R1,R2)

min(µ(R1), µ(R2)),



where the maximum ranges over all pairs of similar disjoint rectangles (R1, R2).
We also define

β(µ) = Pr[ (X,Y ) 6= (X ′, Y ′) | f(X,Y ) = f(X ′, Y ′) ],

where (X,Y ) and (X ′, Y ′) represent two independent samples from µ. Finally, we
say that f is non-degenerate with respect to µ if for every x 6= x′ in the support of
µA there exists some y ∈ Y for which f(x, y) 6= f(x′, y), and similarly for every
y 6= y′ in the support of µB there exists some x ∈ X for which f(x, y) 6= f(x, y′).

We prove the following key lemma.

Lemma 4. Let f : X × Y → Z. Then the communication complexity of any
perfect PSM protocol is at least

max
µ

log(1/α(µ)) +H∞(µ)− log(1/β(µ))− 1,

where the maximum is taken over all (not necessarily product) distribution µ
under which f is non-degenerate.

The lower-bound is meaningful as long as β is not too small. Intuitively, this
makes sure that the privacy requirement (which holds only over inputs on which
the function agrees) is not trivial to achieve under µ.

For the special case of a Boolean function f , we can use the uniform distri-
bution over X × Y and prove Theorem 3 from the introduction (restated here
for the convenience of the reader).

Theorem 7 (Thm 3 restated). Let X ,Y be sets of size at least 2. Let f :
X × Y → {0, 1} be a non-degenerate function for which any pair of disjoint
similar rectangles (R,R′) satisfies |R| ≤ M . Then, any perfect PSM for f has
communication of at least 2(log |X |+ log |Y|)− logM − 3.

Proof. For the uniform distribution µ we have α(µ) ≤ M/(|X ||Y|), H∞(µ) =
log |X |+ log |Y| and

β(µ) ≥ Pr[(X,Y ) 6= (X ′, Y ′)]− Pr[f(X,Y ) 6= f(X ′, Y ′)],

where X,Y and X ′, Y ′ are two independent copies of uniformly distributed in-
puts. The minuend is 1 − 1/(|X ||Y|) and the subtrahend is at most 1

2 (since f
is Boolean). For |X ||Y| ≥ 4, we get β(µ) ≥ 1/4, and the proof follows from the
key lemma (Lemma 4). ut

We note that the constant 3 can be replaced by 2 + ok(1) when the size of the
domain X × Y grows with k.

Weakly private fully revealing PSM. We can also derive a lower-bound on
the communication complexity of weakly private fully revealing PSM. We begin
with a formal definition.



Definition 4 (Weakly Private Fully Revealing PSM). A weakly private
fully revealing PSM Π = (ΠA, ΠB , g) for a function f : X ×Y → Z is a perfect
PSM for the function f ′ : {0, 1}k1 ×{0, 1}k2 → {0, 1}k1−1×{0, 1}k2 ×{0, 1} that
takes (x, y) and outputs (x[1 : k1− 1], y, f(x, y)), where x[1 : k1− 1] is the k1− 1
prefix of x.

In the following, we say that f is weakly non-degenerate if for every x there
exists y such that f(x, y) 6= f(x̄, y). Recall that an input (x, y) is useful if
f(x, y) = f(x̄, y). We prove the following (stronger) version of Theorem 2 from
the introduction.

Theorem 8. Let f : {0, 1}k1 × {0, 1}k2 → {0, 1} be a weakly non-degenerate
function. Let M be an upper-bound on size of the largest complement similar
rectangle of f and let U be a lower-bound on the number of useful inputs of f .
Then, any weakly-private fully-revealing PSM for f has communication complex-
ity of at least 2 logU− logM−2. In particular, for all but an o(1) fraction of the
predicates f : {0, 1}k × {0, 1}k → {0, 1} we get a lower-bound of 3k − 4− o(1).

Proof. Let f ′ be the function defined in Definition 4 based on f . We will prove
a lower-bound on the communication complexity of any perfect PSM for f ′. Let
µ be the uniform distribution over the set of useful inputs. Since f is weakly
non-degenerate the function f ′ is non-degenerate under µ. Also, observe that

α(µ) ≤M/U, β(µ) = 1/2, and H∞(µ) ≥ logU.

The first part of the theorem follows from Lemma 4.
To prove the second (“in particular”) part observe that, for a random function

f , each pair of inputs (x, y) and (x̄, y) gets the same f -value with probability 1
2

independently of other inputs. Hence, with all but o(1) probability, a fraction of
1
2−o(1) of all 22k−1 of the pairs is mapped to the same value, and so there will be
22k−1(1− o(1)) useful inputs. (Since each successful pair contributes two useful
inputs.) Also, each M -size rectangle R is complement similar with probability

2−M . By taking a union bound over all 22
k+1

rectangles, we conclude that f has
an M = 2k+1(1 + o(1))-size complement similar rectangle with probability at

most 22
k+1−M = o(1). We conclude that, all but an o(1) fraction of the functions,

do not have weakly-private fully-revealing PSM with complexity smaller than
3k − 4− o(1). ut

4.1 Proof of the Key Lemma (Lemma 4)

Fix some function f : X × Y → Z and let Π = (ΠA, ΠB , g) be a perfect PSM
protocol for f . Let µ denote some distribution over the domain X×Y and assume
that f is non-degenerate with respect to µ.

We will use a probabilistic version of the FKN proof. In particular, consider
two independent executions of Π on inputs that are sampled independently
from µ. We let X,Y and R (resp., X ′, Y ′ and R′) denote the random variables
that represent the inputs of Alice and Bob and their shared randomness in



the first execution (resp., second execution). Thus, we can for example write
Pr[(A,B) = (A′, B′) ∧X 6= X ′] to denote the probability that the messages in
the two executions match while the two inputs for Alice are different.

To simplify notation somewhat, we define the following events:

P(=) :≡ (A = A′) ∧ (B = B′)

I(=) :≡ (X = X ′) ∧ (Y = Y ′)

I(6=) :≡ (X 6= X ′) ∨ (Y 6= Y ′) ≡ ¬I(=)

F (=) :≡ f(X,Y ) = f(X ′, Y ′)

(The notation P is chosen to indicate equivalence/inequivalence of Protocol mes-
sage and I to indicate equivalence/inequivalence of the Inputs.) Our lower-bound
follows from the following claims.

Claim 9. The communication complexity of Π is at least log(1/Pr[I(6=)∧P(=)])−
log(1/β).

Proof. We will compute the collision probability Pr[(A,B) = (A′, B′)] of two
random executions by showing that

Pr[P(=)] =
Pr[I(6=) ∧ P(=)]

Pr[I( 6=)|F (=)]
=

Pr[I( 6=) ∧ P(=)]

β
. (2)

Because the collision probability of two independent instances of a random vari-
able is at least the inverse of the alphabet size, the alphabet of A and B must
have size at least β/Pr[I( 6=) ∧ P(=)]. Thus, in total the protocol requires

log(1/Pr[I( 6=) ∧ P(=)])− log(1/β)

bits of communication.
We move on to prove (2). By perfect correctness, P(=) can only happen if

F (=) happens, therefore

Pr[P(=)]

Pr[I(6=) ∧ P(=)]
=

Pr[F (=)] Pr[P(=)|F (=)]

Pr[I( 6=) ∧ P(=)]
. (3)

By the same reasoning, we can express the denominator of the RHS by

Pr[I(6=) ∧ P(=) ∧ F (=)] = Pr[F (=)] Pr[I(6=)|F (=)] Pr[P(=)|F (=) ∧ I(6=)].

It follows that (3) equals to

Pr[F (=)] Pr[P(=)|F (=)]

Pr[F (=)] Pr[I(6=)|F (=)] Pr[P(=)|F (=) ∧ I(6=)]
=

1

Pr[I( 6=)|F (=)]
, (4)

where equality follows by noting that Pr[P(=)|F (=)] = Pr[P(=)|F (=) ∧ I(6=)]
(due to perfect privacy). Multiplying the LHS of (3) and the RHS of (4) by
Pr[I( 6=) ∧ P(=)], we conclude (2). ut



Claim 10. For any pair of strings r 6= r′,

Pr[P(=) ∧ I(6=)|R = r,R′ = r′] ≤ 2α(µ)2−H∞(µ).

Proof. We see that

Pr
[
P(=) ∧ I(6=)|R = r ∧R′ = r′] ≤ Pr

[
P(=) ∧ (X 6= X ′)|R = r ∧R′ = r′]

+ Pr
[
P(=) ∧ (Y 6= Y ′)|R = r ∧R′ = r′] .

Due to symmetry it suffices to bound the first summand by α(µ)2−H∞(µ).
Say that x collides with x′ if ΠA(x, r) = ΠA(x′, r′). Restricting our attention

to x’s in the support of µA, we claim that every x can collide with at most a
single x′. Indeed, if this is not the case, then ΠA(x, r) = ΠA(x′, r′) = ΠA(x′′, r′).
The second equality implies that when the randomness is r′, for every y, the
messages (a, b) communicated under (x′, y) are equal to the ones communicated
under (x′′, y). By perfect correctness, this implies that f(x′, y) = f(x′′, y) for
every y, contradicting the non-degeneracy of f under µ. Analogously, let us say
that y collides with y′ if ΠB(y, r) = ΠB(y′, r′). The same reasoning shows that
every y in the support of µB can collide with at most a single y′ in the support
of µB .

Let x = (x1, . . . , xm) and x′ = (x′1, . . . , x
′
m) be a complete list of entries for

which xi collides with x′i and xi 6= x′i and µA(xi), µA(x′i) > 0. Analogously let
y = (y1, . . . , yn) and y′ = (y′1, . . . , y

′
n) be a complete list for which yi collides

with y′i and µB(yi), µB(y′i) > 0. (Note that we do not require yi 6= y′i.) Since
collisions are unique (as explained above), the tuples x,x′,y,y′ are uniquely
determined up to permutation.

By definition, the tuples (x, y, x′, y′) with x 6= x′, and (a, b) = (a′, b′) are
exactly those of the form (xi, yj , x

′
i, y
′
j) for some i and j.

Now, consider the two x-disjoint rectangles ρ = (x,y) and ρ′ = (x′,y′) and
assume, without loss of generality, that µ(ρ) ≤ µ(ρ′). Since Alice and Bob both
send the same messages with randomness r on inputs (xi, yj) as they send with
randomness r′ on inputs x′i, y

′
j , we see that it must be that f(xi, yj) = f(x′i, y

′
j)

if the protocol is correct. Therefore, f[ρ] = f[ρ′], and so µ(ρ) ≤ α(µ).

To complete the argument, note that P(=) ∧ (X 6= X ′) can only happen
if we pick (X,Y ) = (xi, yj) and (X ′, Y ′) = (x′i, y

′
j) for some i, j. The event

that there exists i, j for which (X,Y ) = (xi, yj) has probability at most α(µ).
The event that (X ′, Y ′) = (x′i, y

′
j) for the same (i, j) has probability at most

maxx,y µ(x, y) = 2−H∞(µ). ut

Combining Claims 9 and 10, we derive Lemma 4. ut

5 Lower bounds for imperfect PSM protocols

In this section we state a lower-bound on the communication complexity of
imperfect PSM protocols. For this, we will have to strengthen the requirements
from the function f .



We call f strongly non-degenerate if for any x 6= x′ we have |{y|f(x, y) =
f(x′, y)}| ≤ 0.9|Y| and for any y 6= y′ we have |{x|f(x, y) = f(x, y′)}| ≤ 0.9|X |.
A pair of ordered m× n rectangles R = (x,y) and R′ = (x′,y′) in which either
xi 6= x′i for all i ∈ [m], or yi 6= y′i for all i ∈ [n] are called approximately similar
if for 0.99 of the pairs (i, j) we have f(xi, yj) = f(x′i, y

′
j). (The constants 0.9 and

0.99 are somewhat arbitrary and other constants may be chosen.)
In the full version we prove the following theorem:

Theorem 11. Let f : X ×Y → Z be a strongly non-degenerate function whose
largest approximately similar pair of rectangles is of size at most M . Then, any
PSM for f with privacy error of ε and correctness error of δ < 1

100 , requires at
least

log |X |+ log |Y|+ min


log |X |+ log |Y| − log

(
1

Pr[F(=)]

)
,

log |X |+ log |Y| − logM,
log(1/ε),

log(1/δ)− log
(

1
Pr[F(=)]

)
− c (5)

bits of communication, where c is some universal constant (that does not depend
on f) and Pr[F (=)] = Pr[f(X,Y ) = f(X ′, Y ′)] when (X,Y ) and (X ′, Y ′) are
picked independently and uniformly at random from X × Y.

In the special case of a Boolean function f , it holds that Pr[F (=)] = Pr[f(X,Y ) =
f(X ′, Y ′)] ≥ 1/2, and the communication lower-bound simplifies to

log |X |+ log |Y|+ min {log |X |+ log |Y| − logM, log(1/ε), log(1/δ)} − c

where c is some universal constant. In Section 6, we will use Theorem 11 to prove
imperfect PSM lower-bounds for random functions and for efficiently computable
functions.

6 Imperfect PSM lower-bounds for random and explicit
functions

In this section we will show that most functions have non-trivial imperfect PSM
complexity, and establish the existence of an explicit function that admits a non-
trivial imperfect PSM lower-bound. Formally, in Section 6.1 we will prove the
following theorem (which strengthens Corollary 1 from the introduction).

Theorem 12. For a 1 − o(1) fraction of the functions f : {0, 1}k × {0, 1}k →
{0, 1} any PSM protocol for f with privacy error of ε and correctness error of δ,
δ < 1

100 , requires at least

`(k, ε, δ) = min {3k − 2 log(k), 2k + log(1/ε), 2k + log(1/δ)} − c (6)

bits of communication, where c is some universal constant.



By de-randomizing the proof, we derive (in Section 6.2) the following theorem
(which strengthens Theorem 4 from the introduction).

Theorem 13. There exists a sequence of polynomial-size circuits

f =
{
fk : {0, 1}k × {0, 1}k → {0, 1}

}
such that any δ-correct ε-private PSM for fk has communication complexity
of at least `(k, ε, δ) bits (as defined in (6)). Moreover, assuming the existence
of a hitting-set generator against co-nondeterministic uniform algorithms, there
exists an explicit family f which is computable by a polynomial-time Turing
machine whose imperfect PSM communication complexity is at least `(k, ε, δ)−
O(log k).

The reader is advised to read the following subsections sequentially since the
proof of Theorem 13 builds over the proof of Theorem 12.

6.1 Lower bounds for random functions (Proof of Thm. 12)

We will need the following definition.

Definition 5 (good function). We say that a function f : {0, 1}k×{0, 1}k →
{0, 1} is good if it satisfies the following conditions:

1. For every x 6= x′ and every set y of k2 consecutive strings (according to
some predefined order over {0, 1}k), it holds that f(x, y) = f(x′, y) for at
most 0.9-fraction of the elements y ∈ y.

2. Similarly, for every y 6= y′ and set x of k2 consecutive strings (according to
some predefined order over {0, 1}k), it holds that f(x, y) = f(x, y′) for at
most 0.9-fraction of x ∈ x.

3. For every pair of k2 × k2 x-disjoint or y-disjoint rectangles R,R′, it holds
that f[R] disagrees with f[R′] on at least 0.01 fraction of the entries.

Claim 14. Any good f : {0, 1}k × {0, 1}k → {0, 1} satisfies the conditions of
Theorem 11 with M = 2k · k2, and therefore any δ-correct ε-private PSM for f ,
δ < 1

100 , requires communication of

`(k, ε, δ) = min {3k − 2 log(k), 2k + log(1/ε), 2k + log(1/δ)} − c,

for some universal constant c.

Proof. Fix some good f . Condition (1) guarantees that f(x, ·) and f(x′, ·) differ
on 0.1 fraction of each k2 block of consecutive y’s, and therefore, overall, they
must differ on a 0.1 fraction of all possible y’s. Applying the same argument on
the y-axis (using condition (2)), we conclude that a good f must be strongly
non-degenerate.

Similarly, a good f cannot have a pair of x-disjoint approximately similar
m × n rectangles R,R′ of size mn ≥ 2k · k2. To see this, observe that the



latter condition implies that m,n are both larger than k2, and therefore, again
by an averaging argument, there must exists a pair of k2 × k2 x-disjoint sub-
rectangles R′0 ⊆ R0, R

′
1 ⊆ R1 which are also approximately similar. Applying

the same argument to y-disjoint rectangles we conclude that any good f satisfies
the conditions of Theorem 11. ut

We say that a family of functions {fz : A → B}z∈Z is t-wise independent
functions if for any t-tuple of distinct inputs (a1, . . . , at) and for a uniformly

chosen z
$← Z, the joint distribution of (fz(a1), . . . , fz(at)) is uniform over Bt.

Claim 15. Pick f : {0, 1}k × {0, 1}k → {0, 1} uniformly at random among all
such functions. Then, with probability 1 − o(1), the resulting function is good.
Moreover, this holds even if f is chosen from a family of k4-wise independent
functions.

Proof. Choose f randomly from a family of k4-wise independent hash functions.
Fix a pair of x 6= x′ and a k2-subset y ⊂ {0, 1}k of consecutive y’s. By a Chernoff
bound, the probability that f(x, y) = f(x′, y) for more than 0.9 of y ∈ y is at

most 2−Ω(k2). There are at most 22k pairs of x, x′, and at most 2k different sets
y of consecutive y’s, therefore by a union bound the probability that condition
(1) does not hold is 23k2−Ω(k2) = 2−Ω(k2). A similar argument, shows that (2)
fails with a similar probability.

We move on to prove there is no pair of approximately similar x-disjoint
rectangles of size exactly k2 × k2. (Again, the case of y-disjoint rectangles is
treated similarly.)

Let m = k2. Fix two x-disjoint m×m-rectangles R = (x,y) and R′ = (x′,y′).
We want to give an upper bound on the probability that f[R] agrees with f[R′] on
99% of their entries. This event happens only if the entries of f satisfy all but 1%
of the the m2 equations f(xi, yj) = f(x′i, y

′
j) for (i, j) ∈ {1, . . . ,m}×{1, . . . ,m}.

The probability that any such equation is satisfied is 1
2 : since the rectangles

are x-disjoint the equation is non-trivial. We can further find a subset T of at
least m2/2 such equations such that each equation in the subset uses an entry
f(x, y) that is not used in any other equation. Let us fix some 0.01m2 subset
S of equations that are allowed to be unsatisfied. After removing S from T ,
we still have at least 0.49m2 equations that are simultaneously satisfied with
probability of at most 2−0.49m

2

. There are at most 2H2(0.01)m
2

sets S (where H2

is the binary entropy function), and at most 22mk choices for R and 22mk choices
for R′. Hence, by a union bound, the probability that (3) fails is at most

2−0.49m
2+0.081m2+4m3/2

< 2−Ω(m2),

the claim follows. ut

Theorem 12 follows from Claims 14 and 15. ut



6.2 Explicit lower-bound (Proof of Thm. 13)

Our next goal is to obtain an explicit lower-bound. We begin by noting that good
functions (as per definition 5) can be identified by efficient co-nondeterministic
algorithms.

Definition 6. A co-nondeterministic algorithm M(x, y) is a Turing machine
that takes z as its primary input and v as a witness. For each z ∈ {0, 1}∗ we
define M(z) = 1 if there exist a witness v such that M(z, v) = 0.

Claim 16. There exists a co-nondeterministic algorithm that given some s-bit
representation of a function f : {0, 1}k×{0, 1}k → {0, 1} accepts f if and only if
f is good with complexity of O(k4t) where t is the time complexity of evaluating
f on a given point.

Proof. It suffices to describe a polynomial-time verifiable witness for the failure
of each of the goodness conditions. If f is not good due to (1), then the witness
is a pair x 6= x′ and a k2-set y of consecutive y’s. Since fz can be efficiently
evaluated we can verify that f(x, y) = f(x′, y) for more than 0.9-fraction of the
y’s in y in times O(k2t). A violation of (2) is treated similarly. If f is not good
due to (3), then the witness is a pair of x-disjoint or y-disjoint k2×k2 rectangles
R,R′ that are approximately similar. Again, we can verify the validity of this
witness in time O(k4t). ut

Let s(k) = poly(k) and let
{
fz : {0, 1}k × {0, 1}k → {0, 1}

}
z∈{0,1}s be a fam-

ily of k4-wise independent functions with an evaluator algorithm F which takes
an index z ∈ {0, 1}s and input (x, y) ∈ {0, 1}k × {0, 1}k and outputs in time
t(k) the value of fz(x, y). (Such an F can be based on k4-degree polynomials
over a field of size Θ(k4)). Claims 14 and 15 imply that for most choices of z,
the function fz has an imperfect PSM complexity of at least `(k, ε, δ). Since F
is efficiently computable, for every z there is a polynomial-size circuit that com-
putes fz. Hence, there exists a polynomial-size computable function for which
the `(k, ε, δ) lower-bound holds, and the first part of Theorem 13 follows.

To prove the second part, we use a properly chosen pseudorandom generator
(PRG) G : {0, 1}O(log k) → {0, 1}s to “derandomize” the family {fz}. That
is, we define the function g : {0, 1}O(log k) × {0, 1}k × {0, 1}k → {0, 1} which
takes (w, x, y) and outputs fz(x, y) where z = G(w) ∈ {0, 1}s. Concretely, we
require G to “hit” the image of any co-nondeterministic algorithms of complexity
T = O(k4t). Formally, this means that for every T -time co-nondeterministic
algorithm M it holds that if Prz[M(z) = 1] ≥ 1

2 then there exists a “seed” r for
which M(G(r)) = 1.

Taking M to be the algorithm from Claims 16, we conclude, by Claims 15
and 14, that for some seed w, the function fG(w) has an imperfect PSM complex-
ity of at least `(k, ε, δ). Let us parse g as a two-party function, say by partitioning
w to two halves wA, wB and giving (x,wA) to Alice, and y, wB to Bob. We con-
clude that g must have an imperfect PSM complexity of at least `(k, ε, δ). Since
the input length k′ of Alice and Bob becomes longer by an additional O(log k)
bits, the lower-bound becomes at least `(k′, ε, δ) − O(log k′), as claimed. The
part of Theorem 13 follows. ut



7 Lower-bounds for Conditional Disclosure of Secrets

In this section we derive CDS lower bounds. We begin with a reduction from
fully revealing weakly hiding PSM (Definition 4) to CDS.

Claim 17. Let h : X × Y → {0, 1} be a predicate. Define the function f :
X ′ × Y → {0, 1} where X ′ = X × {0, 1} by f((x, s), y) = s ∧ h(x, y). If h has
a perfect CDS with communication complexity of c then f has a weakly-private
fully-revealing PSM with complexity of c+ log |X |+ log |Y|.

Proof. Given a CDS protocol Π = (ΠA, ΠB , g) for h we construct a weakly-
private fully-revealing PSM for f as follows. Given an input (x, s), Alice sends
(x, a = ΠA(x, s, r)) where x plays the role of the Alice’s input in the CDS, s
plays the role of the secret, and r is a shared string uniformly sampled from R.
Bob takes his input y, and sends (y, b = ΠB(y, r)). Charlie outputs h(x, y) ∧
g(x, y, a, b).

It is not hard to verify that the protocol is perfectly correct and fully reveal-
ing. Indeed, a PSM decoding error happens only if g(x, y, a, b) fails to decode the
secret s (which happens with probability zero). To prove weak privacy observe
that if f agrees on a pair of inputs, ((x, 0), y) and ((x, 1), y), then h(x, y) must be

zero. By CDS privacy, for R
$← R the distribution (x, y,ΠA(x, 0, R), ΠB(y,R))

is identical to the distribution (x, y,ΠA(x, 1, R), ΠB(y,R)), as required. ut

Next, we show that the properties of f needed for applying Theorem 8, follow
from simple requirements on h. In the following, we say that x ∈ X is a null
input if the residual function h(x, ·) is the constant zero function.

Claim 18. Let h and f be as in Claim 17. Then

1. The size of the largest complement similar rectangle of f equals to the size
of the largest 0-monochromatic rectangle of h.

2. The number U of useful inputs of f is exactly two times larger than the
number of inputs that are mapped by h to zero.

3. If h has no input x for which the residual function h(x, ·) is the constant
zero function, then f is weakly non-degenerate.

Proof. The claim follows immediately by noting that for every (x, y) it holds
that f((x, 1), y) = f((x, 0), y) if and only if h(x, y) = 0. We proceed with a
formal argument.

1. Consider some complement similar rectangle R = (x′ × y) of f . For every
(x, b) ∈ x′ and y ∈ y, it holds that

f((x, b), y) = f((x, 1− b), y),

and therefore h(x, y) = 0 and R is a 0-monochromatic rectangle of h.
2. Every input (x, y) that does not satisfy h induces an unordered pair, ((x, 1), y)

and ((x, 0), y), of useful inputs for f . Therefore, the number of (ordered) use-
ful inputs of f is exactly 2|h−1(0)|.



3. Fix some (x, s) ∈ X ′ and assume, towards a contradiction, that for every y
it holds that f((x, s), y) = f((x, 1− s), y). By the definition of f this means
that h(x, y) = 0 for every y, contradicting our assumption on h.

ut

Theorem 5 (restated here for convenience) now follows immediately from the
lower-bound on weakly-private fully revealing PSM (Theorem 8).

Theorem 19 (Theorem 5 restated). Let h : X × Y → {0, 1} be a predicate.
Suppose that M upper-bounds the size of the largest 0-monochromatic rectangle
of h and that for every x ∈ X , the residual function h(x, ·) is not the constant
zero function. Then, the communication complexity of any perfect CDS for h is
at least

2 log |f−1(0)| − logM − log |X | − log |Y| − 1,

where |f−1(0)| denotes the number of inputs (x, y) that are mapped to zero.

Proof. Let h : X × Y → {0, 1} be a predicate that satisfies the theorem re-
quirement. That is, M upper-bounds the size of the largest 0-monochromatic
rectangle of h, there at least S inputs that are mapped to zero, and for every
x ∈ X , the residual function h(x, ·) is not the constant zero function.

Suppose that h has a perfect CDS with communication complexity of c.
By Claim 17, the function f (defined in the claim) has a weakly-private fully-
revealing PSM with complexity of at most

c+ log |X |+ log |Y|,

which, by Claim 18 and Theorem 8, is at least

2 logU − logM − 2 = 2 logS − logM − 1.

It follows that

c ≥ 2 logS − logM − 1− (log |X |+ log |Y|),

as required. ut

Example 1 (The index predicate). As a sanity check, consider the index predicate
find : [k]×{0, 1}k → {0, 1} which given an index i ∈ [k] and a string y ∈ {0, 1}k
outputs y[i], the i-th bit of y. Clearly exactly half of all inputs are mapped to
0. Also, for every i the residual function f(i, ·) is not the constant zero. Finally,
every zero rectangle is of the form I × {y : y[i] = 0,∀i ∈ I} where I ⊆ [k] . This
implies that the size of any such rectangle is exactly |I| ·2k−|I| ≤ 2k−1. Plugging
this into Theorem 19, we get a lower-bound of

2(k + log k − 1)− (k − 1)− k − log k − 1 ≥ log k − 2.
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