
Homomorphic SIM2D Operations:
Single Instruction Much More Data

Wouter Castryck, Ilia Iliashenko, and Frederik Vercauteren

imec-Cosic, Dept. Electrical Engineering, KU Leuven
firstname.lastname@esat.kuleuven.be

Abstract. In 2014, Smart and Vercauteren introduced a packing tech-
nique for homomorphic encryption schemes by decomposing the plain-
text space using the Chinese Remainder Theorem. This technique allows
to encrypt multiple data values simultaneously into one ciphertext and
execute Single Instruction Multiple Data operations homomorphically.
In this paper we improve and generalize their results by introducing a
flexible Laurent polynomial encoding technique and by using a more
fine-grained CRT decomposition of the plaintext space. The Laurent
polynomial encoding provides a convenient common framework for all
conventional ways in which input data types can be represented, e.g. fi-
nite field elements, integers, rationals, floats and complex numbers. Our
methods greatly increase the packing capacity of the plaintext space, as
well as one’s flexibility in optimizing the system parameters with respect
to efficiency and/or security.

1 Introduction

Homomorphic encryption allows to perform arithmetic operations on encrypted
data without decryption. The idea stems from [26] where the authors introduced
so-called ‘privacy homomorphisms’ from plaintext space to ciphertext space.
In 2009, Gentry [21] presented the first fully homomorphic encryption scheme
(FHE) using ideal lattices. This breakthrough result was followed by several
variants and improvements [8,9,6,7,20,23] all using the same blueprint. One first
constructs a somewhat homomorphic encryption (SHE) scheme that can homo-
morphically evaluate arithmetic circuits of limited depth and then turns this
into a fully homomorphic scheme using a bootstrapping procedure. The security
of these schemes relies on the presence of a noise component in the cipher-
texts. This noise grows during arithmetic operations and eventually reaches a
threshold beyond which the ciphertext can no longer be decrypted correctly.
The bootstrapping procedure basically reduces the inherent noise by executing

This work was supported by the European Commission under the ICT programme
with contract H2020-ICT-2014-1 644209 HEAT, and through the European Research
Council under the FP7/2007-2013 programme with ERC Grant Agreement 615722
MOTMELSUM. The first author thanks Ghent University for its hospitality. The
authors also thank the anonymous referees for some helpful remarks.

the decryption circuit homomorphically. Despite considerable effort in making
bootstrapping more efficient [19,13,11,2], full fledged FHE is still rather slow, so
implementers typically resort to using SHE schemes for practical applications.

The efficiency of homomorphic encryption schemes can be improved signifi-
cantly by a judicious choice of plaintext space and encoding techniques for the
common data types such as finite field elements, integers, rationals, floats and
complex numbers. Concretely, throughout this paper we assume that the plain-
text space is a ring of the form

Rt “ ZtrXs{pfpXqq

where t ě 2 is an integer called the plaintext modulus, and fpXq is the reduction
modulo t of a monic irreducible polynomial fpXq P ZrXs of degree d ě 1. This
setting is valid for most SHE schemes whose security relies on the Ring-LWE
problem.1 The degree d together with the ciphertext modulus q and the standard
deviation σ of the initial noise distribution are the main security parameters,
and these are typically determined by the required security level. The noise
growth is influenced by d, q, σ, but also by the plaintext modulus t. A first
optimization to decrease the noise growth is therefore to use a smaller plaintext
space. Several encoding techniques [25,18,14,12,3,10] have been proposed whose
goal is to ‘spread out’ the numerical input data as evenly as possible over the
whole plaintext space, allowing for a smaller value of t. A second optimization,
which can be combined with the first, is to decompose the plaintext space into
smaller pieces using the Chinese Remainder Theorem (CRT) and run several
computations in parallel [27,4]. Smart and Vercauteren [27] described how to
carry out SIMD calculations in an SHE context by viewing Rt as the CRT
composition of

ZtrXs{pf1pXqq ˆ ZtrXs{pf2pXqq ˆ ¨ ¨ ¨ ˆ ZtrXs{pfrpXqq,

where f1pXqf2pXq ¨ ¨ ¨ frpXq is a factorization of fpXq into coprime factors. In
fact, they concentrate on the case t “ 2, but the above immediate generalization
is discussed in [22]. We will refer to this decomposition of Rt as a vertical slicing
of the plaintext space.

Contributions. Our first contribution is an improvement of the above SIMD
approach by utilizing a more fine-grained CRT decomposition of the plaintext
space. We do this by also taking into account factorizations of the plaintext
modulus t. We will refer to the CRT decomposition

Rt – ZrXs{pt1, fpXqq ˆ ZrXs{pt2, fpXqq ˆ ¨ ¨ ¨ ˆ ZrXs{pts, fpXqq,
1 A recent adaptation of the FV scheme due to Chen et al. [10] uses as plaintext
modulus a linear polynomial x ´ a instead of an integer t. The resulting plaintext
space Rx´a “ ZrXs{pXn

` 1, x ´ aq – Z{pan
` 1q has various nice features, both

in terms of noise growth and in terms of packing capacity. However, the algebraic
structure of Rx´a becomes more restrictive for CRT decomposition, so rings of this
type will not be considered in this paper.

2

corresponding to a factorization t “ t1t2 ¨ ¨ ¨ ts into coprime factors, as a hori-
zontal slicing of the plaintext space. The flexibility of our method stems partly
from the fact that factorisations modulo the various ti do not imply a global
factorisation modulo t. This alternative type of slicing for SIMD purposes is
not new (see e.g. [4]). However, by combining horizontal and vertical slicing as
explained in Section 4, the plaintext space becomes subdivided in ‘bricks’ as
depicted in Figure 4. In our SIMD approach, which we call SIM2D, each data
slot corresponds to a set of such bricks (called a block) rather than one verti-
cal or horizontal slice as considered in previous works. This results in a much
more flexible but, at the same time, denser packing as described in Section 5.
In Section 6 we provide several tools that can help in making an optimal choice
of blocks. This includes slight alterations to t and/or fpXq that lead to more
fine-grained decompositions.

Our second contribution is a novel encoding technique for Laurent polynomi-
als into a plaintext space of the form Rt “ ZtrXs{pfpXqq that works for general
f (under the mild assumption that fp0q is an invertible element of Zt). Previous
work [15] could only deal with the very special case of 2-power cyclotomic poly-
nomials, due to concerns of mixing of integral and fractional parts. Our encoding
technique is explained in Section 3. Encoding elements of the Laurent polyno-
mial ring ZrX˘1s serves as a convenient common framework for all customary
encoding techniques: indeed, under X ÞÑ b the Laurent polynomials specialize
to b-ary expansions for any choice of base b P Czt0u. This framework allows to
encode common data types such as finite field elements, integers, rationals, floats
and complex numbers. Furthermore, we show that choosing different bases b for
different blocks can be useful in optimizing the data packing (see Section 6).

Our algorithms for encoding, packing, unpacking and decoding are easy to
implement (pseudo-code is provided) and extremely flexible to use. The overall
goal is to provide a set of tools which together can be used to perform SIMD in
an optimal way, given the constraints on the plaintext space imposed by security,
efficiency and correctness requirements.

2 Preliminaries

2.1 Basic notation

Vectors are denoted by bold letters such as a and when the individual coordinates
are required, we write a row vector as pa1, . . . , akq. For a natural number r,
we denote the set t1, . . . , ru by rrs. Similarly, for any `,m P Z, ` ď m, the set
t`, ``1, . . . ,m´1,mu is denoted by r`,ms. The quotient ring of integers modulo
a natural number t is denoted Zt.

2.2 Laurent polynomials

Most common numerical types (integers, rational, real or complex numbers) are
represented as (finite) power series expansions in a certain base b P Czt0u, using

3

digits that are taken from some given subset of Z. These expansions naturally
correspond to Laurent polynomials with integral coefficients, i.e. elements of the
ring ZrX˘1s.

Most frequently, an integral base b ą 1 with digit set t0, . . . , b´ 1u is used in
practice, such as binary b “ 2 or ternary b “ 3. For use in SHE schemes, several
variations [18,14,12,3] have been proposed. For the purposes of this paper we
mention the non-integral base non-adjacent form (NIBNAF) from [3] which is a
very sparse expansion with respect to a real base b P p1, 2q and using the digit
set t´1, 0, 1u. All of these expansions can be thought of as the evaluations at
X “ b of a Laurent polynomial with integral coefficients.

Example 1. The real number 2.3 can be approximated in base b “ 2 using digits
in t0, 1u as

2.3 » 1 ¨ 2` 1 ¨ 2´2 ` 1 ¨ 2´5 ` 1 ¨ 2´6,

which is the evaluation of the Laurent polynomial

1 ¨X ` 1 ¨X´2 ` 1 ¨X´5 ` 1 ¨X´6 P ZrX˘1s

at X “ b “ 2.

Recall that in general, any Laurent polynomial apXq P ZrX˘1s can be written
as

apXq “ a`X
` ` ¨ ¨ ¨ ` am´1X

m´1 ` amX
m (1)

where ai P Z for every i P r`,ms, a`, am ‰ 0 and ` ď m. For a modulus t (which
will be clear from the context) we write apXq for the Laurent polynomial in
ZtrX˘1s obtained by reducing all coefficients.

Definition 1. For an integral Laurent polynomial apXq P ZrX˘1s represented
as in Equation (1), we define the bounding box of apXq as the tuple pw, hq with
w “ m´ ` and h “ log2pmaxi ai´mini ai` 1q the sizes of the exponent and the
coefficient ranges of apXq.

We represent the bounding box graphically with a rectangle of width w and
height h.

exponent range

co
ef

.
ra

ng
e

Fig. 1. The bounding box of a polynomial.

4

2.3 Plaintext space

Most SHE schemes utilize quotient rings of the form

R “ ZrXs{pfpXqq

where fpXq P ZrXs is a monic irreducible polynomial of degree d. The plain-
text space is typically represented as a quotient ring Rt “ ZtrXs{pfpXqq for
an integral plaintext modulus t. Similarly, the ciphertext space is defined as
Rq “ ZqrXs{pfpXqq where q " t. Another important parameter is the stan-
dard deviation σ of the discretized Gaussian distribution from which the SHE
encryption scheme samples its noise, which is embedded into the ciphertexts.

Typically, one first sets the parameters q, d and σ, primarily as functions of
the security level, in order to prevent all known attacks on the underlying lattice
problems [1]. Afterwards, the plaintext modulus t is selected, subject to two
constraints. Firstly, it is bounded from above, which stems from the fact that
the embedded noise grows during arithmetic operations up to a critical threshold
above which ciphertexts can no longer be decrypted. Since the plaintext modulus
directly affects the noise growth in ciphertexts, one can find a maximal t for which
the decryption remains correct while evaluating a given arithmetic circuit C. We
denote this bound by tmax

C . If it is impossible to satisfy this bound then one can
use the Chinese Remainder Theorem to split the computation into smaller parts,
as explained in Remark 3; see also [4]. Secondly, as explained in the next section,
the plaintext modulus t is bounded from below by some value tmin

C which depends
on the input data and on the way the latter is encoded, and which ensures correct
decoding.

Remark 1. The values of q, d, σ are not uniquely determined by the security
level. Therefore, one can try to use the remaining freedom to target a specific
value of tmax

C . In the remainder of the paper, we will assume that tmax
C is given,

and our aim is to utilize the available plaintext space in an optimal way. One
motivation for targeting maximal flexibility here is that it is not clear whether
preselecting a precise value of tmax

C is always possible in practice (e.g., for a fixed
degree and security level it turns out that the value of tmax

C stabilizes as q Ñ8).
This is further impeded by the fact that concrete implementations often do not
allow q and d to be picked from some continuous-like range (e.g., the FV-NFLlib
[16] and the SEAL [24] libraries require that d is a power of 2 and that log2 q
is a multiple of some integer). A second motivation is that it can be desirable
to use a single SHE implementation for encrypting batches of data of largely
varying sizes. The plaintext space should be chosen to fit the largest data, and
the methods presented below can then be used to optimize the handling of the
smaller data.

The most common choice for fpXq is a cyclotomic polynomial. The nth
cyclotomic polynomial ΦnpXq P ZrXs is the minimal polynomial of a primitive
nth root of unity in C

ΦnpXq “
ź

0ăkăn , pk,nq“1

pX ´ ζknq,

5

where ζn “ e2πi{n. The degree of ΦnpXq is equal to φpnq, where φpnq is the
totient function. It is always irreducible over Z and, additionally, Φp0q “ 1 for
n ě 3.

Cyclotomic polynomials are often used by SHE implementers since they have
very nice arithmetic properties such as fast modular reduction and simple Galois
groups, which can be used to move data values in between data slots.

3 Plaintext encoding/decoding of Laurent polynomials

In this section we consider the problem of encoding an integral Laurent polyno-
mial in the plaintext space and the reverse operation of decoding. We also give
necessary conditions on the ‘size’ of the plaintext space such that a given circuit
C can be evaluated correctly.

3.1 Encoding

Assume that the input data (integers, rationals, reals, . . .) has been represented
as a Laurent polynomial apXq P ZrX˘1s. Encoding such a Laurent polynomial in
the plaintext space Rt has been considered in a series of recent works [18,14,12,3].
However, it was emphasized in [14] that the plaintext space should only be
defined modulo a 2-power cyclotomic polynomial fpXq “ X2k ` 1 for some k.
The reason for this restriction is that the authors required a small and sparse
representation forX´1, which in this case is given byX´1 ” ´X2k´1 mod fpXq.

Here we propose a very general way of encoding Laurent polynomials which
works for almost all defining polynomials f . Let fpXq denote the reduction
modulo t of fpXq and assume that fp0q is co-prime with t, so fp0q is invertible
in Zt. Define gpXq by writing fpXq “ gpXqX ` fp0q, then it is obvious that
modulo fpXq we have that X´1 ” ´gpXqfp0q´1.

The encoding map Encdf is then given by the sequence of ring homomor-
phisms

ZrX˘1s
mod t
ÝÝÝÝÑ ZtrX˘1s

ηf
ÝÑ Rt

with

ηf :
X ÞÑ X

X´1 ÞÑ ´gpXqfp0q´1 .

Example 2. In the case of the 2-power cyclotomic polynomial fpXq “ X2k ` 1,
the above map replaces negative powers X´j by ´Xd´j , which coincides with
the approach from [14]: when expressed in terms of the basis 1, X,X2, . . . , Xd´1

of Rt, the map ηf places the positive exponents at the low end of this range,
and the negative exponents are placed at the high end.

6

3.2 Decoding

The crux of the construction relies on the fact that the above encoding map
Encdf defines an isomorphism when restricted to a subset of Laurent polynomi-
als. Indeed, if we choose a subset of ZtrX˘1s of the form

ZtrX˘1sm` “

#

m
ÿ

i“`

aiX
i|ai P Zt

+

with ` and m chosen such that m ´ ` ` 1 “ d, then the restriction of ηf to
ZtrX˘1sm` is an isomorphism between two free Zt-modules of rank d. The in-
verse of this map, denoted θf,`,m, is easy to compute in practice, since it simply
corresponds to a matrix inversion.

Thus, θf,`,m determines the decoding algorithm from Rt to Laurent polyno-
mials over Zt. In the final step, one has to lift a Laurent polynomial from ZtrX˘1s

to ZrX˘1s by choosing a representative for each coefficient in a non-empty sub-
set A of Z of size t. For simplicity we will always take A “ rz, z` t´ 1s for some
z P Z, common choices being A “ r´tpt´1q{2u, rpt´1q{2ss or A “ r0, t´1s. But
any set A of representatives would be possible, and in fact it can even depend on
the coefficient under consideration. Together these two steps define the decoding
map Decdf,`,m,A.

3.3 Correctness conditions

Since homomorphic encryption aims to perform arithmetic operations on cipher-
texts, one usually deals with a ciphertext being the outcome of an arithmetic
circuit involving only multiplications and additions. By the homomorphic prop-
erty this ciphertext corresponds to a plaintext which is the result of the same
operations in the plaintext space. Given a circuit C, the result of its evalua-
tion on encodings of Laurent polynomials a “ pa1pXq, . . . , akpXqq is denoted by
CpEncdf paqq P Rt.

To guarantee correctness of circuit evaluation, one has to make sure that
there exist `,m P Z such that m´ `` 1 “ d and some non-empty set A Ĺ Z of
size at most t such that

Decdf,`,m,ApCpEncdf paqqq “ Cpaq,

where Cpaq is the result of the same circuit evaluation in ZrX˘1s. This implies
that the bounding box pw, hq of Cpaq has to satisfy w ď m ´ ` ` 1 “ d and
h ď log2 |A| “ log2 t. In this case, we say that the plaintext space covers the
bounding box of Cpaq as shown on the figure below

7

w

h

d

lo
g
2
t

Rt-box

Cpaq-box

Fig. 2. The bounding box of Cpaq is covered by the plaintext space Rt.

If the bounding box pw, hq of a Laurent polynomial has larger height than
the plaintext space, i.e. h ą log2 t, then we say that the computation overflows
modulo t. If we end up with w ą d then we say that it overflows modulo fpXq.

The parameters t and d should therefore be taken large enough to satisfy
the above requirement. In practice, d is usually fixed by the security require-
ments of the SHE scheme. The choice for t, however, strongly depends on the
arithmetic circuit C one is trying to evaluate. Initially, the input data of the
circuit is encoded by Laurent polynomials whose bounding boxes are of height
h ď log2p|tb-base digitsu|q. During arithmetic operations the height (typically)
grows to the height of the bounding box of the outcome. For a given circuit C,
this defines a lower bound for t to guarantee correct decoding, which we denote
tmin
C . Combined with the upper bound on t from Section 2.3, one obtains a range
for t, namely rtmin

C , tmax
C s.

Example 3. To illustrate encoding and decoding, we take Rt “ Z7rXs{pfpXqq
where fpXq “ X9 ` 4X7 ` 1. Thus, gpXq “ X8 ` 4X6 and Encdf maps X´1 to
6X8 ` 3X6. Let us multiply two rational numbers, 182

243 and 1476. Their base-3
expansions are as follows

182

243
“ 2 ¨ 3´5 ` 2 ¨ 3´3 ` 2 ¨ 3´1, 1476 “ 2 ¨ 32 ` 2 ¨ 36

or as Laurent polynomials

a “ 2X´5 ` 2X´3 ` 2X´1, b “ 2X2 ` 2X6.

Applying Encdf we get encodings of a and b in Rt, namely, a “ 6X2 ` 4X4 `

4X6 ` 5X8 and b “ 2X2 ` 2X6. Their product is equal to

c “ X ` 4X3 ` 5X4 ` 4X5 `X6 ` 3X8.

We take ` “ ´3, m “ 5 and A “ t4, 5, . . . , 10u in order to keep the product
inside the box. Now we can define Decdf,´3,5,A. The first step is to construct a
linear operator θf,´3,5 using the inverse of the matrix defining the restriction of

8

ηf on Z7rX
˘1s5´3:

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 1 0
0 3 0 0 0 0 0 0 1
6 0 3 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´1

“

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 6 0 4
3 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 6
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 3 0 2
5 0 0 0 0 1 0 3 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Z9ˆ9
7 .

Then c is mapped to a Laurent polynomial 4X´3 ` 4X´1 `X ` 4X3 ` 4X5 P

Z7rX
˘1s. By looking for representatives of the coefficients in the set A we get

4X´3 ` 4X´1 ` 8X ` 4X3 ` 4X5 P ZrX˘1s and evaluate it at X “ 3

4 ¨ 3´3 ` 4 ¨ 3´1 ` 8 ¨ 3` 4 ¨ 33 ` 4 ¨ 35 “
29848

27
,

which is the correct product of 182
243 and 1476.

Remark 2. Note that the above condition for correct decoding only depends on
the bounding box of the evaluation of the circuit Cpaq and not on the bounding
boxes of the individual inputs aipXq P ZrX˘1s nor on those of the intermediate
values. Indeed, we always have

CpEncdf pa1pXqq, . . . ,Encdf pakpXqqq “ Encdf pCpaqq, (2)

simply because Encdf is a ring homomorphism. This implies that the bounding
boxes of the input or intermediate values should not necessarily be contained in
the bounding box of the plaintext space, as long as the outcome of evaluation is.

4 Splitting the plaintext space

In this section we recall how the Chinese Remainder Theorem (CRT) can be
used to split the plaintext space naturally along two directions: firstly, we will
split horizontally for each prime power factor ti of the plaintext modulus t and
secondly, each horizontal slice will be split vertically by factoring fpXq mod ti.

4.1 Horizontal splitting

If t is a composite that factors into distinct prime powers t “ t1 . . . ts then the
ring Rt can be mapped via the CRT to a direct product of Rti ’s resulting in the
following ring isomorphism

CRTt : Rt Ñ Rt1 ˆ ¨ ¨ ¨ ˆRts
apXq ÞÑ papXq mod t1, . . . , apXq mod tsq

9

whose inverse is easy to compute. For a given index subset I “ ti1, . . . , icu Ď rss
the map CRTt induces a surjective morphism

CRTtI : Rt Ñ Rti1 ˆ ¨ ¨ ¨ ˆRtic ,

which is well-defined via the projection map

πtI :
ź

iPrss

Rti Ñ
ź

iPI

Rti

so that CRTtI “ πtI ¨ CRTt. The CRTt can be represented as a ‘horizontal’
splitting of the plaintext space according to the unique factorization of t into
distinct prime powers ttiuiPrss. Each horizontal slice in Figure 3 corresponds to
some Rti .

d-direction

t-direction

Fig. 3. CRTt decomposition of Rt

4.2 Vertical splitting

For each factor ti of t we define f ipXq P ZtirXs to be the reduction of fpXq
modulo ti. Since fp0q is co-prime with t, it is also co-prime with any ti and thus,
f ip0q is invertible.

The factorization of f ipXq into irreducible factors modulo ti can be com-
puted as follows: if ti is prime, then one can simply use factorization algorithms
for polynomials over finite fields; for ti a prime power, one first computes the
factorization modulo the prime and then lifts it using Hensel’s lemma to a fac-
torization modulo ti. The result in both cases is that we can easily obtain a
factorization

f ipXq ”
ri
ź

j“1

f ijpXq

for monic irreducible polynomials f ijpXq P ZtirXs. Note that the constant terms
f ijp0q are all invertible because their product f ip0q is invertible. Applying the
CRT in the polynomial dimension gives the following map for each ti:

CRTti,fi
: Rti Ñ Rti,1 ˆ ¨ ¨ ¨ ˆRti,ri
apXq ÞÑ papXq mod f i1pXq, . . . , apXq mod f iripXqq.

10

Here the Rti,j denotes the ring ZtirXs{pf ijpXqq, which corresponds to a ‘brick’
in Figure 4. The map CRTti,fi

, whose inverse is again easy to compute, can be
thought of as a ‘vertical’ splitting of Rti . For simplicity we will usually just write
Ri,j rather than Rti,j . By analogy with CRTtI , we introduce the surjective ring
homomorphism CRTti,fJ

from Rti to
ś

jPJ Rti,j where J “ tj1, . . . , jcu Ď rris.

5 Improved SIMD encoding

In this section we combine the results of Sections 3 and 4 to derive flexible SIMD
encoding and decoding algorithms. Recall that to correctly decode the result of a
circuit evaluation Cpaq, we require that the bounding box of the plaintext space
covers the bounding box of Cpaq. We assume that this is indeed the case, and
show how to select a minimal number of bricks of Rt to cover the bounding box
of Cpaq, leaving the other bricks available for doing parallel computations.

d-direction

t-
di

re
ct

io
n

Fig. 4. Decomposition of Rt using fac-
torization of t and f i’s

d-direction

t-
di

re
ct

io
n

Fig. 5. Encoding of a single Laurent
polynomial into Rt.

Recall that each brick corresponds to a ring Ri,j in the decomposition

Rt Ñ Rt1 ˆ ¨ ¨ ¨ ˆRts Ñ pR1,1 ˆ ¨ ¨ ¨ ˆR1,r1q ˆ ¨ ¨ ¨ ˆ pRs,1 ˆ ¨ ¨ ¨ ˆRs,rsq.

Each ring Ri,j has its own bounding box of size pdij , log2 tiq, where dij “ deg f ij .
Assuming that the bounding box of Cpaq is given by pw, hq, we need to combine
enough horizontal slices to cover the height h, and inside each horizontal slice,
we need to select enough bricks to cover the width w as illustrated in Figure 5.
Any unused bricks can be used to encode other data values, for instance to
compute Cpbq for some other input vector b, immediately resulting in SIMD
computations.

We formalize this approach by combining bricks into a block structure: we call
a block a set of tuples B “ tpti, f ijquiPIpBq,jPJpB,iq with index sets IpBq Ď rss and
JpB, iq Ď rris, where we recall that ri is the number of irreducible factors of f i.
We of course think of this as corresponding to the set of Ri,j ’s with i P IpBq, j P
JpB, iq. Equivalently, through an application of the CRT this corresponds to the
set of quotient rings tRti{pF i,BquiPIpBq where F i,B “

ś

jPJpB,iq f ij . Graphically
we think of a block as a set of bricks of Rt, which are combined such that the

11

Ri,j ’s with the same index i are glued column-wise and the resulting rows are
placed on top of each other.

d-direction

t-
di

re
ct

io
n

R1,1 R1,2 R1,3 R1,4

R2,1 R2,2

R3,1 R3,2 R3,3

Ñ

R1,1 R1,3

R3,3

R1,1
R3,1

Fig. 6. Example of a block taken from the CRT decomposition of Rt. The bottom
combination of ‘bricks’ is not a block because their first indices do not coincide.

In order for a block B to be suitable for computing Cpaq, whose bounding box
we denote by pw, hq, we note that the bounding box of Rti{pF i,Bq with i P IpBq
is pwi,B, log2 tiq where

wi,B “ degF i,B “
ÿ

jPJpB,iq

dij .

If miniPIpBq wi,B ě w and
ř

iPIpBq log2 ti ě h then we say that B covers the
bounding box pw, hq. As we will see Cpaq will be decoded correctly as soon as an
encoding block B is used that covers its bounding box.

Example 4. We decompose Rt “ Z2761rXs{pfpXqq where fpXq “ X20`X15`1.
The plaintext modulus factors into t1 “ 11 and t2 “ 251 and

fpXq ” f1,1pXq ¨ f1,2pXq
” pX5 ` 3qpX15 ` 9X10 ` 6X5 ` 4q mod 11,

fpXq ” f2,1pXq ¨ f2,2pXq ¨ f2,3pXq
” pX5 ` 18qpX5 ` 120qpX10 ` 114X5 ` 180q mod 251.

Accordingly, Rt splits into pR1,1ˆR1,2qˆpR2,1ˆR2,2ˆR2,3q. Overall we have 5
‘bricks’ that can be combined into 31 different blocks. For example, one can take
a block tp11, X15`9X10`6X5`4q, p251, X5`18q, p251, X5`120qu corresponding
to the combination of R1,2, R2,1 and R2,2 or tp11, X5 ` 3q, p11, X15 ` 9X10 `

6X5 ` 4qu which simply corresponds to R11 “ Rt{p11q (see Figure 7).

12

d-direction

t-
di

re
ct

io
n

R1,1 R1,2

R2,1 R2,2 R2,3

d-direction

t-
di

re
ct

io
n

R1,1 R1,2

R2,1 R2,2 R2,3

Fig. 7. The block structure of Rt “ ZrXs{p2651, X20
`X15

`1q with two blocks colored
in gray.

The whole plaintext space can be represented by a block as well

P “
ď

iPrss

ď

jPrris

tpti, f ijqu.

Therefore, the SIMD packing problem consists in finding a set of disjoint blocks
S “ tB1, . . . ,Buu such that

Ť

BPS B “ P and every block covers the maximal
bounding box among the corresponding output values.

To a partition S of P there naturally corresponds a factorization of f i for
every i P rss:

f ipXq “
ź

BPS,iPIpBq

F i,BpXq.

This induces a family of CRT isomorphisms

CRTti,fi,S
: Rti Ñ

ź

BPS,iPIpBq

Rti{pF i,Bq.

Now we have all the ingredients to pack a number of data values into one plain-
text as described in Algorithm 1.

Algorithm 1: Plaintext packing.
Input : a set of disjoint blocks S “ tB1, . . . ,Buu with corresponding

data values a1, . . . , au P ZrX˘1s such that
Ťu
k“1 Bk “ P.

Output: b P Rt
1 for k Ð 1 to u do
2 for i P IpBkq do
3 ati,F i,Bk

Ð EncdF i,Bk
pakq

4 for iÐ 1 to s do
5 bi Ð CRT´1

ti,fi,S
ptati,F i,B

uB,iPIpBqq

6 bÐ CRT´1
t pb1, . . . , bsq

After packing one can encrypt the output and feed it to an arithmetic circuit
(together with other packings in case the circuit takes more than one argument).
The resulting plaintext contains multiple evaluations corresponding to each block
that can be decoded using Algorithm 2.

13

Algorithm 2: Plaintext decoding for one block.
Input : a plaintext c P Rt, a block B, an exponent range r`,ms and a

coefficient set A P Z
Output: a Laurent polynomial a P ZrX˘1s

1 tI Ð 1
2 for i P IpBq do
3 tI Ð tI ¨ ti
4 ci Ð c mod ti
5 ci Ð ci mod F i,B
6 mi Ð `` wi,B ´ 1
7 ci Ð θF i,B,`,mi

pciq

8 aÐ coefficient-wise CRT´1 of tciuiPIpBq to ZtI rX˘1s

9 aÐ selecting coefficient representatives of a from the set A

Algorithm 2 produces correct circuit evaluations for all blocks occurring in
Algorithm 1 that satisfy the properties outlined in the next theorem.

Theorem 1. Let S be a set of disjoint blocks such that
Ť

BPS B “ P. Let C
be an arithmetic circuit taking v arguments and for each block B let aB “

paB,1, . . . , aB,vq be a vector of Laurent polynomials. For each k “ 1, . . . , v let bk
denote the output of Algorithm 1 upon input of paB,kqBPS. Let c “ Cpb1, . . . , bvq.
Then for each block B we have that if it covers the bounding box of CpaBq, then
upon input of c Algorithm 2 produces CpaBq, for an appropriate choice of `, m
and A.

Proof. By our assumption there are `,m such that CpaBq “
řm
i“` αiX

i where

min
iPIpBq

wi,B ě m´ `` 1 and
ź

iPIpBq

ti ě |A|, (3)

with A “ tmini αi, . . . ,maxi αiu. Let a denote the output of Algorithm 2 upon
input of c using these `, m, and A. Since this is a Laurent polynomial having
coefficients in A, by (3) it suffices to prove that the reductions of a and CpaBq
modulo ti are the same for each i P IpBq. Again by (3) these reductions are
contained in ZtirX˘1s

mi

` where mi “ ` ` wi,B ´ 1, so by injectivity of ηF i,B
it

suffices to prove that

EncdF i,B
paq “ EncdF i,B

pCpaBqq.

From Algorithm 2 we see that the left-hand side is just the reduction of c into
Rti{pF i,Bq, while the right hand side is

CpEncdF i,B
paB,1q, . . . ,EncdF i,B

paB,vqq

because of the homomorphic properties of the encoding map. From Algorithm 1
we clearly see that EncdF i,B

paB,kq is the reduction of bk into Rti{pF i,Bq, for all
k “ 1, . . . , v, so the theorem follows. ˝

14

Example 5. Using the CRT decomposition of Rt from Example 4 we cube two
Laurent polynomials simultaneously using SIMD, namely upXq “ 7X3 ` 7X2

and vpXq “ 8X5 ` 7X. To encode u3 we take the block B1 with rings R1,1, R2,1

and the remaining bricks to build the block B2 to hold the result v3.
Since only positive exponents are present in the data, all encoding functions

EncdF i,B1
and EncdF i,B2

map upXq and vpXq identically to the corresponding
Ri,j ’s. Then we get

a11,F 1,B1
pXq “ 7X3 ` 7X2 P R1,1 “ R11{pX

5 ` 3q,

a251,F 2,B1
pXq “ 7X3 ` 7X2 P R2,1 “ R251{pX

5 ` 18q,

a11,F 1,B2
pXq “ 8X5 ` 7X P R1,2 “ R11{pX

15 ` 9X10 ` 6X5 ` 4q,

a251,F 2,B2
pXq “ 8X5 ` 7X P R2,2 ˆR2,3 – R251{pX

15 ` 234X10 ` 55X5 ` 14q.

Applying CRT´1

ti,fi,tB1,B2u
for each ti we find

b1 “ X18 `X17 ` 10X16 ` 5X15 ` 9X13 ` 9X12

`2X11 `X10 ` 6X8 ` 6X7 ` 5X6 ` 5X5 ` 4X3 ` 4X2 ` 3X ` 9 P R11,
b2 “ 162X18 ` 162X17 ` 89X16 ` 213X15 ` 7X13 ` 7X12

`244X11 ` 144X10 ` 125X8 ` 125X7 ` 126X6 ` 177X5

`9X3 ` 9X2 ` 249X ` 221 P R251,

which finally leads to the following plaintext via CRT´1
t

b “ 2421X18 ` 2421X17 ` 340X16 ` 1468X15 ` 2517X13 ` 2517X12

`244X11 ` 144X10 ` 2635X8 ` 2635X7 ` 126X6 ` 2436X5

`2017X3 ` 2017X2 ` 751X ` 1978 P R2761.

Now we evaluate an arithmetic circuit z ÞÑ z3 in b and obtain

c “ 1943X19 ` 401X18 ` 745X17 ` 391X16 ` 433X15

`2109X14 ` 1717X13 ` 2646X12 ` 2729X11 ` 2347X10

`2198X9 ` 1724X8 ` 234X7 ` 421X6 ` 2683X5 ` 94X4

`1188X3 ` 1143X2 ` 1960X ` 1906 P R2761,

which simultaneously encodes u3 and v3.
In order to decode the data we apply Algorithm 2 starting with the block B1

equipped with the exponent range r6, 9s and the coefficient set AB1
“ r0, 2760s.

At first, we should reduce c modulo F i,B1
and ti for each i P IpB1q. As a result,

we find

c1,B1
“ 5X4 ` 4X3 ` 4X2 ` 5X P R11{pX

5 ` 3q,
c2,B1 “ 101X4 ` 52X3 ` 52X2 ` 101X P R251{pX

5 ` 18q.

To decode into Laurent polynomials we set `i “ 6 and mi “ 10 for every i P
IpB1q because degF 1,B1

“ degF 2,B1
“ 5. Then we follow the same procedure

as in Example 3 to define θF 1,6,10
and θF 2,6,10

via matrices M1 “ 7 ¨M and

15

M2 “ 237 ¨M where

M “

»

—

—

—

—

–

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

.

These linear transformations give us two Laurent polynomials modulo 11 and
251, respectively

c1,B1
“ 2X9 ` 6X8 ` 6X7 ` 2X6 P Z11rX

˘1s,
c2,B1

“ 92X9 ` 25X8 ` 25X7 ` 92X6 P Z251rX
˘1s.

Using the coefficient-wise CRT and lifting coefficients in AB1
we recover the

Laurent polynomial

aB1 “ 343X9 ` 1029X8 ` 1029X7 ` 343X6 P ZrX˘1s,

which is equal to u3.
We repeat the same steps for the block B2 with the exponent range r3, 15s

and the same coefficient set A. This block has again the polynomials F i,B2
of

the same degree and thus every mi “ 17 and `i “ 3. Executing Algorithm 2 we
get the following sequence of calculations

c1,B2
“ 2X11 `X10 ` 10X7 ` 8X5 ` 2X3 ` 9,

c2,B2 “ 89X11 ` 170X10 ` 172X7 ` 203X5 ` 92X3 ` 111,
Ó

c1,B2
“ 6X15 ` 2X11 ` 10X7 ` 2X3,

c2,B2
“ 10X15 ` 89X11 ` 172X7 ` 92X3,

Ó

aB2 “ 512X15 ` 1344X11 ` 1176X7 ` 343X3.

The last polynomial is exactly v3 so we correctly cubed two Laurent polynomials.

Remark 3. The CRT factorization can also be exploited when a homomorphic
algorithm needs a bigger plaintext modulus than the upper bound tmax

C discussed
above. Let us denote this modulus with a capital T to emphasize direct incompat-
ibility of this parameter with other SHE parameters, namely, T ą tmax

C . However,
one can find a set of natural numbers tTi ď tmax

C u such that T ď T 1 “
ś

i Ti.
Then RT 1 splits into smaller quotient rings RTi

. A plaintext a P RT 1 then maps
to a vector whose ith component lies in RTi . In that case the plaintext space
splits into quotient rings with smaller moduli via CRT such that each ring fits
the SHE settings according to the following diagram

RT 1
CRT
ÝÝÑ

$

’

&

’

%

RT1

CRT
ÝÝÑ

ś

t1|T1

ś

f 1|f mod t1 Rt1,f 1
Alg 1
ÝÝÝÑ RT1

. . .

RTs

CRT
ÝÝÑ

ś

t1|Ts

ś

f 1|f mod t1 Rt1,f 1
Alg 1
ÝÝÝÑ RTs

A homomorphic circuit evaluation must then be repeated over each CRT
factor Ti. Nevertheless, this gives some freedom of choice for Ti’s so as to find
RT 1 with a nice CRT decomposition.

16

6 Parameter choice

In this section we discuss a set of tools that will allow implementers to benefit
from our enhanced SIMD approach as much as possible. There are three param-
eters that directly affect the packing capacity. We list them below in an order
that seems natural for solving any packing problem. Nevertheless, all parameters
depend on each other.

Plaintext modulus. Earlier we defined the range rtmin
C , tmax

C s from which the
plaintext modulus t is allowed to be chosen. Additionally, at the end of Section 4
we discussed the CRT trick that allows to handle plaintext moduli that are
bigger than tmax

C . Altogether this gives a designer some freedom to choose t such
that it splits into many ‘advantageous’ ti’s. An ‘advantageous’ ti means that the
factorization of f i is such that the resulting CRT decomposition can embed as
many plaintexts as possible, which is usually facilitated by a finer brick structure
as in Figure 8.

Fig. 8. The CRT decompositions of plaintext spaces corresponding to different t’s.

This brick structure is defined by the ti’s and by the degrees of the f ij ’s,
namely di1, . . . , diri which constitute a decomposition type of f modulo ti. Let
G be the Galois group of the splitting field of f over Q. It can be considered as
a subgroup of the group Sd of permutations of d elements. Every automorphism
σ can be represented as a product of cycle permutations with a corresponding
pattern of cycle lengths. Additionally, we say that a set P of prime numbers has
density δ if

lim
xÑ8

|tp ď x : p P P u|

|tp ď x : p primeu|
“ δ.

Then the probability that a desired decomposition type occurs for some random
ti is estimated by the following classical theorem.

Theorem 2 (Frobenius). The density of the set P of primes modulo which f
has a given decomposition type d1, d2, . . . , dr exists, and it is equal to 1{|G| times
the number of automorphisms σ P G with cycle pattern d1, d2, . . . , dr.

17

An interesting case is where f i splits into linear factors since it gives maximal
flexibility to combine blocks. There exists only one σ P G corresponding to
such a decomposition which is the identity permutation, so the corresponding
probability is 1{|G|.

Example 6. If fpXq is the nth cyclotomic polynomial then its Galois group G
has d “ φpnq elements and it always splits into irreducible factors of the same
degree, i.e. its decomposition type modulo ti is always pd1, . . . , d1q where d1 is the
order of ti modulo n; here we implicitly assume that gcdpti, nq “ 1. Let us take
fpXq “ X2k`1. Its Galois group is isomorphic to Zˆ

2k`1 or to the direct product
of two cyclic groups C2 ˆ C2k´1 . It contains 2k elements with orders shown in
the following table:

ord 1 2 4 . . . 2k´1

#ta P Zˆ

2k`1u 1 3 4 . . . 2k´1

This implies that f splits into 2k
1

irreducible factors of degree 2k´k
1

modulo
a random ti with probability 2´k

1

, for any k1 P t1, . . . , k ´ 2, k ´ 1u.

In the classical example of a homomorphic application a client encrypts his
data and sends it to a third party to perform calculations. Since encryption and
decryption are done only on the client side, he therefore has the possibility to
tweak the plaintext modulus without re-generation of keys as long as the eval-
uation (or linearization) key does not depend on t. It is important to note that
the plaintext modulus does not affect the security level of an SHE scheme but it
does affect the decryption correctness. Hence, t should fit the upper bound tmax

C
introduced by the noise growth inside ciphertexts. As a result, one can exploit
the same technique as above to find Rt with the most useful decomposition.

Block set. Recall that the plaintext space can be thought of as a set of bricks
P. Every block is then a subset of P. The packing problem consists in finding
a partition of P with the maximal number of blocks where each one satisfies
Theorem 1. It is clear that the partition search is highly dependent on the data
values and the arithmetic operations being performed homomorphically. There-
fore the same plaintext space can be used differently for various applications as
shown in Figure 9. If r “

řs
i“1 ri is the cardinality of P then the total number of

partitions is equal to the r-th Bell number Br. That number grows exponentially
(see [17]) while r is increasing according to

lnBr
r

» ln r.

As a result a system designer has a lot of flexibility to play with the plaintext
space partitions to fit data into some block structure. Obviously, the maximal

18

B1

B2
B3

B4
B5

B1

B2 B3

B4B5 B6

B1

B2

B3
B1 B2

Fig. 9. Different partitions of P.

number of blocks cannot be bigger than r, in which case the blocks are just the
singletons tRi,ju. A plaintext space with many CRT factors is usually easier to
handle because it is more flexible for block constructions.

If one does not find a satisfying partition of all of P, it is of course also
possible to leave a couple of bricks unused by packing zeros in them (or even
random values).

Encoding base. Representing data using Laurent polynomials requires a nu-
merical base b which can be a real or a complex number. The size of b affects
the length of a representation as well as the size of its coefficients.

In [3] it was shown that non-integral bases taken from the interval p1, 2q have
a simple greedy algorithm that, given a real number, produces a base-b expansion
with a ternary set of coefficients. This procedure has the property that smaller
bases lead to sparser representations and thus smaller coefficient growth but
longer expansions. To illustrate this we resort again to the box representation of
a Laurent polynomial.

Fig. 10. The examples of bounding boxes corresponding to different encoding bases.

19

As a result, by changing the encoding base one could play a trade-off game
between degree and coefficient size such that the number of plaintexts fitting a
block structure is maximal. Furthermore, each block allows to encode data in
a different base because neither Algorithm 1 nor Algorithm 2 depends on the
choice of b.

Example 7. To illustrate the aforementioned techniques we revisit a medical ap-
plication of the YASHE homomorphic encryption scheme [4] given in [5]. In this
paper the standard logistic function is homomorphically computed to predict the
probability of having a heart attack. The algorithm is divided into two steps.
Step 1. One computes the following weighted sum of six encrypted predictive
variables

z “ 0.072 ¨ z1 ` 0.013 ¨ z2 ´ 0.029 ¨ z3 ` 0.008 ¨ z4 ´ 0.053 ¨ z5 ` 0.021 ¨ z6,

where each zi P r0, 400s. The multiplicative depth of the corresponding circuit
is 1. For this step we take the same YASHE parameters as in [5], i.e. q » 2128 and
fpXq “ X4096`1. Given these parameters we derive tCmax “ 2097152 » 221 using
[4, Lem. 9]. Running over all primes less than tCmax we find that modulo t1 “ 257
and modulo t2 “ 3583 our polynomial fpXq can be written as a product of
128 coprime factors of degree 32. With t “ t1 the conventional SIMD technique
allows then to pack at most 128 values into one plaintext. This capacity can
be achieved with base-3 balanced ternary expansions that result in an output
bounding box of size p29, log2 53q. However, our approach supports t “ t1 ¨ t2 so
one can pack 256 values using the same encoding method.
Step 2. The output of Step 1 is decrypted, decoded to a real number and
encoded again to a plaintext. This ‘refreshed’ encoding is then encrypted and
given as input to the following approximation of the logistic function

P pxq “
1

2
`

1

4
x´

1

48
x3 `

1

480
x5 ´

17

80640
x7.

In this step the multiplicative depth is 3, q » 2512 and fpXq “ X16384`1. These
parameters lead to tCmax » 250. Using the previous SIMD technique the maximal
plaintext capacity can be achieved with the plaintext modulus t » 230.54 and
base-3 balanced ternary encoding. In this case fpXq splits into 8192 quadratic
factors and the output bounding box is of size p229, 29.54q. We can thus compose
71 blocks with 115 slots and one block with the remaining slots. As a result, one
plaintext can contain at most 71 values.

This capacity can be increased with our SIM2D technique. In particular, one
can notice that the ratio between tCmax and the previously mentioned modulus t
is around 219.46, which implies some part of the plaintext space remains unfilled.
We can fill that space setting the plaintext modulus to t1 ¨t2 with t1 » 230.54 and
t2 “ 675071 » 219.36. The polynomial fpXq splits into 128 factors of degree 128
modulo t2. To fit the modulus t2 we encoded real values with the non-integral
base b “ 1.16391 and obtained the output bounding box p1684, 19.36q. Therefore
one block should consist of 14 slots, and we can construct 9 such blocks. As a
result, we can combine these blocks with the 71 blocks given by the old SIMD
technique, which results in a total plaintext capacity of 80 values.

20

7 Conclusion

In this paper we presented two techniques that make SIMD operations in the set-
ting of homomorphic encryption more flexible and efficient. Our first technique
showed how data values that are naturally represented as Laurent polynomials
can be encoded into a plaintext space of the form ZtrXs{pfpXqq. Furthermore,
we also provided sufficient conditions for correct decoding after evaluation of an
arithmetic circuit. Our second technique relied on a fine-grained CRT decompo-
sition of the plaintext space resulting in a much denser and thus more efficient
data packing compared to the state of the art. Finally, we provided guidelines
on how to choose system parameters in order to find the most efficient packing
strategy for a particular task.

References

1. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

2. Fabrice Benhamouda, Tancrède Lepoint, Claire Mathieu, and Hang Zhou. Opti-
mization of bootstrapping in circuits. In Philip N. Klein, editor, 28th SODA, pages
2423–2433. ACM-SIAM, 2017.

3. Charlotte Bonte, Carl Bootland, Joppe W. Bos, Wouter Castryck, Ilia Iliashenko,
and Frederik Vercauteren. Faster homomorphic function evaluation using non-
integral base encoding. In Wieland Fischer and Naofumi Homma, editors,
CHES 2017, volume 10529 of LNCS, pages 579–600. Springer, Heidelberg, 2017.

4. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved se-
curity for a ring-based fully homomorphic encryption scheme. In Martijn Stam,
editor, 14th IMA International Conference on Cryptography and Coding, volume
8308 of LNCS, pages 45–64. Springer, Heidelberg, 2013.

5. Joppe W. Bos, Kristin E. Lauter, and Michael Naehrig. Private predictive analysis
on encrypted medical data. Journal of Biomedical Informatics, 50:234–243, 2014.

6. Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 868–886. Springer, Heidelberg, 2012.

7. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS
2012, pages 309–325. ACM, 2012.

8. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106.
IEEE Computer Society Press, 2011.

9. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer, Heidelberg, 2011.

10. Hao Chen, Kim Laine, Rachel Player, and Yuhou Xia. High-precision arithmetic in
homomorphic encryption. In Nigel P. Smart, editor, CT-RSA 2018, volume 10808
of LNCS. Springer, Heidelberg, 2018. To appear.

11. Jung Hee Cheon, Kyoohyung Han, and Duhyeong Kim. Faster bootstrapping
of FHE over the integers. Cryptology ePrint Archive, Report 2017/079, 2017.
http://eprint.iacr.org/2017/079.

21

http://eprint.iacr.org/2017/079

12. Jung Hee Cheon, Jinhyuck Jeong, Joohee Lee, and Keewoo Lee. Privacy-preserving
computations of predictive medical models with minimax approximation and non-
adjacent form. In Michael Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller,
Peter Y. A. Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano Sala, Federico
Pintore, and Markus Jakobsson, editors, FC 2017, volume 10323, pages 53–74.
Springer, Heidelberg, 2017.

13. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of
LNCS, pages 3–33. Springer, Heidelberg, 2016.

14. Anamaria Costache, Nigel P. Smart, and Srinivas Vivek. Faster homomorphic
evaluation of discrete Fourier transforms. In Aggelos Kiayias, editor, FC 2017,
volume 10322 of LNCS, pages 517–529, 2017.

15. Anamaria Costache, Nigel P. Smart, Srinivas Vivek, and Adrian Waller. Fixed-
point arithmetic in SHE schemes. In Roberto Avanzi and Howard M. Heys, editors,
SAC 2016, volume 10532 of LNCS, pages 401–422. Springer, Heidelberg, 2016.

16. CryptoExperts. FV-NFLlib. https://github.com/CryptoExperts/FV-NFLlib,
2016.

17. Nicolaas Govert De Bruijn. Asymptotic methods in analysis. Dover, New York,
NY, 1958.

18. Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin E. Lauter, Michael
Naehrig, and John Wernsing. Manual for using homomorphic encryption for bioin-
formatics. Proceedings of the IEEE, 105(3):552–567, 2017.

19. Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryp-
tion in less than a second. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part I, volume 9056 of LNCS, pages 617–640. Springer, Heidelberg,
2015.

20. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.
iacr.org/2012/144.

21. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press, 2009.

22. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption
with polylog overhead. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 465–482. Springer, Heidelberg,
2012.

23. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 75–92. Springer, Heidelberg, 2013.

24. Zhicong Huang Amir Jalali Hao Chen, Kyoohyung Han and Kim Laine. Simple
encrypted arithmetic library — SEAL (v2.3). Technical report, Technical report,
Microsoft Research, 2017.

25. Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Christian Cachin and Thomas Ristenpart, editors,
Proceedings of the 3rd ACM Cloud Computing Security Workshop, CCSW 2011,
pages 113–124. ACM, 2011.

26. Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

27. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations.
Des. Codes Cryptography, 71(1):57–81, 2014.

22

https://github.com/CryptoExperts/FV-NFLlib
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144

	Homomorphic SIM2D Operations: Single Instruction Much More Data

