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Abstract. While there has been a lot of progress in designing efficient
custom protocols for computing Private Set Intersection (PSI), there
has been less research on using generic Multi-Party Computation (MPC)
protocols for this task. However, there are many variants of the set
intersection functionality that are not addressed by the existing custom
PSI solutions and are easy to compute with generic MPC protocols
(e.g., comparing the cardinality of the intersection with a threshold or
measuring ad conversion rates).

Generic PSI protocols work over circuits that compute the intersection.
For sets of size n, the best known circuit constructions conduct O(nlogn)
or O(nlogn/loglogn) comparisons (Huang et al., NDSS’12 and Pinkas
et al., USENIX Security’15). In this work, we propose new circuit-based
protocols for computing variants of the intersection with an almost linear
number of comparisons. Our constructions are based on new variants of
Cuckoo hashing in two dimensions.

We present an asymptotically efficient protocol as well as a protocol
with better concrete efficiency. For the latter protocol, we determine the
required sizes of tables and circuits experimentally, and show that the
run-time is concretely better than that of existing constructions.

The protocol can be extended to a larger number of parties. The proof
technique presented in the full version for analyzing Cuckoo hashing in
two dimensions is new and can be generalized to analyzing standard
Cuckoo hashing as well as other new variants of it.
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1 Introduction

Private Set Intersection (PSI) refers to a protocol which enables two parties,
holding respective input sets X and Y, to compute the intersection X NY without
revealing any information about the items which are not in the intersection.
The PSI functionality is useful for applications where parties need to apply a
JOIN operation to private datasets. There are multiple constructions of secure
protocols for computing PSI, but there is an advantage for computing PSI



by applying a generic Multi-Party Computation (MPC) protocol to a circuit
computing the intersection (see . The problem is that a naive circuit computes
O(n?) comparisons, and even the most recent circuit-based constructions require
O(nlogn) or O(nlogn/loglogn) comparisons (see §1.4).

In this work, we present a new circuit-based protocol for computing PSI
variants. In our protocol, each party first inserts its input elements into bins
according to a new hashing algorithm, and then the intersection is computed by
securely computing a Boolean comparison circuit over the bins. The insertion of
the items is based on new Cuckoo hashing variants which guarantee that if the
two parties have the same input value, then there is exactly one bin to which
both parties map this value. Furthermore, the total number of bins is O(n) and
there are O(1) items mapped to each bin, plus w(1) items which are mapped to
a special stash. Hence, the circuit that compares (1) for each bin, the items that
the two parties mapped to it, and (2) all stash items to all items of the other
party, computes only w(n) comparisons.

1.1 Motivation for Circuit-based PSI

PSI has many applications, as is detailed for example in [42]. Consequently, there
has been a lot of research on efficient secure computation of PSI, as we describe
in §1.41 However, most research was focused on computing the intersection
itself, while there are interesting applications for the ability to securely compute
arbitrary functions of the intersection. We demonstrate the need for efficient
computation of PSI using generic protocols through the following arguments:

Adaptability. Assume that you are a cryptographer and were asked to
propose and implement a protocol for computing PSI. One approach is to
use a specialized protocol for computing PSI. Another possible approach is to
use a protocol for generic secure computation, and apply it to a circuit that
computes PSI. A trivial circuit performs O(n?) comparisons, while more efficient
circuits, described in [26] and [39], perform only O(nlogn) or O(nlogn/loglogn)
comparisons, respectively. The most efficient specialized PSI protocols are faster
by about two orders of magnitude than circuit-based constructions (see [39]), and
therefore you will probably choose to use a specialized PSI protocol. However,
what happens if you are later asked to change the protocol to compute another
function of the intersection? For example, output only the size of the intersection,
or output 1 iff the size is greater than some threshold, or output the most
“representative” item that occurs in the intersection (according to some metric).
Any change to a specialized protocol will require considerable cryptographic know-
how, and might not even be possible. On the other hand, the task of writing a
new circuit component that computes a different function of the intersection is
rather trivial, and can even be performed by undergrad students.

Consider the following function as an example of a variant of the PSI func-
tionality for which we do not know a specialized protocol: Suppose that you want
to compute the size of the intersection, but you also wish to preserve the privacy
of users by ensuring differential privacy. This is done by adding some noise to
the exact count before releasing it. This functionality can easily be computed by



a circuit, but it is unclear how to compute it using other PSI protocols. (See [38]
for constructions that add noise to the results of MPC computation in order to
ensure differential privacy.)

Existing code base. Circuit-based protocols benefit from all the work that
was invested in recent years in designing, implementing, and optimizing very
efficient systems for generic secure computation. Users can download existing
secure computation software, e.g., [27] 13|, and only need to design the circuit to
be computed and implement the appropriate hashing technique.

Existing applications. There are existing applications that need to compute
functions over the results of the set intersection. For example, Google reported [49}
34] a PSI-based application for measuring ad conversion rates, namely the revenues
from ad viewers who later perform a related transaction. This computation can
be done by comparing the list of people who have seen an ad with those who
have completed a transaction. These lists are held by the advertiser (say, Google
or Facebook), and by merchants, respectively. A simple (non-private) solution is
for one side to disclose its list of customers to the other side, which computes
the necessary statistics. Another option is to run a secure computation over the
results of the set intersection. For example, the merchant inputs pairs of the
customer-identity and the value of the transactions made by this customer, and
the computation calculates the total revenue from customers who have seen an
ad, namely customers in the intersection of the sets known to the advertiser and
the merchant. Google reported implementing this computation using a Diffie-
Hellman-based PSI cardinality protocol (for computing the cardinality of the
intersection) and Paillier encryption (for computing the total revenues) [28]. This
protocol reveals the identities of the items in the intersection, and seems less
efficient than our protocol as it uses public key operations, rather than efficient
symmetric cryptographic operationsﬂ

1.2 Owur Contributions

This work provides the following contributions:

Circuit-based PSI protocols with almost linear overhead. We show
a new circuit-based construction for computing any symmetric function on top
of PSI, with an asymptotic overhead of only w(n) comparisons. (More accurately,
for any function f € w(n), the overhead of the construction is o(f(n)).) This
construction is based on standard Cuckoo hashing.

Small constants. Standard measures of asymptotic security are not always
a good reflection of the actual performance on reasonable parameters. Therefore,
in addition to the asymptotic improvement, we also show a concrete circuit-
based PSI construction. This construction is based on a new variant of Cuckoo

4 Facebook is running a computation of this type with companies that have trans-
action records for a large part of loyalty card holders in the US. According to the
report in https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-d
atalogix-whats-actually-getting-shared-and-how-you-can-opt, the computa-
tion is done using an insecure PSI variant based on creating pseudonyms using naive
hashing of the items.
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hashing, two-dimensional Cuckoo hashing, that we introduce in this work. We
carefully handle implementation issues to improve the actual overhead of our
protocols, and make sure that all constants are small. In particular, we ran
extensive experiments to analyze the failure probabilities of the hashing scheme,
and find the exact parameters that reduce this statistical failure probability
to an acceptable level (e.g., 2740). Our analysis of the concrete complexities is
backed by extensive experiments, which consumed about 5.5 million core hours
on the Lichtenberg high performance computer of the TU Darmstadt and were
used to set the parameters of the hashing scheme. Given these parameters we
implemented the circuit-based PSI protocol and tested it.

Implementation and experiments. We implemented our protocols using
the ABY framework for secure two-party computation |13]. Our experiments
show that our protocols are considerably faster than the previously best circuit-
based constructions. For example, for input sets of n = 220 elements of arbitrary
bitlength, we improve the circuit size over the best previous construction by up
to a factor of 3.8x.

New Cuckoo hashing analysis. Our two-dimensional Cuckoo hashing is
based on a new Cuckoo hashing scheme that employs two tables and each item
is mapped to either two locations in the first table, or two locations in the
second table. This is a new Cuckoo hashing variant that has not been analyzed
before. In addition to measuring its performance using simulations, we provide a
probabilistic analysis of its performance. Interestingly, this analysis can also be
used as a new proof technique for the success probability of standard Cuckoo
hashing.

1.3 Computing Symmetric Functions

A trivial circuit for PSI that performs O(n?) comparisons between all pairs of
the input items of the two parties allows the parties to set their inputs in any
arbitrary order. On the other hand, there exist more efficient circuit-based PSI
constructions where each party first independently orders its inputs according to
some predefined algorithm: the sorting network-based construction of [26] requires
each party to sort its input to the circuit, while the hashing-based construction
of |39 requires the parties to map their inputs to bins using some public hash
functions. (These constructions are described in §1.4]) The location of each input
item thus depends on the identity of the other inputs of the input owner, and
must therefore be kept hidden from the other party.

In this work, we focus on constructing a circuit that computes the intersection.
The outputs of this circuit can be the items in the intersection, or some functions
of the items in the intersection: say, a “1” for each intersecting item, or an
arbitrary function of some data associated with the item (for example, if the
items are transactions, we might want to output a financial value associated
with each transaction that appears in the intersection). On top of that circuit
it is possible to add circuits for computing any function that is based on the
intersection. In order to preserve privacy, the output of that function must be a
symmetric function of the items in the intersection. Namely, the output of the



function must not depend on the order of its inputs. There are many examples of
interesting symmetric functions of the intersection. (In fact, it is hard to come up
with examples for interesting non-symmetric functions of the intersection, except
for the intersection itself.) Examples of symmetric functions include:

— Computing the size of the intersection, i.e., PSI cardinality (PSI-CA).

— Computing a threshold function that is based on the size of the intersection.
For example, outputting “1” if the size of the intersection is greater than
some threshold (PSI-CAT), or outputting a rounded value of the percentage
of items that are in the intersection. An extension of PSI-CAT, where the
intersection is revealed only if the size of the intersection is greater than a
threshold, can be used for privacy-preserving ridesharing [23].

— Computing the size of the intersection while preserving the privacy of users
by ensuring differential privacy |17]. This can be done by adding some noise
to the exact count.

— Computing the sum of values associated with the items in the intersection.
This is used for measuring ad-generated revenue (cf. . Similarly, there
could be settings where each party associates a value with each transaction,
and the output is the sum of the differences between these assigned values in
the intersection, or the sum of the squares of the differences, etc.

The circuits for computing all these functions are of size O(n). Therefore, with
our new construction, the total size of the circuits for computing these functions
is w(n), whereas circuit-based PSI protocols [26} 39] had size O(nlogn).

If one wishes to compute a function that is not symmetric, or wishes to
output the intersection itself, then the circuit must first shuffle the values in the
intersection (in order to assign a random location to each item in the intersection)
and then compute the function over the shuffled values, or output the shuffled
intersection. A circuit for this “shuffle” step has size O(nlogn), as described
in [26]). (It is unclear, though, why a circuit-based protocol should be used for
computing the intersection, since this job can be done much more efficiently by
specialized protocols, e.g., |31, 42].)

1.4 Related Work

PSI. Work on protocols for private set intersection was presented as early as [46),
35|, which introduced public key-based protocols using commutative cryptography,
namely the Diffie-Hellman function. A survey of PSI protocols appears in [41].
The goal of these protocols is to let one party learn the intersection itself, rather
than to enable the secure computation of arbitrary functions of the intersection.
Other PSI protocols are based on oblivious polynomial evaluation [20], blind
RSA [11], and Bloom filters |16]. Today’s most efficient PSI protocols are based
on hashing the items to bins and then evaluating an oblivious pseudo-random
function per bin, which is implemented using oblivious transfer (OT) extension.
These protocols have linear complexity and were all implemented and evaluated,
see, e.g., |41} |39} |31} [42]. In cases where communication cost is a crucial and



computation cost is a minor factor, recent solutions based on fully homomorphic
encryption represent an interesting alternative [6]. PSI protocols have also been
adapted to the special requirements of mobile devices |25} 4, 30].

Circuit-based PSI. Circuit-based PSI protocols compute the set intersection
functionality by running a secure evaluation of a Boolean circuit. These protocols
can easily be adapted to compute different variants of the PSI functionality. The
straightforward solution to the PSI problem requires O(n?) comparisons — one
comparison for each pair of items belonging to the two parties. Huang et al. [26]
designed a circuit for computing PSI based on sorting networks, which computes
O(nlogn) comparisons and is of size O(onlogn), where o is the bitlength of the
inputs. A different circuit, based on the usage of Cuckoo hashing by one party
and simple hashing by the other party, was proposed in [39)]. The size of that
circuit is O(onlogn/loglogn). In our work we propose efficient circuits for PSI
variants with an asymptotic size of w(on) and better concrete efficiency. We give
more details and a comparison of the concrete complexities of circuit-based PSI
protocols in

PSI Cardinality (PSI-CA). A specific interesting function of the intersection
is its cardinality, namely | X NY'|, and is referred to as PSI-CA. There are several
protocols for computing PSI-CA with linear complexity based on public key
cryptography, e.g., [9] which is based on Diffie-Hellman and is essentially a
variant of the DH-based PSI protocol of |46 35| (see also references given therein
for other less efficient public key-based protocols); or [12] which is based on
Bloom filters and the public key cryptosystem of Goldwasser-Micali. In these
protocols, one of the parties learns the cardinality. As we show in our experiments
in these protocols are slower than our constructions already for relatively
small set sizes (n = 2'2) in the LAN setting and for large set sizes (n = 2%°) in
the WAN setting, since they are based on public key cryptography. An advantage
of these protocols is that they achieve the lowest amount of communication, but
it seems hard to extend them to compute arbitrary functions of the intersection.
Protocols for private set intersection and union and their cardinalities with linear
complexity are given in [§]. They use Bloom filters and computationally expensive
additively homomorphic encryption, whereas our protocols can flexibly be adapted
to different variants and are based on efficient symmetric key cryptography.

2 Preliminaries

Setting. We consider two parties, which we denote as Alice and Bob. They
have input sets, X and Y, respectively, which are each of size n and each item
has bitlength 0. We assume that both parties agree on a symmetric function f
and would like to securely compute f(X NY’). They also agree on a circuit that
receives the items in the intersection as input and computes f.



Security Model. The secure computation literature considers semi-honest
adversaries, which try to learn as much information as possible from a given
protocol execution, but are not able to deviate from the protocol steps, and
malicious adversaries, which are able to deviate arbitrarily from the protocol. The
semi-honest adversary model is appropriate for scenarios where execution of the
intended software is guaranteed via software attestation or business restrictions,
and yet an untrusted third party is able to obtain the transcript of the protocol
after its execution, either by stealing it or by legally enforcing its disclosure. Most
protocols for private set intersection, as well as this work, focus on solutions
that are secure against semi-honest adversaries. PSI protocols for the malicious
setting exist, but they are less efficient than protocols for the semi-honest setting
(see, e.g., [20, 7,10, |19, 43, 44]).

Secure Computation. There are two main approaches for generic secure two-
party computation with security against semi-honest adversaries that allow to
securely evaluate a function that is represented as a Boolean circuit: (1) Yao’s
garbled circuit protocol [48] has a constant round complexity and with today’s
most efficient optimizations provides free XOR gates [33], whereas securely
evaluating an AND gate requires sending two ciphertexts [50]. (2) The GMW
protocol [21] also provides free XOR gates and requires two ciphertexts of
communication per AND gate using OT extension [3]. The main advantage
of the GMW protocol is that all symmetric cryptographic operations can be
pre-computed in a constant number of rounds in a setup phase, whereas the
online phase is very efficient, but requires interaction for each layer of AND
gates. In more detail, the setup phase is independent of the actual inputs and
pre-computes multiplication triples for each AND gate using OT extension in
a constant number of rounds (cf. [3]). The online phase runs from the time the
inputs are provided until the result is obtained and involves sending one message
for each layer of AND gates. A detailed description and a comparison between
Yao and GMW is given in [45].

Cuckoo Hashing. In its simplest form, Cuckoo hashing [36] uses two hash
functions hg, by to map n elements to two tables Ty, Ty, each containing (1 + )n
bins. Each bin accommodates at most a single element. The scheme avoids
collisions by relocating elements when a collision is found using the following
procedure: Let b € {0,1}. An element x is inserted into a bin hy(z) in table T5,.
If a prior item y exists in that bin, it is evicted to bin h;_(y) in T1_p. The
pointer b is then assigned the value 1 — b. The procedure is repeated until no
more evictions are necessary, or until a threshold number of relocations has been
performed. In the latter case, the last element is mapped to a special stash. It
was shown in [29] that, for any constant s, the probability that the size of the
stash is greater than s is at most O(n~(571)). After inserting all items, each item
can be found in one of two locations or in the stash. A lookup therefore requires
checking only O(1) locations.



Many variants of Cuckoo hashing were suggested and analyzed. See [47]
for a thorough discussion and analysis of different Cuckoo hashing schemes. A
variant of Cuckoo hashing that is similar to our constructions was given in [1],
although in a different application domain. It considers a setting with three
tables, where an item must be placed in two out of three tables. The analysis
of this construction uses a different proof technique than the one we present in
the full version [40], and we have not attempted to generalize their proof to a
general number of item insertions (as we do for our construction). Furthermore,
there is no tight analysis of the stash size in |1]. The work in |18] builds on the
construction of [1] and proves that the failure probability when using a stash of
size s behaves as O(n_s). However, the experiments of |18, Fig. 6] reveal that
the size of the stash is rather large and actually increasing in n within the range
of 1000 to 100000 elements. For example, for table size 7.1n, a stash of at least
size 4 is required for inserting 10 000 elements, whereas a stash of at least size
11 is required for inserting 100000 elements. Since each item in the stash must
be compared to all items of the other party, and since these comparisons cannot
use a shorter representation based on permutation-based hashing, the effect of
the stash is substantial, and in the context of circuit-based PSI it is therefore
preferable to use constructions that place very few or no items in the stash.

PSI based on Hashing. Some existing constructions of circuits for PSI require
the parties to reorder their inputs before inputting them to the circuit: The
sorting-network based construction of [26] requires the parties to sort their inputs.
The hashing based construction of [39] requires that each party maps its items to
bins using a hash function. It was observed as early as [20] that if the two parties
agree on the same hash function and use it to map their respective input to bins,
then the items that one party maps to a specific bin need to be compared only to
the items that the other party maps to the same bin. However, the parties must
be careful not to reveal to each other the number of items they mapped to each
bin, since this data leaks information about their other items. Therefore, they
agree beforehand on an upper bound m for the maximum number of items that
can be mapped to a bin (such upper bounds are well known for common hashing
algorithms, and can also be substantiated using simulation), and pad each bin
with random dummy values until it has exactly m items in it. If both parties use
the same hash algorithm, then this approach considerably reduces the overhead
of the computation from O(n?) to O(B - m?), where m is the maximum number
of items mapped to any of the § bins.

When a random hash function h is used to map n items to n bins, where x
is mapped to bin h(z), the most occupied bin has w.h.p. m = {22 (1 + o(1))
items [22] (a careful analysis shows, e.g., that, for n = 22° and an error probability
of 2749 one needs to set m = 20). Cuckoo hashing is much more promising,
since it maps n items to 2(1 + €)n bins, where each bin stores at most m = 1
items. Cuckoo hashing typically uses two hash functions hg, h;, where an item
x is mapped to one of the two locations hg(x), hi(x), or to a stash of a small
size. It is tempting to let both parties, Alice and Bob, map their items to bins




using Cuckoo hashing, and then only compare the item that one party maps to
a bin with the item that the other party maps to the same bin. The problem
is that Alice might map x to ho(z) whereas Bob might map it to hq(z). They
cannot use a protocol where Alice’s value in bin ho(z) is compared to the two
bins hg(x), h1(z) in Bob’s input, since this reveals that Alice has an item that is
mapped to these two locations. The solution used in [19, 41} [39] is to let Alice
map her items to bins using Cuckoo hashing, and Bob map his items using
simple hashing. Namely, each item of Bob is mapped to both bins hg(z), hi(z).
Therefore, Bob needs to pad his bins to have m = O(logn/loglogn) items in
each bin, and the total number of comparisons is O(nlogn/loglogn).

3 Analyzing the Failure Probability

Efficient cryptographic protocols that are based on probabilistic constructions are
typically secure as long as the underlying probabilistic constructions do not fail.
Our work is based on variants of Cuckoo hashing, and the protocols are secure
as long as the relevant tables and stashes do not overflow. (Specifically, hashing
is computed using random hash functions which are chosen independently of the
data. If a party observes that these functions cannot successfully hash its data,
it can indeed ask to replace the hash functions, or remove some items from its
input. However, the hash functions are then no longer independent of this party’s
input and might therefore leak some information about the input.)

There are two approaches for arguing about the failure probability of crypto-
graphic protocols:

1. For an asymptotic analysis, the failure probability must be negligible in n.
2. For a concrete analysis, the failure probability is set to be smaller than
some threshold, say 27, where )\ is a statistical security parameter.
In typical experiments, the statistical security parameter is set to A = 40.
This means that “unfortunate” events that leak information happen with
a probability of at most 2740, In particular, A = 40 was used in all PSI
constructions which are based on hashing (e.g., |16} 41} |39} |19, 31]).

With regards to the probabilistic constructions, there are different levels of
analysis of the failure probability:

1. For simple constructions, it is sometimes possible to compute the exact
failure probability. (For example, suppose that items are hashed to a table
using a random hash function, and a failure happens when two items are
mapped to the same location. In this case it is trivial to compute the exact
failure probability.)

2. For some constructions there are known asymptotic bounds for the failure
probability, but no concrete expressions. (For example, for Cuckoo hashing
with a stash of size s, it was shown in [29] that the overflow probability is
O(n~*Y), but the exact constants are unknown.

® We note though that many probabilistic constructions are analyzed in the algorithms
research literature to have a failure probability of o(1), which is fine for many
applications, but is typically insufficient for cryptographic applications.



3. For other constructions there is no analysis for the failure probability, even
though they perform very well in practice. For example, Cuckoo hashing
variants where items can be mapped to d > 2 locations, or where each bin
can hold k£ > 1 items, were known to have better space utilization than
standard Cuckoo hashing, but it took several years to theoretically analyze
their performance [47]. There are also insertion algorithms for these Cuckoo
hashing variants which are known to perform well but which have not yet
been fully analyzed.

3.1 Using Probabilistic Constructions for Cryptography

Suppose that one is using a probabilistic construction (e.g., a hash table) in the
design of a cryptographic protocol. An asymptotic analysis of the cryptographic
protocol can be done if the hash table has either an exact analysis or an asymptotic
analysis of its failure probability (items 1 and 2 in the previous list).

If the aim is a concrete analysis of the cryptographic protocol, then exact
values for the parameters of the hash construction must be identified. If an
exact analysis is known (item 1), then it is easy to plug in the desired failure
probability (27*) and compute the values for the different parameters. However,
if only an asymptotic analysis or experimental evidence is known (items 2 and
3), then experiments must be run in order to find the parameters that set the
failure probability to be smaller than 27,

We stress that a concrete analysis is needed whenever a cryptographic protocol
is to be used in practice. In that case, even an asymptotic analysis is insufficient
since it does not specify any constants, which are crucial for deriving the exact
parameter values.

3.2 Experimental Parameter Analysis

Verifying that the failure probability is smaller than 2=* for A\ = 40 requires
running many repetitions of the experiments. Furthermore, for large input sizes
(large values of n), each single run of the experiment can be rather lengthy. (And
one could justifiably argue that the more interesting results are for the larger
values of n, since for smaller n we can use less optimal constructions and still get
reasonable performance.)

Examining the failure probability for a specific choice of parameters.
For a specific choice of parameters, running 2* repetitions of an experiment is
insufficient to argue about a 27 failure probability, since it might happen that
the experiments were very unlucky and resulted in no failure even though the
failure probability is somewhat larger than 2~*. Instead, we can argue about a
confidence interval: namely, a confidence interval of 1 — a (say, 95%, or 99.9%)
states that if the failure probability is greater than 27, then we would have not
seen the results of the experiment, except with a probability that is smaller than «.
Therefore, either the experiment was very unlucky, or the failure probability is

10



sufficiently small. For example, an easy to remember confidence level used in
statistics is the “rule of three”, which states that if an event has not occurred
in 3 - s experiments, then the 95% confidence interval for its rate of occurrence
in the population is [0,1/s]. For our purposes this means that running 3 - 2*
experiments with no failure suffices to state that the failure probability is smaller
than 27* with 95% confidence. (We will report experiments in which result
in a 99.9% confidence interval for the failure probability.)

Examining the failure probability as a function of n. For large values of n
(e.g., n = 229), it might be too costly to run sufficiently many (more than 24°)
experiments. Suppose that the experiments spend just 10 cycles on each item.
This is an extremely small lower bound, which is probably optimistic by orders
of magnitude compared to the actual run-time. Then the experiments take at
least 10 - 260 cycles. This translates to about a million core hours on 3 GHz
machines.

In order to be able to argue about the failure probability for large values of n,
we can run experiments for progressively increasing values of n and identify how
the failure probability behaves as a function of n. If we observe that the failure
probability is decreasing, or, better still, identify the dependence on n, we can
argue, given experimental results for medium-sized n values, about the failure
probabilities for larger values of n.

3.3 Our Constructions

Asymptotic overhead. We present in 4] a construction of circuit-based PSI
that we denote as the “mirror” construction. This construction uses four instances
of standard Cuckoo hashing and therefore we know that a stash of size s guarantees
a failure probability of O(n~(571)) [29]. (Actually, the previously known analysis
was only stated for s = O(1). We show in the full version [40] that this failure
probability also holds for s that is not constant.)

The bound on the failure probability implies that for any constant security
parameter A, a stash of constant size is sufficient to ensure that the failure
probability is smaller than 2= for sufficiently large n. In order to achieve a
failure probability that is negligible in n, we can set the stash size s to be slightly
larger than O(1), e.g, s = loglogn, s = log" n, or any s = w(1). The result is a
construction with an overhead of w(n). (More accurately, the overhead is as close
as desired to being linear: for any f(n) € w(n), the overhead is o(f(n)).)

Concrete overhead. In §5| we present a new variant of Cuckoo hashing that we
denote as two-dimensional (or 2D) Cuckoo hashing. We analyze this construction
in the full version [40] and show that when no stash is used, then the failure
probability (with tables of size O(n)) is O(1/n), as in standard Cuckoo hashing.

We only have a sketch of an analysis for the size of the stash of the construction
in but we observed that this construction performed much better than the
asymptotic construction. Also, performance was improved with the heuristic of

11



using half as many bins but letting each bin store two items instead of one. (This
variant is known to perform much better also in the case of standard Cuckoo
hashing, see [47].)

Since we do not have a theoretical analysis of this construction, we ran
extensive experiments in order to examine its performance. These experiments
follow the analysis paradigm given in §3.2] and are described in §6.1} For a
specific ratio between the table size and n, we ran 2° experiments for n = 212
and found that the failure probability is at most 2737 with 99.9% confidence.
We also ran experiments for increasing values of n, up to n = 2'2, and found
that the failure probability has linear dependence on n=2 (an explanation of
this behavior appears in the full version [40]). Therefore, we can argue that for
n > 213 = 2. 212 the failure probability is at most 2737 . 273 = 2740,

4 An Asymptotic Construction through Mirror Cuckoo
Hashing

We show here a construction for circuit-based PSI that has an w(n) asymptotic
overhead. The analysis in this section is not intended to be tight, but rather
shows the asymptotic behavior of the overhead.

The analysis is based on a construction which we denote as mirror Cuckoo
hashing (as the placement of the hash functions that are used in one side is a
mirror image of the hash functions of the other side). Hashing is computed in a
single iteration. The main advantage of this construction is that it is based on
four copies of standard Cuckoo hashing. Therefore, we can apply known bounds
on the failure probability of Cuckoo hashing. Namely, applying the result of |29)
that the failure probability when using a stash of size s is O(n~(*1D). Given this
result, a stash of size w(1) guarantees that the failure probability is negligible
in n (while a constant stash size guarantees that for sufficiently large n the failure
probability is smaller than any constant, and in particular smaller than 2740).
We note that while the known results about the size of the stash are only stated
for s = O(1), we show in the full version [40] that the O(n~(**1) bound on the
failure probability also applies to a non-constant stash size.

4.1 Mirror Cuckoo Hashing

We describe a hashing scheme that uses two sets of tables. A left set including
tables T1,,Tr, and a right set including tables T}, T%. Each table is also denoted
as a “column”. Each table has two subtables, or “rows”. So overall there are four
tables (columns), each containing two subtables (rows).

Bob maps each of his items to one subtable in each table, namely to one row
in each column. Alice maps each of her items to the two subtables in one of the
tables, namely to both rows in just one of the columns. These mappings ensure
that for any item x that is owned by both Alice and Bob, there is exactly one
subtable to which it is mapped by both parties.
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The tables. The construction uses two sets of tables, T1,,Tr and 77 T} . Each table
is of size 2(1 4 €)n and is composed of two subtables of size (1 + ¢)n (11, contains
the subtables T1,9,111, etc.). Each subtable is associated with a hash function
that will be used by both parties. E.g., function hry will be used for subtable
T10, etc. The tables and the hash functions are depicted in Figure

The hash functions. The hash functions associated with the tables are defined as
follows:

— The functions for the left two tables (columns) T1,,TR, i.e., hro,hL1,PR0,PR1,
are chosen at random. Each function maps items to the range [0, (1 +¢&)n — 1],
which corresponds to the number of bins in each of T1,0,71,1,7r0,TR1-

— The functions for the two right tables 7] ,Tf,are defined as follows:

e The two functions of the upper subtables are equal to the functions of
the upper subtables on the left. Namely, hf o =hio and hi,=hro-

e The two functions of the lower subtables are the mirror image of the
functions of the lower subtables on the left. Namely, hf,,h%, are defined
such that h{,=hgr1, and hj;=h11.

TL()! hLO TR()! hRO TILO: hiO == hLO TF/{O: h’RO = hRO
TLl: hLl TRl: th TI/Jl: hil = th TF’UZ thl = hLl
TL TR Tﬁ Tf{

Fig. 1. The tables T1,,Trand 7}, T%. The hash functions in the upper subtables of TY,, Tx
are the same as in T1,,Tr, and those in the lower subtables are in reverse order.

Bob’s insertion algorithm. Bob needs to insert each of his items to one subtable in
each of the tables T1,,Tr,T},, T} . He can do so by simply using Cuckoo hashing for
each of these tables. For example, for the table 71, and its subtables 71,9,71,1, Bob
uses the functions hyg,hr,1 to insert each input x to either 7119 or 7T1,;. The same
is applied to Tr,T{, and Tf. In addition, Bob keeps a small stash of size w(1) for
each of the four tables. Overall, based on known properties of Cuckoo hashing,
we can claim that the construction guarantees the following property:

Claim. With all but negligible probability, it holds that for every input x of Bob,
and for each of the four tables 71,,TRr,T},, T}, Bob inserts z to exactly one of the

two subtables or to the stash.

Alice’s insertion algorithm. Alice’s operation is a little more complex and is
described in Algorithm [1} Alice considers the two upper subtables on the left,
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T10,1R0, as two subtables for standard Cuckoo hashing. Similarly, she considers
the two lower subtables on the left, 11,1, 7Rr1, as two subtables for standard Cuckoo
hashing. In other words, she considers the left top row and the left bottom row
as standard Cuckoo hashing tables.

Alice then inserts each input item of hers to each of these two tables using
standard Cuckoo hashing. (She also uses stashes of size w(1) to store items which
cannot be placed in the Cuckoo tables.) For some input items « it happens that x
is inserted in the top row to Tty and in the bottom row to Tt,1; or x is inserted
in the top row to Tro and in the bottom row to Tgri. Therefore, = is inserted
in two subtables in the same column. (z is denoted as “good” since this is the
outcome that we want.)

Let 2’ be one of the other, “bad”, items. Thus, z’ is inserted in the top
row to Tro and in the bottom row to Tgri, or vice versa. In this case, Alice
removes ' from the tables on the left and inserts it to the tables 77,1} on the
right. Since the hash functions that are used in 77T}, are equal to the functions
used on the left side (where in the bottom row the functions are in reverse
order), Alice does not need to run a Cuckoo hash insertion algorithm on the
right side: Assume that =’ was stored in locations Tio[hro(z")] and Tri[hr1(z')]
on the left. Then Alice inserts it to locations T y[hf(z")] = T{y[hro(z’)] and
T [Pt (2")] = T{[hr1(2’)] on the right.

In other words, in a global view, one can see the algorithm as composed of the
following steps: (1) First, all items are placed in the left tables. (2) Each subtable
is divided in two copies, where one copy contains the good items and the other
copy contains the bad items. (3) The subtable copies with the good items are
kept on the left, whereas the copies with the bad items are moved to the right,
where in the bottom row on the right we replace the order of the subtables.

This algorithm has two important properties: First, all items that were suc-
cessfully inserted in the first step to the left tables will be placed in tables on
either the left or the right hand sides. Moreover, each item will be placed in two
subtables in the same column — the good items happened to initially be placed
in this way in the left tables; whereas the bad items were in different columns on
the left side but were moved to the same column on the right side. Hence, we
can state the following claim:

Claim. With all but negligible probability, Alice inserts each of her inputs either
to two locations in exactly one of T1,,Tr,T7,, T} and to no locations in other tables,
or to a stash.

Tables size. The total size of the tables is 8(1 + ¢)n.

Stash size. With regards to stashes, each party needs to keep a stash for each
of the Cuckoo hashing tables that it uses. Since Alice runs the Cuckoo hashing
insertion algorithm only for the left tables and re-uses the mapping for the right
tables, she needs only two stashes. Bob on the other hand runs the Cuckoo
hashing insertion algorithm four times and hence needs four stashes. (In order
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Algorithm 1 (Mirror Cuckoo hashing)

1. Alice uses Cuckoo hashing to insert each item x to one of the subtables
T1.0,Tro, using the hash functions hro,hro-

2. Similarly, Alice uses Cuckoo hashing to insert each item x to one of the
subtables T1,1,Tr1, using the hash functions hr1,hr1.

3. At this point, Alice observes the result of the first two steps. For some
inputs x it happened that they were mapped to the same “column” in both
of these steps. Namely, x was mapped to both 11,0 and 71,1, or to both Tro
and Tri. These are the “good” items, since they were mapped to the same
column, as is required for all of Alice’s inputs.

4. The other inputs of Alice, the “bad” items, were mapped to one column
in Step 1 and to the other column in Step 2. Alice applies the following
procedure to these items:

(a) Each “bad” item x is removed from both locations to which it was
mapped in Steps 1 and 2.

(b) x is now inserted in either of T{,Tko using the hash functions hi :=
hro, hio := hro with the same mapping as in Step 1.

(c) z is also inserted in either of T7,,,Tf; using the hash functions hj; :=
hr1, hix1 = hrL1 with the same mapping as in Step 2.

to preserve simplicity, we omitted the stashes in Figure [I| and Algorithm )
Given the result of [29], and our observation in the full version [40] about its
applicability to non-constant stash sizes, it holds that a total stash of size w(1)
elements suffices to successfully map all items, except with negligible probability.
We note that the size of the stash can be arbitrarily close to constant, e.g., it can
be set to be O(loglogn) or O(log™ n). Essentially, for any function f(n) € w(n),
the size of the stash can be o(f(n)).

4.2 Circuit-based PSI from Mirror Cuckoo Hashing

Mirror Cuckoo hashing lets the parties map their inputs to tables of size O(n)
and stashes of size w(1), with negligible failure probability. It is therefore straight-
forward to construct a PSI protocol based on this hashing scheme:

1. The parties agree on the parameters that define the size of the tables and
the stash for mirror Cuckoo hashing. They also agree on the hash functions
that will be used in each table.

2. Each party maps its items to the tables using the hash functions that were
agreed upon.

3. The parties evaluate a circuit that performs the following operations:

(a) For each bin in the tables, the circuit compares the item that Alice
mapped to the bin to the item that Bob mapped to the same bin.

(b) Each item that Bob mapped to his stashes is compared with all items of
Alice. Similarly, each item that Alice mapped to her stashes is compared
with all items of Bob.
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The properties of mirror Cuckoo hashing ensure: (1) If an item z is in the
intersection, then there is exactly one comparison in which z is input by both
Alice and Bob. (2) The number of comparisons in Step 3 is w(n).

5 A Concretely Efficient Construction through 2D
Cuckoo Hashing

Two-dimensional Cuckoo hashing (a.k.a. 2D Cuckoo hashing) is a new construc-
tion with the following properties:

— It uses overall O(n) memory (specifically, 8(1+&)n in our construction, where
we set € = 0.2 in our experiments).

— Both, Alice and Bob, map each of their items to O(1) memory locations
(specifically, to two or four memory locations in our construction).

— If x appears in the input of both parties, then there is exactly one location
to which both Alice and Bob map x.

The construction uses two tables, T1,, Tr, located on the left and the right
side, respectively. Each of these tables is of size 4(1 + ¢)n and is composed of
two smaller subtables: 77, is composed of the two smaller subtables 11,711,
while Tr is composed of the two smaller tables Trg,7r1. The hash functions
hro,hr1,hRr0,hr1 are used to map items to T1,0,71.1,7R0,IR1, respectively. The
tables are depicted in Figure [2]

Tro Tro
Tia Tr1
TL Tr

Fig. 2. The tables 71, and Tr, consisting of 110,711 and Tro,TR1, respectively.

Hashing is performed in the following way:

— Alice maps each of her items to all subtables on one of the two sides. Namely,
each item x of Alice is either mapped to both bins Ty o[hro(x)] and T11 [hr1 ()]
on the left side, or to bins Tro[hro(z)] and Tri[hr1(x)] on the right side. In
other words, ALICE maps each item to ALL subtables on one side.

— Bob maps each of his items to one subtable on each side. This is done using
standard Cuckoo hashing. Namely, each input = of Bob is mapped to one of
the locations Tro[hro(z)] or Tr1[hr1(z)] on the left side, as well as mapped
to one of the locations Tro[hro(x)] or Tr1[hr1(x)] on the right side. In other
words, BOB maps each item to one subtable on BOTH sides.
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The possible options for hashing an item = by both parties are depicted in
Figure [3] It is straightforward to see that if both parties have the same item z,
there is exactly one table out of T1,0,11.1,TRro,Ir1 that is used by both Alice and
Bob to store .

oo 1

| |
| |
| |
| |
1 1
| |
| |
1 1
| |
| |
1 1
| |
| |
=== === i === === I
| |
| |
| |
| |
1 1
| |
| |
1 1
| |
| |
1 1
| |
| |

Alice Bob

Fig. 3. The possible combinations of locations to which Alice and Bob map their inputs.

We next describe a construction of 2D Cuckoo hashing, followed by a variant
based on a heuristic optimization that stores two items in each table entry.
The asymptotic behavior of the basic construction is analyzed in the full ver-
sion [40]. In §6.1] we describe simulations for setting the parameters of the heuristic
construction in order to reduce the hashing failure probability to below 2740,

5.1 TIterative 2D Cuckoo Hashing

This construction uses two tables, T1,,Tr, each of 4(1 + ¢)n entries. (In this
construction, there is no need to assume that each table is composed of two
subtables.) The parties associate two hash functions with each table, namely
hL()JLLl for TL7 and hR(),th for TR.

Bob uses Cuckoo hashing to insert each of his items into one location in each
of the tables.

Alice inserts each item z either into the two locations hyo(z) and hpi(x)
in 71, or into the two locations hro(z) and hgri(x) in Tr. This is achieved by
Alice running a modified Cuckoo insertion algorithm that maps an item to two
locations in one table, “kicks out” any item that is currently present in these
locations and also removes the other occurrence of this item from the table, and
then tries to insert this item into its two locations in the other table, and so on.

This is a new variant of Cuckoo hashing, where inserting an item into a table
might result in four elements that need to be stored in the other table: storing x
in hyo(x), hra(z) might remove two items, yo, y1, one from each location. These
items are also removed from their other occurrences in 71,. They must now be
stored in locations hro(yo), hr1(¥0), hro(y1), hr1(y1) in Tg.

17



Algorithm 2 (Iterative 2D Cuckoo hashing)

1. Alice maps all of her items to table T1,, using simple hashing. That is, each
item z is inserted in locations hio(z), hri(z). Obviously, there will be entries
in 77, that will have more than a single item mapped to them.

Denote T1, as the active table.

2. For each entry in the active table with more than one item in it: remove all
items — except for the item that was mapped to this entry most recently
— and move them to the “relocation pool”. For each of the removed items,
remove the item also from its other appearance in the active table. (At
the end of this step, all entries in the active table have at most one entry.
However, there might be items in the relocation pool.)

3. If the relocation pool is empty, then stop (found a successful mapping).

. Change the designation of the active table to point to the other table.

5. Move each item z from the relocation pool to locations ho(z), h1(x) in the ac-
tive table. (For example, if Tg is the active table, move z to hro(z), hr1(z).)

6. Go to Step 2.

>

Algorithm 3 (Iterative 2D Cuckoo hashing with bins of size 2)
The algorithm is identical to Algorithm [2} except for the following change in
Step 2:

2. For each entry in the active table with more than two items in it: remove
all items — except for the two items that were mapped to this entry most
recently — and move them to the “relocation pool”. For each of the removed
items, remove the item also from its other appearance in the active table.

It is not initially clear whether such a mapping is possible (with high proba-
bility, given random choices of the hash functions). We analyze the construction
in the full version [40] and show that it only fails with probability O(1/n). We
ran extensive simulations, showing that the algorithm (when using a stash and a
certain choice of parameters) fails with very small probability, smaller than 2740,

The insertion algorithm of Alice is described in Algorithm [2} The choice made
in Step 2 of the algorithm, to first remove the oldest items that were mapped to
the entry, is motivated by the intuition that it is more likely that the locations
to which these items are mapped in the other table are free.

Storing two items per bin. It is known that the space utilization of Cuckoo
hashing can be improved by storing more than one item per bin (cf. [37, [15] or
the review of multiple choice hashing in [47]). We take a similar approach and
use two tables of size 2(1 + €)n where each entry can store two items. (These
tables have half as many entries as before, but each entry can store two items
rather than one. The total size of the tables is therefore unchanged.) The change
to the insertion algorithm is minimal and affects only Step 2. The new algorithm
is defined in Algorithm [3]
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Our experiments in §6.1| show that when using the same amount of space,

then this variant of iterative 2D Cuckoo hashing performs better than the basic
protocol with bins of size one. That is, it achieves a lower probability of hashing
failure, namely of the need to use the stash, and requires less iterations to finish.

5.2 Circuit-based PSI from 2D Cuckoo Hashing

This section describes how 2D Cuckoo hashing can be used for computing PSI. In
addition, we describe two optimizations which substantially improve the efficiency
of the protocol. The first optimization has the parties use permutation-based
hashing [2] (as was done in [39]) in order to reduce the size of the items that
are stored in each bin, and hence reduce the number of gates in the circuit. The
second optimization is based on having each party use a single stash instead of
using a separate stash for each Cuckoo hashing instance.

The PSI protocol is pretty straightforward given 2D Cuckoo hashing:

First, the parties agree on the hash functions to be used in each table. (These
functions must be chosen at random, independently of the inputs, in order not
to disclose any information about the inputs. Therefore, a participant cannot
change the hash functions if some items cannot be mapped, and thus we seek
parameter values that make the hashing failure probability negligible, e.g., smaller
than 2740.)

Then, each party maps its items to bins using 2D Cuckoo hashing and the
chosen hash functions. The important property is that if Alice and Bob have
the same input item then there exists exactly one bin into which both parties
map this item (or, alternatively, at least one of them places this item in a stash).
Empty bins are padded with dummy elements. This ensures that no information
is leaked by how empty the tables and stashes are.

Afterwards, the parties construct a circuit that compares, for each bin, the
items that both parties stored in it. In addition, this circuit compares each item
that Alice mapped to the stash with all of Bob’s items, and vice versa. Since the
number of bins is O(n), the number of items in each bin is O(1), and the number
of items in the stash is w(1), the total size of this circuit is w(n). The parties
can define another circuit that takes the output of this circuit and computes a
desired function of it, e.g., the number of items in the intersection.

Finally, the parties run a generic MPC protocol that securely evaluates this
circuit (cf. for a concrete implementation and benchmarks).

Permutation-based Hashing. The protocol uses permutation-based hashing
to reduce the bitlength of the elements that are stored in the bins and thus
reduces the size of the circuit comparing them. This idea was introduced in |2] and
used for PSI in [39]. It is implemented in the following way. The hash function h
that is used to map an item x to one of the § bins is constructed as follows:
Let © = zp|xr where |2 | = log 8. We first assume that § is a power of 2 and
then describe the general case. Let f be a random function with range [0, 8 — 1].
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Then h maps an element x to bin 2y, @ f(xg) and the value stored in the bin
is zr. The important property is that the stored value has a reduced bitlength of
only |z| — log §, yet there are no collisions (since if x,y are mapped to the same
bin and store the same value, then v = yg and z;, ® f(zr) = yr ® f(yr) and
therefore z = y).

In the general case, where (8 is not a power of two, the output of A is reduced
modulo 8 and a stored extra bit indicates if the output was reduced or not.

For Cuckoo hashing the protocol uses two hash functions to map the elements
to the bins in one table. To avoid collisions among the two hash functions, a
stored extra bit indicates which hash function was used.

Using a Combined Stash. Recall that Alice uses 2D Cuckoo hashing, for
which we show experimentally in that no stash is needed. Bob, on the other
hand, uses two invocations of standard Cuckoo hashing, and therefore when he
does not succeed in mapping an item to a table, he must store it in a stash and
compare it with all items of Alice. In this case, the parties cannot encode their
items using permutation-based hashing, and therefore these comparisons must
be of the full-length original values and not of the shorter values computed using
permutation-based hashing as described before. Therefore, the size of the circuits
that handle the stash values have a considerable effect on the total overhead of
the protocol.

We observe that, instead of keeping several stashes, Bob can collect all the
values that he did not manage to map to any of the tables in a combined stash.
Suppose that he maps items to ¢ tables and that we have an upper bound s
which holds w.h.p. on the size of each stash. A naive approach would use ¢
stashes of that size, resulting in a total stash size of ¢ - s. A better approach
would be to use a single stash for all these items, since it is very unlikely that
all stashes will be of maximal size, and therefore we can show that with the
same probability, the size s’ of the combined stash is much smaller than c - s. To
do so, we determine the upper bounds for the combined stash for ¢ = 2: The
probability of having a combined stash of size s’ is Ef/:o P(i) - P(s' — i), where
P(i) denotes the probability of having a single stash of size i. The value of P(7)
is O(n™") — O(n= (D) = O(n?) [29]. We can estimate the exact values of these
probabilities based on the experiments conducted by [39]: they performed 23°
Cuckoo hashing experiments for each n € {211 212 213 214} and counted the
required stash sizes. Using linear regression, we extrapolated the results for larger
sets of 216 and 220 elements. Table [l shows the required stash sizes when binding
the probability to be below 2740: it turns out that for 2'2 and 2' elements the
combined stash should include only one more element compared to the upper
bound for a single stash, whereas for 220 even the same stash size is sufficient.
All in all, when comparing to the naive solution with two separate stashes, the
combined stash size is reduced by almost a factor of 2x.
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Table 1. Stash sizes required for binding the error probability to be below 274° when
inserting n € {2'2,2' 22°} elements into 2.4n bins using Cuckoo hashing.

‘Number of elements n ‘212‘216‘220 ‘

Single stash size s (from [39| Table 4]) 64| 3
Stash size for two separate stashes s’ =2s| 12| 8 | 6
Combined stash size s’ 715 3

5.3 Extension to a Larger Number of Parties

Computing PSI between the inputs of more than two parties has received relatively
little interest. (The challenge is to compute the intersection of the inputs of all
parties, without disclosing information about the intersection of the inputs of any
subset of the parties.) Specific protocols for this task were given, e.g., in [20} 24} |32].
We note that our 2D Cuckoo hashing can be generalized to m dimensions in
order to obtain a circuit-based protocol for computing the intersection of the
inputs of m parties. The caveat is that the number of tables grows to 2™ and
therefore the solution is only relevant for a small number of parties.

We describe the case of three parties: The hashing will be to a set of eight
tables T}, -, where z,y, z € {0,1}. Any input item of P; is mapped to either all
tables T070,0, T07071, T071707 T0,1,17 or to all tables T1»0707 T17071, T17170, T171,1. Namely,
the index x is set to either 0 or 1, and the input item is mapped to all tables
with that value of z. Every input of P, is mapped either to all tables whose y
index is 0, or to all tables where y = 1. Every input of P3 is mapped either to all
tables whose z index is 0, or to all tables where z = 1.

It is easy to see that regardless of the choices of the values of z, y, z, the sets of
tables to which all parties map an item intersect in exactly one table. Therefore,
the parties can evaluate a simple circuit that checks every bin for equality of the
values that were mapped to it by the three parties. It is guaranteed that if the
same value is in the input sets of all parties, then there is exactly one bin to
which this value is mapped by all three parties. If some items are mapped to a
stash by one of the parties, they must be compared with all items of the other
parties, but the overhead of this comparison is w(n) if the stash is of size w(1).

The remaining issue is the required size of the tables. In the full version [40]
we show that inserting an item into one of two (big) tables, such that the item is
mapped to k locations in that table, requires tables of size greater than k2(14¢)n.
When computing PSI between three parties using the method described above,
we have eight (small) tables, where each party must insert its items to four tables
in one plane or to four tables in the other plane. Each such set of four small
tables corresponds to a big table in the analysis and is therefore of size 16(1+¢)n.
The total size of the tables is therefore 32(1 + ¢)n.

5.4 No Extension to Security against Malicious Adversaries

We currently do not see how to extend our hashing-based protocols to achieve
security against malicious adversaries. As pointed out by |44], it is inherently
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hard to extend protocols based on Cuckoo hashing to obtain security against
malicious adversaries. The reason is that the placement of items depends on the
exact composition of the input set, and therefore a malicious party might learn
the placement used by the other party.

Coming up with a similar argument as in [44], assume that in our construction
in Figure [3] Bob maps an item x to the two upper subtables and Alice maps
x to the two left subtables. Now assume Alice maliciously deviates from the
protocol and places x only in the upper left subtable, but not in the lower left one.
This deviation may allow Alice to learn whether Bob placed z in the upper or
lower subtables: For example, in a PSI-CA protocol Alice could use only dummy
elements and x as an input set and if the cardinality turns out to be 1, then
she knows that Bob placed z in the upper left subtable. However, the locations
in which Bob places an item cannot be simulated in the ideal world as they
depend on other items in his input set. Therefore, we see no trivial way to provide
security against malicious adversaries based on 2D Cuckoo hashing.

6 Evaluation

This section describes extensive experiments that set the parameters for the
hashing schemes, the resulting circuit sizes, and the results of experiments
evaluating PSI using these circuits.

6.1 Simulations for Setting the Parameters of 2D Cuckoo Hashing

We experimented with the iterative 2D Cuckoo hashing scheme described in
set concrete sizes for the tables, and examined the failure probabilities of hashing
to the tables.

Our implementation is written in C and available online at http://encryp
to.de/code/2DCuckooHashing. It repeatedly inserts a set of random elements
into two tables using random hash functions. The insertion algorithm is very
simple: All elements are first inserted into the two locations to which they are
mapped (by the hash functions) in the first table. Obviously, many table entries
will contain multiple items. Afterwards, the implementation iteratively moves

items between the tables, in order to reduce the maximum bin occupancy below
a certain threshold (cf. Algorithm [2| and Algorithm [3|in §5.1)).

Run-time. We report in the results of experiments analyzing the run-time
of the 2D Cuckoo hashing insertion algorithm. Overall, the insertion time (a few
milliseconds) is negligible compared to the run-time of the entire PSI protocol.

Hashing to bins of size 1. First, we checked if it is possible to use a maximum
bin occupation of 1. For this, we set the sizes of each of the two tables to be 4.8n
(corresponding to the threshold size of 4(1 4 €)n in the analysis available in the
full version [40], as well as twice the recommended size for Cuckoo hashing, since
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all elements are inserted twice). We ran the experiment 100000 times with input
size n = 22 and bitlength 32. For all except 828 executions it was possible
to reduce the maximum bin occupation to 1 after at least 7 and at most 129
iterations of the insertion algorithm. On average, 20 iterations of the insertion
algorithm were necessary to achieve the desired result. In said 828 cases there
remained at least one bin with more than one item even after 500 iterations of
the insertion algorithm. This implies that iterative 2D Cuckoo hashing works
in principle, but, as standard Cuckoo hashing, requires a stash for storing the
elements of overfull bins.

Hashing to bins of size 2. For PSI protocols it would be desirable to avoid
having an additional stash on Alice’s side. In standard Cuckoo hashing it is
possible to achieve better memory utilization and less usage of the stash by using
fewer bins, where each bin can store two items [47]. Therefore, we changed the
parameters as follows: the table size is halved and reduced to 2.4n, but each
bin is allowed to contain two elements. This way, while consuming the same
amount of memory as before, we try to achieve better utilization. We followed the
paradigm that was described in for the experimental analysis of the failure
probability. Namely, we ran massive sets of experiments to measure the number
of failures for several values of n and several table sizes, and given this data we
(1) found confidence intervals for the failure probability for specific values of the
parameters, and (2) found how the failure probability behaves as a function of n.

Our first experiment ran 240 tests within ~ 2 million core hours on the
Lichtenberﬂ high performance computer of the TU Darmstadt for input size
n = 2'2. We chose input size 212 (instead of larger sizes like 216 or 220) since
running experiments with larger values of n would have taken even more time and
would have simply been impractical. It turned out that the insertion algorithm
was successful in reducing the maximum bin size to 2 (after at most 18 iterations)
in all but one test.

Given this data, we calculated the confidence interval of the failure probabil-
ity p. The probability of observing one failure in N experiments is N -p-(1—p)~¥ 1,
where in our experiments N = 240, We checked the values of p for which the prob-
ability of this observation is greater than 0.001 and concluded that with 99.9%
confidence, the failure probability for iterative 2D Cuckoo hashing with set
size n = 2'2 and table size 2.4n lies within [2*50,2’37}. (Namely, there is at
most a 0.001 probability that we would have seen one failure in 24° runs if p was
greater than 2737 or smaller than 2750.)

Measuring the dependence on the parameters. To get a better under-
standing on how the failure probability behaves for different input and table
sizes, we performed a set of experiments that required another ~ 3.5 million core
hours. Concretely, we ran 240 tests for each set size n € {2¢,28 210} and each

5 Seehttp://www.hhlr.tu-darmstadt.de/hhlr/index.en. jsp/for details on the hard-
ware configuration.
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table size in the range 2.2n, 2.4n, and 2.6n. We also tested the table size 3.6n
for n € {25,2%} as well as table sizes 3.0n and 3.2n for n = 2!°. The results for
all experiments are given in Table [2| and are depicted in Figure

The results demonstrate that, w.r.t. the dependence on n, for set sizes n €
{26,28 210} it can be observed that increasing the set size by factor 4x reduces
the failure probability by factor 64x. (For larger set sizes, the number of failures
is too small to be meaningful.) These experiments also demonstrate that the
dependence of the failure probability on n is O(n~2). An intuitive theoretical
explanation why the probability behaves this way is given in the full version [40].
As for the dependence on the table size, the failure probability decreases by a
factor of 2x when increasing the table size in steps of 0.2n within the tested
range 2.2n to 3.6n.

From these results (a failure probability of at most 2737 for n = 22 with table
size 2.4n and a dependence of O(n~?) of the failure probability on n) we conclude
that the failure probability for n > 2'3 and table size 2.4n is at most 274°.

In total we spent about 5.5 million core hours on our experiments on the
Lichtenberg high performance computer of the TU Darmstadt.
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Fig. 4. Number of observed stashes for different table and set sizes when performing 24°
tests of iterative 2D Cuckoo hashing.

6.2 Circuit Complexities

We compare the complexities of the different circuit-based PSI constructions for
two sets, each with n elements that have bitlength 0. We consider two possible
bitlengths:

1. Fixed bitlength: Here, the elements have fixed bitlength o = 32 bits (e.g.,
for IPv4 addresses).
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Table 2. Number of observed stashes for different table sizes and set sizes n when
performing 2%° tests of iterative 2D Cuckoo hashing.

‘Table size‘Stash size‘n = 25‘n = 28‘n = 210‘n =212

1 64020 1021 16 —
2.2n 2 154 1 0 —
3 1 0 0 —

1 31033] 499 8 1

24n 2 65 0 0 0
1 16014] 270 5 —

2.6n 2 33 0 0 —

[ 30 [ 1 [ | 0] —]
(3 [ 1 [ | [ o
[ 36n ] 1 [ 1202] 17] —] —]

2. Arbitrary bitlength: Here, the elements have arbitrary bitlength and are
hashed to values of length o = 40 + 2log,(n) — 1 bits, with a collision
probability that is bounded by 274°. (See Appendix A of the full version
of [41] for an analysis.) Therefore, we set the bitlength to o = 40+21log,(n)—1
bits.

For all protocols we report the circuit size where we count only the number of
AND gates, since many secure computation protocols provide free computation
of XOR gates. We compute the size of the circuits up to the step where single-bit
wires indicate if a match was found for the respective element. We note that for
many circuits computing functions of the intersection, this part of the circuit
consumes the bulk of the total size. For example, computing the Hamming weight
of these bits is equal to computing the cardinality of the intersection (PSI-CA).
The size-optimal Hamming weight circuit of [5] has size x — wgy (x) and depth
log, x, where z is the number of inputs and wg(-) is the Hamming weight. The
size of the Hamming weight circuit is negligible compared to the rest of the circuit.
As another example, if the cardinality is compared with a threshold (yielding
a PSI-CAT protocol), this only adds 3log, n AND gates and depth log, log, n
using the depth-optimized construction described in [45], which is also negligible.

The size of the Sort-Compare-Shuffle circuit. The Sort-Compare-Shuffle cir-
cuit [26] has three phases. In the SORT phase, the two sorted lists of inputs
are merged into one sorted list, which takes 2onlog,(2n) AND gates. In the
COMPARE phase, neighboring elements are compared to find the elements in
the intersection, which takes o(3n — 1) — n AND gates. The SHUFFLE phase
randomly permutes these values and takes o(nlogy(n) —n + 1) AND gates. To
have a fair comparison with our protocols, we remove the SHUFFLE phase and
let the COMPARE phase output only a single bit that indicates if a match was
found for the respective element or not; this removes n multiplexers of o-bit
values from the COMPARE phase, i.e., on AND gates. Hence, the total size is
20nlogy(n) + 20m —n — o + 2 AND gates.
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The size of the Circuit-Phasing circuit. The Circuit-Phasing circuit [39] has
2.4nm(c — logy(2.4n) + 1) 4+ sn(oc — 1) AND gates where m is the maximum
occupancy of a bin for simple hashing and s is the size of the stash.

The size of our iterative 2D Cuckoo hashing construction of §5.9 Each of the
following operations is performed twice for the left and right side: (1) For each of
the 2.4n bins the shortened representation (cf. of the single item in Bob’s
bin is compared with the two elements in the corresponding bin of Alice. (2)
Bob has a stash of size s’. Each item in the stash is compared to all of Alice’s
items (using the full bitlength representation). Hence, the overall complexity is
4-2.4n(c —logy(2.4n) + 1) 4+ s'n(oc — 1) AND gates, where s’ is the size of the
combined stash.

Concrete Circuit Sizes. The Sort-Compare-Shuffle construction [26] has a
circuit of size O(onlogn). The Circuit-Phasing construction [39] has circuit size
O(onlogn/loglogn), while the asymptotic construction we present in this paper
has a size of w(on) and the iterative 2D Cuckoo hashing construction has an
even smaller size.

For a comparison of the concrete circuit sizes, we use the parameters from the
analysis in [39]: For n = 2'? elements the maximum bin size for simple hashing
is m = 18, for n = 26 we set m = 19, and for n = 220 we set m = 20. We set the
stash size s and the combined stash size s’ according to Table [1| (on page .

On the left side of Table [3| we compare the concrete circuit sizes for fized
bitlength ¢ = 32 bit. Our best protocol (“Ours Iterative Combined”) improves
over the best previous protocol by factor 2.0x for n = 2!2 (over [26]), by factor 2.7x
for n = 216 (over [39]), and by factor 3.2x for n = 220 (over [39]).

On the right side of Table [3]we compare the concrete circuit sizes for arbitrary
bitlength o. Our best protocol (Ours Iterative Combined) improves over the best
previous protocol by factor 1.8x for n = 212 (over [26]), by factor 2.8x for n = 216
(over [26]), and by factor 3.8x for n = 220 (over [39]).

Our constructions always have smaller circuits than both former constructions,
and, due to our better asymptotic size, the savings become greater as n increases.

Circuit Depths. For some protocols, the circuit depth is a relevant metric
(e.g., for the GMW protocol the depth determines the round complexity of the
online phase). Our constructions have the same depth as the Circuit-Phasing
protocol of [39], i.e., log, 0. This is much more efficient than the depth of the
Sort-Compare-Shuffle circuit of [26] which is O(logo - logn) when using depth-
optimized comparison circuits.

Further Optimizations. So far, we computed the comparisons with a Boolean
circuit consisting of 2-input gates: For elements of bitlength ¢, the circuit XORs
the elements and afterwards computes a tree of £ — 1 non-XOR gates s.t. the final
output is 1 if the elements are equal or 0 otherwise. This circuit allows to use an
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Table 3. Concrete circuit sizes in #ANDs for PSI variants on n elements of fixed
bitlength ¢ = 32 (left) and arbitrary bitlength hashed to ¢ = 40 + 2log,(n) — 1
bits (right).

Fixed Bitlength o = 32 Arbitrary Bitlength
Protocol n=22| n=2 n = 220 n=212| n=21 n = 220
Sort-Compare-Shuffle [26]||3403 746|71 237 602|1 408237 538|| 6 705091|158 138299|3 478 126 515
Circuit-Phasing [39] 4254 256(55 155466 688 258 388||10501 475(181 928 305(3 201 695 060

Separate stashes s’ =2s

Ours Iterative Separate [[2299801[26153 770] 313183 300[] 5042482] 71137 681]1 081999223
Combined stash s” (cf. Table[1)

Ours Iterative Combined [[1664921[20 058922 215665 732[] 3772722] 57375121] 836632439

arbitrary secure computation protocol based on Boolean gates, e.g., Yao or GMW.
The recent approach of [14] shows that for security against semi-honest adversaries
the communication can be improved by using multi-input lookup tables (LUTSs).
Their best LUT has 7 inputs and requires only 372 bits of total communication
(cf. [14, Tab. IV]). For computing equality, 6 of the non-XOR gates in the tree
can be combined into one 7-input LUT. This improves communication of the
Circuit-Phasing protocol of [39] and our protocols by factor 6 - 256/372 = 4.1x.

6.3 Performance

We empirically compare the performance of our iterative 2D Cuckoo hashing
PSI-CAT protocol with a combined stash described in §5.2| with the Circuit-
Phasing PSI-CAT protocol of [39]. As a baseline, we also compare with the public
key-based PSI-CA protocol of |46} 35, (9] that leaks the cardinality to one party,
and the currently best specialized PSI protocol of [31] that cannot be easily
modified to compute variants of the set intersection functionality.

Implementation. Pinkas et al. [39] provide the implementation of their Circuit-
Phasing PSI protocol as part of the ABY framework [13]. This framework allows
to securely evaluate the PSI circuit using either Yao’s garbled circuit or the GMW
protocol, both implemented with most recent optimizations (cf. . However,
since the evaluation in [39] showed that using the GMW protocol yields much
better run-times, we focus only on GMW. ABY also implements the LUT-based
evaluation of [14] (cf. §6.2), which we compare to GMW evaluation. For the
Circuit-Phasing PSI-CAT protocol, we extended the existing codebase with
the Hamming weight circuit of |5] and the depth-optimized comparison circuit
of [45] to compare the Hamming weight with a threshold. Based on this, we
implemented our iterative 2D Cuckoo hashing PSI-CAT protocol by duplicating
the code for simple hashing and Cuckoo hashing, combining the stashes, and
implementing the iterative insertion algorithm. Our implementation is available
online as part of the ABY framework at http://encrypto.de/code/ABY. For

27


http://encrypto.de/code/ABY

the DH/ECC-based protocol of Shamir/Meadows/De Cristofaro et al. |46 135, 9],
we use the ECC-based implementation of [39] available online at http://encr
ypto.de/code/PSI|that already supports computing the cardinality (PSI-CA).
The implementation of the special purpose BaRK-OPRF PSI protocol of [31] is
taken from https://github.com/osu-crypto/BaRK-0PRF.

Benchmarking Environment. For our benchmarks we use two machines, each
equipped with an Intel Core i7-4790 CPU @ 3.6 GHz and 16 GB of RAM. The
CPUs support the AES-NI instruction set for fast AES evaluations. We distinguish
two network settings: a LAN setting and a WAN setting. For the LAN setting, we
restrict the bandwidth of the network interfaces to 1 Gbit/s and enforce a round-
trip time of 1 ms. For the WAN setting, we limit the bandwidth to 100 Mbit /s
and set a round-trip time of 100 ms. We instantiate all protocols corresponding to
a computational security parameter of 128 bit and a statistical security parameter
of 40bit. All reported run-times are the average of 10 executions with less
than 10% variance.

Benchmarking Results. In Table we give the run-times for n € {212,216 220}
elementsﬂ of bitlength o = 32 (suitable, e.g., for IPv4 addresses). The correspond-
ing communication is given in Table [6] We do not use the LUT-based evaluation
in the LAN setting since there is little need for better communication while
the run-times are not competitive. However, to demonstrate the advantages of
the LUT-based evaluation in the WAN setting, we compare the protocols when
running with a single thread and four threadsﬁ

Run-times (Table|j| and Table @ In comparison with the Circuit-Phasing PSI-
CAT protocol of [39] in Table[d] our iterative combined PSI-CAT protocol is faster
by factor 1.4x for n = 2'2 and up to factor 2.8x for n = 22°. This holds when the
circuit is evaluated with GMW in both network settings and for both 1 and 4
threads. With LUT-based evaluation [14], we observe a further improvement for
the circuit-based protocols by about 13% in the WAN setting, but only for medium
set sizes of n = 2'6 and 4 threads due to the higher computation complexity.

The circuit-based protocols have two steps: mapping the input items to the
tables, and securely evaluating the circuit. The run-times of the hashing step are
shown in Table [5| The times for Cuckoo hashing into two tables in our PSI-CAT
protocol are exactly twice of those for Cuckoo hashing into one table in [39).
Compared to simple hashing, our 2D Cuckoo hashing is slower by factor 1.6x up
to factor 2.1x due to the additional iterations. However, all in all, the hashing
procedures are by 2-3 orders of magnitude faster than the times for securely
evaluating the circuit, and therefore negligible w.r.t. the overall run-time.

In comparison with the DH-based PSI-CA protocol of |46 35| [9], our iterative
combined PSI-CAT protocol is faster by factor 1.5x for n = 2'2 up to factor 91x

" Unfortunately, the LUT-based implementation of [14] was not capable of evaluating
the PSI circuits for n = 2%° elements.

8 We do not provide benchmarks with multiple threads for the DH/ECC PSI-CA
protocol since the implementation of [39] does not support multi-threading.
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Table 4. Total run-times in ms for PSI variants on n elements of bitlength o = 32 bit.

Network setting LAN WAN

Circuit evaluation protocol GMW |21] GMW |21] LUT |14] |
Protocol Set size n|| 212 ‘ 216 ‘ 220 212 ‘ 21¢ ‘ 220 212 ‘ 216
DH/ECC PSI-CA \46:35:9: 3296(49010(7904054| 4082|51866|8008771|| 4082| 51866
BaRK-OPRF PSI |31] 113|295 3882 540( 1247 14604 540 1247
1 Thread
Circuit-Phasing PSI-CAT [39] 3170(20401| 242235|{15143|99433|1042712||19951|117 438
Ours Iterative Separate PSI-CAT 2433(11251| 122008|(11210|57474| 547950(|(15656| 70545
Ours Iterative Combined PSI-CAT 2220| 9076 86648(/10060(45252| 389891|[12999| 56179
4 Threads
Circuit-Phasing PSI-CAT |39] 2333[10600| 123765((12492|97480| 987459|(15471| 76 184
Ours Iterative Separate PSI-CAT 1903| 6273| 64324|| 9361|56141| 541677|[11946| 46797
Ours Iterative Combined PSI-CAT 1694| 5177 49417| 879344596 376591| 9413| 39272

for n = 220 in the LAN setting with a single thread. Also in the WAN setting with
a single thread, our protocol is faster (except for small sets with n = 2!2), despite
the substantially lower communication of the DH-based protocol described below.
In both network settings even the best measured run-times of our PSI-CAT
protocol are between 19x to 36x slower than the BaRK-OPRF specialized PSI
protocol of [31], but our protocols are generic.

Table 5. Run-times in ms for hashing n elements of bitlength o = 32 bit.

‘Hashing Procedure Set size nH 212‘ 216 ‘ 220 ‘
Circuit-Phasing PSI-CAT |39

Simple Hashing 3.50(27.96|557.54
Cuckoo Hashing 2.43(15.87|391.16
Ours Iterative PSI-CAT

2D Cuckoo Hashing 6.23]58.90(|873.19
Cuckoo Hashing (for two tables with a combined stash)||4.85|31.75|782.32

Communication (Table[6). The communication given in Table [6]is measured on
the network interface, so these numbers are slightly larger than the theoretical
communication (derived from the number of AND gates on the left side in Table|3))
due to TCP/IP headers and padding of messages. The lowest communication
is achieved by the DH-based PSI-CA protocol of [46| 35, 9] which is in line
with the experiments in [39]. Our best protocol for PSI-CAT has between 132x
(for n = 2'?) and 66x (for n = 22°) more communication than the DH-based
PSI-CA protocol when evaluated with GMW. Recall, however, that our protocol
does not leak the cardinality. Our best protocol improves the communication over
the PSI-CAT protocol of [39] by factor 2.3x (for n = 2'2?) to 2.9x (for n = 229).
When using LUT-based evaluation of [14], we observe that the communication of
all circuit-based PSI-CAT protocols improves over GMW by factor 3.7x which
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is close to the theoretical upper bound of 4.1x (cf. §6.2). Still, our best LUT-
based protocol has more than 20x higher communication than the BaRK-OPRF
specialized PSI protocol of [31], but it is generic.

Table 6. Communication in MB for PSI variants on n elements of bitlength o = 32 bit.

‘Protocol Set size nH 212‘ 216‘ 220 ‘
DH/ECC PSI-CA [46]35[[9] 04]  6.6] 106.0
BaRK-OPRF PST [31] 053] 8.06] 127.20
GMW [21]

Circuit-Phasing PSI-CAT [39] 121.9]1588.9]20028.5

Ours Iterative Separate PSI-CAT 72.3| 826.1] 9971.4
Ours Iterative Combined PSI-CAT'|| 52.7| 638.8| 6950.6
LUT |14]
Circuit-Phasing PSI-CAT |39 32.6| 418.1 —
Ours Iterative Separate PSI-CAT 19.4| 221.3 —
Ours Iterative Combined PSI-CAT|| 14.3| 171.3 —

Application to privacy-preserving ridesharing. Our PSI-CAT protocol
can easily be extended for the privacy-preserving ridesharing functionality of 23],
where the intersection is revealed only if the size of the intersection is larger
than a threshold. The authors of [23] give a protocol that securely computes this
functionality, but has quadratic computation complexity. By slightly extending
our circuit for PSI-CAT to encapsulate a key that is released only if the size of
the intersection is larger than the threshold and using this key to symmetrically
encrypt the last message in any linear complexity PSI protocol (e.g., [41} 39} |31}
42]), we get a protocol with almost linear complexity. Our key encapsulation
would take less than 3 seconds for n = 212 elements (cf. our results for PSI-CAT
in Table , whereas the solution of [23] takes 5627 seconds, i.e., we improve by
factor 1876x and also asymptotically.
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