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Abstract. Forward secrecy is considered an essential design goal of
modern key establishment (KE) protocols, such as TLS 1.3, for exam-
ple. Furthermore, efficiency considerations such as zero round-trip time
(0-RTT), where a client is able to send cryptographically protected pay-
load data along with the very first KE message, are motivated by the
practical demand for secure low-latency communication.

For a long time, it was unclear whether protocols that simultaneously
achieve 0-RTT and full forward secrecy exist. Only recently, the first
forward-secret 0-RTT protocol was described by Günther et al. (Euro-
crypt 2017). It is based on Puncturable Encryption. Forward secrecy
is achieved by “puncturing” the secret key after each decryption opera-
tion, such that a given ciphertext can only be decrypted once (cf. also
Green and Miers, S&P 2015). Unfortunately, their scheme is completely
impractical, since one puncturing operation takes between 30 seconds
and several minutes for reasonable security and deployment parameters,
such that this solution is only a first feasibility result, but not efficient
enough to be deployed in practice.

In this paper, we introduce a new primitive that we term Bloom Filter
Encryption (BFE), which is derived from the probabilistic Bloom fil-
ter data structure. We describe different constructions of BFE schemes,
and show how these yield new puncturable encryption mechanisms with
extremely efficient puncturing. Most importantly, a puncturing opera-
tion only involves a small number of very efficient computations, plus
the deletion of certain parts of the secret key, which outperforms pre-
vious constructions by orders of magnitude. This gives rise to the first
forward-secret 0-RTT protocols that are efficient enough to be deployed
in practice. We believe that BFE will find applications beyond forward-
secret 0-RTT protocols.
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1 Introduction

One central ingredient to secure today’s Internet are key exchange (KE) proto-
cols with the most prominent and widely deployed instantiations thereof in the
Transport Layer Security (TLS) protocol [15]. Using a KE protocol, two parties
(e.g., a server and a client) are able to establish a shared secret (session key)
which afterwards can be used to cryptographically protect data to be exchanged
between those parties. The process of arriving at a shared secret requires the
exchange of messages between client and server, which adds latency overhead to
the protocol. The time required to establish a key is usually measured in round-
trip times (RTTs). A novel design goal, which was introduced by Google’s QUIC
protocol and also adopted in the upcoming version of TLS 1.3, aims at develop-
ing zero round-trip time (0-RTT) protocols with strong security guarantees. So
far, quite some effort was made in the cryptographic literature, e.g. [31,21], and,
indeed, 0-RTT protocols are probably going to be used heavily in the future
Internet as TLS version 1.3 [28] is approaching fast. Already today, Google’s
QUIC protocol [29] is used on Google webservers and within the Chrome and
Opera browsers to support 0-RTT. Unfortunately, none of the above mentioned
protocols are enjoying 0-RTT and full forward secrecy at the same time. Only
recently, Günther, Hale, Jager, and Lauer (GHJL henceforth) [20] made progress
and proposed the first 0-RTT key exchange protocol with full forward secrecy
for all transmitted payload messages. However, although their 0-RTT protocol
offers the desired features, their construction is not yet practical.

In more detail, GHJL’s forward-secure 0-RTT key-exchange solution is based
on puncturable encryption (PE), which they showed can be constructed in a
black-box way from any selectively secure hierarchical identity-based encryption
(HIBE) scheme. Loosely speaking, PE is a public-key encryption primitive which
provides a Puncture algorithm that, given a secret key and ciphertext, produces
an updated secret key that is able to decrypt all ciphertexts except the one it has
been punctured on. PE has been introduced by Green and Miers [19] (GM hence-
forth) who provide an instantiation relying on a binary-tree encryption (BTE)
scheme — or selectively secure HIBE — together with a key-policy attribute-
based encryption (KP-ABE) [18] scheme for non-monotonic (NM) formulas with
specific properties. In particular, the KP-ABE needs to provide a non-standard
property to enhance existing secret keys with additional NOT gates, which is
satisfied by the NM KP-ABE in [27]. Since then, PE has proved to be a valu-
able building block to construct public-key watermarking schemes [13], forward-
secret proxy re-encryption [14], or for achieving chosen-ciphertext security for
fully-homomorphic encryption [11]. However, the mentioned PE instantiations
from [11,13] are based on indistinguishability obfuscation and, thus, do not yield
practical schemes at all while [14] uses the same techniques as in GHJL.

When looking at the two most efficient PE schemes available, i.e., GM and
GHJL, they still come with severe drawbacks. In particular, puncturing in GHJL
is highly inefficient and takes several seconds to minutes on decent hardware
for reasonable deployment parameters. In the GM scheme, puncturing is more
efficient, but the cost of decryption is very significant and increases with the



number of puncturings. More precisely, cost of decryption requires a number of
pairing evaluations that depends on the number of puncturings, and can be in
the order of 210 to 220 for realistic deployment parameters. These issues make
both of them especially unsuitable for the application in forward-secret 0-RTT
key exchange in a practical setting.

Contributions. In this paper, we introduce Bloom filter encryption (BFE),
which can be considered as a variant of PE [19,13,11,20]. The main difference
to other existing PE constructions is that in case of BFE, we tolerate a non-
negligible correctness error.4 This allows us to construct PE and in particular
puncturable key encapsulation (PKEM) schemes with highly efficient puncturing
and in particular where puncturing only requires a few very efficient operations,
i.e., to delete parts of the secret key, but no further expensive cryptographic op-
erations. Altogether, this makes BFE a very suitable building block to construct
practical forward-secret 0-RTT key exchange. In more detail, our contributions
are as follows:

– We formalize the notion of BFE by presenting a suitable security model.
The intuition behind BFE is to provide a highly efficient decryption and
puncturing. Interestingly, puncturing mainly consists of deleting parts of the
secret key. This approach is in contrast to existing puncturable encryption
schemes, where puncturing and/or decryption is a very expensive operation.

– We propose efficient constructions of BFE. First, we present a direct con-
struction which uses ideas from the Boneh-Franklin identity-based encryp-
tion (IBE) scheme [9]. Additionally, we present a black-box construction from
a ciphertext-policy attibute-based encryption (CP-ABE) scheme that only
needs to be small-universe (i.e., bounded) and support threshold policies,
which allows us to achieve compact ciphertexts. To improve efficiency, we
finally provide a time-based BFE (TB-BFE) from selectively-secure HIBEs.

– To achieve CCA security, we adopt the Fujisaki-Okamoto (FO) transforma-
tion [16] to the BFE setting. This is technically non-trivial, and therefore
we consider it as another interesting aspect of this work. In particular, the
original FO transformation [16] works only for schemes with perfect correct-
ness. Recently, Hofheinz et al. [23] described a variant which works also for
schemes with negligible correctness error. We adopt the FO transformation
to BFE and PKEMs with non-negligible correctness error respectively. To
this end, we formalize additional properties of the PKEM that are required
to apply the FO transform to BFE schemes, and show that our CPA-secure
constructions satisfy them. This serves as a template that allows an easy
application of the FO transform in a black-box manner to BFE schemes.

– We provide a construction of a forward-secret 0-RTT key exchange protocol
(in the sense of GHJL) from TB-BFE. Furthermore, we give a detailed com-
parison of (TB-)BFE with other PE schemes and discuss the efficiency in the
context of the proposed application to forward-secret 0-RTT key exchange.

4 We discuss below why this is not only tolerable, but actually a very reasonable
approach for applications like 0-RTT key exchange.



In particular, our construction of forward-secret 0-RTT key-exchange from
TB-BFE has none of the drawbacks mentioned in the introduction (at the
cost of a somewhat larger secret key, that, however, shrinks with the number
of puncturings). Consequently, our forward-secret 0-RTT key exchange can
be seen as a significant step forward to construct very practical forward-
secret 0-RTT key exchange protocols.

On tolerating a non-negligible correctness error for 0-RTT. The huge
efficiency gain of our construction stems partially from the relaxation of allowing
a non-negligible correctness error, which, in turn, stems from the potentially non-
negligible false-positive probability of a Bloom filter. While this is unusual for
classical public-key encryption schemes, we consider it as a reasonable approach
to accept a small, but non-negligible correctness error for the 0-RTT mode of a
key exchange protocol, in exchange for the huge efficiency gain.

For example, a 1/10000 chance that the key establishment fails allows to use
0-RTT in 9999 out of 10000 cases on average, which is a significant practical
efficiency improvement. Furthermore, the communicating parties can implement
a fallback mechanism which immediately continues with running a standard 1-
RTT key exchange protocol with perfect correctness, if the 0-RTT exchange fails.
Thus, the resulting protocol can have the same worst-case efficiency as a 1-RTT
protocol, while most of the time 0-RTT is already sufficient to establish a key
and full forward secrecy is always achieved.

Compared to other practical 0-RTT solutions, note that both TLS 1.3 [28]
and QUIC [29] have similar fallback mechanisms. Furthermore, in order to
achieve at least a very weak form of forward secrecy, they define so called tick-
ets [28] or server configuration (SCFG) messages [29], which expire after a certain
time. Forward secrecy is only achieved after the ticket/SCFG message has ex-
pired and the associated secrets have been erased. Therefore the lifetime should
be kept short. If a client connects to a server after the ticket/SCFG message has
expired, then the fallback mechanism is invoked and a full 1-RTT handshake is
performed. In particular, for settings where a client connects only occasionally
to a server, and for reasonably chosen parameters and a moderate life time of
the ticket/SCFG message, which at least guarantees some weak form of forward
secrecy, this requires a full handshake more often than with our approach.

Finally, note that puncturable encryption with perfect (or negligible) cor-
rectness error inherently seems to require secret keys whose size at least grows
linearly with the number of puncturings. This is because any such scheme inher-
ently must (implicitly or explicitly) encode information about the list of punc-
tured ciphertexts into the secret key, which lower-bounds the size of the secret
key. By tolerating a non-negligible correctness error, we are also able to restrict
the growth of the secret key to a limit which seems tolerable in practice.

2 Bloom Filter Encryption

The key idea behind Bloom Filter Encryption (BFE) is that the key pair of such
a scheme is associated to a Bloom filter (BF) [7], a probabilistic data structure



for the approximate set membership problem with a non-negligible false-positive
probability in answering membership queries. The initial secret key sk output
by the key generation algorithm of a BFE scheme corresponds to an empty BF
where all bits are set to 0. Encryption takes a message M and the public key pk,
samples a random element s (acting as a tag for the ciphertext) corresponding
to the universe U of the BF and encrypts a message using pk with respect to
the k positions set in the BF by s. A ciphertext is then basically identified by
s and decryption works as long as at least one index pointed to by s in the BF
is still set to 0. Puncturing the secret key with respect to a ciphertext (i.e., the
tag s of the ciphertext) corresponds to inserting s in the BF (i.e., updating the
corresponding indices to 1 and deleting the corresponding parts of the secret
key). This basically means updating sk such that it no longer can decrypt any
position indexed by s.

2.1 Formal Definition of Bloom Filters

A Bloom filter (BF) [7] is a probabilistic data structure for the approximate set
membership problem. It allows a succinct representation T of a set S of elements
from a large universe U . For elements s ∈ S a query to the BF always answers
1 (“yes”). Ideally, a BF would always return 0 (“no”) for elements s 6∈ S, but
the succinctness of the BF comes at the cost that for any query to s 6∈ S the
answer can be 1, too, but only with small probability (called the false-positive
probability).

We will only be interested in the original construction of Bloom filters by
Bloom [7], and omit a general abstract definition. Instead we describe the con-
struction from [7] directly. For a general definition refer to [26].

Definition 1 (Bloom Filter). A Bloom filter B for set U consists of algorithms
B = (BFGen,BFUpdate,BFCheck), which are defined as follows.

BFGen(m, k): This algorithm takes as input two integers m, k ∈ N. It first sam-
ples k universal hash functions H1, . . . ,Hk, where Hj : U → [m], defines
H := (Hj)j∈[k] and T := 0m (that is, T is an m-bit array with all bits set to
0), and outputs (H,T ).

BFUpdate(H,T, u): Given H = (Hj)j∈[k], T ∈ {0, 1}m, and u ∈ U , this algo-
rithm defines the updated state T ′ by first assigning T ′ := T . Then, writing
T ′[i] to denote the i-th bit of T ′, it sets T ′[Hj(u)] := 1 for all j ∈ [k], and
finally returns T ′.

BFCheck(H,T, u): Given H = (Hj)j∈[k], T ∈ {0, 1}m where we write T [i] to
denote the i-th bit of T , and u ∈ U , this algorithm returns a bit b :=∧
j∈[k] T [Hj(u)].

Relevant properties of Bloom filters. Let us summarize the properties of
Bloom filters relevant to our work.

Perfect completeness. A Bloom filter always “recognizes” elements that have
been added with probability 1. More precisely, let S = (s1, . . . , sn) ∈ Un be



any vector of n elements of U . Let (H,T0)←$ BFGen(m, k) and define

Ti = BFUpdate(H,Ti−1, si) for i ∈ [n].

Then for all s∗ ∈ S and all (H,T0)←$ BFGen(m, k) with m, k ∈ N, it holds
that

Pr [BFCheck(H,Tn, s
∗) = 1] = 1.

Compact representation of S. Independent of the size of the set S ⊂ U and
the representation of individual elements of U , the size of representation
T is a constant number of m bits. A larger size of S increases only the
false-positive probability, as discussed below, but not the size of the repre-
sentation.

Bounded false-positive probability. The probability that an element which
has not yet been added to the Bloom filter is erroneously “recognized” as
being contained in the filter can be made arbitrarily small, by choosing m
and k adequately, given (an upper bound on) the size of S.
More precisely, let S = (s1, . . . , sn) ∈ Un be any vector of n elements of U .
Then for any s∗ ∈ U \ S, we have

Pr [BFCheck(H,Tn, s
∗) = 1] ≈ (1− e−kn/m)k,

where (H,T0)←$ BFGen(m, k), Ti = BFUpdate(H,Ti−1, si) for i ∈ [n], and
the probability is taken over the random coins of BFGen.

Discussion on the choice of parameters. In order to provide a first intuition
on the choice of parameters n,m and k for the use of BFs within BFE, we
subsequently discuss some reasonable choices. Let us assume that we want to
have n = 220, which amounts to adding for a full year every day about 212

elements to the BF. Then, assuming the optimal number of hash functions k,
and tolerating a false-positive probability of p = 10−3, we obtain a size of the
BF given by m = −n ln p/(ln 2)2, as m ≈ 15 Mb ≈ 2 MB. The optimal number of
hash functions k is given by k = m/n ln 2, and we will instantiate Bloom filters
with

k := dm/n ln 2e .

This yields a correctness error p ≈ (1− e−kn/m)k = (1− e−n/m·d
m
n e ln 2)k ≤ 2−k.

For above parameters n,m and p we obtain k = 10.
Looking ahead to the BFE construction in Section 2.5, at a 120-bit security

level (using the pairing-friendly BLS12-381 curve), this choice of parameters
would yield ciphertexts of size < 720 B and public as well as secret keys of
size < 100 B and ≈ 700 MB respectively. Thereby, we need to emphasize that
initially the secret key (representing the empty BF) has its maximum size, but
every puncturing (i.e., addition of an element to the BF), reduces the size of the
secret key. Moreover, we stress that the false-positive probability represents an
upper bound as it assumes that all n = 220 elements are already added to the BF,
i.e., the secret key has already been punctured with respect to 220 ciphertexts.
Finally, when we use our time-based BFE approach (TB-BFE) from Section 2.7,
we can even reduce the secret key size by reducing the maximum number of
puncturings at the cost of switching the time intervals more frequently.



2.2 Formal Model of BFE

Subsequently, we introduce the formal model for BFE which essentially is a
variant of puncturable encryption (PE) [19,13,11,20] with the only difference
that with BFE we tolerate a non-negligible correctness error. Thus, although we
are speaking of BFE, we choose to introduce a formal model for PE with a relaxed
correctness definition5 and treat BFE as an instantiation of PE. Consequently,
our Definition 2 below is a variant of the one in [20], with the only difference
that we allow the key generation to take the additional parameters m and k (of
the BF) as input, which specify the correctness error.

For 0-RTT key establishment, our prime application in this paper, we do not
need a full-blown encryption scheme, but only a key-encapsulation mechanisms
(KEM) to transport a symmetric encryption key. Consequently, we chose to
present our definitions by means of a puncturable KEM (PKEM). We stress that
defining PKEM instead of PE does not represent any limitation, as any KEM can
generically be converted into a secure full-blown encryption scheme [16]. Con-
versely, any secure encryption scheme trivially yields a secure KEM. Nontheless,
for completeness, we give stand-alone definitions of PE tolerating a non-negligible
correctness error in the full version.

Definition 2 (PKEM). A puncturable key encapsulation (PKEM) scheme with
key space K is a tuple (KGen,Enc,Punc,Dec) of PPT algorithms:

KGen(1λ,m, k) : Takes as input a security parameter λ, parameters m and k and
outputs a secret and public key (sk, pk) (we assume that K is implicit in pk).

Enc(pk) : Takes as input a public key pk and outputs a ciphertext C and a sym-
metric key K.

Punc(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs an
updated secret key sk′.

Dec(sk, C) : Takes as input a secret key sk, a ciphertext C and outputs a sym-
metric key K or ⊥ if decapsulation fails.

Correctness. We start by defining correctness of a PKEM scheme. Basically,
here one requires that a ciphertext can always be decapsulated with unpunc-
tured secret keys. However, we allow that if punctured secret keys are used for
decapsulation then the probability that the decapsulation fails is bounded by
some non-negligible function in the scheme’s parameters m, k.

Definition 3 (Correctness). For all λ,m, k,∈ N, any (sk, pk)←$ KGen(1λ,m,
k) and (C,K)←$ Enc(pk), we have that Dec(sk, C) = K. Moreover, for any (arbi-
trary interleaved) sequence i = 1, . . . , ` (where ` is determined by m, k) of invoca-
tions of sk′←$ Punc(sk, C ′) for any C ′ 6= C it holds that Pr

[
Dec(sk′, C) = ⊥

]
≤

µ(m, k), where µ(·) is some (possibly non-negligible) bound.

5 This moreover allows to compactly present our construction of forward-secret 0-RTT
key exchange as this then essentially follows the argumentation in [20].



2.3 Additional Properties of a PKEM

In this section, we will define additional properties of a PKEM. One will be
necessary for the application to 0-RTT key exchange from [20]. The others are
required to construct a CCA-secure PKEM via the Fujisaki-Okamoto (FO) trans-
formation, as described in Section 2.6. We will show below that our constructions
of CPA-secure PKEMs satisfy these additional properties, and thus are suitable
for our variant of the FO transformation, and to construct 0-RTT key exchange.

Extended correctness. Intuitively, we first require an extended variant of cor-
rectness which demands that (1) decapsulation yields a failure when attempting
to decapsulate under a secret key previously punctured for that ciphertext. This
is analogous to [20]. Second, we additionally demand that (2) decapsulating an
honest ciphertext with the unpuctured key does always succeed and (3) if de-
cryption does not fail, then the decapsulated value must match the key returned
by the Enc algorithm, for any key sk′ obtained from applying any sequence of
puncturing operations to the initial secret key sk.

Definition 4 (Extended Correctness). For all λ,m, k, ` ∈ N, any (sk, pk)
←$ KGen(1λ,m, k) and (C,K)←$ Enc(pk) and any (arbitrary interleaved and pos-
sibly empty) sequence C1, . . . , C` of invocations of sk′←$ Punc(sk, Ci) it holds
that:

1. Impossibility of false-negatives:
Dec(sk′, Ci) = ⊥ for all i ∈ [`].

2. Perfect correctness of the initial, non-punctured secret key:
If (C,K)←$ Enc(pk) then Dec(sk, C) = K, where sk is the initial, non-punc-
tured secret key.

3. Semi-correctness of punctured secret keys:
If Dec(sk′, C) 6= ⊥ then Dec(sk′, C) = Dec(sk, C).

Separable randomness. We require that the encapsulation algorithm Enc
essentially reads the key K in (C,K)←$ Enc(pk) directly from its random input
tape. Intuitively, this will later enable us to make the randomness r used by the
encapsulation algorithm Enc dependent on the key K computed by Enc.

Definition 5 (Separable Randomness). Let PKEM = (KGen,Enc,Punc,Dec)
be a PKEM. We say that PKEM has separable randomness, if one can equiva-
lently write the encapsulation algorithm Enc as

(C,K)←$ Enc(pk) = Enc(pk; (r,K)),

for uniformly random (r,K) ∈ {0, 1}ρ+λ, where Enc(·; ·) is a deterministic algo-
rithm whose output is uniquely determined by pk and the randomness (r,K) ∈
{0, 1}ρ+λ.

Remark. We note that one can generically construct a separable PKEM from
any non-separable PKEM. Given a non-separable PKEM with encapsulation al-
gorithm Enc, a separable PKEM with encryption algorithm Enc′ can be obtained
as follows:



Enc′(pk; (r,K′)) : Run (C,K)←$ Enc(pk; r), set C ′ := (C,K⊕K′) return (C ′,K′).

We need separability in order to apply our variant of the FO transformation,
which is the reason why we have to make it explicit. Alternatively, we could
have started from a non-separable PKEM and applied the above construction.
However, this adds an additional component to the ciphertext, while the con-
struction given in Section 2.5 will already be separable, such that we can avoid
this overhead.

Publicly-checkable puncturing. Finally, we need that it is efficiently check-
able whether the decapsulation algorithm outputs ⊥ = Dec(sk, C), given not the
secret key sk, but only the public key pk, the ciphertext C to be decrypted, and
the sequence C1, . . . , Cw at which the secret key sk has been punctured.

Definition 6 (Publicly-Checkable Puncturing). Let Q = (C1, . . . , Cw) be
any list of ciphertexts. We say that PKEM allows publicly-checkable puncturing,
if there exists an efficient algorithm CheckPunct with the following correctness
property.

1. Run (sk, pk)←$ KGen(1λ,m, k).
2. Compute Ci←$ Enc(pk) and sk = Punc(sk, Ci) for i ∈ [w].
3. Let C be any string. We require that

⊥ = Dec(sk, C) ⇐⇒ ⊥ = CheckPunct(pk,Q, C).

From a high-level perspective, this additional property will be necessary to sim-
ulate the decryption oracle properly in the CCA security experiment when our
variant of the FO transformation is applied. Together with the second and third
property of Definition 4, it replaces the perfect correctness property required in
the original FO transformation.

Min-entropy of ciphertexts. Following [23], we require that ciphertexts of a
randomness-separable PKEM have sufficient min-entropy, even if K is fixed:

Definition 7 (γ-Spreadness). Let PKEM = (KGen,Enc,Punc,Dec) be a ran-
domness-separable PKEM with ciphertext space C. We say that PKEM is γ-
spread, if for any honestly generated pk, any key K and any C ∈ C

Pr
r←$ {0,1}ρ [C = Enc(pk; (r,K))] ≤ 2−γ .

2.4 Security Definitions

We define three notions of security for PKEMs. The two “standard” security
notions are indistinguishability under chosen-plaintext (IND-CPA) and chosen-
ciphertext (IND-CCA) attacks. We also consider one-wayness under chosen-plain-
text attacks (OW-CPA). The latter is the weakest notion among the ones consid-
ered in this paper, and implied by both IND-CPA and IND-CCA, but sufficient
for our generic construction of IND-CCA-secure PKEMs.



Indistinguishability-based security. Figure 1 defines the IND-CPA and
IND-CCA experiments for PKEMs. The experiments are similar to the secu-
rity notions for conventional KEMs, but the adversary can arbitrarily puncture
the secret key via the Punc oracle and retrieve the punctured secret key via the
Corr oracle, once it has been punctured on the challenge ciphertext C∗.

ExpT
A,PKEM(λ,m, k):

(sk, pk)←$ KGen(1λ,m, k), (C∗,K0)←$ Enc(pk), Q ← ∅
K1←$ K, b←$ {0, 1}
b∗←$ AO,Punc(sk,·),Corr(pk, C∗,Kb)

where O ← {Dec′(sk, ·)} if T = IND-CCA and O ← ∅ otherwise.
Dec′(sk, C) behaves as Dec but returns ⊥ if C = C∗

Punc(sk, C) runs sk←$ Punc(sk, C) and Q ← Q∪ {C}
Corr returns sk if C∗ ∈ Q and ⊥ otherwise

If b∗ = b then return 1
return 0

Fig. 1. Indistinguishability-based security for PKEMs.

Definition 8 (Indistinguishability-Based Security of PKEM). For T ∈
{IND-CPA, IND-CCA}, we define the advantage of an adversary A in the T ex-
periment ExpT

A,PKEM(λ,m, k) as

AdvT
A,PKEM(λ,m, k) :=

∣∣∣∣Pr [ExpT
A,PKEM(λ,m, k) = 1

]
− 1

2

∣∣∣∣ .
A puncturable key-encapsulation scheme PKEM is T ∈ {IND-CPA, IND-CCA}
secure, if AdvT

A,PKEM(λ,m, k) is a negligible function in λ for all m, k > 0 and
all PPT adversaries A.

One-wayness under chosen-plaintext attack. Figure 2 defines the OW-CPA
experiment. The experiment is similar to the IND-CPA experiment, except that
the goal of the adversary is to recover the encapsulated key, given a random
challenge ciphertext.

ExpOW-CPA
A,PKEM(λ,m, k):

(sk, pk)←$ KGen(1λ,m, k), (C∗,K0)←$ Enc(pk), Q ← ∅
K∗0←$ APunc(sk,·),Corr(pk, C∗)

where Punc(sk, C) runs sk←$ Punc(sk, C) and Q ← Q∪ {C}
Corr returns sk if C∗ ∈ Q and ⊥ otherwise

If K∗0 = K0 then return 1
return 0

Fig. 2. OW-CPA security for PKEMs.



Definition 9 (One-Wayness Under Chosen-Plaintext Attack). We de-
fine the advantage of an adversary A in experiment ExpOW-CPA

A,PKEM(λ,m, k) as

AdvOW-CPA
A,PKEM(λ,m, k) := Pr

[
ExpOW-CPA

A,PKEM(λ,m, k) = 1
]
.

A PKEM is OW-CPA secure, if AdvOW-CPA
A,PKEM(λ,m, k) is a negligible function in λ

for all m, k > 0 and all PPT adversaries A.

2.5 Basic Bloom Filter Encryption

Bilinear maps and notation. In the sequel, let BilGen be an algorithm that,
on input a security parameter 1λ, outputs (p, e,G1,G2,GT , g1, g2)←$ BilGen(1λ),
where G1, G2, GT are groups of prime order p with bilinear map e : G1 ×G2 →
GT and generators gi ∈ Gi for i ∈ {1, 2}.
Construction. In the sequel, let Params := (p, e,G1,G2,GT , g1, g2)←$ BilGen(
1λ), and gT = e(g1, g2). We will always assume that all algorithms described
below implicitly receive these parameters as additional input. Let B = (BFGen,
BFUpdate,BFCheck) be a Bloom filter for set G1. Furthermore, let G : N→ G2

and G′ : GT → {0, 1}λ be cryptographic hash functions (which will be modelled
as random oracles [5] in the security proof).

Let PKEM = (KGen,Enc,Punc,Dec) be defined as follows.

KGen(1λ,m, k) : This algorithm first generates a Bloom filter instance by run-

ning (H,T )←$ BFGen(m, k). Then it chooses α←$ Zp, and computes and
returns

sk := (T, (G(i)α)i∈[m]) and pk := (gα1 , H).

Remark. The reader familiar with the Boneh-Franklin IBE scheme [9] may
note that the secret key contains m elements of G2, each essentially being
a secret key of the Boneh-Franklin scheme for “identity” i, i ∈ [m], with
respect to “master public-key” gα1 .

Enc(pk) : This algorithm takes as input a public key pk of the above form. It

samples a uniformly random key K←$ {0, 1}λ and exponent r←$ Zp. Then
it computes ij := Hj(g

r
1) for (Hj)j∈[k] := H, then yj = e(gα1 , G(ij))

r for j ∈
[k], and finally

C :=
(
gr1, (G

′(yj)⊕ K)j∈[k]
)
.

It outputs (C,K) ∈ (G1 × {0, 1}kλ)× {0, 1}λ.

Remark. Note that for each j ∈ [k], the tuple (gr1, G
′(yj) ⊕ K) is essen-

tially a “hashed Boneh-Franklin IBE” ciphertext, encrypting K for “identity”
ij = Hj(g

r
1) and with respect to master public key gα1 , where the identity

is derived deterministically from a “unique” (with overwhelming probabil-
ity) ciphertext component gr1. Thus, the ciphertext C essentially consists of
k Boneh-Franklin ciphertexts that share the same randomness r, each en-
crypting the same key K for an “identity” derived deterministically from
gr1.



Note also that this construction of Enc satisfies the requirement of separable
randomness from Definition 5. Furthermore, ciphertexts are γ-spread accord-
ing to Definition 7 with γ = log2 p, because gr1 is uniformly distributed over
G1.

Punc(sk, C) : Given a ciphertext C :=
(
gr1, (G

′(yj)⊕ K)j∈[k]
)

and secret key sk =

(T, (sk[i])i∈[m]), the puncturing algorithm first computes T ′ = BFUpdate(H,
T, gr1). Then, for each i ∈ [m] it defines

sk′[i] :=

{
sk[i] if T ′[i] = 0, and

⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, this algorithm returns

sk′ := (T ′, (sk′[i])i∈[m]).

Remark. Note that the above procedure is correct even if the procedure
is applied repeatedly with different ciphertexts C, since the BFUpdate algo-
rithm only changes bits of T from 0 to 1, but never from 1 to 0. So we can
delete a secret key element sk[i] once T ′[i] has been set to 1. Furthermore, we
have sk′[i] = ⊥ ⇐⇒ T ′[i] = 1. Intuitively, this will ensure that we can use
this key to decrypt a ciphertext C :=

(
gr1, (G

′(yj)⊕ K)j∈[k]
)

if and only if
BFCheck(H,T, gr1) = 0, where (H,T ) is the Bloom filter instance contained
in the public key. Note also that the puncturing algorithm essentially only
evaluates k universal hash functions H = (Hj)j∈[k] and then deletes a few
secret keys, which makes this procedure extremely efficient. Finally, observe
that the filter state T can be efficiently re-computed given only public infor-
mation, namely the list of hash functions H contained in pk and the sequence
of ciphertexts C1, . . . , Cw on which a secret key has been punctured. This
yields the existence of an efficient CheckPunct according to Definition 6.

Dec(sk, C) : Given a secret key sk = (T, (sk[i])i∈[m]) and a ciphertext C :=
(C[0], C[i1], . . . , C[ik]) it first checks whether BFCheck(H,T,C[0]) = 1, and
outputs ⊥ in this case. Otherwise, note that BFCheck(H,T,C[0]) = 0 implies
that there exists at least one index i∗ with sk[i∗] 6= ⊥. It picks the smallest
index i∗ ∈ {i1, . . . , ik} such that sk[i∗] = G(i∗)α 6= ⊥, computes

yi∗ := e(gr1, G(i∗)α),

and returns K := C[i∗]⊕G′(yi∗).
Remark. If BFCheck(H,Tn, C[0]) = 0, then the decryption algorithm per-
forms a “hashed Boneh-Franklin” decryption with a secret key for one of
the identities. Note that Dec(skn, C) 6= ⊥ ⇐⇒ BFCheck(H,T,C[0]) = 0,
which guarantees the first extended correctness property required by Defini-
tion 4. It is straightforward to verify that the other two extended correctness
properties of Definition 4 hold as well.

Design choices. We note that we have chosen to base our Bloom filter encryp-
tion scheme on hashed Boneh-Franklin IBE instead of standard Boneh-Franklin



for two reasons. First, it allows us to keep ciphertexts short and independent
of the size of the binary representation of elements of GT . This is useful, be-
cause the recent advances for computing discrete logarithms in finite extension
fields [24] apply to the target group of state-of-the-art pairing-friendly elliptic
curve groups. Recent assessments of the impact of these advances by Menezes
et al. [25] as well as Barbulescu and Duquesne [2] suggest that for currently
used efficient curve families such as BN [4] or BLS [3] curves a conservative
choice of parameters for the 128 bit security level yields sizes of GT elements
of ≈ 4600 − 5500 bits. The hash function allows us to “compress” these group
elements in the ciphertext to 128 bits. Even if future research enables the con-
struction of bilinear maps where elements of GT can be represented by 2λ bits
for λ-bit security (which is optimal), it is still preferable to hash group elements
to λ bits to reduce the ciphertext by a factor of about 2. Second, by modelling G′

as a random oracle, we can reduce security to a weaker complexity assumption.

Correctness error of this scheme. We will now explain that the correctness
error of this scheme is essentially identical to the false-positive probability of
the Bloom filter, up to a statistically small distance which corresponds to the
probability that two independent ciphertexts share the same randomness r.

Form, k ∈ N, let (sk0, pk)←$ KGen(1λ,m, k), let U := {C : (C,K)←$ Enc(pk)}
denote the set of all valid ciphertext with respect to pk. Let S = (C1, . . . , Cn) be
a list of n ciphertexts, where (Ci,Ki)←$ Enc(pk), and run ski = Punc(ski−1, Ci)
for i ∈ [n] to determine the secret key skn obtained from puncturing sk0 itera-
tively on all ciphertexts Ci ∈ S.

Now let us consider the probability

Pr [Dec(skn, C
∗) 6= K∗ : (C∗,K∗)←$ Enc(pk), C∗ 6∈ S]

that a newly generated ciphertext C∗ 6∈ S is not correctly decrypted by skn.
To this end, let C∗[0] = gr

∗

1 denote the first component of ciphertext C∗ =
(gr
∗

1 , C
∗
1 , . . . , C

∗
k), and likewise let Ci[0] denote the first component of ciphertext

Ci for all Ci ∈ S. Writing skn = (Tn, (skn[i])i∈[m]) and pk = (gα1 , H), one can now
verify that we have Dec(skn, C

∗) 6= K∗ ⇐⇒ BFCheck(H,Tn, C
∗[0]) = 1, because

BFCheck(H,Tn, C
∗[0]) = 0 guarantees that there exists at least one index j

such that skn[Hj(C
∗[0])] 6= ⊥, so correctness of decryption follows essentially

from correctness of the Boneh-Franklin scheme. Thus, we have to consider the
probability that BFCheck(H,Tn, C

∗[0]) = 1. We distinguish between two cases:

1. There exists an index i ∈ [n] such that C∗[0] = Ci[0]. Note that this implies
immediately that BFCheck(H,Tn, C

∗[0]) = 1. However, recall that C∗[0] =
gr
∗

1 is a uniformly random element of G1. Therefore the probability that this
happens is upper bounded by n/p, which is negligibly small.

2. C∗[0] 6= Ci[0] for all i ∈ [n]. In this case, as explained in Section 2.1, the
soundness of the Bloom filter guarantees that Pr[BFCheck(H,Tn, C

∗[0]) =
1] ≈ 2−k.

In summary, the correctness error of this scheme is approximately 2−k + n/p.
Since n/p is negligibly small, this essentially amounts to the correctness error of



the Bloom filter, which in turn depends on the number of ciphertexts n, and the
choice of parameters m, k.

Flexible instantiability of this scheme. Our scheme is highly parameteriz-
able in the sense that we can adjust the size of keys and ciphertexts by adjusting
the correctness error (determined by the choice of parameters m, k that in turn
determine the false-positive probability of the Bloom filter) of our scheme.

Additional properties. As already explained in the remarks after the descrip-
tion of the individual algorithms of PKEM, the scheme satisfies the requirements
of Definitions 4, 5, 6, and 7.

IND-CPA-security. We base IND-CPA-security on a bilinear computational
Diffie-Hellman variant in the bilinear groups generated by BilGen.

Definition 10 (BCDH). We define the advantage of adversary A in solving
the BCDH problem with respect to BilGen as

AdvBCDH
A,BilGen(λ) := Pr [e(g1, h2)rα←$ A(Params, gr1, g

α
1 , g

α
2 , h2)] ,

where Params = (p, e,G1,G2,GT , g1, g2)←$ BilGen(1λ), and (gr1, g
α
1 , g

α
2 , h2)←$

G2
1 ×G2.

Theorem 1. From each efficient adversary B that issues q queries to random
oracle G′ we can construct an efficient adversary A with

AdvBCDH
A,BilGen(λ) ≥

AdvIND-CPA
B,PKEM (λ,m, k)

kq
.

Proof. Algorithm A receives as input a BCDH-challenge tuple (gr1, g
α
1 , g

α
2 , h2).

It runs adversary B as a subroutine by simulating the ExpIND-CPA
B,PKEM(λ,m, k) ex-

periment, including random oracles G and G′, as follows.
First, it defines Q := ∅, runs (H,T )←$ BFGen(m, k), and defines the pub-

lic key as pk := (gα1 , H). Note that this public key is identically distributed
to a public key output by KGen(1λ,m, k). In order to simulate the challenge
ciphertext, the adversary chooses a random key K←$ {0, 1}λ and k uniformly
random values Yj ←$ {0, 1}λ, j ∈ [k], and defines the challenge ciphertext as
C∗ := (gr1, (Yj)j∈[k]). Finally, it outputs (pk, C∗,K) to B.

Whenever B queries Punc(sk, ·) on input C = (C[0], . . .), then A updates T
by running T = BFUpdate(H,T,C[0]), and Q ← Q∪ {C}.

Whenever a random oracle query to G : N→ G2 is made (either by A or B),
with input ` ∈ N, then A responds with G(`), if G(`) has already been defined.
If not, then A chooses a random integer r`←$ Zp, and returns G(`), where

G(`) :=

{
h2 · gr`2 if ` ∈ {Hj(g

r
1) : j ∈ [k]}, and

gr`2 otherwise.

This definition of G allows A to simulate the Corr oracle as follows. When B
queries Corr, then it first checks whether C∗ ∈ Q, and returns ⊥ if this does



not hold. Otherwise, note that we must have ∀j ∈ [k] : T [Hj(g
r
1)] = 0, where

H = (Hj)j∈[k] and T [`] denotes the `-th bit of T . Thus, by the simulation of
G described above, A is able to compute and return G(`)α = (gr`2 )α = (gα2 )r`

for all ` with ` 6∈ {Hj(g
r
1) : j ∈ [k]}, and therefore in particular for all ` with

T [`] = 1. This enables the perfect simulation of Corr.

Finally, whenever B queries random oracle G′ : GT → {0, 1}λ on input y,
then A responds with G′(y), if G′(y) has already been defined. If not, then A
chooses a random string Y ←$ {0, 1}λ, assigns G′(y) := Y , and returns G′(y).
Now we have to distinguish between two types of adversaries.

1. A Type-1 adversary B never queries G′ on input of a value y, such that
there exists j ∈ [k] such that y = e(gα1 , G(Hj(g

r
1)))r. Note that in this

case the value Y ′j := G′(e(gα1 , G(Hj(g
r
1)))) remains undefined for all j ∈ [k]

throughout the entire experiment. Thus, information-theoretically, a Type-1
adversary receives no information about the key encrypted in the challenge
ciphertext C∗, and thus can only have advantage AdvIND-CPA

B,PKEM(λ,m, k) = 0,
in which case the theorem holds trivially.

2. A Type-2 adversary queries G′(y) such that there exists j ∈ [k] with y =
e(gα1 , G(Hj(g

r
1)))r. A uses a Type-2 adversary to solve the BCDH challenge

as follows. At the beginning of the game, it picks two indices (q∗, j∗)←$ [q]×
[k] uniformly random. When B outputs y in its q∗-th query to G′, then A
computes and outputs W := y · e(gα1 , gr2)−r` . Since B is a Type-2 adversary,
we know that at some point it will query G′(y) with y = e(gα1 , G(Hj(g

r
1)))r

for some j ∈ [k]. If this is the q∗-th query and we have j = j∗, which happens
with probability 1/(qk), then we have

W = y · e(gα1 , gr2)−r` = e(gα1 , G(Hj(g
r
1)))r · e(gα1 , gr2)−r`

= e(gα1 , h2 · g
r`
2 )r · e(gα1 , gr2)−r` = e(gα1 , h2)r · e(gα1 , g

r`
2 )r · e(gα1 , gr2)−r`

and thus W is a solution to the given BCDH instance. ut

OW-CPA-Security. The following theorem can either be proven analogous to
Theorem 1, or based on the fact that IND-CPA-security implies OW-CPA-security.
Therefore we give it without proof.

Theorem 2. From each efficient adversary B that issues q queries to random
oracle G′ we can construct an efficient adversary A with

AdvBCDH
A,BilGen(λ) ≥

AdvOW-CPA
B,PKEM(λ,m, k)

kq
.

Remark 1. The construction presented above allows to switch the roles of G1

and G2, i.e., to switch all elements in G1 to G2 and vice versa. This might be
beneficial regarding the size of the secret key when instantiating our construction
using a bilinear group where the representation of elements in G2 requires more
space than the representation of elements in G1.



2.6 CCA-Security via Fujisaki-Okamoto

We obtain a CCA-secure PKEM by adopting the Fujisaki-Okamoto (FO) trans-
formation [16] to the PKEM setting. Since the FO transformation does not
work generically for any KEM, we have to use the additional requirements on
the underlying PKEM that have been defined in Section 2.3. These additional
properties enable us to overcome the difficulty that the original Fujisaki-Okamoto
transformation from [16] requires perfect correctness, what no puncturable KEM
can provide. We note that Hofheinz et al. [23] give a new, modular analysis of
the FO transformation, which also works for public key encryption schemes with
negligible correctness error, however, it is not applicable to PKEMs with non-
negligible correctness error because the bounds given in [23] provide insufficient
security in this case.

Construction. Let PKEM = (KGen,Enc,Punc,Dec) be a PKEM with separable
randomness according to Definition 5. Recall that this means that we can write
Enc equivalently as (C,K)←$ Enc(pk) = Enc(pk; (r,K)) for uniformly random
(r,K)←$ {0, 1}ρ+λ. In the sequel, let R be a hash function (modeled as a random
oracle in the security proof), mapping R : {0, 1}∗ → {0, 1}ρ+λ. We construct a
new scheme PKEM′ = (KGen′,Enc′,Punc′,Dec′) as follows.

KGen′(1λ,m, k) : This algorithm is identical to KGen.

Enc′(pk) : Algorithm Enc′ samples K←$ {0, 1}λ. Then it computes (r,K′) :=

R(K) ∈ {0, 1}ρ+λ, runs (C,K)←$ Enc(pk; (r,K)), and returns (C,K′).
Punc′(sk, C) : This algorithm is identical to Punc.

Dec′(sk, C) : This algorithm first runs K←$ Dec(sk, C), and returns ⊥ if K =

⊥. Otherwise, it computes (r,K′) = R(K), and checks consistency of the
ciphertext by verifying that (C,K) = Enc(pk; (r,K)). If this does not hold,
then it outputs ⊥. Otherwise it outputs K′.

Correctness error and extended correctness. Both the correctness error
and the extended correctness according to Definition 4 are not affected by the
Fujisaki-Okamoto transform. Therefore these properties are inherited from the
underlying scheme. The fact that the first property of Definition 4 is satisfied
makes the scheme suitable for the application to 0-RTT key establishment.

IND-CCA-security. The security proof reduces security of our modified scheme
to the OW-CPA-security of the scheme from Section 2.5.

Theorem 3. Let PKEM = (KGen,Enc,Punc,Dec) be a BFKEM scheme that
satisfies the additional properties of Definitions 4 and 6, and which is γ-spread
according to Definition 7. Let PKEM′ = (KGen′,Enc′,Punc′,Dec′) be the scheme
described in Section 2.6. From each efficient adversary A that issues at most qO
queries to oracle O and qR queries to random oracle R, we can construct an
efficient adversary B with

AdvOW-CPA
B,PKEM(λ,m, k) ≥

AdvIND-CCA
A,PKEM′(λ,m, k)− qO/2γ

qR
.



Proof. We proceed in a sequence of games. In the sequel, Oi is the implementa-
tion of the decryption oracle in Game i.

Game 0. This is the original IND-CCA security experiment from Definition 8,
played with the scheme described above. In particular, the decryption oracle O0

is implemented as follows:

O0(C)

K←$ Dec(sk, C)
If K = ⊥ then return ⊥
(r,K′) = R(K)
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

Recall that K0 denotes the encapsulated key computed by the IND-CCA ex-
periment. K0 is uniquely defined by the challenge ciphertext C∗ via K0 :=
Dec(sk0, C

∗), where sk0 is the initial (non-punctured) secret key, since the scheme
satisfies extended correctness (Definition 4, second property). Let Q0 denote the
event that A ever queries K0 to random oracle R. Note that A has zero advan-
tage in distinguishing K′ from random, until Q0 occurs, because R is a random
function. Thus, we have Pr[Q0] ≥ AdvIND-CCA

A,PKEM′(λ,m, k). In the sequel, we denote
with Qi the event that A ever queries K0 to random oracle R in Game i.

Game 1. This game is identical to Game 0, except that after computing
K←$ Dec(sk, C) and checking whether K 6= ⊥, the experiment additionally checks
whether the adversary has ever queried random oracle R on input K, and returns
⊥ if not. More precisely, the experiment maintains a list

LR = {(K, (r,K′)) : A queried R(K) = (r,K′)}

to record all queries K made by the adversary to random oracle R, along with
the corresponding response (r,K′) = R(K). The decryption oracle O1 uses this
list as follows (boxed statements highlight changes to O0):

O1(C)

K←$ Dec(sk, C)

If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
(r,K′) = R(K)
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

Note that Games 0 and 1 are perfectly indistinguishable, unless A ever outputs
a ciphertext C with O1(C) = ⊥, but O0(C) 6= ⊥. Note that this happens if and
only if A outputs C such that C = Enc(pk; (r,K)), where r is the randomness
defined by (r,K′) = R(K), but without prior query of R(K).



The random oracle R assigns a uniformly random value r ∈ {0, 1}ρ to each
query, so, by the γ-spreadness of PKEM, the probability that the ciphertext C
output by the adversary “matches” the ciphertext produced by Enc(pk; (r,K)) is
2−γ . Since A issues at most qO queries to O1, this yields Pr[Q1] ≥ Pr[Q0]−qO/2γ .

Game 2. We make a minor conceptual modification. Instead of computing
(r,K′) = R(K) by evaluating R, O2 reads (r,K′) from list LR. More precisely:

O2(C)

K←$ Dec(sk, C)
If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.

If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

By definition of LR it always holds that (r,K′) = R(K) for all (K, (r,K′)) ∈
LR. Indeed (r,K′), is uniquely determined by K, because (r,K′) = R(K) is a
function. Since R is only evaluated by O1 if there exists a corresponding tuple
(K, (r,K′)) ∈ LR anyway, due to the changes introduced in Game 1, oracle O2 is
equivalent to O1 and we have Pr[Q2] = Pr[Q1].

Game 3. This game is identical to Game 2, except that whenever A queries a
ciphertext C to oracleO3, thenO3 first runs the CheckPunct algorithm associated
to PKEM (cf. Definition 6). If CheckPunct(pk,Q, C) = ⊥, then it immediately
returns ⊥. Otherwise, it proceeds exactly like O2. More precisely:

O3(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk, C)
If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

Recall that by public checkability (Definition 6) we have ⊥ = Dec(sk, C) ⇐⇒
⊥ = CheckPunct(pk,Q, C). Therefore the introduced changes are conceptual,
and Pr[Q3] = Pr[Q2].

Game 4. We modify the secret key used to decrypt the ciphertext. Let sk0
denote the initial secret key generated by the experiment (that is, before any
puncturing operation was performed). O4 uses sk0 to compute K←$ Dec(sk0, C)
instead of K←$ Dec(sk, C), where sk is a possibly punctured secret key. More
precisely:



O4(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk0, C)

If @(r,K′) : (K, (r,K′)) ∈ LR then return ⊥
Define (r,K′) to be the unique tuple such that (K, (r,K′)) ∈ LR.
If (C,K) 6= Enc(pk; (r,K)) then return ⊥
Return K′

For indistinguishability from Game 3, we show that O4(C) = O3(C) for all
ciphertexts C. Let us first consider the case Dec(sk, C) = ⊥. Then public check-
ability guarantees that O4(C) = O3(C) = ⊥, due to the fact that Dec(sk, C) =
⊥ ⇐⇒ CheckPunct(pk,Q, C) = ⊥.

Now let us consider the case Dec(sk, C) 6= ⊥. In this case, the semi-correctness
of punctured keys (3rd requirement of Definition 4) guarantees that Dec(sk, C) =
Dec(sk0, C) = K 6= ⊥.

After computing Dec(sk0, C), O4 performs exactly the same operations as
O3 after computing Dec(sk, C). Thus, in this case both oracles are perfectly
indistinguishable, too. This yields that the changes introduced in Game 4 are
purely conceptual, and we have Pr[Q4] = Pr[Q3].

Remark. Due to the fact that we are now using the initial secret key to decrypt
C, we have reached a setting where, due to the perfect correctness of the initial
secret key sk0, essentially a perfectly-correct encryption scheme is used – except
that the decryption oracle implements a few additional abort conditions. Thus,
we can now basically apply the standard Fujisaki-Okamoto transformation, but
we must show that we are also able to simulate the additional abort imposed
by the additional consistency checks properly. To this end, we first replace these
checks with equivalent checks before applying the FO transformation.

Game 5. We replace the consistency checks performed byO4 with an equivalent
check. More precisely, O5 works as follows:

O5(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk0, C)

If @(r,K′) : ((K, (r,K′)) ∈ LR ∧ (C,K) = Enc(pk; (r,K))) then return ⊥

Return K′ such that (K, (r,K′)) ∈ LR ∧ (C,K) = Enc(pk; (r,K))

This is equivalent, so that we have Pr[Q5] = Pr[Q4].

Game 6. Observe that in Game 5 we check whether there exists a tuple (r,K′)
with (K, (r,K′)) ∈ LR and (C,K) = Enc(pk; (r,K), where K must match the
secret key computed by K←$ Dec(sk0, C).

In Game 6, we relax this check. We test only whether there exists any tuple
(K̃, (r̃, K̃′)) ∈ LR such that (C, K̃) = Enc(pk; (r̃, K̃) holds. Thus, it is not explic-



itly checked whether K̃ matches the value K←$ Dec(sk0, C). Furthermore, the
corresponding value K̃′ is returned. More precisely:

O6(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
K←$ Dec(sk0, C)

If @(r̃, K̃′) : ((K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))) then return ⊥

Return K̃′ such that (K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))

By the perfect correctness of the initial secret key sk0, we have

(C, K̃) = Enc(pk; (r̃, K̃)) =⇒ Dec(sk0, C) = K̃,

so that we must have K = K̃. O6 is equivalent to O5, and Pr[Q6] = Pr[Q5].

Game 7. This game is identical to Game 6, except that we change the de-
cryption oracle again. Observe that the value K computed by K←$ Dec(sk0, C)
is never used by O6. Therefore the computation of K←$ Dec(sk0, C) is obsolete,
and we can remove it. More precisely, O7 works as follows.

O7(C)

If CheckPunct(pk,Q, C) = ⊥ then return ⊥
If @(r̃, K̃′) : ((K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))) then return ⊥
Return K̃′ such that (K̃, (r̃, K̃′)) ∈ LR ∧ (C, K̃) = Enc(pk; (r̃, K̃))

We have only removed an obsolete instruction, which does not change the output
distribution of the decryption oracle. Therefore O7 simulates O6 perfectly, and
we have Pr[Q7] = Pr[Q6].

Reduction to OW-CPA-security. Now we are ready to describe the OW-CPA-
adversary B. B receives (pk, C∗). It samples a uniformly random key K′←$ {0, 1}λ
and runs the IND-CCA-adversary A as a subroutine on input (pk, C∗,K′). When-
ever A issues a Punc- or Corr-query, then B forwards this query to the OW-CPA-
experiment and returns the response. In order to simulate the decryption or-
acle O, adversary B implements the simulated oracle O7 from Game 7 de-
scribed above. When A terminates, then B picks a uniformly random entry
(K̂, (r̂, K̂′))←$ LR, and outputs K̂.

Analysis of the reduction. Let Q̂ denote the event that A ever queries K0 to
random oracle R. Note that B siumulates Game 7 perfectly until Q7 occurs, thus
we have Pr[Q̂] ≥ Pr[Q7]. Summing up, the probability that the value K̂ output
by B matches the key encapsulated in C∗ is therefore at least

Pr[Q̂]

qR
≥

AdvIND-CCA
A,PKEM′(λ,m, k)− qO/2γ

qR
.

ut



Remark on the tightness. Alternatively, we could have based the security of
our IND-CCA-secure scheme on the IND-CPA (rather than OW-CPA) security of
PKEM′. In this case, we would have achieved a tighter reduction, as we would
have been able to avoid guessing the index (K̂, (r̂, K̂′))←$ LR, at the cost of
requiring stronger security of the underlying scheme.

From IND-CCA-secure KEMs to IND-CCA-secure encryption. It is well-
known that one can generically transform an IND-CCA-secure KEM into an
IND-CCA-secure encryption scheme, by combining it with a CCA-secure sym-
metric encryption scheme [16]. This construction applies to PKEMs as well.

2.7 Time-Based Bloom Filter Encryption

For a standard BFE scheme we have to update the public key after the secret
key has been punctured n-times, because otherwise the false-positive probability
would exceed an acceptable bound. In this section, we describe a construction of a
scheme where the lifetime of the public key is split into time slots. Ciphertexts are
associated with time slots, which assumes loosely synchronized clocks between
sender and receiver of a ciphertext. The main advantage is that for a given
bound on the correctness error, we are able to handle about the same number
of puncturings per time slot as the basic scheme during the entire life time of
the public key. We call this approach time-based Bloom filter encryption. It is
inspired by the time-based approach used to construct puncturable encryption
in [19,20], which in turn is inspired by the construction of forward-secret public-
key encryption by Canetti, Halevi, and Katz [10].

Note that a time-based BFE scheme can trivially be obtained from any BFE
scheme, by assigning an individual public/secret key pair for each time slot.
However, if we want to split the life time of the public key into, say, 2t time
slots, then this would of course increase the size of keys by a factor 2t. Since we
want to enable a fine-grained use of time slots, to enable a very large number
of puncturings over the entire lifetime of the public key without increasing the
false positive probability beyond an unacceptable bound, we want to have 2t

as large as possible, but without increasing the size of the public key beyond
an acceptable bound. To this end, we give a direct construction which increases
the size of secret keys only by an additive amount of additional group elements,
which is only logarithmic in the number of time slots. Thus, for 2t time slots we
have to add merely about t elements to the secret key, while the size of public
keys remains even constant.

Formal definition. Likewise to considering our Bloom filter KEMs as an
instantiation of a puncturable KEM with non-negligible correctness error, we
can view the time-based approach analogously as an instantiation of a punc-
turable forward-secret KEM (PFSKEM) [20] with non-negligible correctness er-
ror. Consequently, we also chose to stick with the existing formal framework for
PFSKEM, which we present subsequently. It is essentially our BFKEM Defini-
tion 2, augmented by time slots and an additional algorithm PuncInt that allows
to puncture a secret key not with respect to a given ciphertext in a given time
slot, but with respect to an entire time slot.



Definition 11 (PFSKEM [20]). A puncturable forward-secret key encapsula-
tion (PFSKEM) scheme is a tuple of the following PPT algorithms:

KGen(1λ,m, k, t) : Takes as input a security parameter λ, parameters m and k
for the Bloom filter, and a parameter t specifying the number of time slots. It
outputs a secret and public key (sk, pk), where we assume that the key-space
K is implicit in pk.

Enc(pk, τ) : Takes as input a public key pk and a time slot τ and outputs a
ciphertext C and a symmetric key K.

PuncCtx(sk, τ, C) : Takes as input a secret key sk, a time slot τ , a ciphertext C
and outputs an updated secret key sk′.

Dec(sk, τ, C) : Takes as input a secret key sk, a time slot τ , a ciphertext C and
outputs a symmetric key K or ⊥ if decapsulation fails.

PuncInt(sk, τ) : Takes as input a secret key sk, a time slot τ and outputs an
updated secret key sk′ for the next slot τ + 1.

Due to the lack of space, we postpone the presentation of correctness, the ad-
ditional properties (which are rather straightforward adaptions of the ones of
a PKEM introduced in Section 2.3), as well as the IND-CPA/IND-CCA security
notions to the full version.

Hierarchical IB-KEMs. We recall the basic definition of hierarchical identity-
based key encapsulation schemes (HIB-KEMs) and their security.

Definition 12. A (t+1)-level hierarchical identity-based key encapsulation sch-
eme (HIB-KEM) with identity space D = D1 × · · · × Dt+1, ciphertext space C,
and key space K consists of the following four algorithms:

HIBGen(1λ) : Takes as input a security parameter and outputs a key pair (mpk,
sk0). We say that mpk is the master public key, and sk0 is the level-0 secret
key.

HIBDel(ski−1, d) : Takes as input a level-i − 1 secret key ski−1 with i ∈ [t] and
an element d ∈ Di and outputs a level-i secret key ski.

HIBEnc(mpk,d) : Takes as input the master public key mpk and an identity d ∈
D and outputs a ciphertext C ∈ C and a key K ∈ K.

HIBDec(sk`, C) : Takes as input a level-t secret key skt and a ciphertext C, and
outputs a value K ∈ K ∪ {⊥}, where ⊥ is a distinguished error symbol.

Security definition. We will require only the very weak notion of one-wayness
under selective-ID and chosen-plaintext attacks (OW-sID-CPA).

Definition 13 (OW-sID-CPA Security of HIB-KEM). We define the ad-
vantage of an adversary A in the OW-sID-CPA experiment ExpOW-sID-CPA

A,HIB-KEM (λ)
as

AdvOW-sID-CPA
A,HIB-KEM (λ) := Pr

[
ExpOW-sID-CPA

A,HIB-KEM (λ) = 1
]
.

We call a HIB-KEM OW-sID-CPA secure, if AdvOW-sID-CPA
A,HIB-KEM (λ) is a negligible

function in λ for all PPT adversaries A.



ExpOW-sID-CPA
A,HIB-KEM (λ)

(d∗, stateA)←$ A(1λ)
if d∗ /∈ D return 0

(mpk, sk0)←$ HIBGen(1λ), (C,K)←$ HIBEnc(mpk,d∗)
K∗←$ A(mpk, C, stateA)
return 1, if K∗ = K
return 0

Fig. 3. OW-sID-CPA security.

Time slots. We will construct a Bloom filter encryption scheme that allows to
use 2t time slots. We associate the i-th time slot with the string in {0, 1}t that
corresponds to the canonical t-bit binary representation of integer i.

Following [10,19,20], each time slot forms a leaf of an ordered binary tree of
depth t. The root of the tree is associated with the empty string ε. We associate
the left-hand descendants of the root with bit string 0, and the right-hand de-
scendant with 1. Continuing this way, we associate the left descendant of node 0
with 00 and the right descendant with 01, and so on. We continue this procedure
for all nodes, until we have constructed a complete binary tree of depth t. Note
that two nodes at level t′ of the tree are siblings if and only if their first t′ − 1
bits are equal, and that each bit string in {0, 1}t is associated with a leaf of the
tree. Note also that the tree is ordered, in the sense that the leftmost leaf is
associated with 0t, its right neighbour with 0t−11, and so on.

Intuition of the construction. The basic idea behind the construction com-
bines the binary tree approach of [10,19,20] with the Bloom filter encryption
construction described in Section 2.5. We use a HIB-KEM with identity space

D = D1 × · · · × Dt+1 = {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
t times

×[m].

Each bit vector τ ∈ D1 × · · · × Dt = {0, 1}t corresponds to one time slot, and
we set Dt+1 = [m], where m is the size of the Bloom filter. The hierarchical key
delegation property of the HIB-KEM enables the following features:

First, given a HIB-KEM key skτ for some “identity” (= time slot) τ ∈ {0, 1}t,
we can derive keys for all Bloom filter bits from skτ by computing

skτ |d←$ HIBDel(skτ , d) for all d ∈ [m].

Second, in order to advance from time slot τ − 1 to τ , we first compute

skτ |d←$ HIBDel(skτ , d) for all d ∈ [m].

As soon as we have computed all Bloom filter keys for time slot τ , we “puncture”
the tree “from left to right”, such that we are able to compute all skτ ′ with τ ′ > τ ,
but not any skτ ′ with τ ′ ≤ τ . Here, we proceed exactly as in [10,19,20]. That is,
in order to puncture at time slot τ , we first compute the HIB-KEM secret keys



associated to all right-hand siblings of nodes that lie on the path from node τ to
the root, and then we delete all secret keys associated to nodes that lie on the
path from node τ to the root, including skτ itself. This yields a new secret key,
which contains m level-(t + 1) HIB-KEM secret keys plus at most t HIB-KEM
secret keys for levels ≤ t, even though we allow for 2t time slots.

Construction. Let (HIBGen,HIBDel,HIBEnc,HIBDec) be a HIB-KEM with
key space K and identity space D = D1 × · · · × Dt+1, where D1 = · · · = Dt =
{0, 1}, Dt+1 = [m], and m is the size of the Bloom filter. Since we will only
need selective security, one can instantiate such a HIB-KEM very efficiently, for
example in bilinear groups based on the Boneh-Boyen-Goh [8] scheme, or based
on lattices [1]. In the sequel, we will write {0, 1}t shorthand for D1×· · ·×Dt, but
keep in mind that the HIB-KEM supports more fine-grained key delegation. Let
B = (BFGen,BFUpdate,BFCheck) be a Bloom filter for set {0, 1}λ. Furthermore,
let G′ : K → {0, 1}λ be a hash function (which will be modeled as a random
oracle [5] in the security proof).

We define PKEM = (KGen,Enc,PuncCtx,Dec,PuncInt) as follows.

KGen(1λ,m, k, 2t) : This algorithm first runs ((Hj)j∈[k], T )←$ BFGen(m, k) to

generate a Bloom filter, and (mpk, skε)←$ HIBGen(1λ) to generate a key pair.
Finally, the algorithm generates the keys for the first time slot. To this end, it
first computes the HIB-KEM key for identity 0t by recursively computing

sk0d ←$ HIBDel(sk0d−1 , 0) for all d ∈ [t].

Then it computes the m Bloom filter keys for time slot 0t by computing

sk0t|d←$ HIBDel(sk0t , d) for all d ∈ [m],

and setting skBloom := (sk0t|d)d∈[m]. Finally, it punctures the secret key skε at
position 0t, by computing

sk0d−11←$ HIBDel(sk0d−1 , 1) for all d ∈ [t],

and setting sktime := (sk0d−1|1)d∈[t]. The algorithm outputs

sk := (T, skBloom, sktime) and pk := (mpk, (Hj)j∈[k]).

Enc(mpk, τ) : On input mpk and time slot identifier τ ∈ {0, 1}t, this algorithm

first samples a random string c←$ {0, 1}λ and a random key K←$ {0, 1}λ. Then
it defines k HIB-KEM identities as dj := (τ,Hj(c)) ∈ D for j ∈ [k], and
generates k HIB-KEM key encapsulations as

(Cj ,Kj)←$ HIBEnc(mpk,dj) for j ∈ [k].

Finally, it outputs the ciphertext C := (c, (Cj , G
′(Kj)⊕ K)j∈[k]).

Note that the ciphertexts essentially consists of k + 1 elements of {0, 1}λ,
plus k elements of C, where k is the Bloom filter parameter.



PuncCtx(sk, C) : Given a ciphertext C := (c, (Cj , G
′(Kj) ⊕ K)j∈[k]), and secret

key sk = (T, skBloom, sktime) where skBloom = (skτ |d)d∈[m], the puncturing algo-
rithm first computes T ′ = BFUpdate((Hj)j∈[k], T, c). Then, for each i ∈ [m], it
defines

sk′τ |i :=

{
skτ |i if T ′[i] = 0, and

⊥ if T ′[i] = 1,

where T ′[i] denotes the i-th bit of T ′. Finally, this algorithm sets sk′Bloom =
(sk′τ |d)d∈[m] and returns sk′ = (T ′, sk′Bloom, sktime).

Remark. We note again that the above procedure is correct even if the proce-
dure is applied repeatedly, with the same arguments as for the construction from
Section 2.5. Also, the puncturing algorithm essentially only evaluates k universal
hash functions and then deletes a few secret keys, which makes this procedure
extremely efficient.

Dec(sk, C) : Given sk = (T, skBloom, sktime) where skBloom = (skτ |d)d∈[m] and
ciphertext C := (c, (Cj , Gj)j∈[k]). If skτ |Hj(c) = ⊥ for all j ∈ [k], then it outputs
⊥. Otherwise, it picks the smallest index j such that skτ |Hj(c) 6= ⊥, computes

Kj = HIBDec(skτ |Hj(c), Cj),

and returns K = Gj ⊕G′(Kj).
Remark. Again we have Dec(sk, C) 6= ⊥ ⇐⇒ BFCheck(H,T, c) = 0, which
guarantees extended correctness in the sense of Definition 4.

PuncInt(sk, τ) : Given a secret key sk = (T, skBloom, sktime) for time interval

τ ′ < τ , the time puncturing algorithm proceeds as follows. First, it resets the
Bloom filter by setting T := 0m. Then it uses the key delegation algorithm to
first compute skτ . This key can be computed from the keys contained in sktime,
because sk is a key for time interval τ ′ < τ . Then it computes

skτ |d←$ HIBDel(skτ , d) for all d ∈ [m],

and redefines skBloom := (skτ |d)d∈[m]. Finally, it updates sktime by computing the
HIB-KEM secret keys associated to all right-hand siblings of nodes that lie on
the path from node τ to the root and adds the corresponding keys to sktime.
Then it deletes all keys from sktime that lie on the path from τ to the root.

Remark. Note that puncturing between time intervals may become relatively
expensive. Depending on the choice of Bloom filter parameters, in particular on
m, this may range between 215 and 225 HIBE key delegations. However, the main
advantage of Bloom filter encryption over previous constructions of puncturable
encryption is that these computations must not be performed “online”, during
puncturing, but can actually be computed separately (for instance, parallel on
a different computer, or when a server has low workload, etc.).

Correctness error of this scheme. With exactly the same arguments as
for the scheme from Section 2.5, one can verify that the correctness error of
this scheme is essentially identical to the false positive probability of the Bloom



filter, unless a given ciphertext C = (c, (Cj , Gj)j∈[k]) has a value of c which is
identical to the value of c of any previous ciphertext. Since c is uniformly random
in {0, 1}λ, this probability is approximately 2−k + n · 2−λ.

Extended correctness. It is straightforward to verify that the scheme satisfies
extended correctness in the sense of Definition 4.

CPA Security. Below we state theorem for CPA security of our scheme.

Theorem 4. From each efficient adversary B that issues q queries to random
oracle G′ we can construct an efficient adversary A with

AdvOW-sID-CPA
A,HIB-KEM (λ) ≥

Advs-CPA
B,PFSKEM(λ,m, k)

qk
.

The proof is almost identical to the proof of Theorem 1 and a straightforward
reduction to the security of the underlying HIB-KEM. We sketch it in the full
version.

CCA Security. In order to apply the Fujisaki-Okamoto [16] transform in the
same way as done in Section 2.6 to achieve CCA security, we need to show that
the time based variants of the properties presented in Section 2.3 are satisfied
(for the formal definitions of those properties we refer the reader to the full
version). First, using a full-blown HIBE as a starting point yields a separable
HIB-KEM as discussed in Section 2.3. Hence, the separable randomness is satis-
fied. Moreover, the publicly-checkable puncturing is given by construction (as in
Section 2.5). Regarding extended correctness, the impossibility of false-negatives
is given by construction, the perfect correctness of the non-punctured secret key
is given by the perfect correctness of the HIBE and the semi-correctness of punc-
tured secret keys is given by construction. Finally, γ-spreadness is also given by
construction: the ciphertext component c is chosen uniformly at random from
{0, 1}λ. Consequently, all properties are satisfied. We note that one could omit c
in the ciphertext if the concretely used HIBE ciphertexts are already sufficiently
random. Considering the HIBE of Boneh-Boyen-Goh [8], HIBE ciphertexts are
of the form (gr, (hI11 · · ·h

It
t ·h0)r, H(e(g1, g2)r)⊕K), for honestly generated fixed

group elements g, g1, g2, h0, . . . , ht, universal hash function H, fixed K and fixed
integers I1, . . . , It. Consequently, we have that the ciphertext has at least min-
entropy log2 p with p being the order of the groups. We want to mention that
also many other HIBE construction satisfy the required properties, including,
for example [17,30,12].

Remark on CCA Security. Alternatively to applying the FO transform to a
PFSKEM satsifying the additional properties of extended correctness, seperable
randomness, publicly checkable puncturing and γ-spreadness to obtain CCA
security, we can add another HIBE level to obtain IND-CCA security via the
CHK transform [10] in the standard model, and thus to avoid random oracles if
required.



3 Forward-Secret 0-RTT Key Exchange

In [20], GHJL provide a formal model for forward-secret one-pass key exch-
ange (FSOPKE) by extending the one-pass key exchange [22] by Halevi and
Krawczyk. They provide a security model for FSOPKE which requires both
forward secrecy and replay protection from the FSOPKE protocol and captures
unilateral authentication of the server and mutual authentication simultaneously.
We recap the definition of FSOPKE with a slightly adapted correctness notion
in the full version.

Construction. The construction in [20] builds on puncturable forward-secret
key encapsulation (PFSKEM), and we can now directly plug our construction of
time-based BFE (PFSKEM) as defined in Def. 11 into the construction of [20,
Def. 12], yielding a forward-secret 0-RTT key exchange protocols with non-
negligible correctness error:

FSOPKE.KGen(1λ, r, τmax) : Outputs (pk, sk) as follows: if r = server, then ob-

tain (PK,SK) ← KGen(1λ,m, k, t) (for suitable choices of m, k and t) and
set pk := (PK, τmax) and sk := (SK, τ, τmax), for τ := 1. If r = client, then
set (pk, sk) := (⊥, τ), for τ := 1.

FSOPKE.RunC(sk, pk) : Outputs (sk′,K,M) as follows: for sk = τ and pk =

(PK, τmax), if τ > τmax, then set (sk′,K,M) := (sk,⊥,⊥), otherwise obtain
(C,K)← Enc(pk, τ) and set (sk′,K,M) := (τ + 1,K, C).

FSOPKE.RunS(sk, pk,M) : Outputs (sk′,K) as follows: for sk = (SK, τ, τmax)

and pk = ⊥, if SK = ⊥ or τ > τmax, then set (sk′,K) := (sk,⊥) and abort.
Obtain K← Dec(SK, τ,M). If K = ⊥, then set (sk′,K) = (sk,⊥), otherwise
obtain SK ′ ← PuncCtx(SK, τ,M) and set (sk′,K) = ((SK ′, τ, τmax),K).

FSOPKE.TimeStep(sk, r) : Outputs sk′ as follows: if r = server, then for sk =

(SK, τ, τmax): if τ ≥ τmax, then set sk′ := (⊥, τ + 1, τmax) and abort, oth-
erwise obtain SK ′ ← PuncInt(SK, τ) and set sk′ := (SK ′, τ + 1, τmax) and
abort. If r = client, then for sk = τ , set sk′ := τ + 1.

Correctness of the FSOPKE follows from the (extended) correctness property of
the underlying PFSKEM and security guarantees hold due to [20, Theorem 2].
We state the following corollary:

Corollary 1. When instantiated with the PFSKEM from Section 2.7, the above
FSOPKE construction is a correct and secure FSOPKE protocol (with unilateral
authentication).

3.1 Analysis

In Table 1, we provide an overview of all existing practically instantiable ap-
proaches to construct forward-secret (time-based) PKEM with the one proposed
in this paper.6 We compare all schemes for an arbitrary number ` of time slots,

6 We consider all but the PE schemes from indistinguishability obfuscation [13,11].



where for sake of simplicity we assume ` = 2w for some integer w, (corresponding
to our time-based BFE/BFKEM) and only count the expensive cryptographic
operations, i.e., such as group exponentiations and pairings.

Scheme |pk| |sk| |C| Dec PuncCtx PuncInt

` = 2w time slots (PFSKEM)

GM (w + 5)|G1| (2w + 3p+ 5)|G2| 3|G1|+ |GT | O(p) O(1) O(w2)
GHJL (w + 35)|G2| ≤ 3(p · 2λ+ w)|G2| 6|G1|+ 2|Zp| O(λ2) O(λ2) O(w2)

Ours (w + 4)|G2| (2me−kp/m + w(2 + w))|G2| 2|G1|+ (4k + 2)λ O(k) O(k) O(w2 +m)

Table 1. Overview of the existing approaches to PFSKEM. We denote by p the num-
ber a secret key is already punctured, and ` the maximum number of time slots. We
consider the GHJL [20] instantiation with the BKP-HIBE of [6], the GM [19] and
our instantiations with the BBG-HIBE [8], though other HIBE schemes may lead to
different parameters. Finally, note that p ≤ 220, k and m refer to the parameters in
the Bloom filter, where k is some orders of magnitude smaller than λ, i.e., k = 10 vs.
λ = 128, and |Gi| denotes the bitlength of an element from Gi.

To quickly summarize the schemes: The most interesting characteristic of our
approach compared to previous approaches is that our scheme allows to offload
all expensive operation to an offline phase, i.e., to the puncturing of time inter-
vals. Here, in addtion to the O(w2) operations which are common to all existing
approaches, we have to generate a number of keys, linear in the size m of the
Bloom filter. We believe that accepting this additional overhead in favor of blaz-
ing fast online puncturing and decryption operations is a viable tradeoff. For the
online phase, our approach has a ciphertext size depending on k (where k = 10
is a reasonable choice), decryption depends on k, the secret key shrinks with
increasing amount of puncturings and one does only require to securely delete
secret keys during puncturing (note that all constructions have to implement a
secure-delete functionality for secret keys within puncturing anyways). In con-
trast, decryption and puncturing in GHJL is highly inefficient and takes several
seconds to minutes on decent hardware for reasonable deployment parameters as
it involves a large amount of O(λ2) HIBE delegations and consequently expen-
sive group operations. In the GM scheme7, puncturing is efficient, but the size of
the secret key and thus cost of decryption grows in the number of puncturings p.
Hence, it gets impractical very soon. More precisely, cost of decryption requires
a number of pairing evaluations that depends on the number of puncturings, and
can be in the order of 220 for realistic deployment parameters.

7 Although GM supports an arbitrary number d of tags in a ciphertext, we consider
the scheme with only using a single tag (which is actually favourable for the scheme)
to be comparable to GHJL as well as our approach.



4 Conclusion

In this paper we introduced the new notion of Bloom filter encryption (BFE) as
a variant of puncturable encryption which tolerates a non-negligible correctness
error. We presented various BFKEM constructions. The first one is a simple
and very efficient construction which builds upon ideas known from the Boneh-
Franklin IBE. The second one, which is presented in the full version, is a generic
construction from CP-ABEs which achieves constant size ciphertexts. Further-
more, we extended the notion of BFE to the forward-secrecy setting and also
presented a construction of what we call a time-based BFE (TB-BFE). This
construction is based on HIBEs and in particular can be instantiated very ef-
ficiently using the Boneh-Boyen-Goh Tiny HIBE [8]. Our time-based BFKEM
can directly be used to instantiate forward-secret 0-RTT key exchange (fs 0-RTT
KE) as in [20].

From a practical viewpoint, our motivation stems from the observation that
forward-secret 0-RTT KE requires very efficient decryption and puncturing. Our
framework—for the first time—allows to realize practical forward-secret 0-RTT
KE, even for larger server loads: while we only require to delete secret keys upon
puncturing, puncturing in [20] requires, besides deleting secret-key components,
additional computations in the order of seconds to minutes on decent hardware.
Likewise, when using [19] in the forward-secret 0-RTT KE protocol given in [20],
one requires computations in the order of the current number of puncturings
upon decryption, while we achieve decryption to be independent of this number.
Finally, we believe that BFE will find applications beyond forward-secret 0-RTT
KE protocols.
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