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Abstract. Non-malleable Codes (NMCs), introduced by Dziembowski,
Peitrzak and Wichs (ITCS 2010), serve the purpose of preventing “re-
lated tampering” of encoded messages. The most popular tampering
model considered is the 2-split-state model where a codeword consists
of 2 states, each of which can be tampered independently. While NMCs
in the 2-split state model provide the strongest security guarantee, de-
spite much research in the area we only know how to build them with
poor rate (Ω( 1

logn
), where n is the codeword length). However, in many

applications of NMCs one only needs to be able to encode randomness
i.e., security is not required to hold for arbitrary, adversarially chosen
messages. For example, in applications of NMCs to tamper-resilient se-
curity, the messages that are encoded are typically randomly generated
secret keys. To exploit this, in this work, we introduce the notion of “Non-
malleable Randomness Encoders” (NMREs) as a relaxation of NMCs in
the following sense: NMREs output a random message along with its
corresponding non-malleable encoding.
Our main result is the construction of a 2-split state, rate- 1

2
NMRE.

While NMREs are interesting in their own right and can be directly
used in applications such as in the construction of tamper-resilient cryp-
tographic primitives, we also show how to use them, in a black-box man-
ner, to build a 3-split-state (standard) NMCs with rate 1

3
. This improves

both the number of states, as well as the rate, of existing constant-rate
NMCs.

1 Introduction

How do we protect sensitive data from being tampered? Can we ensure that
tampering of the data is detected? These are precisely the kind of questions
answered in the rich area of Coding Theory. Encoding data using an error cor-
recting code ensures that data stays the same so long as the errors introduced are
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appropriately limited. Dziembowski, Peitrzak and Wichs [DPW10], introduced
an important variant of ECCs based on the well-established intuition in eryp-
tography that, often times, tampering data into something independent doesn’t
threaten the security of the underlying cryptosystem. (For example, an adver-
sary who obtains signatures on an independently generated signing key, will not
be able to forge signatures with respect to the original secret key.) Specifically,
they introduced Non-malleable Codes which provide a guarantee that an adver-
sary cannot tamper the codeword of message m into the codeword of a related
message m′.

As observed in [DPW10], it is impossible to build NMCs secure against all
functions. Therefore, NMCs are defined with respect to a family of tampering
functions. A natural class of tampering functions that have been considered is
the t−split state model where a codeword consists of t states, each of which is
tampered independently by the adversary. An important parameter of interest
for NMCs is its Rate = k

n where k = message length and n = codeword length.
Prior to this work, the best known results for various t-state tampering mod-

els were given in Table 1.

Result States Rate
[CG14b] n 1
[KOS17] 4 1/3
[Li17] 2 Ω( 1

logn )

Table 1

As we can see, while 2-split-state NMCs provide the strongest security guar-
antee, despite significant effort in this direction, we only know how to build
them with poor rate of Ω( 1

logn ). An important observation about the definition
of non-malleable codes is that they ensure non-malleability of the codeword of
any message, even adversarially chosen ones. However, in most applications of
non-malleable codes, such as tamper-resilient security, the message is not adver-
sarially controlled. In fact, it is typically a randomly chosen secret key. With
that in mind, in this work, we ask the following question:

Is there any advantage in non-malleably encoding randomness?

With this question in mind, we introduce “Non-malleable Randomness En-
coders” (NMRE) as objects which allow you to generate randomness along with
its corresponding non-malleable encoding. We then go on to show that NMREs
can, infact, be built efficiently and with interesting parameters: Specficially, we
build a 2-state, rate- 12 Non-malleable Randomness Encoder. Given the
major open problem in this area of NMCs i.e., of building an explicit 2-state,
constant-rate non-malleable code, we propose NMREs as a useful alternative to
NMCs in applications where they suffice, of which we give some examples.

Application of NMREs Consider the key generation process of symmetric key
cryptosystems. These processes typically use uniform randomness r to generate
a secret key k. Using NMREs we can generate r along with its non-malleable



encoding C. Instead of storing the secret key k directly, we store C in the secret
state. The advantage is that this secret state is now reslient to tampering attacks.
Of course, this will require us to decode C and regenerate the secret key k
whenever we need to use it. Therefore, the applicability of NMREs is for scenarios
where key generation is an efficient process.

As another application of NMREs, we show that NMREs can be used, in
a black-box, to improve the current state of the art of standard non-malleable
codes. Specifically, we build 3-state Non-malleable Codes with a rate of 1

3 .

1.1 Prior Work

We now survey the main results in the area of Non-malleable Codes. For the
sake of completeness, we may revisit some of the terminology introduced in the
previous section. Informally, a non-malleable code (NMC) [DPW10] provides the
following guarantee – a codeword of message m, if tampered, will decode to one
of the following:

– ⊥ i.e., it detects tampering.
– the original message m itself i.e., the tampering did not change the message
– something independent of m

While each of these cases may occur with varying probabilities (for example,
a tampering function that maps codeword to identity always results in Case
2), the probability with which these cases occur need to be independent of the
underlying message. In [DPW10], the authors observe that it is impossible to
build NMCs which are secure against unrestricted tampering. Specifically, a

function f(c)
def
= Enc(Dec(c) + 1) clearly tampers m = Dec(c) into a related

m + 1. This necessitates the need to define non-malleable codes with respect
to the class of functions they protect against. ([DPW10] show the existence of
non-malleable codes w.r.t tampering families of size less than 22

n

, where n is the
codeword length.)

Tampering Families and Rate. One family that has been considered in several
works is that of t-state tampering families: here, a codeword consists of t blocks
or states and the adversary tampers each of these independently. The family of
functions F therefore consists of t-functions f1, . . . , ft. For t = n, the model is
referred to as the bit-wise tampering model. Dziembowski et al. [DPW10] con-
structed non-malleable codes resilient against this family. In addition to the
class of tampering functions, another important parameter is that of Rate =
message length
codeword length they achieve. Cheraghchi and Guruswami [CG14b] built an explicit
construction of an optimal rate NMC in the bit-wise tampering model. While
building NMCs for this model is technically challenging, a disadvantage is that,
from a practical stand point, requiring each bit of the codeword to be stored
in an independent state makes the model less desirable. Indeed, the best pos-
sible t-split state model would be where t = 2. On this front, the first efficient
solution was obtained for 1-bit messages by Dziembowski, Kazana and Obrem-
ski [DKO13]. The first construction for encoding arbitrary-length messages, was



an Ω(n−6/7)-rate construction due to Aggarwal, Dodis and Lovett [ADL14]. At
the same time, in [CG14a], Cheraghchi and Guruswami show a 1 − 1/t upper
bound on best achievable rate for the t-split state family (and, specifically, 1/2
when t = 2). The first constant rate construction for any t = o(n), was due to
Chattopadhyay and Zuckerman [CZ14]. Specifically, they build a constant rate,
10-state NMC. Recently, Kanukurthi, Obbattu and Sekar [KOS17] obtained a
4−state construction (i.e., t = 4) with rate 1

3 . For t = 2, the current best known
construction is due to Li [Li17] with a rate of Ω(1/ log n). In other results, Ag-
garwal et al. [ADKO15] demonstrated connections between various split-state
models and Agrawal et al. [AGM+15] build optimal NMCs which are simulta-
neously resilient to permutation attacks as well as bit-wise tampering attacks.
On the computational front, there are constructions in the 2-split-state model
such as [LL12] and the optimal construction of [AAG+16].

Variants of Non-malleable codes Since the introduction of Non-malleable codes
several variants of Non-malleable codes have been considered. Some of them are
Continuous NMCs [FMNV14,JW15,AKO15,DNO17], Locally updatable and
decodable NMCs [DLSZ14,DKS17,CKR16].

1.2 Our Results

In this work, we introduce Non-malleable Randomness Encoders. Informally,
NMREs allow for the generation of randomness r along with its correspond-
ing non-malleable encoding C. The non-malleability is, as for standard NMCs,
defined with respect to F , a family of tampering functions. Note that any non-
malleable code NMC is, by default, a secure NMRE (simply generate randomness
r at random and let the codeword be the output of NMC). The main challenge
is in building a rate-optimal, state-optimal NMRE. We give an overview
of our construction which uses Information-theoretic one-time message authen-
tication codes (MACs) as well as Randomness Extractors.

Randomness extractors Ext are objects that allow us to generate random-
ness from a source W with a Min-entropy guarantee using a short seed (s) of
true randomness. Message authentication codes MAC = (Tag,Vrfy) are secret
key primitives which guarantee that even given Tag(m; k), an adversary cannot
generate m′, t′ such that m′ 6= m and Vrfy(m′, t′) = 1. Our construction makes
a black-box use of a 2-split-state non-malleable code NMEnc.

Recall that our goal is to construct a 2-state NMRE with constant rate. For
now, consider a 3-state codeword C = W ||L||R where (L,R)← NMC(s) where
W is the source of the extractor and s is a randomly chosen seed. We can see
that this is a three-state NMRE resilient to fID, f2, f3 where fID is the identity
function, f2 and f3 are arbitrary functions. The idea is that since L,R is the
output of an NMC, any independent tampering of L,R respectively renders a
tampered s′, if not ⊥, to be indepdent of s. From here, extractor security can be
used– recall that W remains unchanged by our choice of the function family –
to argue non-malleability. (This argument isn’t trivial. Particularly, to complete
it, we must show how Ext(W ; s′) can be simulated to complete the proof of



non-malleability. While we don’t go into the details, it can be done.) Note also
that this argument crucially relies on f1 being fID. Indeed, if we let W to be
tampered to W ′, then there is no extractor security. (One can come up with
concocted constructions of randomness extractors such that tampering w′ to a
related w and keeping s the same, can result in a related extractor output.) To
prevent tampering of W , we use a one-time message authentication code: we let
(L,R)← NMC(s, k,Tagk(W )). This gives us a 3-split-state construction (C =
W ||L||R), i.e., one that is resilient to (f1, f2, f3) where each fi acts independently
on each state.

We note that our techniques are similar in spirit to those of [KOS17]’s 4-state
NMC. However, our goal here is to build 2-state NMREs. So, on the one hand, we
can leverage the fact that the security we are trying to achieve is weaker. On the
other hand, the task of bringing down the number of states to 3 while retaining
good rate is challenging. To bring down the number of states in our current
proposed 3-state NMRE, we wish to explore possibility of combining two of the
states. Can we combine W with, say, L? Without going into too much detail
regarding the definition of a NMC, an adversary breaking non-malleability can
be viewed as consisting of two parts: one that specifies the tampering functions
and the other that actually distinguishes the output of the tampering experiment
from the simulated experiment.

When we combine W with L, to use the underlying NMC, we would need
to be able to do two things: a) specify the tampering functions that act on L
and R and b) use the distinguisher of the NMRE to build a distinguisher for
the NMC. Indeed, the former can be done by merely hardwiring the value of
W . Unfortunately, we will not be able to use the distinguisher for the NMRE
for the simple reason that we won’t know how W was tampered. It is for this
reason that we require our NMCs to satisfy a stronger property of “augmented
non-malleability”. An augmented nonmalleable code is one that remains non-
malleable even when the adversary, after specifying the tampering function, ad-
ditionally obtains one of the states along with the decoded (tampered) message.
In our proof, we carefully use the augmented non-malleability of the underlying
NMC to argue non-malleability of 2-split state NMRE.

The question still remains of how to instantiate the underlying augmented
NMC. We note that the Augmented Non-malleable Codes due to [ADL14]
would, asymptotically, indeed give us a constant-rate solution. However, the
parameters would be less desirable in terms of tradeoffs between the error and
the rate. (Given that this isn’t our final construction, a more detailed parame-
ter calculation would be tedious.) To overcome these shortcomings, we instead
resort to Li’s 2-state construction which has the so-far best-known rate. Since Li
only proves the standard non-malleability of his scheme, in Appendix A, we give
a proof that it is indeed augmented non-malleable. (This follows by revisitig the
connection between seedless non-malleable extractors and non-malleable codes
due to [CG14b] and reproving it to achieve augmented non-malleability from
strong NME.) Combining this with the outline laid out above, we get our final
NMRE construction.



Building NMCs from NMRE as a black-box. Our next goal is to use NMREs
in a black-box to build NMCs for arbitrary messages m. To do so, we use the
“random message” encoded as a part of the NMRE to both compute the cipher-
text (using a one-time pad) c = Encke(m) as well as authenticate the ciphertext
i.e., compute t = Tagk2(Encke(m)). In order to build it in a black-box using the
NMRE, it is important that we do not use anything pertaining to the message
m in our underlying NMRE. The codeword now needs to have the codeword of
NMRE and, additionally, c, t. In the proof, we show that the non-malleability of
ka, ke essentially suffices to argue the over-all non-malleability and achieve con-
stant rate. Further we show that c, t can stored jointly in a single state giving
us a 3-state NMC for arbitrary messages with rate 1/3.

1.3 Organization of the Paper

We write preliminaries and building blocks in Sections 2 and 3. We give definition
of NMRE in Section 4.1, an explicit construction of NMRE in 4.3, security proof
of the construction in Section 4.4, instantiate it and analyze rate and error in
rest of the Section 4 . We show how to build a 3-state augmented non-malleable
code from an NMRE, prove security, instantiate and analyze in Sections 5.1,5.2
and 5.3 respectively. We add concluding remarks in Section 6. Appendix B gives
details about [Li17]’s 2-state NMC being augmented.

2 Preliminaries

Notation. κ denotes security parameter throughout. s ∈R S denotes uniform
sampling from set S. x← X denotes sampling from a probability distribution X.
x||y represents concatenation of two binary strings x and y. |x| denotes length
of binary string x. Ul denotes the uniform distribution on {0, 1}l. All logarithms
are base 2.

Statistical distance and Entropy. Let X1, X2 be two probability distributions
over some set S. Their statistical distance is

SD (X1, X2)
def
= max

T⊆S
{Pr[X1 ∈ T ]− Pr[X2 ∈ T ]} =

1

2

∑
s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣
(they are said to be ε-close if SD (X1, X2) ≤ ε and denoted by X1 ≈ε X2). The
min-entropy of a random variable W is H∞(W ) = − log(maxw Pr[W = w]). For
a joint distribution (W,E), define the (average) conditional min-entropy of W
given E [DORS08] as

H̃∞(W | E) = − log( E
e←E

(2−H∞(W |E=e)))

(here the expectation is taken over e for which Pr[E = e] is nonzero). For
a random variable W over {0, 1}n, W |E is said to be an (n, t) - source if



H̃∞(W |E) ≥ t.
We now state some Lemmata about statistical distance and average entropy loss.

Proposition 1. Let A1, ..., An be mutually exclusive and exhaustive events.
Then, for probability distributions X1, X2 over some set S, we have:

SD (X1, X2) ≤
n∑
i=1

Pr[Ai].SD (X1|Ai, X2|Ai)

where Xj |Ai is the distribution of Xj conditioned on the event Ai.

Lemma 1. For any random variables A,B,C if (A,B) ≈ε (A,C), then B ≈ε C

Lemma 2. For any random variables A,B if A ≈ε B, then for any function f,
f(A) ≈ε f(B)

Lemma 3. [KOS17] Let A,B be correlated random variables over A,B. For
randomized functions F : A → X , G : A → X (randomness used is independent
of B) if ∀ a ∈ A, F (a) ≈ε G(a), then (B,A, F (A)) ≈ε (B,A,G(A))

Lemma 4. [DORS08] If B has at most 2λ possible values, then H̃∞(A | B) ≥
H∞(A,B)− λ ≥ H∞(A)− λ. and, more generally, H̃∞(A | B,C) ≥ H̃∞(A,B |
C)− λ ≥ H̃∞(A | C)− λ

2.1 Definitions

Definition 1. A (possibly randomized) function Enc : {0, 1}l → {0, 1}n and a
deterministic function Dec : {0, 1}n → {0, 1}l∪{⊥} is said to be a coding scheme
if ∀ m ∈ {0, 1}l, Pr[Dec(Enc(m)) = m] = 1. l is called the message length and
n is called the block length or the codeword length. Rate of a coding scheme is

given by
l

n
.

We now state the definition of non-malleable codes, as given in [CG14b].

Definition 2. A coding scheme (Enc,Dec) with message and codeword spaces as
{0, 1}l, {0, 1}n respectively, is ε- non-malleable with respect to a function family
F ⊆ {f : {0, 1}n → {0, 1}n} if ∀ f ∈ F , ∃ a distribution Simf over {0, 1}l ∪
{same∗,⊥} such that ∀ m ∈ {0, 1}l

Tampermf ≈ε Copy
m
Simf

where Tampermf denotes the distribution Dec(f(Enc(m))) and CopymSimf is defined
as

m̃← Simf

CopymSimf =

{
m if m̃ = same∗

m̃ otherwise

Simf should be efficiently samplable given oracle access to f(.).



We now generalize the definition of 2-state augmented-NMC as defined in
[AAG+16], to a j-augmented NMC for t-split state family, i.e., j of the t-states
is also simulatable independent of the message (where j < t).

Definition 3. A coding scheme (Enc,Dec) with message and codeword spaces as
{0, 1}α, ({0, 1}β)t respectively, is [ε, j]- augmented-non-malleable (where j < t)
with respect to the function family F = {(f1, · · · , ft) : fi : {0, 1}β → {0, 1}β}
if ∀ (f1, · · · , ft) ∈ F , ∃ a distribution Simf1,··· ,ft over ({0, 1}β)j × ({0, 1}α ∪
{same∗,⊥}) such that ∀ m ∈ {0, 1}α

Tampermf1,··· ,ft ≈ε Copy
m
Simf1,··· ,ft

where Tampermf,g denotes the distribution (Xi1 , · · · , Xij ,Dec(f1(X1), · · · , ft(Xt))),
where Enc(m) = (X1, · · · , Xt) and (Xi1 , · · · , Xij ) represents some j states of
the total t states. CopymSimf1,··· ,ft is defined as

(Xi1 , · · · , Xij , m̃)← Simf1,··· ,ft

CopymSimf1,··· ,ft =

{
(Xi1 , · · · , Xij ,m) if (Xi1 , · · · , Xij , m̃) = (Xi1 , · · · , Xij , same

∗)

(Xi1 , · · · , Xij , m̃) otherwise

Simf1,··· ,ft should be efficiently samplable given oracle access to (f1, · · · , ft)(.).

3 Building blocks

We use information-theoretic message authentication codes, strong average case
extractor and an augmented non-malleable code for 2-split-state family , as build-
ing blocks to our construction. We define these building blocks below.

3.1 One-Time Message Authentication Codes

A family of pair of functions {Tagka : {0, 1}γ → {0, 1}δ, Vrfyka : {0, 1}γ ×
{0, 1}δ → {0, 1}}ka∈{0,1}τ is said to be a µ− secure one time MAC if

1. For ka ∈R {0, 1}τ , ∀ m ∈ {0, 1}γ , Pr[Vrfyka(m,Tagka(m)) = 1] = 1
2. For any m 6= m′, t, t′, Pr

ka
[Tagka(m) = t|Tagka(m′) = t′] ≤ µ for ka ∈R {0, 1}τ

3.2 Average-case Extractors

Definition 4. [DORS08, Section 2.5] Let Ext : {0, 1}n × {0, 1}d → {0, 1}l
be a polynomial time computable function. We say that Ext is an efficient
average-case (n, t, d, l, ε)-strong extractor if for all pairs of random variables

(W, I) such that W is an n-bit string satisfying H̃∞(W |I) ≥ t, we have
SD ((Ext(W ;X), X, I), (U,X, I)) , where X is uniform on {0, 1}d.



4 Non-malleable Randomness Encoders

We now formally define non-malleable randomness encoding and give a construc-
tion for the same.

4.1 Definition

We first formalize the definition of a non-malleable randomness encoder. The
goal is to argue that the original message looks random, even given the modified
message. But, here the message and the codeword are both generated within
the tampering experiment and the experiment outputs the message along with
the modified message. This is where the non-malleability definition will defer
from the regular NMC definition 2. We capture the goal by saying that, we are
able to simulate the modified message, such that its joint distribution with a
message chosen independently uniformly at random is statistically close to the
tampering experiment’s output. The case where the simulator outputs same∗ is
a technicality, which we address in the definition below.

Definition 5. Let (NMREnc,NMRDec) be s.t. NMREnc : {0, 1}r → {0, 1}k ×
({0, 1}n1 × {0, 1}n2) is defined as NMREnc(r) = (NMREnc1(r),NMREnc2(r)) =
(m, (x, y)) and NMRDec : {0, 1}n1 × {0, 1}n2 → {0, 1}k.
We say that (NMREnc,NMRDec) is a ε-non-malleable randomness encoder with
message space {0, 1}k and codeword space {0, 1}n1×{0, 1}n2 , for the distribution
R on {0, 1}r with respect to the 2-split-state family F if the following is satisfied:

– Correctness:

Pr
r←R

[NMRDec(NMREnc2(r)) = NMREnc1(r)] = 1

– Non-malleability: For each (f, g) ∈ F , ∃ a distribution NMRSimf,g over
{0, 1}k ∪ {same∗,⊥} such that

NMRTamperf,g ≈ε Copy(Uk,NMRSimf,g)

where NMRTamperf,g denotes the distribution
(NMREnc1(R),NMRDec((f, g)(NMREnc2(R)))1 and Copy(Uk,NMRSimf,g)
is defined as:

u← Uk; m̃← NMRSimf,g

Copy(u, m̃) =

{
(u, u), if m̃ = same∗

(u, m̃), otherwise

NMRSimf,g should be efficiently samplable given oracle access to (f, g)(.).

Further, the rate of this code is defined as k/(n1 + n2)

1 Here (f, g)(NMREnc2(R)) just denotes the tampering by the split-state tampering
functions f and g on the corresponding states.



While the non-malleability condition above, in flavor, resembles the seedless non-
malleable extractors (the decoder function in the above protocol behaves like a
seedless non-malleable extractor), the key difference is that, here the two states
being tampered are correlated (through the encoder), while in a 2-source seedless
NME, the sources need to be independent.

4.2 Notation

– NMEnc,NMDec be an [ε1, 1]-augmented-non-malleable code for 2-split state
family over message and codeword spaces as {0, 1}α, {0, 1}β1 × {0, 1}β2 re-
spectively (as in Def 3), with the message length α and the length of the
2 states, β1, β2, respectively. NMTampermf,g,NMSimf,g denote the tampered
message distribution of m and the simulator of NMEnc,NMDec with respect
to tampering functions (f, g)

– Tag′,Vrfy′ be an information theoretic ε2-secure one time MAC over key,
message, tag spaces as {0, 1}τ1 , {0, 1}n, {0, 1}δ1 respectively.

– Ext be an (n, t, d, l + τ, ε3) average case strong extractor.

The parameters will be chosen such that α = τ1 + δ1 + d and n > 2 + l + τ + t.
(Refer to Section 4.5 for details)

4.3 Construction Overview

We now build a non-malleable randomness encoder, where the randomness is
generated as the output of an extractor. To encode the seed, we use a regular
2-state aug-NMC. As mentioned in the introduction, in order to ensure that
the source is not modified, when the seed is the same, we authenticate it using
a MAC and encode the MAC key and tag along with the seed. In addition,
to obtain a 2-state code, we combine the source with one of the states of the
underlying aug-NMC.

NMREnc(r) :

– Parse r as s||w||ka1
– ke||ka2 = Ext(w; s)
– t1 = Tag′ka1 (w)

– (L,R)← NMEnc(ka1 ||t1||s)
– O/P: (ke||ka2 , (L||w,R))

NMRDec(L||w,R) :

– ka1 ||t1||s = NMDec(L,R)
– If ka1 ||t1||s = ⊥ output ⊥
– else if Vrfy′ka1 (w, t1) = 1

Output Ext(w, s)
else Output ⊥

Theorem 1. Let NMEnc,NMDec be an [ε1, 1]-augmented-non-malleable code for
the 2-split state family, Tag′,Vrfy′ be an information theoretic ε2-secure one time
MAC given above. Let Ext be an (n, t, d, l + τ, ε3) average case strong extractor.
Let α = τ1 + δ1 + d and n > 2 + l + τ + t.
Then (NMREnc,NMRDec) is a non-malleable randomness encoding for the uni-
form distribution on {0, 1}d+n+τ1 , with respect to the 2-split-state family.
Further, the above construction can be instantiated, as in Section 4.5, to achieve



a constant rate of
1

2 + ζ
, for any ζ > 0 and an error of 2−Ω(l/ logρ+1 l), for any

ρ > 0.

Proof. We give the proof in two steps. Firstly, we prove that the proposed con-
struction is a non-malleable randomness encoding scheme (Section 4.4). Sec-
ondly, we set the parameters to achieve the desired rate and error (Section 4.5).

4.4 Security proof

Define the 2-split-state tampering family for the above construction as

F = {(f, g) : f : {0, 1}β1 × {0, 1}n → {0, 1}β1 × {0, 1}n, g : {0, 1}β2 → {0, 1}β2}

Correctness of the construction follows by its definition.
To show that (NMREnc,NMRDec) satisfies non-malleability, we need to show
that ∀ (f, g) ∈ F , ∃ NMRSimf,g such that

NMRTamperf,g ≈ε Copy(Uk,NMRSimf,g).

Let f, g ∈ F . We define the simulator NMRSimf,g as follows:

NMRSimf,g :

1. w ∈R {0, 1}n
2. (L, ˜ka1 ||t̃1||s̃)← NMSimfw,g

// where fw is the function f with w hardcoded.//
3. w̃ = fL(w)

// where fL is the function f with L hardcoded.//
4. If ˜ka1 ||t̃1||s̃ = same∗:
• If w̃ = w output same∗

• else output ⊥
5. Else if Vrfy′ ˜ka1

(w̃, t̃1) = 1 output Ext(w̃; s̃)

6. Else output ⊥

We now prove the closeness of NMRTamperf,g and Copy(Uk,NMRSimf,g)
through a sequence of hybrids:



NMRTamperf,g :

1. r ∈R {0, 1}d+n+τ1 ;
Parse r as s||w||ka1

2. t1 = Tag′ka1 (w)

3. (L, ˜ka1 ||t̃1||s̃)← NMTamper
ka1 ||t1||s
fw,g

4. w̃ = fL(w)
5. ke||ka2 = Ext(w; s)
6. If Vrfy′ ˜ka1

(w̃, t̃1) = 1

output ke||ka2 ,Ext(w̃; s̃)
7. Else output ke||ka2 ,⊥.

Hybrid1f,g :

1. r ∈R {0, 1}d+n+τ1
Parse r as s||w||ka1

2. t1 = Tag′ka1 (w)

3. (L, ˜ka1 ||t̃1||s̃)← NMSimfw,g

If ˜ka1 ||t̃1||s̃ = same∗,
set ˜ka1 ||t̃1||s̃ = ka1 ||t1||s

4. w̃ = fL(w)
5. ke||ka2 = Ext(w; s)
6. If Vrfy′ ˜ka1

(w̃, t̃1) = 1

output ke||ka2 ,Ext(w̃; s̃)
Else output ke||ka2 ,⊥.

Hybrid2f,g :

1. s||w ∈R {0, 1}d+n
2. (L, ˜ka1 ||t̃1||s̃)← NMSimfw,g

3. w̃ = fL(w)
4. ke||ka2 = Ext(w; s)
5. If ˜ka1 ||t̃1||s̃ = same∗:
• If w̃ = w

output ke||ka2 , ke||ka2
• else output ke||ka2 ,⊥

Else if Vrfy′ ˜ka1
(w̃, t̃1) = 1

output ke||ka2 ,Ext(w̃; s̃)
Else output ke||ka2 ,⊥

Hybrid3f,g :

1. w ∈R {0, 1}n
2. (L, ˜ka1 ||t̃1||s̃)← NMSimfw,g

3. w̃ = fL(w)
4. ke||ka2 ∈R {0, 1}l+τ
5. If ˜ka1 ||t̃1||s̃ = same∗:
• If w̃ = w

output ke||ka2 , ke||ka2
• else output ke||ka2 ,⊥

Else if Vrfy′ ˜ka1
(w̃, t̃1) = 1

output ke||ka2 ,Ext(w̃; s̃)
Else output ke||ka2 ,⊥

Claim 1. If (NMEnc,NMDec) is a ε1-augmented-non-malleable code, then
NMRTamperf,g ≈ε1 Hybrid1f,g.

Proof. By augmented non-malleability of (NMEnc,NMDec), we get

NMTamper
ka1 ||t1||s
fw,g

≈ε1 Copy
ka1 ||t1||s
NMSimfw,g

By using Lemma 3, we get

w, ka1 ||t1||s,NMTamper
ka1 ||t1||s
fw,g

≈ε1 w, ka1 ||t1||s, Copy
ka1 ||t1||s
NMSimfw,g

Now, the outputs of NMRTamperf,g and Hybrid1f,g are deterministic functions
of above random variables. Hence, by Lemma 2, we get

NMRTamperf,g ≈ε1 Hybrid1f,g

Claim 2. If (Tag′,Vrfy′) is an information theoretic ε2-secure one time MAC,
then Hybrid1f,g ≈ε2 Hybrid2f,g



Proof. If same∗ is not the value sampled from NMSimh1,h2
, then the output

of the two hybrids are identical. Therefore, the statistical distance is zero in
this case. When same∗ is sampled, the key difference between Hybrid1f,g and
Hybrid2f,g is that, corresponding to this case, we remove the two verify checks
in Hybrid2f,g and simply replace it with the equality checks. Intuitively, in this
case, the statistical closeness would hold due to unforgeability of MAC. The full
proof can be found in Appendix A.1.

Claim 3. If Ext is an (n, t, d, l + τ, ε3) average case extractor, then
Hybrid2f,g ≈ε3 Hybrid3f,g.

2

Proof. We first consider the following random variables, which capture the
auxiliary information. We then use extractor security and Lemma 2 to prove
the closeness of the two hybrids.
We consider the output of NMSimfw,g, which is (L, ˜ka1 ||t̃1||s̃) and define the
following random variables, dependent on this:
We start with bsame∗ , which indicates whether NMSimfw,g has output same∗ or
not

bsame∗ =

{
1 if ˜ka1 ||t̃1||s̃ = same∗

0 otherwise

Further, b⊥ is an indicator of whether NMSimfw,g output ⊥ or not.

b⊥ =

{
1 if ˜ka1 ||t̃1||s̃ = ⊥
0 otherwise

We also have:

eq(w) =

{
0 if fL(w) 6= w

1 if fL(w) = w

which is an indicator of whether w̃ is modified or not. And,

V erify(w) = Vrfy′ ˜ka1
(fL(w), t̃1)

which is the indicator of the MAC verification bit.
Further define:

Y (w, b1, b2) :=


eq(w) if b1 = 1

(V erify(w),Ext(w̃; s̃)) if b1 = 0 ∧ b2 = 0

⊥ otherwise

We now define the auxiliary information by Ê = (bsame∗ , b⊥, Y (W, bsame∗ , b⊥)).
We now define the following function
G(e, k) :

2 We refer the reader to Appendix A.2 for an alternate proof of this claim



– Parse e = (bsame∗ , b⊥, y = Y (w, bsame∗ , b⊥))3.
– If bsame∗ = 1:
• If y = 1, output (k, k)
• Else output (k,⊥)

– Else:
• If b⊥ = 1, output (k,⊥).
• Else parse y = (V erify(w),Ext(w̃; s̃)).

* if V erify(w) = 1 output (k,Ext(w̃; s̃))
* else output (k,⊥)

The outputs of Hybrid2f,g and Hybrid3f,g are G(Ê,Ext(W ;S)) and G(Ê, Ul+τ )
respectively, where G is deterministic. So, to prove this claim it suffices to show

Ê,Ext(W ;S) ≈ε3 Ê, Ul+τ (1)

Observe that Ê depends on NMSimfw,g and w, which are independent of the seed

s. Therefore it can be captured as auxiliary information. Ê takes at most 23+l+τ

possible values. Hence, H̃∞(W |Ê) ≥ H∞(W )− (3 + l+ τ) = n− (3 + l+ τ), by
Lemma 4. As n − (3 + l + τ) > t (due to the way we set parameters in section
4.5), by security of average case extractor, Equation 1 holds. This proves the
claim.

From above Claims 1,2 and 3, we get:

NMRTamperf,g ≈ε1 Hybrid1f,g ≈ε2 Hybrid2f,g ≈ε3 Hybrid3f,g ≡ Copy(Uk,NMRSimf,g)

i.e., NMRTamperf,g ≈ε1+ε2+ε3 Copy(Uk,NMRSimf,g)

4.5 Rate and Error analysis

We now present the details of the rate of the code as well as the error it achieves.
We instantiate the above construction using specific MAC construction, average
case extractor Ext and non-malleable code (NMEnc,NMDec), as given in the
lemmata below.
As we are encoding the seed of the extractor using the underlying non-malleable
code, it is important that the strong extractor we use has short seed length. This
is guaranteed by the following lemma.

Lemma 5. [GUV07] For every constant ν > 0 all integers n ≥ t and all ε ≥ 0,
there is an explicit (efficient) (n, t, d, l, ε)−strong extractor with l = (1 − ν)t −
O(log(n) + log(

1

ε
)) and d = O(log(n) + log(

1

ε
)).

Now, as we give some auxiliary information about the source, we require the
security of the extractor to hold, even given this information. Hence, we use
average case extractors, given in the following lemma.

3 Here, we abuse the notation: bsame∗ and b⊥ represent the particular values taken by
the corresponding random variables



Lemma 6. [DORS08] For any µ > 0, if Ext is a (worst case)(n, t, d, l, ε)−strong

extractor, then Ext is also an average-case (n, t + log(
1

µ
), d, l, ε + µ) strong ex-

tractor.

We now combine the Lemmata 5 and 6 to get an average case extractor with
optimal seed length.

Corollary 1. For any µ > 0 and every constant ν > 0 all integers n ≥ t and all

ε ≥ 0, there is an explicit (efficient) (n, t+log(
1

µ
), d, l, ε+µ)− average case strong

extractor with l = (1− ν)t−O(log(n) + log(
1

ε
)) and d = O(log(n) + log(

1

ε
)).

Now, we also encode the authentication keys and tags using the underlying non-
malleable code. Hence, we require them to have short lengths. This is guaranteed
by the following lemma [JKS93]:

Lemma 7. For any n′, ε2 > 0 there is an efficient ε2−secure one time MAC

with δ ≤ (log(n′) + log(
1

ε2
)), τ ≤ 2δ, where τ, n′, δ are key, message, tag length

respectively.

Further, we use the 2-split-state non-malleable code by [Li17] to instantiate our
construction.

Lemma 8. [Li17, Theorem 7.12] For any β ∈ N there exists an explicit non-
malleable code with efficient encoder/decoder in 2-split state model with block

length 2β, rate Ω

(
1

log β

)
and error = 2

−Ω

 β

log β



Further, we show in Appendix B (Corollary 2) that the construction correspond-
ing to Lemma 8 is in fact an [2−Ω(β/log β), 1]-augmented-non-malleable code for
the two split-state family with the same rate as above.

4.5.1 Setting parameters We instantiate our construction using
(NMEnc,NMDec) as in Corollary 2, strong average case extractors, as in Corol-
lary 1 and one time information theoretic MAC, as in Lemma 7.

– We set the error parameters as ε, µ, ε1, ε2 = 2−λ and ε3 = ε+ µ.
– The message length and codeword length in the construction of

(NMREnc,NMRDec) above, are l + τ and 2β + n respectively. Here we take
ka2 to be of size τ = O(log l + λ).

– We estimate the length of the source (n). As we saw in the Claim 3 of
the proof (Section 4.4), we leak auxiliary information of length at most
3 + l + τ . Hence, by Lemma 4, the average entropy of the source, given
auxiliary information is ≥ n− (3 + l + τ).

To use extractor security, we require that the average entropy is at least the



entropy threshold t+ log( 1
µ ), i.e., n− (3 + l + τ) ≥ t+ log( 1

µ ).

By Corollary 1 (with output length of extractor l + τ), we have

t = (l + τ +O(log(n) + log(
1

ε
)))

1

1− ν
.

Hence, taking ν as a very small constant close to 0, we get: for some constant
ζ close to 0

n = (2 + ζ)l +O(log l + λ) (2)

– We now estimate the codeword length 2β, of the underlying NMC.
The message size for this codeword is α = τ1 + δ1 + d. By Lemma 7 and
Corollary 1, we get α = O(log(l) + λ).
By using the rate in Lemma 8, we get:

β = O((log(l))2 + λ log(λ) + 2λ log(l)) (3)

4.5.2 Rate The rate of our construction of non-malleable randomness encod-
ing is:

R =
l + τ

2β + n

By substituting n and β from Equations 2 and 3, respectively and τ as described
above, we get:

R =
l +O(log l + λ)

O((log(l))2 + λ log(λ) + 2λ log(l)) + (2 + ζ)l +O(log l + λ)

For large l, and taking λ = o( l
log l ), we get

R ≥ 1

2 + ζ

Hence, the construction given achieves rate atleast 1
2+ζ , for some ζ close to 0.

4.5.3 Error Error of the protocol, as seen in the proof, is ε1+ε2+ε3 = 4(2−λ).

Since, λ = o( l
log l ), the error will be at least 2−

l
log l . For any ρ > 0, fixing

λ =
l

logρ+1 l
, the error would be at most 4.2

−
l

logρ+1 l . Setting κ = λ− log 5 the

error would be 2−κ = 2−Ω(l/ logρ+1 l).



5 Non-malleable Codes from Non-malleable Randomness
Encoders

As an application of non-malleable randomness encoding, we build a 3-state
1-augmented-non-malleable code, using non-malleable randomness encoding in
black-box. For achieving an explicit constant rate and a specific error, we in-
stantiate the construction using the construction in Section 4.

5.1 Construction overview

To encode the message, we first hide the message using one part of the random-
ness generated in the underlying NMRE. To ensure that this ciphertext is not
modified, we authenticate it using a MAC. We show that we can use NMRE’s
“random messages” as the keys for encryption as well authentication. The fact
that the tag t does not need to be non-malleably encoded, and can instead be
combined with c, is what allows us to get a 3-state NMC construction while only
making a black-box use of the underlying NMRE. Details follow.

AEnc(m)

– r ∈R {0, 1}r
′

– (ka||ke, y1, y2)← NMREnc(r)
– c = m⊕ ke
– t = Tagka(c)
– Output (y1, y2, c||t)

ADec(ỹ1, ỹ2, c̃||t̃)

– k̃e||k̃a = NMRDec(ỹ1, ỹ2)
– If Vrfyk̃a(c̃, t̃) = 1

Output c̃⊕ k̃e
else Output ⊥

Theorem 2. Let (NMREnc,NMRDec) be a 2-state ε1- non-malleable
randomness encoding scheme for the uniform distribution on {0, 1}r′ , for mes-
sages in {0, 1}l+τ and (Tag,Vrfy) be an information theoretic ε2-secure one-
time MAC with key, message and tag spaces being {0, 1}τ , {0, 1}l, {0, 1}δ. Then
(AEnc,ADec), as defined above, is a 3-state [ε1 + ε2, 1]-augmented non-malleable
code for messages of length l(with the augmented state being c||t).
Further, instantiating the construction with (NMREnc,NMRDec) achieving rate
and error, as in Section 4.5, we can achieve a constant rate of 1

3+ζ , for any

ζ > 0 and an error of 2−Ω(l/ logρ+1 l), for any ρ > 0.



5.2 Security Proof

Let (f1, f2, g) ∈ F3(3-split state tampering family) where f1 : {0, 1}β1 →
{0, 1}β1 , f2 : {0, 1}β2 → {0, 1}β2 , g : {0, 1}l+δ → {0, 1}l+δ. We propose the
following distribution as simulator for (AEnc,ADec).

ASimf1,f2,g

– ke||ka ∈R {0, 1}l+τ
– k̃e||k̃a ← NMRSimf1,f2

– c = 0⊕ ke
– t = Tagka(c)
– c̃||t̃ = g(c||t)
– If k̃e||k̃a = same∗

If c̃ = c, Output c, t, same∗

Else output c, t,⊥
Else if Vrfyk̃a(c̃, t̃) = 1

Output c, t, c̃⊕ k̃e
Else Output c, t,⊥

We prove that ASimf1,f2,g is the simulator of (AEnc,ADec) through a sequence
of hybrids.

Claim 1 If (NMREnc,NMRDec) is a non-malleable randomness encoding
scheme, then ATampermf1,f2,g ≈ε1 Hybrid1mf1,f2,g.

Proof. By non-malleability of (NMREnc,NMRDec), we have

NMRTamperf1,f2 ≈ε1 Copy(Uk,NMRSimf1,f2)

As m is independent we have

m,NMRTamperf1,f2 ≈ε1 m,Copy(Uk,NMRSimf1,f2)

By Lemma 2 we have,

m, c, t,NMRTamperf1,f2 ≈ε1 m, c, t, Copy(Uk,NMRSimf1,f2)

The outputs of ATampermf1,f2,g,Hybrid1
m
f1,f2,g are determined by a deterministic

function of above distributions. Therefore by Lemma 2 we have

m,ATampermf1,f2,g ≈ε1 m,Hybrid1
m
f1,f2,g



ATampermf1,f2,g

– ke||ka, k̃e||k̃a ← NMRTamperf1,f2

– c = m⊕ ke
– t = Tagka(c)
– c̃||t̃ = g(c||t)
– If Vrfyk̃a(c̃, t̃) = 1

Output c, t, c̃⊕ k̃e
Else Output c, t,⊥

Hybrid1mf1,f2,g

– ke||ka ∈R {0, 1}l+τ
– k̃e||k̃a ← NMRSimf1,f2

– If k̃e||k̃a = same∗

set k̃e||k̃a = ke||ka
– c = m⊕ ke
– t = Tagka(c)
– c̃||t̃ = g(c||t)
– If Vrfyk̃a(c̃, t̃) = 1

Output c, t, c̃⊕ k̃e
Else Output c, t,⊥

Hybrid2mf1,f2,g

– ke||ka ∈R {0, 1}l+τ
– k̃e||k̃a ← NMRSimf1,f2

– c = m⊕ ke
– t = Tagka(c)
– c̃||t̃ = g(c||t)
– If k̃e||k̃a = same∗

set k̃e||k̃a = ke||ka
– If Vrfyk̃a(c̃, t̃) = 1

Output c, t, c̃⊕ k̃e
Else Output c, t,⊥

Hybrid3mf1,f2,g

– ke||ka ∈R {0, 1}l+τ
– k̃e||k̃a ← NMRSimf1,f2

– c = m⊕ ke
– t = Tagka(c)
– c̃||t̃ = g(c||t)
– If k̃e||k̃a = same∗

If c̃ = c Output c, t,m
Else output c, t,⊥

Else if Vrfyk̃a(c̃, t̃) = 1

Output c, t, c̃⊕ k̃e
Else Output c, t,⊥

Hybrid4mf1,f2,g

– ke||ka ∈R {0, 1}l+τ
– k̃e||k̃a ← NMRSimf1,f2

– c = 0⊕ ke
– t = Tagka(c)
– c̃||t̃ = g(c||t)
– If k̃e||k̃a = same∗

If c̃ = c Output c, t,m
Else output c, t,⊥

Else if Vrfyk̃a(c̃, t̃) = 1

Output c, t, c̃⊕ k̃e
Else Output c, t,⊥

Claim 2 Hybrid1mf1,f2,g ≡ Hybrid2mf1,f2,g

Proof. The claim trivially follows because Hybrid2mf1,f2,g is rewriting of
Hybrid1mf1,f2,g.

ke, ka,NMRSimf1,f2 ≡ ke, ka,NMRSimf1,f2

m, c, t, ke, ka,NMRSimf1,f2 ≡ m, c, t, ke, ka,NMRSimf1,f2



m,Hybrid1mf1,f2,g ≡ m,Hybrid2
m
f1,f2,g

All equations follow by Lemma 2

Claim 3 If (Tag,Vrfy) is an ε2 IT-secure-One-time Mac, then Hybrid2mf1,f2,g ≈ε2
Hybrid3mf1,f2,g

Proof. Let E denote the event k̃e, k̃a 6= same∗, and Ẽ, its compliment. Given E,
both the hybrids are identical. Given Ẽ the statistical distance of the hybrids is
at most

Pr
ka

[Vrfyka(c̃, t̃) = 1|t = Tagka(c), c̃||t̃ = f(c||t)] ≤ ε2

Therefore claim follows.

Claim 4 By semantic security of One Time Pad encryption

Hybrid3mf1,f2,g ≡ Hybrid4mf1,f2,g

Proof. By semantic security,

m,m⊕ ke ≡ m, 0⊕ ke
m, t,m⊕ ke, ka ≡ m, t, 0⊕ ke, ka

The outputs of the hybrids 3 and 4 are a randomized function of above distri-
butions. Therefore

Hybrid3mf1,f2,g ≡ Hybrid4mf1,f2,g ≡ Copy
m
Asimf1,f2,g

Combining the above Claims 1,2,3 and 4, we have

ATampermf1,f2,g ≈ε1+ε2 Copy
m
Asimf1,f2,g

5.3 Rate and error analysis

From Section 4.5, we have a non-malleable randomness encoding

(NMREnc,NMRDec) with a constant rate of R ≥ 1

2 + ζ
, for any ζ > 0

and an error of ε1 = 2−Ω(l/ logρ+1 l), for any ρ > 0.

5.3.1 Rate The rate of (AEnc,ADec) is:

R′ =
l

1
R .(l + τ) + l + δ

=
l

(2 + ζ).(l + τ) + l + δ

where, δ is size of tag t. Hence,

R′ =
l

(3 + ζ)l + (2 + ζ)τ + δ

By using Lemma 7, we know that for λ = o(l/ log l), we get τ + δ ≤ 3(log l +
o(l/ log l)). Hence, we get, for large l:

R′ ≥ 1

3 + ζ



5.3.2 Error By setting ε2 = 2−λ, we get that the error of (AEnc,ADec) is

ε1 + ε2 = 2−Ω(l/ logρ+1 l), for any ρ > 0.

6 Conclusion

In this work, we introduced Non-malleable Randomness Encoders as a re-
laxation of NMCs, applicable in settings where randomness is encoded. We
built a 1/2-rate, 2-state NMRE. In cases where NMREs suffice, this presents a
significant advantage over using a poor-rate 2-state NMC. It would be interest-
ing to find other applications of NMREs in addition to the ones presented in
this paper i.e., to tamper-resilient security and to building 3-state (standard)
with rate 1

3 in a black-box. (Infact, our techniques can be generalized to show
that (t + 1)-state augmented NMCs can be constructed from t-state NMREs
in black box manner.) While we know that the optimal achievable rate for
2-state NMCs is 1/2, it would be interesting to see what the optimal achievable
rate for 2-state NMREs is and, more generally, for t-state NMREs. Of course,
the crux of this long, compelling line of research, which is to build constant
rate efficient 2-state NMCs, still remains open and would be fascinating to solve.

Acknowledgement

We thank Eshan Chattopadhyay for helpful discussions on connections between
non-malleable codes and extractors. We also thank the reviewers of Eurocrypt
for their useful comments.

References

AAG+16. Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji,
Omkant Pandey, and Manoj Prabhakaran. Optimal computational split-
state non-malleable codes. In Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceed-
ings, Part II, pages 393–417, 2016.

ADKO15. Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski.
Non-malleable reductions and applications. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 459–468, 2015.

ADL14. Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable
codes from additive combinatorics. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 774–783,
2014.

AGM+15. Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and
Manoj Prabhakaran. A rate-optimizing compiler for non-malleable codes
against bit-wise tampering and permutations. In Theory of Cryptography
- 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland,
March 23-25, 2015, Proceedings, Part I, pages 375–397, 2015.



AKO15. Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. Inception makes
non-malleable codes stronger. IACR Cryptology ePrint Archive, 2015:1013,
2015.

CG14a. Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable
codes. In Innovations in Theoretical Computer Science, ITCS’14, Prince-
ton, NJ, USA, January 12-14, 2014, pages 155–168, 2014.

CG14b. Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding
against bit-wise and split-state tampering. In Theory of Cryptography -
11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,
February 24-26, 2014. Proceedings, pages 440–464, 2014.

CKR16. Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman.
Information-theoretic local non-malleable codes and their applications. In
Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel
Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 367–392,
2016.

CZ14. Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against
constant split-state tampering. In 55th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 306–315, 2014.

DKO13. Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable
codes from two-source extractors. In Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18-22, 2013. Proceedings, Part II, pages 239–257, 2013.

DKS17. Dana Dachman-Soled, Mukul Kulkarni, and Aria Shahverdi. Tight upper
and lower bounds for leakage-resilient, locally decodable and updatable non-
malleable codes. IACR Cryptology ePrint Archive, 2017:15, 2017.

DLSZ14. Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Lo-
cally decodable and updatable non-malleable codes and their applications.
IACR Cryptology ePrint Archive, 2014:663, 2014.
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A Proofs of Claims 2 and 3 in Section 4.4

A.1 Proof of Claim 2 in Section 4.4

We define the following events:

– Let E be the event that same∗ is sampled from NMSimfw,g and Ẽ be its
compliment.

– Let F be the event that w̃ = w and F̃ its complement.

By Proposition 1 we get:

SD
(
Hybrid1f,g;Hybrid2f,g

)
= Pr[E] · SD

(
Hybrid1f,g|E;Hybrid2f,g|E

)
+ Pr[Ẽ] · SD

(
Hybrid1f,g|Ẽ;Hybrid2f,g|Ẽ

)
︸ ︷︷ ︸

=0 The hybrids are identical in ”not same∗case

So, now remains the case when NMSimfw,g outputs same∗. By using unforge-
ability of (Tag′,Vrfy′) we show the that two hybrids are statistically close.
2.Pr[E].SD

(
Hybrid1f,g|E;Hybrid2f,g|E

)



=
∑

m∈{0,1}l+τ

m̃∈{0,1}l+τ∪{⊥}

Pr[E]|Pr[Hybrid1f,g = (m, m̃)|E]− Pr[Hybrid2f,g = (m, m̃)|E]|

= Pr[E]
∑

m∈{0,1}l+τ

m̃∈{0,1}l+τ∪{⊥}

|Pr[F |E].

(Pr[Hybrid1f,g = (m, m̃)|E,F ]− Pr[Hybrid2f,g = (m, m̃)|E,F ]︸ ︷︷ ︸
=0 as given E and F both the hybrids are identical

)+ Pr[F̃ |E].

(Pr[Hybrid1f,g = (m, m̃)|E, F̃ ]− Pr[Hybrid2f,g = (m, m̃)|E, F̃ ])|
= Pr[E]

∑
m∈{0,1}l+τ

m̃∈{0,1}l+τ∪{⊥}

Pr[F̃ |E](|Pr[Hybrid1f,g = (m, m̃)|E, F̃ ]

− Pr[Hybrid2f,g = (m, m̃)|E, F̃ ]|)
= Pr[E] Pr[F̃ |E]( ∑

m∈{0,1}l+τ

m̃∈{0,1}l+τ

|Pr[Hybrid1f,g = (m, m̃)|E, F̃ ]

− Pr[Hybrid2f,g = (m, m̃)|E, F̃ ]︸ ︷︷ ︸
= 0 as given E,F̃ Hybrid 2 outputs ⊥ as second component

|

+
∑

m∈{0,1}l+τ
|Pr[Hybrid1f,g = (m,⊥)|E, F̃ ]− Pr[Hybrid2f,g = (m,⊥)|E, F̃ ]|)

= Pr[F̃ ](1 +
∑

m∈{0,1}l+τ
(( ∑

m̃∈{0,1}l+τ
Pr[Hybrid1f,g = (m, m̃)|E, F̃ ])

− Pr[Hybrid1f,g = (m,⊥)|E, F̃ ]))

= 2Pr[F̃ ](Pr[Second component of output of Hybrid1f,g 6= ⊥|E, F̃ ])

= 2Pr[F̃ ] Pr[Vrfy ˜ka1
(w̃, t̃1) = 1 ∧ t1 = Tagka1

(w)|E, F̃ ]

= 2Pr[F̃ ] Pr[Vrfyka1
(w̃, t1) = 1 ∧ t1 = Tagka1

(w)|F̃ ]

≤ 2(ε2)



∴ Hybrid1f,g ≈ε2 Hybrid2f,g

A.2 Alternate proof of Claim 3 in Section 4.4

Claim 3. If Ext is an (n, t, d, l + τ, ε3) average case extractor, then
Hybrid2f,g ≈ε3 Hybrid3f,g.

Proof. As the function modifying the state L, fw, is dependent on W , hence
NMSimfw,g is also dependent on W . Hence, before analyzing the auxiliary infor-
mation leaked in each case, corresponding to the value of NMSimfw,g, we define
the following indicator random variables, which are also auxiliary information,
w.r.t. to the source W :

bsame∗ =

{
1 if ˜ka1 ||t̃1||s̃ = same∗

0 otherwise

b⊥ =

{
1 if ˜ka1 ||t̃1||s̃ = ⊥
0 otherwise

By Proposition 1, we get:
SD

(
Hybrid2f,g,Hybrid3f,g

)
≤ Pr[bsame∗ = 1] SD

(
Hybrid2f,g|bsame∗ = 1,Hybrid3f,g|bsame∗ = 1

)
+ Pr[bsame∗ = 0 ∧ b⊥ = 1] SD

Hybrid2f,g;Hybrid3f,g|bsame∗ = 0 ∧ b⊥ = 1


+ Pr[bsame∗ = 0 ∧ b⊥ = 0] SD

Hybrid2f,g;Hybrid3f,g|bsame∗ = 0 ∧ b⊥ = 0


(4)

Now, in order to analyze the auxiliary information leaked in each of the three
cases, and use the extractor security, we first consider the conditional distribu-
tion on W , when conditioned on each of the three cases. We denote the three
conditional distributions by: W1 := W |bsame∗ = 1, W2 := W |bsame∗ = 0∧b⊥ = 1
and W3 := W |bsame∗ = 0 ∧ b⊥ = 0. By [Lemma 2.2a,[DORS08]], we get:

Pr[H∞(W1) ≥ H̃∞(W |bsame∗)− λ] ≥ 1− 2−λ

which by [Lemma 2.2b, [DORS08]]further gives:

Pr[H∞(W1) ≥ n− 1− λ] ≥ 1− 2−λ

Similarly, we get
Pr[H∞(W2) ≥ n− 2− λ] ≥ 1− 2−λ

Pr[H∞(W3) ≥ n− 2− λ] ≥ 1− 2−λ



Now, we analyze the additional auxiliary information in each subcase:
Case1 : bsame∗ = 1
In this case , the additional auxiliary information just includes a single bit,
indicating whether w is modified or remains the same. So, we first define this
indicator function:

eq(w) =

{
0 if fL(w) 6= w

1 if fL(w) = w

Let the auxiliary information be denoted by E1 ≡ eq(W ). E1 is independent of
S because E1 is determined given W and W is independent of S. Now, E1 and
W are correlated and E1 can take at most two possible values.
Hence, H̃∞(W1|E1) ≥ H∞(W1) − 1 ≥ n − 1 − λ − 1 w.p. ≥ 1 − 2−λ. Let G1

denote the event H̃∞(W1|E1) ≥ n − λ − 2. As n − λ − 2 > t, by security of
average case extractor, we get:

E1,Ext(W1;S)|G1 ≈ε3 E1, Ul|G1

Now, clearly, in this case, the output of Hybrid2f,g and Hybrid3f,g are functions
of above random variables. Hence, by Lemma 2, we get:

Hybrid2f,g|bsame∗ = 1, G1 ≈ε3 Hybrid3f,g|bsame∗ = 1, G1

Hence, by further using Proposition 1, as Pr[Gc1] ≤ 2−λ, we get:

Hybrid2f,g|bsame∗ = 1 ≈ε3+2−λ Hybrid3f,g|bsame∗ = 1 (5)

Case2 : bsame∗ = 0
This case is further divided into two mutually exclusive events of Case2.
Case2a : b⊥ = 1
Now, let G2 denote the event H∞(W2) ≥ n− 2− λ. Then as Pr[Gc2] ≤ 2−λ and
using extractor security, we get:

SD
(
Hybrid2f,g|bsame∗ = 0 ∧ b⊥ = 1,Hybrid2f,g|bsame∗ = 0 ∧ b⊥ = 1

)
≤ ε3 + 2−λ

(6)

Case2b : b⊥ = 0
In this case, the additional auxiliary information consists of an indicator of ver-
ification of w̃ and the extractor output on modified source and seed. We first
define the indicator of verification bit:

V erify(w) = Vrfy′ ˜ka1
(fL(w), t̃1)

Now, let the auxiliary information be denoted by E2 ≡ (V erify(W ),Ext(W̃ ; S̃)),
where K̃a1 , T̃1, S̃ denote the distributions on the authentication key, tag spaces
and the seed, when sampled from the simulator conditioned on the event Case2b.
E2 is clearly a deterministic function of K̃a1 , W̃ , T̃1, S̃, all of which are indepen-
dent of S (as we use the simulator). Hence, E2 is independent of S. Now, E2



and W are correlated. E2 can take at most 21+l+τ possible values.
Hence, H̃∞(W3|E2) ≥ H∞(W3) − (1 + l + τ) ≥ n − 2 − λ − (1 + l + τ) w.p.

≥ 1 − 2−λ. Let G3 denote the event H̃∞(W3|E2) ≥ n − (3 + λ + l + τ). As
n − (3 + λ + l + τ) > t (if we set parameters appropriately), by security of
average case extractor and using Proposition 1, we get:

E2,Ext(W ;S)|G3 ≈ε3 E2, Ul|G3

Now, clearly, in this case, the output of Hybrid2f,g and Hybrid3f,g are functions
of above random variables. Hence, by Lemma 2, we get:

Hybrid2f,g|bsame∗ = 0 ∧ b⊥ = 0, G3 ≈ε3 Hybrid3f,g|bsame∗ = 0 ∧ b⊥ = 0, G3

Further, since Pr[Gc3] ≤ 2−λ, using Proposition 1, we get

Hybrid2f,g|bsame∗ = 0 ∧ b⊥ = 0 ≈ε3+2−λ Hybrid3f,g|bsame∗ = 0 ∧ b⊥ = 0 (7)

Hence, by Proposition 1, Equations 4, 5, 6 and 7 give:

Hybrid2f,g ≈ε3+2−λ Hybrid3f,g

B Appendix: From t-source strong non-malleable
extractors to t-state 1-augmented NMC

We generalize the connection known between seedless non-malleable extractors
for t independent sources and non-malleable codes for the t-split-state family
([CG14b]), to establish a connection between strong seedless non-malleable ex-
tractors for t independent sources and augmented non-malleable codes for t-split-
state family. We first define strong seedless non-malleable t-source extractor.

Definition 6. [Li17] A function nmExt : ({0, 1}n)t → {0, 1}m is a (k, ε)-
seedless strong non-malleable extractor for t independent sources w.r.t. family
F = {(f1, · · · ft) : fi : {0, 1}n → {0, 1}n}, if it satisfies the following property:
Let X1, · · · , Xt be t independent (n, k)-sources and (f1, · · · , ft) ∈ F be t arbi-
trary functions such that there exists an fj with no fixed points, then for every
i:

(nmExt(X1, · · · , Xt), nmExt(f1(X1), · · · , ft(Xt)), Xi) ≈ε
(Um, nmExt(f1(X1), · · · , ft(Xt)), Xi)

Now, we formulate an alternate definition of a t-source relaxed strong non-
malleable extractor, generalizing the definition of seedless relaxed non-malleable
extractors in [CG14b]. This definition captures the property that the output of
non-malleable extractor on the modified sources along with one of the source,
is simulatable independent of the output of non-malleable extractor on original
sources.



Definition 7. A function nmExt : ({0, 1}n)t → {0, 1}m is a
(k, ε)-seedless relaxed strong non-malleable extractor for t indepen-
dent sources w.r.t. family F = {(f1, · · · ft) : fi : {0, 1}n →
{0, 1}n and ∃ at least one j s.t. fj has no fixed point}, if it satisfies the
following property: Let X1, · · · , Xt be t independent (n, k)-sources and
(f1, · · · , ft) ∈ F , then the following hold:

– nmExt is a t-source extractor for (X1, · · · , Xt), i.e., nmExt(X1, · · · , Xt) ≈ε
Um.

– There exists a distribution D over {0, 1}n × ({0, 1}m ∪ {same∗}) s.t. for an
independent (X1, Y ) ∼ D,

(nmExt(X1, · · · , Xt), X1, nmExt(f1(X1), · · · , ft(Xt))) ≈ε
(nmExt(X1, · · · , Xt), copy((X1, Y ), (X1, nmExt(X1, · · · , Xt))))

Remark 1. It is clear that the non-malleability condition in Def 6 (for i = 1) is
sufficient for the conditions in Def 7 to be satisfied.

But then, this relaxed notion of strong non-malleable extractor is equivalent
to the following general notion of strong non-malleable extractor (where, the
tampering functions can have fixed points) upto a slight loss of parameters.
(This proof follows from [Lemma 5.6, [CG14b]]).

Definition 8. A function nmExt : ({0, 1}n)t → {0, 1}m is a (k, ε)-seedless
strong non-malleable extractor for t independent sources w.r.t. family F =
{(f1, · · · ft) : fi : {0, 1}n → {0, 1}n}, if it satisfies the following property: Let
X1, · · · , Xt be t independent (n, k)-sources and (f1, · · · , ft) ∈ F , then the fol-
lowing hold:

– nmExt is a t-source extractor for (X1, · · · , Xt), i.e., nmExt(X1, · · · , Xt) ≈ε
Um.

– There exists a distribution D over {0, 1}n × ({0, 1}m ∪ {same∗}) s.t. for an
independent (X1, Y ) ∼ D,

(nmExt(X1, · · · , Xt), X1, nmExt(f1(X1), · · · , ft(Xt))) ≈ε
(nmExt(X1, · · · , Xt), copy((X1, Y ), (X1, nmExt(X1, · · · , Xt))))

Hence, we take the above Def 8 for strong non-malleable extractors and prove
the following theorem.

Proposition 2. Let nmExt : ({0, 1}n)t → {0, 1}k be a (n, ε)-seedless strong
non-malleable extractor for t independent sources (by Def 8). Define a coding
scheme (Enc,Dec) with message length k and block length tn as follows. The
decoder Dec is defined by

Dec(x1, · · · , xt) = nmExt(x1, · · · , xt)



The encoder Enc is defined as:

Enc(m) :=

{
x1, · · · , xt

$←− nmExt−1(m)

o/p : (x1, · · · , xt)

Then, (Enc,Dec) is a [ε′, 1]-augmented non-malleable code with error ε′ = ε(2k+
1) for the t-split state family and with rate = k

tn .

Proof. Let m ∈ {0, 1}k and f = (f1, · · · , ft) ∈ F , the t-split-state family be
arbitrary. Since Dec = nmExt is a strong non-malleable extractor, by Def 8, ∃
a distribution D s.t. for (X1, Y ) ∼ Df1,··· ,ft , we have:

(nmExt(X1, · · · , Xt), X1, nmExt(f1(X1), · · · , ft(Xt))) ≈ε
(nmExt(X1, · · · , Xt), copy((X1, Y ), (X1, nmExt(X1, · · · , Xt)))) (8)

Claim. Enc(Uk) is ε-close to uniform.

Proof. By extractor security, we have:

Dec(Utn) ≈ε Uk

Further, as Enc(.) samples uniformly random element of nmExt−1(.), it follows
that

Enc(Dec(Utn)) = Utn

Hence, we get Enc(Uk) ≈ε Enc(Dec(Utn)) = Utn.

Thus, at cost of ε increase in error, we assume codeword is of uniform distribu-
tion.
Let (X1, Y ) ∼ Df1,··· ,ft . Now by Eq 8, just by substitution, we get:

(M,X1,Dec(f(Enc(M))) ≈ε (M, copy((X1, Y ), (X1,M)))

Now, for the arbitrary m that we chose, we get:

(m,X1,Dec(f(Enc(m))) ≈ε2k (m, copy((X1, Y ), (X1,m)))

which proves the theorem.

Augmented-non-malleability of 2-state construction in [Li17]:

Corollary 2. For any β ∈ N there exists an explicit augmented-non-malleable
code with efficient encoder/decoder in 2-split state model with block length 2β,

rate Ω

(
1

log β

)
and error = 2

−Ω

 β

log β





Proof. As proved in [Theorem 7.9, [Li17]], the seedless 2 source non-malleable
extractor constructed in [Li17] satisfies: For any (f, g) in 2-split-state family,
such that atleast one of f or g has no fixed point, we have:

nmExt(X,Y ), X, nmExt(f(X), g(Y )) ≈ε Um, X, nmExt(f(X), g(Y ))

which, by Remark 1, is sufficient to imply the conditions in Def 7. Hence, by
Proposition 2, it is proved that the 2-split-state construction given in [Li17] is
actually a 2-split-state augmented-non-malleable code.
Further, the specific non-malleable extractor of [Li17] gives error and rate pa-
rameters for the augmented-non-malleable code, exactly as obtained in Lemma
8.


	Non-malleable Randomness Encoders and their Applications

