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Abstract. We present a new improvement in the linear programming
technique to derive lower bounds on the information ratio of secret shar-
ing schemes. We obtain non-Shannon-type bounds without using infor-
mation inequalities explicitly. Our new technique makes it possible to de-
termine the optimal information ratio of linear secret sharing schemes for
all access structures on 5 participants and all graph-based access struc-
tures on 6 participants. In addition, new lower bounds are presented also
for some small matroid ports and, in particular, the optimal information
ratios of the linear secret sharing schemes for the ports of the Vamos
matroid are determined.
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1 Introduction

Linear programming involving information inequalities has been extensively used
in different kinds of information theoretic problems. An early instance is the
verification of Shannon information inequalities [75], and we find more examples
in secret sharing [16, 62], network coding [72, 76], and other topics [73].

In this work, we present a new improvement of the linear programming tech-
nique in the search for lower bounds on the information ratio of secret sharing
schemes. Namely, instead of known non-Shannon information inequalities, we
propose to use constraints based on the properties from which those inequalities
are deduced.

Secret sharing, which was independently introduced by Shamir [69] and Blak-
ley [10], is a very useful tool that appears as a component in many different kinds
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of cryptographic protocols. The reader is referred to [4] for a survey on secret
sharing and its applications. In a secret sharing scheme, a secret value is dis-
tributed into shares among a set of participants in such a way that only the
qualified sets of participants can recover the secret value. This work deals exclu-
sively with unconditionally secure and perfect secret sharing schemes, in which
the shares from any unqualified set do not provide any information on the secret
value. In this case, the family of qualified sets of participants is called the access
structure of the scheme.

In a linear secret sharing scheme, the secret and the shares are vectors over
some finite field, and both the computation of the shares and the recovering of the
secret are performed by linear maps. Because of their homomorphic properties,
linear schemes are used in many applications of secret sharing. Moreover, most
of the known constructions of secret sharing schemes yield linear schemes.

The information ratio of a secret sharing schemes is the ratio between the
length of the shares and the length of the secret. The optimization of this pa-
rameter, both for linear and general secret sharing schemes, has attracted a lot
of attention. This problem has been analyzed for several families of access struc-
tures. For example, access structures defined by graphs [5, 11, 13, 17, 19, 21, 33,
35], access structures on a small number of participants [21, 33–35, 41, 62, 70], bi-
partite access structures [27, 61], the ones having few minimal qualified sets [49,
51], or ports of non-representable matroids [7, 50, 58, 62].

That optimization problem is related to the search for asymptotic lower
bounds on the length of the shares, which is one of the main open problems
in secret sharing. The reader is referred to the survey by Beimel [4] for more
information about this topic. For linear secret sharing schemes, building up on
the superpolynomial lower bounds in [3, 6], exponential lower bounds have been
proved recently [63, 65]. Nevertheless, for the general case, no proof for the ex-
istence of access structures requiring shares of superpolynomial size has been
found. Moreover, the best of the known lower bounds is the one given by Csir-
maz [15, 16], who presented a family of access structures on an arbitrary number
n of participants whose optimal information ratio is Ω(n/ log n).

Almost all known lower bounds on the optimal information ratio have been
obtained by the same method, which is called here the linear programming (LP)
technique. In particular, the asymptotic lower bound found by Csirmaz [15, 16]
and most of the lower bounds for the aforementioned families of access struc-
tures. The LP-technique is based on the fact, pointed out by Karnin, Greene
and Hellman [44], that a secret sharing scheme can be defined as a collection
of random variables such that their joint entropies satisfy certain constraints
derived from the access structure.

The technique was first used by Capocelli, De Santis, Gargano and Vac-
caro [13]. In particular, they presented the first examples of access structures
with optimal information ratio strictly greater than 1. Csirmaz [16] refined the
method by introducing some abstraction revealing its combinatorial nature. This
was achieved by using the connection between Shannon entropies and polyma-
troids discovered by Fujishige [28, 29]. The lower bounds on the optimal infor-
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mation ratio that can be obtained by using that connection between Shannon
entropies and polymatroids or, equivalently, by using only Shannon information
inequalities are called here Shannon-type lower bounds. The known exact values
of the optimal information ratio have been determined by finding, for each of the
corresponding access structures, both a Shannon-type lower bound and a linear
secret sharing scheme whose information ratio equals that bound.

A further improvement, which was first applied in [7], consists in adding
to the game constraints that cannot be derived from Shannon information in-
equalities. Specifically, the so-called non-Shannon information inequalities and
non-Shannon rank inequalities. The former provide lower bounds for the general
case, while the bounds derived from the latter apply to linear secret schemes.
That addition made it possible to find several new lower bounds [7, 17, 58, 62]
and also the first examples of access structures whose optimal information ratios
are strictly greater than any Shannon-type lower bound [7], namely the ports of
the Vamos matroid.

Finally, Metcalf-Burton [58] and Padró, Vázquez and Yang [62] realized that
the method consists of finding lower bounds on the solutions of certain linear
programming problems, which can be solved if the number of participants is
small. In particular, the best Shannon-type lower bound for any given access
structure is the optimal value of a certain linear programming problem. Again,
new lower bounds for a number of access structures [27, 51, 58, 62] were obtained
as a consequence of that improvement.

Some limitations of the LP-technique in the search for asymptotic lower
bounds have been found. Namely, the best lower bound that can be obtained
by using all information inequalities that were known at the beginning of this
decade is linear in the number of participants [8, 16], while at most polynomial
lower bounds can be found by using all known or unknown inequalities on a
bounded number of variables [52].

Summarizing, while the LP-technique has important limitations when trying
to find asymptotic lower bounds, it has been very useful in the search for lower
bounds for finite and infinite families of access structures, providing in many
cases tight bounds. More details about the LP-technique and its application are
discussed in Section 2.

Yet another improvement to the LP-technique is presented in this work. In-
stead of using the known non-Shannon information and rank inequalities, we use
the properties from which most of them have been derived. Specifically, most of
the known non-Shannon information inequalities are obtained by using the copy
lemma [24, 78] or the Ahlswede-Körner lemma [1, 2, 42, 48]. These two techniques
are proved to be equivalent in [42]. All known non-Shannon rank inequalities,
which provide lower bounds on the information ratio of linear secret sharing
schemes, are derived from the common information property [25]. We derive
from these properties some constraints to be added to the linear programming
problems that are used to find lower bounds.

We applied that improvement to several access structures on a small num-
ber of players and we find new lower bounds that could not be found before by
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using the known information and rank inequalities. Specifically, the access struc-
tures on five participants, the graph-based access structures on six participants,
and some ports of non-representable matroids have been the testbeds for our
improvement on the LP-technique.

Jackson and Martin [41] determined the optimal information ratios of most
of the access structures on five participants. The use of computers to solve the
corresponding linear programming problems provided better Shannon-type lower
bounds for some of the unsolved cases [62]. In addition, constructions of linear se-
cret sharing schemes were presented in [34] improving some upper bounds. After
those developments, only eight cases remained unsolved. Moreover, the values of
the optimal information ratios for all solved cases were determined by a linear se-
cret sharing scheme matching a Shannon-type lower bound. The negative result
in [62, Proposition 7.1] clearly indicated that some of the open cases could not
be solved in that way. Nevertheless, adding non-Shannon information and rank
inequalities to the linear programs did not produce any new lower bound [62].
In contrast, our enhanced LP-technique provides better lower bounds for those
unsolved cases, which are tight for linear secret sharing schemes. In particular,
the optimal information ratio of linear secret sharing schemes is now determined
for every access structure on five participants. Even though we present new lower
bounds, some values are still unknown for general schemes. So, we partially con-
cluded the project initiated by Jackson and Martin in [41]. Moreover, we found
the smallest examples of access structures for which the optimal information
ratio does not coincide with the best Shannon-type lower bound.

A similar project was undertaken by van Dijk [21] for graph-based access
structures on six participants, that is, access structures whose minimal qualified
sets have exactly two participants. Most of the cases were solved in the initial
work [21], and several advances were presented subsequently [14, 33, 35, 47, 62].
At this point, only nine cases remained unsolved. We have been able to find for
them new lower bounds for linear schemes by using our enhanced LP-technique.
Once our new lower bounds were made public, Gharahi and Khazaei [36] pre-
sented constructions of linear secret sharing schemes proving that they are tight.
Therefore, our results made it possible to determine the optimal information rate
of linear secret sharing schemes for all graph-based access structures on six par-
ticipants.

In addition, we present new lower bounds for the ports of four non-repre-
sentable matroids on eight points and, in particular, we determine the optimal
information ratio of linear schemes for the ports of the Vamos matroid and the
matroid Q8.

All the lower bounds that are presented in this paper have been found
by solving linear programming problems with conveniently chosen additional
constraints derived from the common information property and the Ahlswede-
Körner lemma. Since the number of variables and constraints is exponential in
the number of participants, this can be done only for access structures on small
sets. However, several lower bounds for infinite families of access structures have
been obtained by using the LP-technique without solving linear programming
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problems [11, 16, 18, 19, 61]. Nevertheless, a better understanding of those tools
is needed to apply our improvement of the LP-technique in a similar way. Since
the known limitations of the LP-technique do not imply the contrary, it may be
even possible to improve Csirmaz’s [15, 16] asymptotic lower bound Ω(n/ log n).

The paper is organized as follows. A detailed discussion on the LP-technique
is given in Section 2. Our improvement on the method is described in Section 3.
The new lower bounds that have been obtained by applying our technique are
presented in Section 4. Constructions of linear secret sharing schemes that are
used to prove the tightness of some of those bounds are given in Section 5. We
conclude the paper in Section 6 with some open problems and suggestions for
future work.

2 Lower Bounds in Secret Sharing from Linear
Programming

We begin by introducing some notation. For a finite set Q, we use P(Q) to denote
its power set, that is, the set of all subsets of Q. We use a compact notation for
set unions, that is, we write XY for X ∪ Y and Xy for X ∪ {y}. In addition, we
write X r Y for the set difference and X r x for X r {x}.

2.1 Entropic and Linear Polymatroids

Only discrete random variables are considered in this paper. For a finite set Q,
consider a random vector (Sx)x∈Q. For every X ⊆ Q, we use SX to denote the
subvector (Sx)x∈X , and H(SX) will denote its Shannon entropy. Given three
random variables (Si)i∈{1,2,3}, the entropy of S1 conditioned on S2 is

H(S1|S2) = H(S12)−H(S2),

the mutual information of S1 and S2 is

I(S1 :S2) = H(S1)−H(S1|S2) = H(S1) +H(S2)−H(S12)

and, finally, the conditional mutual information is defined by

I(S1 :S2|S3) = H(S1|S3)−H(S1|S23) = H(S13) +H(S23)−H(S123)−H(S3).

A fundamental fact about Shannon entropy is that the conditional mutual infor-
mation is always nonnegative, and this implies the following connection between
Shannon entropy and polymatroids, which was first described by Fujishige [28,
29].

Definition 2.1. A polymatroid is a pair (Q, f) formed by a finite set Q, the
ground set, and a rank function f : P(Q)→ R satisfying the following properties.

(P1) f(∅) = 0.
(P2) f is monotone increasing: if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).
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(P3) f is submodular: f(X∪Y )+f(X∩Y ) ≤ f(X)+f(Y ) for every X,Y ⊆ Q.

A polymatroid is called integer if its rank function is integer-valued. If S = (Q, f)
is a polymatroid and α is a positive real number, then (Q,αf) is a polymatroid
too, which is called a multiple of S.

Theorem 2.2 (Fujishige [28, 29]). Let (Sx)x∈Q be a random vector. Consider
the mapping h : P(Q)→ R defined by h(∅) = 0 and h(X) = H(SX) if ∅ 6= X ⊆
Q. Then h is the rank function of a polymatroid with ground set Q.

Definition 2.3. The polymatroids that can be defined from a random vector as
in Theorem 2.2 are called entropic. Consider a field K, a vector space V with
finite dimension over K and a collection (Vx)x∈Q of vector subspaces of V . It is
clear from basic linear algebra that the map f defined by f(X) = dim

∑
x∈X Vx

for every X ⊆ Q is the rank function of a polymatroid. Every such polymatroid
is said to be K-linear.

Because of the connection given in Theorem 2.2, if f is the rank function of
a polymatroid, we use the notation f(A|B) = f(AB) − f(A) for every pair of
subsets of the ground set.

We discuss in the following the well known connection between entropic
and linear polymatroids, as described in [37]. Let K be a finite field and V a
vector space with finite dimension over K. Let S be the random variable de-
termined by the uniform probability distribution on the dual space V ∗. For
every vector subspace W ⊆ V , the restriction of S to W determines a ran-
dom variable S|W that is uniformly distributed on its support W ∗, and hence
H(S|W ) = log |K| dimW ∗ = log |K|dimW . Let (Vx)x∈Q be a collection of sub-
spaces of V . For every X ⊆ Q, we notate VX =

∑
x∈X Vx. This collection of

subspaces determines the K-linear random vector (Sx)x∈Q = (S|Vx
)x∈Q. Ob-

serve that SX = S|VX
for every X ⊆ Q, and hence

H(SX) = log |K| dimVX = log |K| dim
∑
x∈X

Vx.

This implies that the K-linear polymatroid determined by the collection of sub-
spaces (Vx)x∈Q is a multiple of the entropic polymatroid defined by the K-linear
random vector (Sx)x∈Q = (S|Vx

)x∈Q. By taking also into account that every
linear polymatroid admits a linear representation over some finite field [25, 64],
from this discussion we can conclude the well known fact that every linear poly-
matroid is the multiple of an entropic polymatroid.

2.2 Secret Sharing

Definition 2.4. Let P be a set of participants. An access structure Γ on P
is a monotone increasing family of subsets of P , that is, if A ⊆ B ⊆ P and
A ∈ Γ , then B ∈ Γ . The members of Γ are the qualified sets of the structure.
An access structure is determined by the family minΓ of its minimal qualified
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sets. A participant is redundant in an access structure if it is not in any minimal
qualified set. All access structures in this paper are assumed to have no redundant
participants. The dual Γ ∗ of an access structure Γ on P is formed by the sets
A ⊆ P such that its complement P rA is not in Γ .

Definition 2.5. Let Γ be an access structure on a set of participants P . Con-
sider a special participant po /∈ P , which is usually called dealer, and the set
Q = Ppo. A secret sharing scheme on P with access structure Γ is a random
vector Σ = (Sx)x∈Q such that the following properties are satisfied.

1. H(Spo) > 0.
2. If A ∈ Γ , then H(Spo |SA) = 0.
3. If A /∈ Γ , then H(Spo |SA) = H(Spo).

The random variable Spo corresponds to the secret value, while the shares re-
ceived by the participants are given by the random variables Sx with x ∈ P .
Condition 2 implies that the shares from a qualified set determine the secret
value while, by Condition 3, the shares from an unqualified set and the secret
value are independent.

Definition 2.6. Let K be a finite field. A secret sharing scheme Σ = (Sx)x∈Q
is K-linear if it is a is K-linear random vector.

Definition 2.7. The information ratio σ(Σ) of the secret sharing scheme Σ is

σ(Σ) = max
x∈P

H(Sx)

H(Spo
)

and its average information ratio σ̃(Σ) is

σ̃(Σ) =
1

n

∑
x∈P

H(Sx)

H(Spo
)
.

Definition 2.8. The optimal information ratio σ(Γ ) of an access structure Γ
is the infimum of the information ratios of all secret sharing schemes for Γ .
The optimal average information ratio σ̃(Γ ) is defined analogously. The values

λ(Γ ) and λ̃(Γ ) are defined by restricting the optimization to linear secret sharing
schemes.

2.3 Lower Bounds from Shannon Information Inequalities

We describe next how to find linear programming problems whose optimal values
are lower bounds on those parameters. Let Γ be an access structure on a set
P and take, as usual, Q = Ppo. Given a secret sharing scheme Σ = (Sx)x∈Q
with access structure Γ , consider the entropic polymatroid (Q, h) determined
by the random vector (Sx)x∈Q, that is, h(X) = H(SX) for every X ⊆ Q. Take
α = 1/h(po) and the polymatroid (Q, f) with f = αh. The rank function f can
be seen as a vector (f(X))X⊆Q ∈ RP(Q) that satisfies the linear constraints
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(N) f(po) = 1,
(Γ1) f(Xpo) = f(X) for every X ⊆ P with X ∈ Γ ,
(Γ2) f(Xpo) = f(X) + 1 for every X ⊆ P with X /∈ Γ ,

and also the polymatroid axioms (P1)–(P3) in Definition 2.1. Observe that con-
straints (Γ1), (Γ2) are derived from the chosen access structure Γ . Constraints
(P1)–(P3) are equivalent to the so-called Shannon information inequalities, that
is, the ones implied by the fact that the conditional mutual information is non-
negative. Therefore, the vector f is a feasible solution of Linear Programming
Problem 2.9.

Linear Programming Problem 2.9 The optimal value of this linear program-
ming problem is, by definition, κ̃(Γ ):

Minimize (1/n)
∑
x∈P

f(x)

subject to (N), (Γ1), (Γ2), (P1), (P2), (P3)

Since this applies to every secret sharing scheme Σ with access structure Γ
and the objective function equals σ̃(Σ), the optimal value κ̃(Γ ) of this linear pro-
gramming problem is a lower bound on σ̃(Γ ). Similarly, a lower bound on σ(Γ )
is provided by the optimal value κ(Γ ) of the Linear Programming Problem 2.10.

Linear Programming Problem 2.10 The optimal value of this linear pro-
gramming problem is, by definition, κ(Γ ):

Minimize v

subject to v ≥ f(x) for every x ∈ P
(N), (Γ1), (Γ2), (P1), (P2), (P3)

The parameters κ(Γ ) and κ̃(Γ ) were first introduced in [50]. They are the
best lower bounds on σ(Γ ) and, respectively, σ̃(Γ ) that can be obtained by
using only Shannon information inequalities, that is, they are the best possible
Shannon-type lower bounds. If the number of participants is small, they can
be computed by solving the corresponding linear programming problems. This
approach has been used in [27, 51, 62]. In more general situations, lower bounds
on κ(Γ ) and κ̃(Γ ) can be derived from the constraints without solving the linear
programming problems, as in [11, 13, 18, 19, 21, 41] and many other works. In
particular, the result in the following theorem, which is the best of the known
general asymptotic lower bounds, was found in this way.

Theorem 2.11 (Csirmaz [15, 16]). For every n, there exists an access struc-
ture Γn on n participants such that κ̃(Γn) is Ω(n/ log n).

Since not all polymatroids are entropic, the lower bounds κ(Γ ) and κ̃(Γ ) are
not tight in general. Moreover, Csirmaz [16] proved that κ(Γ ) ≤ n for every
access structure Γ on n participants, which indicates that those lower bounds
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may be very far from tight. That result was proved by showing feasible solutions
of the linear programming problems with small values of the objective function.

Duality simplifies the search for bounds in secret sharing. Indeed, if Γ ∗ is the
dual of the access structure Γ , then λ(Γ ∗) = λ(Γ ) and λ̃(Γ ∗) = λ̃(Γ ) [40], and
also κ(Γ ∗) = κ(Γ ) and κ̃(Γ ∗) = κ̃(Γ ) [50]. In contrast, it is not known whether
the analogous relation applies to the parameters σ and σ̃ or not.

2.4 Ideal Secret Sharing Schemes and Matroid Ports

The extreme case κ(Γ ) = 1 deserves some attention because it is related to
ideal secret sharing schemes. Since we are assuming that there are no redundant
participants, it is easy to prove that every feasible solution f of the Linear Pro-
gramming Problems 2.9 and 2.10 satisfies f(x) ≥ 1 for every x ∈ P . Therefore,
1 ≤ κ̃(Γ ) ≤ κ(Γ ) for every access structure Γ , and hence the average information
ratio of every secret sharing scheme is at least 1.

Definition 2.12. A secret sharing scheme Σ = (Sx)x∈Q is ideal if its informa-
tion ratio is equal to 1, which is best possible. Ideal access structures are those
that admit an ideal secret sharing scheme.

Definition 2.13. A matroid M = (Q, r) is an integer polymatroid such that
r(X) ≤ |X| for every X ⊆ Q. The port of the matroid M at po ∈ Q is the
access structure on P = Qrpo whose qualified sets are the sets X ⊆ P satisfying
r(Xpo) = r(X).

The following theorem is a consequence of the results by Brickell and Dav-
enport [12], who discovered the connection between ideal secret sharing and
matroids.

Theorem 2.14. Let Σ = (Sx)x∈Q be an ideal secret sharing scheme on P with
access structure Γ . Then the mapping given by f(X) = H(SX)/H(Spo) for every
X ⊆ Q is the rank function of a matroid M with ground set Q. Moreover, Γ is
the port of the matroid M at po.

As a consequence, every ideal access structure is a matroid port. The first
counterexample for the converse, the ports of the Vamos matroid, was presented
by Seymour [68]. Additional results on matroid ports and ideal secret sharing
schemes were proved in [50] by using the forbidden minor characterization of
matroid ports by Seymour [67].

Theorem 2.15 ([50]). Let Γ be an access structure. Then Γ is a matroid port
if and only if κ(Γ ) = 1. Moreover, κ(Γ ) ≥ 3/2 if Γ is not a matroid port.

In particular, there is a gap in the values of the parameter κ. Namely, there is
no access structure Γ with 1 < κ(Γ ) < 3/2. Therefore, the optimal information
ratio of an access structure that is not a matroid port is at least 3/2.
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2.5 Lower Bounds from Non-Shannon Information and Rank
Inequalities

Better lower bounds can be obtained by adding to the Linear Programming
Problems 2.9 and 2.10 new constraints derived from non-Shannon information
inequalities, which are satisfied by every entropic polymatroid but are not de-
rived from the basic Shannon information inequalities. Zhang and Yeung [78]
presented such an inequality for the first time, and many others have been found
subsequently [24, 26, 55, 77]. This approach was first applied in [7] to prove that
the optimal information ratio of the ports of the Vamos matroid is larger than 1,
the first known examples of matroid ports with that property. They are as well
the first known examples of access structures with κ(Γ ) < σ(Γ ), and also the
first known examples with 1 < σ(Γ ) < 3/2. Other lower bounds for the ports of
the Vamos matroid and other non-linear matroids have been presented [58, 62].

When searching for bounds for linear secret sharing schemes, that is, bounds
on λ(Γ ) and λ̃(Γ ), one can improve the linear program by using rank inequal-
ities, which apply to configurations of vector subspaces or, equivalently, to the
joint entropies of linear random vectors. It is well-known that every information
inequality is also a rank inequality. The first known rank inequality that cannot
be derived from the Shannon inequalities was found by Ingleton [38]. Other such
rank inequalities have been presented afterwards [25, 46]. Better lower bounds
on the information ratio of linear secret sharing schemes have been found for
some families of access structures by using non-Shannon rank inequalities [7, 17,
62].

On the negative side, Beimel and Orlov [8] proved that the best lower bound
that can be obtained by using all information inequalities on four and five vari-
ables, together with all inequalities on more than five variables that were known
by then, is at most linear on the number of participants. Specifically, they proved
that every linear programming problem that is obtained by using these inequal-
ities admits a feasible solution with a small value of the objective function. That
solution is related to the one used by Csirmaz [16] to prove that κ(Γ ) is at most
the number of participants. Another negative result about the power of infor-
mation inequalities to provide asymptotic lower bounds was presented in [52].
Namely, every lower bound that is obtained by using rank inequalities on at most
r variables is O(nr−2), and hence polynomial on the number n of participants.
Since all information inequalities are rank inequalities, this negative result ap-
plies to the search for asymptotic lower bounds for both linear and general secret
sharing schemes.

3 Improved Linear Programming Technique

Our improvements on the LP-technique are presented in this section. Instead of
adding non-Shannon information and rank inequalities to the linear program-
ming problems, which is the strategy described in Section 2.5, we add constraints
that are obtained by using some properties from which those inequalities are de-
rived.
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3.1 Common Information

According to [25], all known non-Shannon rank inequalities are derived from
the so-called common information property. We say that a random variable
S3 conveys the common information of the random variables S1 and S2 if
H(S3|S2) = H(S3|S1) = 0 and H(S3) = I(S1 :S2). In general, given two random
variables, it is not possible to find a third one satisfying those conditions [30].
Nevertheless, this is possible for every pair of K-linear random variables. Indeed,
if S1 = S|V1 and S2 = S|V2 for some vector subspaces V1, V2 of a K-vector space
V , then S3 = S|V1∩V2 conveys the common information of S1 and S2. The fol-
lowing definition is motivated by the concept of common information of a pair
of random variables.

Definition 3.1. Consider a polymatroid (Q, f) and two sets A,B ⊆ Q. Then
every subset Xo ⊆ Q such that

– f(Xo|A) = f(Xo|B) = 0, and
– f(Xo) = f(A) + f(B)− f(AB)

is called a common information for the pair (A,B). If Xo = {xo}, then the
element xo is also called a common information for the pair (A,B).

Definition 3.2. An extension of a polymatroid (Q, f) is any polymatroid (Q′, f ′)
with Q ⊆ Q′ and f ′(X) = f(X) for every X ⊆ Q. Usually, we are going to use
the same symbol for the rank function of a polymatroid and that of an extension
of it.

Definition 3.3. A polymatroid (Q, f) satisfies the common information prop-
erty if, for every pair (A0, A1) of subsets of Q, there exists an extension (Qxo, f)
of it such that xo is a common information for the pair (A0, A1).

Proposition 3.4. Every linear polymatroid satisfies the common information
property. Moreover, given a linear polymatroid (Q, f) and a pair (A0, A1) of
subsets of Q, it can be extended to a linear polymatroid (Qxo, f) such that xo
is a common information for the pair (A0, A1). In particular, the extension also
satisfies the common information property.

Proof. Let (Vx)x∈Q be a collection of vector subspaces representing a K-linear
polymatroid (Q, f), and consider two subsets A0, A1 ⊆ Q. By taking Vxo

=
VA0
∩ VA1

, an extension of our polymatroid to Qxo is obtained in which xo is a
common information for (A0, A1). Obviously, this new polymatroid is K-linear
too.

We describe next how to modify the Linear Programming Problems 2.9
and 2.10 by using the common information property in order to obtain bet-
ter lower bounds on the information ratio of linear secret sharing schemes. Let
Γ be an access structure on a set P and Σ = (Sx)x∈Q a linear secret sharing
scheme for Γ . As usual, associated to Σ consider the polymatroid (Q, f) defined
by f(X) = H(SX)/H(Spo

) for every X ⊆ Q. Since the scheme Σ is linear,
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(Q, f) is the multiple of a linear polymatroid, and hence it satisfies the common
information property. Therefore, given any two sets A0, A1 ⊆ Q, we can find a
polymatroid (Qxo, f), an extension of (Q, f), such that xo is a common infor-
mation for the pair (A0, A1). Clearly, the vector (f(X))X⊆Qxo

∈ RP(Qxo) is a
feasible solution of the Linear Programming Problem 3.5.

Linear Programming Problem 3.5 The optimal value of this linear program-
ming problem is a lower bound on λ̃(Γ ):

Minimize (1/n)
∑
x∈P

f(x)

subject to (N), (Γ1), (Γ2)

f(xo|A0) = f(xo|A1) = 0

f(xo) = f(A0) + f(A1)− f(A0A1)

(P1), (P2), (P3) on the set Qxo

Since this applies to every linear secret sharing scheme with access struc-
ture Γ , the optimal value of that linear programming problem is a lower bound
on λ̃(Γ ). Of course, we can use the common information for more than one pair
of sets. Specifically, given k pairs (Ai0, Ai1)i∈[k] of subsets of Q, the optimal

value of the Linear Programming Problem 3.6 is a lower bound on λ̃(Γ ). Ob-
viously, analogous modifications on Linear Programming Problem 2.10 provide
lower bounds on λ(Γ ).

Linear Programming Problem 3.6 The optimal value of this linear program-
ming problem is a lower bound on λ̃(Γ ):

Minimize (1/n)
∑
x∈P

f(x)

subject to (N), (Γ1), (Γ2)

f(xi|Ai0) = f(xi|Ai1) = 0,

f(xi) = f(Ai0) + f(Ai1)− f(Ai0Ai1) for every i = 1, . . . , k

(P1), (P2), (P3) on the set Qx1 . . . xk

Remark 3.7. One can also find the common information of a pair of random
variables defined from abelian groups. Specifically, given a finite abelian group G
and a subgroup H ⊆ G, consider the random variables S, uniformly distributed
on G, and S/H determined from S by the projection on the quotient group G/H.
Given two such random variables S1 = S/H1

and S2 = S/H2
, the random variable

S3 = S/(H1+H2) conveys the common information of S1 and S2. Therefore, the
lower bounds obtained from the linear programming problems introduced in this
section apply also to secret sharing schemes defined from abelian groups.
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3.2 Ahlswede and Körner’s Information

In Section 3.1, the common information property was used to improve lower
bounds on the information ratio of linear secret sharing schemes and, more
generally, schemes that are defined from abelian groups. For the general case,
we are going to use a similar property motivated by the works of Ahlswede and
Körner.

The known non-Shannon-type inequalities can be derived by using two tech-
niques, the so-called Copy lemma [78] and the Ahlswede-Körner lemma as used
in [48]. It turns out that the power of these two lemmas is equivalent [42]. In
particular, both constructions can be used to derive the same non-Shannon in-
equalities. Hereafter, we choose to use a version of the Ahlswede and Körner
(AK) lemma, as it makes the LP program slightly easier to formulate because
the constraints needed for the construction of additional variables are shorter to
write down. The original result by Ahlswede and Körner [1, 2, 20] is a statement
about the achievable rate region of a certain communication problem. Here, we
use the AK lemma as presented in [42, Lemma 2], a statement that in its part
can be derived from the proof of [48, Lemma 5]. That result deals with sequences
of random variables, and hence with almost entropic polymatroids.

Definition 3.8. We say that a polymatroid is almost entropic if it is the limit
of a sequence of entropic polymatroids.

We introduce next the AK-information property , which will play the same
role in the general case as the common information for linear schemes.

Definition 3.9. Consider a polymatroid (Q, f), and subsets U, V, Z ⊆ Q. Then
every subset Zo ⊆ Q such that

– f(Zo|UV ) = 0,
– f(U |Zo) = f(U |Z),
– f(V |Zo) = f(V |Z),
– f(UV |Zo) = f(UV |Z)

is called an AK-information for the triple (U, V, Z). Moreover, we say that a
polymatroid (Q, f) satisfies the AK-information property, if, for every triple
(U, V, Z) of subsets of Q, there exists an extension (Qzo, f) such that zo is an
AK-information for the triple (U, V, Z).

The following version of the AK lemma is a straightforward consequence
of [42, Lemma 2].

Proposition 3.10 (Ahlswede and Körner lemma). Let (Q, f) be an en-
tropic polymatroid and consider U, V, Z ⊆ Q. Then there exists a sequence
(Qzo, fN )N>0 of entropic polymatroids satisfying the following properties.

– The sequence (Qzo, (1/N)fN )N>0 converges to a polymatroid (Qzo, f
′) that

is an extension of (Q, f).
– The element zo in (Qzo, f

′) is an AK-information for the triple (U, V, Z).
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Loosely speaking, the AK lemma says that given any triple of random vari-
ables, we can always construct a new random variable that is as close as we
want to their AK-information. The following result is a consequence of Proposi-
tion 3.10 and the fact that every multiple of an entropic polymatroid is almost
entropic [75].

Proposition 3.11. Every almost entropic polymatroid satisfies the AK-infor-
mation property. More specifically, for every almost entropic polymatroid (Q, f)
and sets U, V, Z ⊆ Q, there exists an almost entropic extension (Qzo, f) such
that zo is an AK-information for the triple (U, V, Z).

Of course, this proposition can be repeatedly applied to construct the AK-
informations of various triples of subsets. Moreover, entropic polymatroids are
trivially almost entropic, therefore we can add any AK-information constraint to
the Linear Programming Problems 2.9 and 2.10 in order to obtain lower bounds
on σ̃(Γ ) and σ(Γ ). For instance, suppose we want to use k such AK-informations,
then for i ∈ {1, . . . , k}, let Ui, Vi, Zi ⊆ Q, and let zi be an AK-information
for the triple (Ui, Vi, Zi). Then the optimal value of the Linear Programming
Problem 3.12 is a lower bound on σ̃(Γ ). An analogous modification on the Linear
Programming Problem 2.9 provides lower bounds on σ(Γ ).

Linear Programming Problem 3.12 The optimal value of this linear pro-
gramming problem is a lower bound on σ̃(Γ ):

Minimize (1/n)
∑
x∈P

f(x)

subject to (N), (Γ1), (Γ2),

f(zi|UiVi) = 0,

f(Ui|zi) = f(Ui|Zi),

f(Vi|zi) = f(Vi|Zi),

f(UiVi|zi) = f(UiVi|Zi) for every i = 1, . . . , k

(P1), (P2), (P3) on the set Qz1 . . . zk

4 New Lower Bounds

We present here the new lower bounds on the optimal information ratio that
were obtained by using our improvement on the LP-technique. All of them deal
with access structures on small sets of participants and were computed by solving
the linear programming problems introduced in Section 3.

4.1 Access Structures on Five Participants

Jackson and Martin [41] determined the optimal information ratios of most ac-
cess structures on five participants. The case of four participants had been pre-
viously solved by Stinson [70]. After some additional contributions [22, 34, 62],
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both σ(Γ ) and σ̃(Γ ) were determined for 172 of the 180 access structures on
five participants. All these results were obtained by finding the exact values or
lower bounds on κ(Γ ) and κ̃(Γ ), and then constructing linear secret sharing
schemes whose (average) information ratios equaled the lower bounds. There-

fore, κ(Γ ) = σ(Γ ) = λ(Γ ) and κ̃(Γ ) = σ̃(Γ ) = λ̃(Γ ) for each of those 172
access structures. The unsolved cases correspond to the access structures Γ30,
Γ40, Γ53, and Γ73 (we use the same notation as in [41]) and their duals Γ153,
Γ150, Γ152, and Γ151, respectively. Following [41], we take these access structures
on the set {a, b, c, d, e}. The minimal qualified sets of the first four are given in
the following.

– minΓ30 = {ab, ac, bc, ad, bd, ae, cde}.
– minΓ40 = {ab, ac, bc, ad, be, cde}.
– minΓ53 = {ab, ac, ad, bcd, be, ce}.
– minΓ73 = {ab, ac, bd, ce, ade}.

We list in the following what is known for them. These results apply also to the
corresponding dual access structures.

– κ̃(Γ ) = σ̃(Γ ) = λ̃(Γ ) = 7/5 for Γ30 and Γ40.

– κ̃(Γ ) = σ̃(Γ ) = λ̃(Γ ) = 3/2 for Γ53.

– 3/2 = κ̃(Γ ) ≤ σ̃(Γ ) ≤ λ̃(Γ ) ≤ 8/5 for Γ73.
– 3/2 = κ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ) ≤ 5/3 for Γ30, Γ53 and Γ73.
– 3/2 = κ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ) ≤ 12/7 for Γ40.

The values of κ(Γ ) and κ̃(Γ ), which coincide with the lower bounds given in [22,
41], were determined in [62] by solving the Linear Programming Problems 2.9

and 2.10. The upper bounds were given in [41], except the one on λ̃(Γ53), which
was proved in [34].

By [62, Proposition 7.1], there is no linear scheme for Γ53 or Γ73 with infor-
mation ratio equal to 3/2, and there is no linear scheme for Γ73 with average
information ratio equal to 3/2. Therefore, it appears that a new technique is re-
quired to solve these cases. Our improvement of the LP-technique provided new
lower bounds. Namely, by solving problems as the Linear Programming Prob-
lems 3.5 and 3.12 with the specified settings, we obtain the bounds in Tables 1
and 2, respectively.

Access structure A0 A1 New lower bound

Γ30, Γ40, Γ53, Γ73 a d 5/3 ≤ λ(Γ )

Γ73 a d 23/15 ≤ λ̃(Γ )

Table 1. Results on five participants using common information.

The values of λ(Γ ) and λ̃(Γ ) can be now determined for all access structures
on 5 participants by combining the lower bounds in Table 1 with the existing
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upper bounds and the ones derived from the constructions in Section 5. Observe
that Γ30, Γ40, Γ53, Γ73 and their duals are precisely the access structures on least
participants satisfying κ(Γ ) < λ(Γ ).

Access structure Z U V New lower bound

Γ30, Γ40, Γ53, Γ73 a d e 14/9 ≤ σ(Γ )
Γ73 a d e 53/35 ≤ σ̃(Γ )

Table 2. Results on five participants using AK information for the subsets (Z, Y1, Y2).

From the bounds in Table 2, we see that Γ30, Γ40, Γ53, Γ73 are among the
smallest access structures with κ(Γ ) < σ(Γ ). Unfortunately, all our attempts
to obtain lower bounds on σ(Γ ) for their duals by using AK-informations have
been unsuccessful.

4.2 Graph-Based Access Structures on Six Participants

If all minimal qualified sets of an access structure have two participants, it can be
represented by a graph whose vertices and edges correspond to the participants
and the minimal qualified sets, respectively. Van Dijk [21] determined the opti-
mal information ratio of most graph-based access structures on 6 participants
and provided lower and upper bounds for the remaining cases. After several other
authors improved those results [14, 33, 35, 47, 62], only nine cases remained un-
solved. Since the known values of σ(Γ ) have been determined by finding lower
bounds on κ(Γ ) and upper bounds on λ(Γ ), we have κ(Γ ) = σ(Γ ) = λ(Γ ) in the
solved cases. The unsolved cases correspond to the following graph-based access
structures on P = {1, 2, 3, 4, 5, 6}.

– minΓ55 = {12, 23, 34, 45, 56, 61, 26, 25}
– minΓ59 = {12, 23, 34, 45, 56, 61, 24, 13}
– minΓ70 = {12, 23, 34, 45, 56, 61, 24, 25, 26}
– minΓ71 = {12, 23, 34, 45, 56, 61, 26, 35, 36}
– minΓ75 = {12, 23, 34, 45, 56, 61, 26, 46, 14}
– minΓ77 = {12, 23, 34, 45, 56, 61, 26, 35, 13}
– minΓ84 = {12, 23, 34, 45, 56, 61, 13, 15, 35, 25}
– minΓ91 = {12, 23, 34, 45, 56, 61, 15, 25, 35, 46}
– minΓ93 = {12, 23, 34, 45, 56, 61, 15, 35, 46, 24}

The known lower and upper bounds for those access structures are

– 3/2 = κ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ) ≤ 8/5 for Γ = Γ91 and Γ = Γ93, and

– 3/2 = κ(Γ ) ≤ σ(Γ ) ≤ λ(Γ ) ≤ 5/3 for the other seven access structures.
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The values of κ were determined by solving the corresponding linear program-
ming problems, and they are equal to the lower bounds in [21]. All upper bounds
were presented in [21], except the one for Γ93, which was given in [47].

By using the common information property with the settings specified in
Table 3, we found the new lower bound λ(Γ ) ≥ 8/5 for all those access structures,
which is tight for Γ91 and Γ93. In particular, those nine graph-based access
structures satisfy κ(Γ ) < λ(Γ ). We have to mention here that all our attempts to
improve the known lower bounds on σ(Γ ) for those graph-based access structures
by using linear programming problems with AK-informations did not give any
result.

Access Structure A0 A1 New lower bound

Γ55, Γ70, Γ75, Γ84 3 6 8/5 ≤ λ(Γ )
Γ71 5 po3 8/5 ≤ λ(Γ )

Γ91, Γ93 6 po5 8/5 ≤ λ(Γ )

Access structure A00 A01 A10 A11 New lower bound

Γ59 3 6 5 po4 8/5 ≤ λ(Γ )
Γ77 4 po3 2 po6 8/5 ≤ λ(Γ )

Table 3. New bounds for graph-based access structures on six participants using com-
mon information.

After a preprint of this work was in circulation, Gharahi and Khazaei [36]
proved that all lower bounds on λ(Γ ) in Table 3 are tight by presenting con-
structions of linear secret sharing schemes for the corresponding graph-based
access structures. Therefore, the exact value of λ(Γ ) is now determined for all
graph-based access structures on six participants.

4.3 Ports of Non-Representable Matroids

Recall from Section 2.4 that Γ is a matroid port if and only if κ(Γ ) = 1. More-
over, κ(Γ ) = σ(Γ ) = λ(Γ ) = 1 if Γ is the port of a linear matroid. In this
section, we apply our techniques to find new lower bounds on the optimal in-
formation ratio of some ports of non-linear matroids on eight points, which are
access structures on seven participants. All matroids on seven points are lin-
ear. Hence, the matroids we consider here are amongst the smallest non-linear
matroids.

We describe next several matroids (Q, r) on eight points with r(Q) = 4 that
admit convenient geometric representations on a cube. All of them satisfy that

– r(X) = |X| for every X ⊆ Q with |X| ≤ 3,
– r(X) = 4 for every X ⊆ Q with |X| ≥ 5, and
– 3 ≤ r(X) ≤ 4 for every X ⊆ Q with |X| = 4.
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In particular, they are paving matroids (see [59]). Observe that such a matroid
can be described by giving the subsets X ⊆ Q with |X| = 4 and r(X) = 3, that
is, by giving its 4-points planes.

Consider the 3-dimensional cube with vertices on the points (x, y, z) ∈ {0, 1}3.
By using the binary representation, identify each of those vertices to an integer
in {0, 1, . . . , 7}. For instance, (0, 1, 0) is identified to 2 and (1, 1, 0) to 6. Consider
the following 14 sets of vertices.

– The six faces of the cube: 0123, 0145, 0246, 1357, 2367, 4567,
– the six diagonal planes: 0167, 0257, 0347, 1256, 1346, 2345, and
– the two twisted planes: 0356, 1247.

The matroid whose 4-points planes are those fourteen sets is the binary affine
cube AG(3, 2). This matroid is K-linear if and only if the field K has characteristic
2 [59].

All matroids that are obtained from AG(3, 2) by relaxing one of the 4-points
planes (that is, by changing the value of its rank to 4) are isomorphic to the
matroid AG(3, 2)′ [59]. We consider here the one obtained by the relaxation of
one of the twisted planes, say 1247. The matroid AG(3, 2)′ is a smallest non-
linear matroid [59]. The port of AG(3, 2)′ at po = 0 is the access structure A on
the set {1, . . . , 7} with minimal qualified sets

minA = {123, 145, 167, 246, 257, 347, 356, 1247}

Every port of AG(3, 2)′ is either isomorphic to A or to its dual A∗, which has
minimal qualified sets

minA∗ = {123, 145, 167, 246, 257, 347, 1356, 2356, 3456, 3567}

By relaxing the other twisted plane 0356 we obtain from AG(3, 2)′ the ma-
troid R8, the real affine cube. The 4-points planes of this matroid are the six
faces and the six diagonal planes. It is K-linear if and only if K has characteristic
different from 2 [59] .

If, instead, the 4-points set 1256 is relaxed in AG(3, 2)′, one obtains the
smallest non-linear matroid F8 [59]. The port of F8 at po = 0 is the access
structure F on {1, . . . , 7} with minimal qualified sets

minF = {123, 145, 167, 246, 257, 347, 356, 1247, 1256}

The port of F8 at po = 3 is isomorphic to F . The ports of F8 at po = 1 and
po = 2 are both isomorphic to F∗, whose minimal qualified sets are

minF∗ = {123, 145, 167, 246, 257, 1356, 2356, 3456, 3567, 1347, 2347, 3457, 3467}

All the other ports of F8 are isomorphic to the port of F8 at po = 4, and hence
isomorphic to the access structure F̂ on {1, . . . , 7} with minimal qualified sets

min F̂ = {123, 145, 246, 167, 257, 347, 1256, 1356, 2356, 3456, 3567}
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Observe that F̂ is isomorphic to its dual access structure F̂∗.
The relaxation of one of the diagonal planes of the real affine cube R8, say

1256, produces the matroid Q8, again a smallest non-linear matroid [59]. Let Q
be the port of Q8 at po = 0. Its minimal qualified sets are

minQ = {123, 145, 246, 167, 257, 347, 1256, 1247, 1356, 2356, 3456, 3567}

All ports of Q8 are isomorphic to Q or to its dual Q∗. The access structure Q∗
has minimal qualified sets

{123, 145, 246, 167, 257, 1247, 1347, 1356, 2347, 2356, 3456, 3457, 3467, 3567}

Finally, the Vamos matroid V8 is another smallest non-linear matroid [59].
Its 4-points planes are 0123, 0145, 2345, 2367, and 4567. The minimal qualified
sets of the port V of the Vamos matroid V8 at po = 0 are the 3-sets 123, 145
and all 4-sets not containing them, except 2345, 2367, 4567. Every port of V8
is isomorphic either to V or to V∗. The minimal qualified sets of V∗ are the
3-sets 123, 145, 167 and all 4-sets not containing them, except 2367, 4567. The
known bounds on the optimal information ratio of the ports of those non-linear
matroids are summarized as follows.

– 67/59 ≤ σ(V) ≤ 4/3.
– 9/8 ≤ σ(V∗) ≤ 4/3.
– 5/4 ≤ λ(V) = λ(V∗) ≤ 4/3.
– 19/17 ≤ σ(Γ ) if Γ = A or Γ = Q.
– 9/8 ≤ σ(Γ ) if Γ = A∗ or Γ = Q∗.
– 5/4 ≤ λ(Γ ) if Γ is one of the structures A, A∗, Q, Q∗.

The lower bounds were obtained in [7, 32, 58, 62] by using the LP-technique en-
hanced with the Ingleton inequality or with several non-Shannon information
inequalities. The upper bounds for the ports of the Vamos matroid were pre-
sented in [50].

By solving the LP problems 3.6 and 3.12 for those access structures with the
given choices, the lower bounds in Tables 4 and 5 are obtained. Except for σ(V∗),
they improve all existing lower bounds. In particular, we have determined the
exact value of λ(V) = λ(V∗) = 4/3. Moreover, the construction we present in
Section 5 implies λ(Q) = λ(Q∗) = 4/3.

Access structure A0 A1 New lower bound

A,F , F̂ 06 17 4/3 ≤ λ(Γ )
Q 04 15 4/3 ≤ λ(Γ )
V 01 23 4/3 ≤ λ(Γ )

Table 4. Results on matroid ports using common information.
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Access structure Z1 U1 V1 Z2 U2 V2 New lower bound

A 03 12 56 9/8 ≤ σ(Γ )
A∗ 03 12 47 12 47 56 33/29 ≤ σ(Γ )
F ,Q 04 15 37 9/8 ≤ σ(Γ )
F∗ 04 15 26 14 27 36 42/37 ≤ σ(Γ )

F̂ 04 15 37 14 27 36 42/37 ≤ σ(Γ )
Q∗ 04 15 26 15 26 37 33/29 ≤ σ(Γ )
V 01 23 45 23 45 67 33/29 ≤ σ(Γ )
V∗ 01 23 45 9/8 ≤ σ(Γ )

Table 5. Results on matroid ports using AK information for the subsets (Z1, Y11, Y12)
and (Z2, Y21, Y22).

5 Constructions

We present here linear secret sharing schemes for the access structures Γ40 and
Γ73 on five participants and also for the matroid port Q. These constructions
and the lower bounds for linear schemes that have been obtained with our en-
hancement of the LP-technique determine the exact values of λ(Γ40), λ̃(Γ73), and

λ(Q). As a consequence, the exact values of λ(Γ ) and λ̃(Γ ) are now determined
for all access structures on five participants.

We present first a linear scheme with information ratio 5/3 for the access
structure Γ40 on five participants. For a finite field K with characteristic larger
than 5, consider the K-linear secret sharing scheme that is determined by the
K-linear code with generator matrix

1 0 1 0 0 1 0 1
1 0 0 0 1 2 1 0
1 1 0 1 0 1 2 0


Namely, every codeword corresponds to a distribution of shares. The vertical
bars indicate which positions of the codeword correspond to the secret and to
every participant. In this case, a codeword

(spo
| sa1, sa2 | sb1, sb2 | sc | sd | se) ∈ K8

corresponds to a distribution of shares in which the secret value is spo
∈ K,

the share for a is (sa1, sa2) ∈ K2, and so on. The access structure of this linear
scheme is Γ40. Another K-linear secret sharing scheme for Γ40 is given by the
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K-linear code with generator matrix

1 −1 1 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1
2 1 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 1
0 3 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1
1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0
−1 2 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1
1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1


By concatenating these two schemes, we obtain a scheme for Γ40 with information
ratio 5/3.

If K is a field with characteristic 2, the K-linear code with generator matrix

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0


defines a K-linear secret sharing scheme with access structure Γ73. Its average
information ratio is equal to 23/15.

Finally, we present a construction of a linear secret sharing scheme with
information ratio 4/3 for the access structure Q. It is obtained by combining
four ideal secret sharing schemes in a λ-decomposition with λ = 3. The reader
is referred to [60, 71] for more information about λ-decompositions. Let K be a
finite field with characteristic different from 2. The first scheme is the one given
by the K-linear code with generator matrix

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1


Its access structureR is the port at po = 0 of the matroid R8, the real affine cube.
One can see that all minimal qualified sets of Q except 1256 are also qualified
sets of R. On the other hand, the unqualified sets of Q are also unqualified sets
of R. The second and third pieces in the decomposition are ideal schemes given
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by K-linear codes with generator matrices of the form
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 z2 1 z4 1 z6 1
1 1 1 1 1 1 1 1


If z2 = 0 and z4 = z6 = −1, that linear code represents the matroid that is
obtained from R8 by relaxing the 4-points planes 0347 and 1256. Therefore, we
obtain a secret sharing scheme in which 347 is not qualified. If, instead, we take
z2 = −1 and z4 = z6 = 0, the matroid represented by that K-linear code is
obtained from R8 by relaxing the 4-point planes 1256, 0246, and 0257. In the
corresponding secret sharing scheme, the sets 246 and 257 are unqualified. The
fourth scheme is given by the K-linear code with generator matrix

0 0 0 0 1 1 1 1
0 −1 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1


which represents the matroid that is obtained from R8 by relaxing the 4-points
planes 1256, 0145, and 0167. The sets 145 and 167 are not qualified in the
corresponding scheme. Observe that every minimal qualified set of Q appears
in at least 3 of those 4 ideal linear secret sharing schemes. Therefore, we get a
linear secret sharing scheme for Q with information ratio 4/3.

6 Open Problems

The first line of future work worth mentioning is to fully conclude the projects
initiated by Jackson and Martin [41] and van Dijk [21] by determining the values

of σ(Γ ), σ̃(Γ ), λ(Γ ), and λ̃(Γ ) for all access structures on five participants and
all graph-based access structures on six participants. By Remark 3.7, our bounds
on λ(Γ ), and λ̃(Γ ) apply also to schemes defined by abelian groups.

Many examples of access structures with κ(Γ ) = σ(Γ ) = λ(Γ ) are known,
and also examples with κ(Γ ) < σ(Γ ) and κ(Γ ) < λ(Γ ). An open problem is
to find the smallest examples with σ(Γ ) < λ(Γ ), and also examples in each
of the following situations: κ(Γ ) = σ(Γ ) < λ(Γ ), κ(Γ ) < σ(Γ ) = λ(Γ ), and
κ(Γ ) < σ(Γ ) < λ(Γ ). Another interesting problem is to find matroid ports such
that σ(Γ ) or λ(Γ ) are greater than 3/2 or even arbitrarily large.

It is worth noticing that, even though we used the common information
property to derive lower bounds for linear secret sharing schemes, we could not
determine whether that property have a good behavior with respect to duality
or not. This may be due to the fact that, by Remark 3.7, those bounds apply
to a more general class of schemes. Therefore, when searching for bounds by
using common informations, it is worth to apply the method both to an access
structure and its dual.
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The main direction for future research is to obtain a better understanding
of the techniques introduced here in order to improve, if possible, the known
asymptotic lower bounds on σ(Γ ). Notice that it is not necessary to solve the
corresponding linear programming problem to determine a lower bound. Instead,
any feasible solution of the dual linear programming problem provides a lower
bound. This strategy, which was suggested by one of the reviewers of this work,
has been used, not explicitly, by the authors that have derived lower bounds
from the constraints without solving the linear programming problem.
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60. Padró, C.: Lecture Notes in secret sharing. Cryptology ePrint Archive, Report
2012/674 (2912)
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62. Padró, C., Vázquez, L., Yang, A.: Finding Lower Bounds on the Complexity of
Secret Sharing Schemes by Linear Programming. Discrete Applied Mathematics
161, 1072–1084 (2013)
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