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Abstract. Consider key agreement by two parties who start out know-
ing a common secret (which we refer to as “pass-string”, a generalization
of “password”), but face two complications: (1) the pass-string may come
from a low-entropy distribution, and (2) the two parties’ copies of the
pass-string may have some noise, and thus not match exactly. We pro-
vide the first efficient and general solutions to this problem that enable,
for example, key agreement based on commonly used biometrics such as
iris scans.

The problem of key agreement with each of these complications individu-
ally has been well studied in literature. Key agreement from low-entropy
shared pass-strings is achieved by password-authenticated key exchange
(PAKE), and key agreement from noisy but high-entropy shared pass-
strings is achieved by information-reconciliation protocols as long as the
two secrets are “close enough.” However, the problem of key agreement
from noisy low-entropy pass-strings has never been studied.

We introduce (universally composable) fuzzy password-authenticated key
exchange (fPAKE), which solves exactly this problem. fPAKE does not
have any entropy requirements for the pass-strings, and enables secure
key agreement as long as the two pass-strings are “close” for some no-
tion of closeness. We also give two constructions. The first construction
achieves our fPAKE definition for any (efficiently computable) notion of
closeness, including those that could not be handled before even in the
high-entropy setting. It uses Yao’s Garbled Circuits in a way that is only
two times more costly than their use against semi-honest adversaries,
but that guarantees security against malicious adversaries. The second
construction is more efficient, but achieves our fPAKE definition only
for pass-strings with low Hamming distance. It builds on very simple
primitives: robust secret sharing and PAKE.

Keywords: Authenticated Key Exchange, PAKE, Hamming Distance, Error
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1 Introduction

Consider key agreement by two parties who start out knowing a common se-
cret (which we refer to as “pass-string”, a generalization of “password”). These
parties may face several complications: (1) the pass-string may come from a non-
uniform, low-entropy distribution, and (2) the two parties’ copies of the pass-
string may have some noise, and thus not match exactly. The use of such pass-
strings for security has been extensively studied; examples include biometrics
and other human-generated data [15, 23, 29, 39, 46, 49, 66], physically unclonable
functions (PUFs) [30,52,57,58,64], noisy channels [61], quantum information [9],
and sensor readings of a common environment [32,33].

The Noiseless Case. When the starting secret is not noisy (i.e., the same for both
parties), existing approaches work quite well. The case of low-entropy secrets
is covered by password-authenticated key exchange (PAKE) (a long line of work,
with first formal models introduced in [7,14]). A PAKE protocol allows two parties
to agree on a shared high-entropy key if and only if they hold the same short
password. Even though the password may have low entropy, PAKE ensures that
off-line dictionary attacks are impossible. Roughly speaking, an adversary has to
participate in one on-line interaction for every attempted guess at the password.
Because key agreement is not usually the final goal, PAKE protocols need to be
composed with whatever protocols (such as authenticated encryption) use the
output key. This composability has been achieved by universally composable
(UC) PAKE defined by Canetti et al. [20] and implemented in several follow-up
works.

In the case of high-entropy secrets, off-line dictionary attacks are not a con-
cern, which enables more efficient protocols. If the adversary is passive, random-
ness extractors [51] do the job. The case of active adversaries is covered by the
literature on so-called robust extractors defined by Boyen et al. [13] and, more
generally, by many papers on privacy amplification protocols secure against ac-
tive adversaries, starting with the work of Maurer [45]. Composability for these
protocols is less studied; in particular, most protocols leak information about
the pass-string itself, in which case reusing the pass-string over multiple proto-
col executions may present problems [12] (with the exception of [19]).

The Noisy Case. When the pass-string is noisy (i.e., the two parties have slightly
different versions of it), this problem has been studied only for the case of high-
entropy pass-strings. A long series of works on information-reconciliation pro-
tocols started by Bennett et al. [9] and their one-message variants called fuzzy
extractors (defined by Dodis et al. [26], further enhanced for active security
starting by Renner et al. [54]) achieves key agreement when the pass-string has
a lot of entropy and not too much noise. Unfortunately, these approaches do
not extend to the low-entropy setting and are not designed to prevent off-line
dictionary attacks.

Constructions for the noisy case depend on the specific noise model. The case
of binary Hamming distance — when the n pass-string characters held by the two
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parties are the same at all but δ locations — is the best studied. Most existing
constructions require, at a minimum, that the pass-string should have at least δ
bits of entropy. This requirement rules out using most kinds of biometric data as
the pass-string— for example, estimates of entropy for iris scans (transformed
into binary strings via wavelet transforms and projections) are considerably lower
than the amount of errors that need to be tolerated [11, Section 5]. Even the
PAKE-based construction of Boyen et al. [13] suffers from the same problem.

One notable exception is the construction of Canetti et al. [19], which does not
have such a requirement, but places other stringent limitations on the probability
distribution of pass-strings. In particular, because it is a one-message protocol,
it cannot be secure against off-line dictionary attacks.

1.1 Our Contributions

We provide definitions and constant-round protocols for key agreement from
noisy pass-strings that:

– Resist off-line dictionary attacks and thus can handle low-entropy pass-
strings,

– Can handle a variety of noise types and have high error-tolerance, and
– Have well specified composition properties via the UC framework [17].

Instead of imposing entropy requirements or other requirements on the dis-
tribution of pass-strings, our protocols are secure as long as the adversary cannot
guess a pass-string value that is sufficiently close. There is no requirement, for
example, that the amount of pass-string entropy is greater than the number of
errors; in fact, one of our protocols is suitable for iris scans. Moreover, our pro-
tocols prevent off-line attacks, so each adversarial attempt to get close to the
correct pass-string requires an on-line interaction by the adversary. Thus, for
example, our protocols can be meaningfully run with pass-strings whose entropy
is only 30 bits—something not possible with any prior protocols for the noisy
case.

New Models. Our security model is in the Universal Composability (UC) Frame-
work of Canetti [17]. The advantage of this framework is that it comes with a
composability theorem that ensures that the protocol stays secure even running
in arbitrary environments, including arbitrary parallel executions. Composabil-
ity is particularly important for key agreement protocols, because key agreement
is rarely the ultimate goal. The agreed-upon key is typically used for some sub-
sequent protocol—for example, a secure channel. Further, this framework allows
to us to give a definition that is agnostic to how the initial pass-strings are
generated. We have no entropy requirements or constraints on the pass-string
distribution; rather, security is guaranteed as long as the adversary’s input to
the protocol is not close enough to the correct pass-string.

As a starting point, we use the definition of UC security for PAKE from
Canetti et al. [20]. The PAKE ideal functionality is defined as follows: the secret
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pass-strings (called “passwords” in PAKE) of the two parties are the inputs to the
functionality, and two random keys, which are equal if and only if the two inputs
are equal, are the outputs. The main change we make to PAKE is enhancing the
functionality to give equal keys even if the two inputs are not equal, as long
as they are close enough. We also relax the security requirement to allow one
party to find out some information about the other party’s input—perhaps even
the entire input—if the two inputs are close. This relaxation makes sense in
our application: if the two parties are honest, then the differences between their
inputs are a problem rather than a feature, and we would not mind if the inputs
were in fact the same. The benefit of this relaxation is that it permits us to
construct more efficient protocols. (We also make a few other minor changes
which will be described in Section 2.) We call our new UC functionality “Fuzzy
Password-Authenticated Key Exchange” or fPAKE.

New Protocols. The only prior PAKE-based protocol for the noisy setting by
Boyen et al. [13], although more efficient than ours, does not satisfy our goal. In
particular, it is not composable, because it reveals information about the secret
pass-strings (we demonstrate this formally in the full version of this paper [28]).
Because some information about the pass-strings is unconditionally revealed,
high-entropy pass-strings are required. Thus, in order to realize our definition
for arbitrary low-entropy pass-strings, we need to construct new protocols.

Realizing our fPAKE definition is easy using general two-party computation
techniques for protocols with malicious adversaries and without authenticated
channels [4]. However, we develop protocols that are considerably more effi-
cient: our definitional relaxation allows us to build protocols that achieve secu-
rity against malicious adversaries but cost just a little more than the generic
two-party computation protocols that achieve security only against honest-but-
curious adversaries (i.e., adversaries who do not deviate from the protocol, but
merely try to infer information they are not supposed to know).

Our first construction uses Yao’s garbled circuits [6,63] and oblivious transfer
(see [21] and references therein). The use of these techniques is standard in
two-party computation. However, by themselves they give protocols secure only
against honest-but-curious adversaries. In order to prevent malicious behavior of
the players, one usually applies the cut-and-choose technique [42], which is quite
costly: to achieve an error probability of 2−λ, the number of circuits that need to
be garbled increases by a factor of λ, and the number of oblivious transfers that
need to be performed increases by a factor of λ/2. We show that for our special
case, to achieve malicious security, it suffices to repeat the honest-but-curious
protocol twice (once in each direction), incurring only a factor of 2 overhead
over the semi-honest case. 7 Mohassel et al. [48] and Huang et al. [34] suggest a

7 Gasti et al. [31] similarly use Yao’s garbled circuits for continuous biometric user
authentication on a smartphone. Our approach can eliminate the third party in their
application, at the cost of requiring two garbled circuits instead of one. As far as we
know, ours is the first use of garbled circuits in the two-party fully malicious setting
without calling on an expensive transformation.
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similar technique (known as “dual execution”), but at the cost of leaking a bit
of the adversary’s choice to the adversary. In contrast, our construction leaks
nothing to the adversary at all (as long as the pass-strings are not close). This
construction works regardless of what it means for the two inputs to be “close,”
as long as the question of closeness can be evaluated by an efficient circuit.

Our second construction is for the Hamming case: the two n-character pass-
strings have low Hamming distance if not too many characters of one party’s
pass-string are different from the corresponding characters of the other’s pass-
string. The two parties execute a PAKE protocol for each position in the string,
obtaining n values each that agree or disagree depending on whether the char-
acters of the pass-string agree or disagree in the corresponding positions. It is
important that at this stage, agreement or disagreement at individual positions
remains unknown to everyone; we therefore make use of a special variant of
PAKE which we call implicit-only PAKE (we give a formal UC security defini-
tion of implicit-only PAKE and show that it is realized by the PAKE protocol
from [1,8]). This first step upgrades Hamming distance over a potentially small
alphabet to Hamming distance over an exponentially large alphabet. We then
secret-share the ultimate output key into n shares using a robust secret sharing
scheme, and encrypt each share using the output of the corresponding PAKE
protocol.

The second construction is more efficient than the first in the number of
rounds, communication, and computation. However, it works only for Hamming
distance. Moreover, it has an intrinsic gap between functionality and security:
if the honest parties need to be within distance δ to agree, then the adversary
may break security by guessing a secret within distance 2δ. See Figure 10 for a
comparison between the two constructions.

The advantages of our protocols are similar to the advantages of UC PAKE:
They provide composability, protection against off-line attacks, the ability to use
low-entropy inputs, and handle any distribution of secrets. And, of course, be-
cause we construct fuzzy PAKE, our protocols can handle noisy inputs—including
many types of noisy inputs that could not be handled before. Our first proto-
col can handle any type of noise as long as the notion of “closeness” can be
efficiently computed, whereas most prior work was for Hamming distance only.
However, these advantages come at the price of efficiency. Our protocols require
2–5 rounds of interaction, as opposed to many single-message protocols in the
literature [19,25,60]. They are also more computationally demanding than most
existing protocols for the noisy case, requiring one public-key operation per input
character. We emphasize, however, that our protocols are much less compu-
tationally demanding than the protocols based on general two-party computa-
tion, as already discussed above, or general-purpose obfuscation, as discussed
in [10, Section 4.3.4].
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2 Security Model

We now present a security definition for fuzzy password-authenticated key ex-
change (fPAKE). We adapt the definition of PAKE from Canetti et al. [20] to
work for pass-strings (a generalization of “passwords”) that are similar, but not
necessarily equal. Our definition uses measures of the distance d(pw, pw′) be-
tween pass-strings pw, pw′ ∈ Fnp . In Section 3.3 and Section 4, Hamming dis-
tance is used, but in the generic construction of Section 3, any other notion of
distance can be used instead. We say that pw and pw′ are “similar enough” if
d(pw, pw′) ≤ δ for a distance notion d and a threshold δ that is hard-coded into
the functionality.

To model the possibility of dictionary attacks, the functionality allows the
adversary to make one pass-string guess against each player (P0 and P1). In the
real world, if the adversary succeeds in guessing (a pass-string similar enough
to) party Pi’s pass-string, it can often choose (or at least bias) the session key
computed by Pi. To model this, the functionality then allows the adversary to
set the session key for Pi.

As usual in security notions for key exchange, the adversary also sets the
session keys for corrupted players. In the definition of Canetti et al. [20], the
adversary additionally sets Pi’s key if P1−i is corrupted. However, contrarily to
the original definition, we do not allow the adversary to set Pi’s key if P1−i is
corrupted but did not guess Pi’s pass-string. We make this change in order to
protect an honest Pi from, for instance, revealing sensitive information to an
adversary who did not successfully guess her pass-string, but did corrupt her
partner.

Another minor change we make is considering only two parties — P0 and
P1 — in the functionality, instead of considering arbitrarily many parties and
enforcing that only two of them engage the functionality. This is because univer-
sal composability takes care of ensuring that a two-party functionality remains
secure in a multi-party world.

As in the definition of Canetti et al. [20], we consider only static corruptions
in the standard corruption model of Canetti [17]. Also as in their definition,
we chose not to provide the players with confirmation that key agreement was
successful. The players might obtain such confirmation from subsequent use of
the key.

By default, in the fPAKE functionality the TestPwd interface provides the
adversary with one bit of information — whether the pass-string guess was cor-
rect or not. This definition can be strengthened by providing the adversary with
no information at all, as in implicit-only PAKE (FiPAKE, Figure 7), or weakened
by providing the adversary with extra information when the adversary’s guess
is close enough.

To capture the diversity of possibilities, we introduce a more general TestPwd
interface, described in Figure 2. It includes three leakage functions that we will
instantiate in different ways below—Lc if the guess is close-enough to succeed,
Lf if it is too far. Moreover, a third leakage function—Lm for medium distance—
allows the adversary to get some information even if the adversary’s guess is only
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The functionality fPAKE is parameterized by a security parameter λ and toler-
ances δ ≤ γ. It interacts with an adversary S and two parties P0 and P1 via the
following queries:
– Upon receiving a query (NewSession, sid, pwi) from party Pi:
• Send (NewSession, sid,Pi) to S;
• If this is the first NewSession query, or if this is the second NewSession

query and there is a record (P1−i, pw1−i), then record (Pi, pwi) and mark
this record fresh.

– Upon receiving a query (TestPwd, sid,Pi, pw
′
i) from the adversary S:

If there is a fresh record (Pi, pwi), then set d← d(pwi, pw
′
i) and do:

• If d ≤ δ, mark the record compromised and reply to S with “correct guess”;
• If d > δ, mark the record interrupted and reply to S with “wrong guess”.

– Upon receiving a query (NewKey, sid,Pi, sk) from the adversary S:
If there is no record of the form (Pi, pwi), or if this is not the first NewKey
query for Pi, then ignore this query. Otherwise:
• If at least one of the following is true, then output (sid, sk) to player Pi:
∗ The record is compromised
∗ Pi is corrupted
∗ The record is fresh, P1−i is corrupted, and there is a

record (P1−i, pw1−i) with d(pwi, pw1−i) ≤ δ
• If this record is fresh, both parties are honest, there is a

record (P1−i, pw1−i) with d(pwi, pw1−i) ≤ δ, a key sk′ was sent to P1−i,
and (P1−i, pw1−i) was fresh at the time, then output (sid, sk′) to Pi;

• In any other case, pick a new random key sk′ of length λ and send (sid, sk′)
to Pi.

• Mark the record (Pi, pwi) as completed.

Fig. 1. Ideal Functionality fPAKE

somewhat close (closer than some parameter γ ≥ δ), but not close enough for
successful key agreement. We thus decouple the distance needed for functionality
from the (possibly larger) distance needed to guarantee security; the smaller the
gap between these two distances, the better, of course.

Below, we list the specific leakage functions Lc, Lm and Lf that we consider
in this work, in order of decreasing strength (or increasing leakage):

1. The strongest option is to provide no feedback at all to the adversary. We
define fPAKEN to be the functionality described in Figure 1, except that
TestPwd is from Figure 2 with

LNc (pwi, pw
′
i) = LNm(pwi, pw

′
i) = LNf (pwi, pw

′
i) = ⊥ .

2. The basic functionality fPAKE, described in Figure 1, leaks the correctness
of the adversary’s guess. That is, in the language of Figure 2,

Lc(pwi, pw
′
i) = “correct guess” ,

and Lm(pwi, pw
′
i) = Lf (pwi, pw

′
i) = “wrong guess” .

The classical PAKE functionality from [20] has such a leakage.
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– Upon receiving a query (TestPwd, sid,Pi, pw
′
i) from the adversary S:

If there is a fresh record (Pi, pwi), then set d← d(pwi, pw
′
i) and do:

• If d ≤ δ, mark the record compromised and reply to S with Lc(pwi, pw
′
i);

• If δ < d ≤ γ, mark the record compromised and reply to S with
Lm(pwi, pw

′
i);

• If γ < d, mark the record interrupted and reply to S with Lf (pwi, pw
′
i).

Fig. 2. A Modified TestPwd Interface to Allow for Different Leakage

3. Assume the two pass-strings are strings of length n over some finite alphabet,
with the jth character of the string pw denoted by pw[j]. We define fPAKEM

to be the functionality described in Figure 1, except that TestPwd is from
Figure 2, with Lc and Lm that leak the indices at which the guessed pass-
string differs from the actual one when the guess is close enough (we will call
this leakage the mask of the pass-strings). That is,

LMc (pwi, pw
′
i) = ({j s.t. pwi[j] = pw′i[j]}, “correct guess”),

LMm (pwi, pw
′
i) = ({j s.t. pwi[j] = pw′i[j]}, “wrong guess”)

and LMf (pwi, pw
′
i) = “wrong guess” .

4. The weakest definition — or the strongest leakage — reveals the entire actual
pass-string to the adversary if the pass-string guess is close enough. We define
fPAKEP to be the functionality described in Figure 1, except that TestPwd
is from Figure 2, with

LPc (pwi, pw
′
i) = LPm(pwi, pw

′
i) = pwi and LPf (pwi, pw

′
i) = “wrong guess” .

Here, LPc and LPm do not need to include “correct guess” and “wrong guess”,
respectively, because this is information that can be easily derived from pwi
itself.

The first two functionalities are the strongest, but there are no known con-
structions that realize them, other than through generic two-party computation
secure against malicious adversaries, which is an inefficient solution. The last two
functionalities, though weaker, still provide meaningful security, especially when
γ = δ. Intuitively, this is because strong leakage only occurs when an adversary
guesses a “close” pass-string, which enables him to authenticate as though he
knows the real pass-string anyway.

In Section 3, we present a construction satisfying fPAKEP for any efficiently
computable notion of distance, with γ = δ (which is the best possible). We
present a construction for Hamming distance satisfying fPAKEM in Section 4,
with γ = 2δ.
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3 General Construction Using Garbled Circuits

In this section, we describe a protocol realizing fPAKEP that uses Yao’s gar-
bled circuits [63]. We briefly introduce this primitive in Section 3.1 and refer to
Yakoubov [62] for a more thorough introduction.

The Yao’s garbled circuit-based fPAKE construction has two advantages:

1. It is more flexible than other approaches; any notion of distance that can be
efficiently computed by a circuit can be used. In Section 3.3, we describe a
suitable circuit for Hamming distance. The total size of this circuit is O(n),
where n is the length of the pass-strings used. Edit distance is slightly less
efficient, and uses a circuit whose total size is O(n2).

2. There is no gap between the distances required for functionality and security
— that is, there is no leakage about the pass-strings used unless they are
similar enough to agree on a key. In other words, δ = γ.

Informally, the construction involves the garbled evaluation of a circuit that
takes in two pass-strings as input, and computes whether their distance is less
than δ. Because Yao’s garbled circuits are only secure against semi-honest gar-
blers, we cannot simply have one party do the garbling and the other party do
the evaluation. A malicious garbler could provide a garbling of the wrong func-
tion — maybe even a constant function — which would result in successful key
agreement even if the two pass-strings are very different. However, as suggested
by Mohassel et al. [48] and Huang et al. [34], since a malicious evaluator (un-
like a malicious garbler) cannot compromise the computation, by performing the
protocol twice with each party playing each role once, we can protect against
malicious behavior. They call this the dual execution protocol.

The dual execution protocol has the downside of allowing the adversary to
specify and receive a single additional bit of leakage. It is important to note that
because of this, dual execution cannot directly be used to instantiate fPAKE, be-
cause a single bit of leakage can be too much when the entropy of the pass-strings
is low to begin with — a few adversarial attempts will uncover the entire pass-
string. Our construction is as efficient as that of Mohassel et al. and Huang et
al., while guaranteeing no leakage to a malicious adversary in the case that the
pass-strings used are not close. We describe how we achieve this in Section 3.1.3.

3.1 Building Blocks

In Section 3.1.1, we briefly review oblivious transfer. In Section 3.1.2, we review
Yao’s Garbled Circuits. In Section 3.1.3, we describe in more detail our take on
the dual execution protocol, and how we avoid leakage to the adversary when
the pass-strings used are dissimilar.

3.1.1 Oblivious Transfer (OT) Informally, 1-out-of-2 Oblivious Transfer
(see [21] and citations therein) enables one party (the sender) to transfer exactly
one of two secrets to another party (the receiver). The receiver chooses (by index
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0 or 1) which secret she wants. The security of the OT protocol guarantees that
the sender does not learn this choice bit, and the receiver does not learn anything
about the other secret.

3.1.2 Yao’s Garbled Circuits (YGC) Next, we give a brief introduction
to Yao’s garbled circuits [63]. We refer to Yakoubov [62] for a more detailed
description, as well as a summary of some of the Yao’s garbled circuits optimiza-
tions [3, 5, 38, 40, 53, 65]. Informally, Yao’s garbled circuits are an asymmetric
secure two-party computation scheme. They enable two parties with sensitive
inputs (in our case, pass-strings) to compute a joint function of their inputs (in
our case, an augmented version of similarity) without revealing any additional
information about their inputs. One party “garbles” the function they wish to
evaluate, and the other evaluates it in its garbled form.

Below, we summarize the garbling scheme formalization of Bellare et al. [6],
which is a generalization of YGC.

Functionality. A garbling scheme G consists of four polynomial-time algorithms
(Gb,En,Ev,De):

1. Gb(1λ, f)→ (F, e, d). The garbling algorithm Gb takes in the security param-
eter λ and a circuit f , and returns a garbled circuit F , encoding information
e, and decoding information d.

2. En(e, x)→ X. The encoding algorithm En takes in the encoding information
e and an input x, and returns a garbled input X.

3. Ev(F,X) → Y . The evaluation algorithm Ev takes in the garbled circuit F
and the garbled input X, and returns a garbled output Y .

4. De(d, Y )→ y. The decoding algorithm De takes in the decoding information
d and the garbled output Y , and returns the plaintext output y.

A garbling scheme G = (Gb,En,Ev,De) is projective if encoding information e
consists of 2n wire labels (each of which is essentially a random string), where
n is the number of input bits. Two wire labels are associated with each bit of
the input; one wire label corresponds to the event of that bit being 0, and the
other corresponds to the event of that bit being 1. The garbled input includes
only the wire labels corresponding to the actual values of the input bits. In
projective schemes, in order to give the evaluator the garbled input she needs
for evaluation, the garbler can send her all of the wire labels corresponding to
the garbler’s input. The evaluator can then use OT to retrieve the wire labels
corresponding to her own input.

Similarly, we call a garbling scheme output-projective if decoding information
d consists of two labels for each output bit, one corresponding to each possible
value of that bit. The garbling schemes used in this paper are both projective
and output-projective.

Correctness. Informally, a garbling scheme (Gb,En,Ev,De) is correct if it always
holds that De(d,Ev(F,En(e, x))) = f(x).
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Security. Bellare et al. [6] describe three security notions for garbling schemes:
obliviousness, privacy and authenticity. Informally, a garbling scheme G = (Gb,En,Ev,De)
is oblivious if a garbled function F and a garbled input X do not reveal anything
about the input x. It is private if additionally knowing the decoding information
d reveals the output y, but does not reveal anything more about the input x.
It is authentic if an adversary, given F and X, cannot find a garbled output
Y ′ 6= Ev(F,X) which decodes without error.

In the full version of this paper [28], we define a new property of output-
projective garbling schemes called garbled output randomness. Informally, it
states that even given one of the output labels, the other should be indistin-
guishable from random.

3.1.3 Malicious Security: A New Take on Dual Execution with Privacy-
Correctness Tradeoffs While Yao’s garbled circuits are naturally secure against
a malicious evaluator, they have the drawback of being insecure against a ma-
licious garbler. A garbler can “mis-garble” the function, either replacing it with
a different function entirely or causing an error to occur in an informative way
(this is known as “selective failure”).

Typically, malicious security is introduced to Yao’s garbled circuits by using
the cut-and-choose transformation [35, 41, 43]. To achieve a 2−λ probability of
cheating without detection, the parties need to exchange λ garbled circuits [41].8
Some of the garbled circuits are “checked”, and the rest of them are evaluated,
their outputs checked against one another for consistency. Because of the factor
of λ computational overhead, though, cut-and-choose is expensive, and too heavy
a tool for fPAKE. Other, more efficient transformations such as LEGO [50] and
authenticated garbling [59] exist as well, but those rely heavily on pre-processing,
which cannot be used in fPAKE since it requires advance interaction between the
parties.

Mohassel et al. [48] and Huang et al. [34] suggest an efficient transformation
known as “dual execution”: each party plays each role (garbler and evaluator)
once, and then the two perform a comparison step on their outputs in a secure
fashion. Dual execution incurs only a factor of 2 overhead over semi-honest gar-
bled circuits. However, it does not achieve fully malicious security. It guarantees
correctness, but reduces the privacy guarantee by allowing a malicious garbler
to learn one bit of information of her choice. Specifically, if a malicious garbler
garbles a wrong circuit, she can use the comparison step to learn one bit about
the output of this wrong circuit on the other party’s input. This one extra bit of
information could be crucially important, violating the privacy of the evaluator’s
input in a significant way.

We introduce a tradeoff between correctness and privacy for boolean func-
tions. For one of the two possible outputs (without loss of generality, ‘0’), we
restore full privacy at the cost of correctness. The new privacy guarantee is that
if the correct output is ‘0’, then a malicious adversary cannot learn anything
8 There are techniques [44] that improve this number in the amortized case when
many computations are done — however, this does not fit our setting.
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beyond this output, but if the correct output is ‘1’, then she can learn a single
bit of her choice. The new correctness guarantee is that a malicious adversary
can cause the computation that should output ‘1’ to output ‘0’ instead, but not
the other way around.

The main idea of dual execution is to have the two parties independently
evaluate one another’s circuits, learn the output values, and compare the output
labels using a secure comparison protocol. In our construction, however, the par-
ties need not learn the output values before the comparison. Instead, the parties
can compare output labels assuming an output of ‘1’, and if the comparison
fails, the output is determined to be ‘0’.

More formally, let d0[0], d0[1] be the two output labels corresponding to P0’s
garbled circuit, and d1[0], d1[1] be the two output labels corresponding to P1’s
circuit. Let Y0 be the output label learned by P1 as a result of evaluation, and
Y1 be the label learned by P0. The two parties securely compare (d0[1], Y1) to
(Y0, d1[1]); if the comparison succeeds, the output is “1”.

Our privacy–correctness tradeoff is perfect for fPAKE. If the parties’ inputs
are similar, learning a bit of information about each other’s inputs is not prob-
lematic, since arguably the small amount of noise in the inputs is a bug, not
a feature. If the parties’ inputs are not similar, however, we are guaranteed to
have no leakage at all. We pay for the lack of leakage by allowing a malicious
party to force an authentication failure even when authentication should succeed.
However, either party can do so anyway by providing an incorrect input.

In Section 3.2.2, we describe our Yao’s garbled circuit-based fPAKE protocol.
Note that in this protocol, we omit the final comparison step; instead, we use
the output lables ((d0[1], Y1) and (Y0, d1[1])) to compute the agreed-upon key
directly.

3.2 Construction

Building a fPAKE from YGC and OT is not straightforward, since all construc-
tions of OT assume authenticated channels, and fPAKE (or PAKE) is designed
with unauthenticated channels in mind. We therefore follow the framework of
Canetti et al. [18], who build a UC secure PAKE protocol using OT. We first
build our protocol assuming authenticated channels, and then apply the generic
transformation of Barak et al. [4] to adapt it to the unauthenticated channel
setting. More formally, we proceed in three steps:

1. First, in Section 3.2.1, we define a randomized fuzzy equality-testing func-
tionality FRFE, which is analogous to the randomized equality-testing func-
tionality of Canetti et al.

2. In Section 3.2.2, we build a protocol that securely realizes FRFE in the OT-
hybrid model, assuming authenticated channels.

3. In Section 3.2.3, we apply the transformation of Barak et al. to our protocol.
This results in a protocol that realizes the “split” version of functionality
FPRFE, which we show to be enough to implement to fPAKEP . Split function-
alities, which were introduced by Barak et al., adapt functionalities which
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The functionality FRFE is parameterized by a security parameter λ and a tolerance
δ. It interacts with an adversary S and two parties P0 and P1 via the following
queries:
– Upon receiving a query (NewSession, sid, pwi) from party Pi ∈

{P0,P1}:
• Send (NewSession, sid,Pi) to S;
• If this is the first NewSession query, or if this is the second NewSession

query and there is a record (P1−i, pw1−i), then record (Pi, pwi).
– Upon receiving a query (TestPwd, sid,Pi) from the adversary S, Pi ∈

{P0,P1}:
If records of the form (P0, pw0) and (P1, pw1) do not exist, if P1−i is not
corrupted, or this is not the first TestPwd query for Pi, ignore this query.
Otherwise, if d(pw0, pw1) ≤ δ, send pwi to the adversary S.

– Upon receiving a query (NewKey, sid,Pi, sk) from the adversary S,
Pi ∈ {P0,P1}:
If there are no records of the form (Pi, pwi) and (P1−i, pw1−i), or if this is not
the first NewKey query for Pi, then ignore this query. Otherwise:
• If at least one of the following is true, then output (sid, sk) to party Pi.
∗ Pi is corrupted
∗ P1−i is corrupted and d(pw0, pw1) ≤ δ

• If both parties are honest, d(pw0, pw1) ≤ δ, and a key k1−i was sent
to P1−i, then output (sid, k1−i) to Pi.

• In any other case, pick a new random key ki of length λ and send (sid, ki)
to Pi.

Fig. 3. Ideal Functionality FPRFE for Randomized Fuzzy Equality

assume authenticated channels to an unauthenticated channels setting. The
only additional ability an adversary has in a split functionality is the ability
to execute the protocol separately with the participating parties.

3.2.1 The Randomized Fuzzy Equality Functionality Figure 3 shows
the randomized fuzzy equality functionality FPRFE, which is essentially what
FPfPAKE would look like assuming authenticated channels. The primary differ-
ence between FPRFE and FPfPAKE is that the only pass-string guesses allowed by
FPRFE are the ones actually used as protocol inputs; this limits the adversary to
guessing by corrupting one of the participating parties, not through man in the
middle attacks. Like FPfPAKE, if a pass-string guess is “similar enough”, the entire
pass-string is leaked. This leakage could be replaced with any other leakage from
Section 2; FRFE would leak the correctness of the guess, FMRFE would leak which
characters are the same between the two pass-strings, etc.

Note that, unlike the randomized equality functionality in the work of Canetti et
al. [18], FPfPAKE has a TestPwd interface. This is because NewKey does not return
the necessary leakage to an honest user. So, an interface enabling the adversary
to retrieve additional information is necessary.
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P0(pw0 ∈ {0, 1}
n) P1(pw1 ∈ {0, 1}

n)

1 (F0, e0, d0)← Gb(1λ, f) (F1, e1, d1)← Gb(1λ, f)
parse e0 = (e0,0, e0,1) parse e1 = (e1,1, e1,0)

2 perform two OTs in parallel:

(sender)
e0,1−−−−−−→

pw1←−−−−−− (receiver)
OT

−−−−−−→
X0,1 = En(e0,1, pw1)

(receiver)
pw0−−−−−−→

e1,0←−−−−−− (sender)
OT

←−−−−−−
X1,0 = En(e1,0, pw0)

3 X0,0 = En(e0,0, pw0) X1,1 = En(e1,1, pw1)
4

X1,1, F1↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁
X0,0, F0

X1 = (X1,1, X1,0) X0 = (X0,0, X0,1)
5 Y1 = Ev(F1, X1) Y0 = Ev(F0, X0)
6 k0,wrong = d0[0] k1,wrong = d1[0]
7 k0,correct = d0[1] k1,correct = d1[1]
8 k0 = k0,correct ⊕ Y1 k1 = k1,correct ⊕ Y0

Fig. 4. A Protocol ΠRFE Realizing FPRFE using Yao’s garbled circuits and an Ideal OT
Functionality. If at any point an expected message fails to arrive (or arrives malformed),
the parties output a random key. Subscripts are used to indicate who produced the
object in question. If a double subscript is present, the second subscript indicates whose
data the object is meant for use with. For instance, a double subscript 0, 1 denotes that
the object was produced by party P0 for use with P1’s data; e0,1 is encoding information
produced by P0 to encode P1’s pass-string. Note that we abuse notation by encoding
inputs to a single circuit separately; the input to P0’s circuit corresponding to pw0 is
encoded by P0 locally, and the input corresponding to pw1 is encoded via OT. For any
projective garbling scheme, this is not a problem.

3.2.2 A Randomized Fuzzy Equality Protocol In Figure 4 we introduce
a protocol ΠRFE that securely realizes FPRFE using Yao’s garbled circuits. Garbled
circuits are secure against a malicious evaluator, but only a semi-honest garbler;
however, we obtain security against malicious adversaries by having each party
play each role once, as describe in Section 3.1.3. In more detail, both parties
Pi ∈ {P0,P1} proceed as follows:

1. Pi garbles the circuit f that takes in two pass-strings pw0 and pw1, and
returns ‘1’ if d(pw0, pw1) ≤ δ and ‘0’ otherwise. Section 3.3 describes how
f can be designed efficiently for Hamming distance. Instead of using the
output of f (‘0’ or ‘1’), we will use the garbled output, also referred to as an
output label in an output-projective garbling scheme. The possible output
labels are two random strings — one corresponding to a ‘1’ output (we call
this label ki,correct, and one corresponding to a ‘0’ output (we call this label
ki,wrong).
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2. Pi uses OT to retrieve the input labels from P1−i’s garbling that correspond
to Pi’s pass-string.

3. Pi sends P1−i her garbled circuit, together with the input labels from her
garbling that correspond to her own pass-string. After this step, Pi should
have P1−i’s garbled circuit and a garbled input consisting of input labels
corresponding to the bits of the two pass-strings.

4. Pi evaluates P1−i’s garbled circuit, and obtains an output label Y1−i.
5. Pi outputs ki = ki,correct ⊕ Y1−i.

The natural question to ask is why ΠRFE only realizes FPRFE, and not a
stronger functionality with less leakage. We argue this assuming (without loss of
generality) that P1 is corrupted. ΠRFE cannot realize a functionality that leaks
less than the full pass-string pw0 to P1 if d(pw0, pw1) ≤ δ; intuitively, this is
because if P1 knows a pass-string pw1 such that d(pw0, pw1) ≤ δ, P1 can extract
the actual pass-string pw0, as follows. If P1 plays the role of OT receiver and
garbled circuit evaluator honestly, P0 and P1 will agree on k0,correct. P1 can then
mis-garble a circuit that returns k1,correct if the first bit of pw0 is 0, and k1,wrong
if the first bit of pw0 is 1. By testing whether the resulting keys k0 and k1 match
(which P1 can do in subsequent protocols where the key is used), P1 will be able
to determine the actual first bit of pw0. P1 can then repeat this for the second
bit, and so on, extracting the entire pass-string pw0. Of course, if P1 does not
know a sufficiently close pw1, P1 will not be able to perform these tests, because
the keys will not match no matter what circuit P1 garbles.

More formally, if P1 knows a pass-string pw1 such that d(pw0, pw1) ≤ δ
and carries out the mis-garbling attack described above, then in the real world,
the keys produced by P0 and P1 either will or will not match based on some
predicate p of P1’s choosing on the two pass-strings pw0 and pw1. Therefore, in
the ideal world, the keys should also match or not match based on p(pw0, pw1);
otherwise, the environment will be able to distinguish between the two worlds.
In order to make that happen, since the simulator does not know the predicate
p in question, the simulator must be able to recover the entire pass-string pw0

(given a sufficiently close pw1) through the TestPwd interface.

Theorem 1. If (Gb,En,Ev,De) is a projective, output-projective and garbled-
output random secure garbling scheme, then protocol ΠRFE with authenticated
channels in the FOT-hybrid model securely realizes FPRFE with respect to static
corruptions for any threshold δ, as long as the pass-string space and notion of
distance are such that for any pass-string pw, it is easy to compute another
pass-string pw′ such that d(pw, pw′) > δ.

Proof (Sketch). For every efficient adversary A, we describe a simulator SRFE
such that no efficient environment can distinguish an execution with the real
protocol ΠRFE and A from an execution with the ideal functionality FPRFE and
SRFE. SRFE is described in the full version of this paper. We prove indistinguisha-
bility in a series of hybrid steps. First, we introduce the ideal functionality as a
dummy node. Next, we allow the functionality to choose the parties’ keys, and
we prove the indistinguishability of this step from the previous using the garbled
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output randomness property of our garbling scheme . Next, we simulate an hon-
est party’s interaction with another honest party without using their pass-string,
and prove the indistinguishability of this step from the previous using the obliv-
iousness property of our garbling scheme. Finally, we simulate an honest party’s
interaction with a corrupted party without using the honest party’s pass-string,
and prove the indistinguishability of this step from the previous using the privacy
property of our garbling scheme.

We give a more formal proof of Theorem 1 in the full version of this paper [28].

3.2.3 From Split Randomized Fuzzy Equality to fPAKE The Random-
ized Fuzzy Equality (RFE) functionality FPRFE assumes authenticated channels,
which an fPAKE protocol cannot do. In order to adapt RFE to our setting, we
use the split functionality transformation defined by Barak et al. [4]. Barak et
al. provide a generic transformation from protocols which require authenticated
channels to protocols which do not. In the “transformed” protocol, an adversary
can engage in two separate instances of the protocol with the sender and receiver,
and they will not realize that they are not talking to one another. However, it
does guarantee that the adversary cannot do anything beyond this attack. In
other words, it provides “session authentication”, meaning that each party is
guaranteed to carry out the entire protocol with the same partner, but not “en-
tity authentication”, meaning that the identity of the partner is not guaranteed.

Barak et al. achieve this transformation in three steps. First, the parties
generate signing and verification keys, and send one another their verification
keys. Next, the parties sign the list of all keys they have received (which, in
a two-party protocol, consists of only one key), sign that list, and send both
list and signature to all other parties. Finally, they verify all of the signatures
they have received. After this process — called “link initialization” — has been
completed, the parties use those public keys they have exchanged to authenticate
subsequent communication.

We describe the Randomized Fuzzy Equality Split Functionality in Figure 5.
It is simplified from Figure 1 in Barak et al. [4] because we only need to consider
two parties and static corruptions.

It turns out that sFPRFE is enough to realize FPfPAKE. In fact, the protocol
ΠRFE with the split functionality transformation directly realizes FPfPAKE. In the
full version of this paper [28], we prove that this is the case.

3.3 An Efficient Circuit f for Hamming Distance

The Hamming distance of two pass-strings pw, pw′ ∈ Fnp is equal to the number of
locations at which the two pass-strings have the same character. More formally,

d(pw, pw′) := | {j | pw[j] 6= pw′[j], j ∈ [n]} |.

We design f for Hamming distance as follows:
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The functionality sFPRFE is parameterized by a security parameter λ. It interacts
with an adversary S and two parties P0 and P1 via the following queries:
– Initialization
• Upon receiving a query (Init, sid) from a party Pi ∈ {P0,P1}, send

(Init, sid,Pi) to the adversary S.
• Upon receiving a query (Init, sid,Pi, H, sidH) from the adversary
S:
∗ Verify that H ⊆ {P0,P1}, that Pi ∈ H, and that if a previous set H ′

was recorded, either (1) H ∩H ′ contains only corrupted parties and
sidH 6= sidH′ , or (2) H = H ′ and sidH = sidH′ .

∗ If verification fails, do nothing.
∗ Otherwise, record the pair (H, sidH) (if it was not already recorded),

output (Init, sid, sidH) to Pi, and locally initialize a new instance
of the original RFE functionality FRFE denoted HFPRFE, letting the
adversary play the role of {P0,P1} −H in HFPRFE.

– RFE
• Upon receiving a query from a party Pi ∈ {P0,P1}, find the set H

such that Pi ∈ H, and forward the query to HFPRFE. Otherwise, ignore
the query.

• Upon receiving a query from the adversary S on behalf of Pi
corresponding to set H, if HFPRFE is initialized and Pi 6∈ H, then
forward the query to HFPRFE. Otherwise, ignore the query.

Fig. 5. Functionality sFPRFE

1. First, f XORs corresponding (binary) pass-string characters, resulting in a
list of bits indicating the (in)equality of those characters.

2. Then, f feeds those bits into a threshold gate, which returns 1 if at least
n−δ of its inputs are 0, and returns 0 otherwise. f returns the output of that
threshold gate, which is 1 if and only if at least n− δ pass-string characters
match.

This circuit, illustrated in Figure 6, is very efficient to garble; it only requires
n ciphertexts. Below, we briefly explain this garbling. Our explanation assumes
familiarity with YGC literature [62, and references therein]. Briefly, garbled gad-
get labels [3] enable the evaluation of modular addition gates for free (there is no
need to include any information in the garbled circuit to enable this addition).
However, for a small modulus m, converting the output of that addition to a
binary decision requires m − 1 ciphertexts. We utilize garbled gadgets with a
modulus of n+ 1 in our efficient garbling as follows:

1. The input wire labels encode 0 or 1 modulo n+ 1. However, instead of hav-
ing those input wire labels encode the characters of the two pass-strings
directly, they encode the outputs of the comparisons of corresponding char-
acters. If the jth character of Pi’s pass-string is 0, then Pi puts the 0 label
first; however, if the jth character of Pi’s pass-string is 1, then Pi flips the
labels. Then, when P1−i is using oblivious transfer to retrieve the label cor-
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responding to her jth pass-string character, she will retrieve the 0 label if
the two characters are equal, and the 1 label otherwise. (Note that this pre-
processing on the garbler’s side eliminates the need to send X0,0 and X1,1

in Figure 4.)
2. Compute a n-input threshold gate, as illustrated in Figure 6 of Yakoubov [62].

This gate returns 0 if the sum of the inputs is above a certain threshold (that
is, if at least n − δ pass-string characters differ), and 1 otherwise. This will
require n ciphertexts.

Thus, a garbling of f consists of n ciphertexts. Since fPAKE requires two such
garbled circuits (Figure 4), 2n ciphertexts will be exchanged.

Larger Pass-string Characters. If larger pass-string characters are used, then
Step 1 above needs to change to check (in)equality of the larger characters instead
of bits. Step 2 will remain the same. There are several ways to perform an
(in)equality check on characters in Fp for p ≥ 2:

1. Represent each character in terms of bits. Step 1 will then consist of XORing
corresponding bits, and taking an OR or the resulting XORs of each charac-
ter to get negated equality. This will take an additional n log(p) ciphertexts
for every pass-string character.

2. Use garbled gadget labels from the outset. We will require a larger OT (1-
out-of-p instead of 1-out-of-2), but nothing else will change.

4 Specialized Construction For Hamming Distance

In the full version of this paper [28], we show that it is not straightforward
to build a secure fPAKE from primitives that are, by design, well-suited for
correcting errors. However, PAKE protocols are appealingly efficient compared
to the garbled circuits used in the prior construction. In this section, we will see
whether the failed approach can be rescued in an efficient way, and we answer
this question in the affirmative.
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4.1 Building Blocks

4.1.1 Robust Secret Sharing We recall the definition of a robust secret
sharing scheme, slightly simplified for our purposes from Cramer et al. [22]. For
a vector c ∈ Fnq and a set A ⊆ [n], we denote with cA the projection Fnq → F|A|q ,
i.e., the sub-vector (ci)i∈A.

Definition 2. Let Fq be a finite field and n, t, r ∈ N with t < r ≤ n. An (n, t, r)
robust secret sharing scheme (RSS) consists of two probabilistic algorithms Share :
Fq → Fnq and Reconstruct : Fnq → Fq with the following properties:

– t-privacy: for any s, s′ ∈ Fq, A ⊂ [n] with |A| ≤ t, the projections cA of
c

$← Share(s) and c′A of c′ $← Share(s′) are identically distributed.
– r-robustness: for any s ∈ Fq, A ⊂ [n] with |A| ≥ r, any c output by Share(s),

and any c̃ such that cA = c̃A, it holds that Reconstruct(c̃) = s.

In other words, an (n, t, r)-RSS is able to reconstruct the shared secret even if
the adversary tampered with up to n − r shares, while each set of t shares is
distributed independently of the shared secret s and thus reveals nothing about
it. We note that we allow for a gap, i.e., r ≥ t + 1. Schemes with r > t + 1 are
called ramp RSS.

4.1.2 Linear Codes A linear q-ary code of length n and rank k is a subspace
C with dimension k of the vector space Fnq . The vectors in C are called codewords.
The size of a code is the number of codewords it contains, and is thus equal to
qk. The weight of a word w ∈ Fnq is the number of its non-zero components,
and the distance between two words is the Hamming distance between them
(equivalently, the weight of their difference). The minimal distance d of a linear
code C is the minimum weight of its non-zero codewords, or equivalently, the
minimum distance between any two distinct codewords.

A code for an alphabet of size q, of length n, rank k, and minimal distance d
is called an (n, k, d)q-code. Such a code can be used to detect up to d− 1 errors
(because if a codeword is sent and fewer than d− 1 errors occur, it will not get
transformed to another codeword), and correct up to b(d−1)/2c errors (because
for any received word, there is a unique codeword within distance b(d− 1)/2c).
For linear codes, the encoding of a (row vector) wordW ∈ Fkq is performed by an
algorithm C.Encode : Fkq → Fnq , which is the multiplication of W by a so-called
“generating matrix” G ∈ Fk×nq (which defines an injective linear map). This leads
to a row-vector codeword c ∈ C ⊂ Fnq .

The Singleton bound states that for any linear code, k + d ≤ n + 1, and
a maximum distance separable (or MDS) code satisfies k + d = n + 1. Hence,
d = n − k + 1 and MDS codes are fully described by the parameters (q, n, k).
Such an (n, k)q-MDS code can correct up to b(n− k)/2c errors; it can detect if
there are errors whenever there are no more than n− k of them.

For a thorough introduction to linear codes and proof of all statements in
this short overview we refer the reader to [55].
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Observe that a linear code, due to the linearity of its encoding algorithm, is
not a primitive designed to hide anything about the encoded message. However,
we show in the following lemma how to turn an MDS code into a RSS scheme.

Lemma 3. Let C be a (n + 1, k)q-MDS code. We set L to be the last column
of the generating matrix G of the code C and we denote by C ′ the (n, k)q-MDS
code whose generating matrix G′ is G without the last column. Let Share and
Reconstruct work as follows:

– Share(s) for s ∈ Fq first chooses a random row vector W ∈ Fkq such that
W · L = s, and outputs c ← C ′.Encode(W ) (equivalently, we can say that
Share(s) chooses a uniformly random codeword of C whose last coordinate is
s, and outputs the first n coordinates as c).

– Reconstruct(w) for w ∈ Fnq first runs C ′.Decode(w). If it gets a vector W ′,
then output s =W ′ · L, otherwise output s $← Fq.

Then Share and Reconstruct form a (n, t, r)-RSS for t = k−1 and r = d(n+k)/2e.

Proof. Let us consider the two properties from Definition 2.

– t-privacy: Assume |A| = t (privacy for smaller A will follow immediately by
adding arbitrary coordinates to it to get to size t). Let J = A ∪ {n + 1};
note that |J | = t+ 1 = k. Note that for the code C, any k coordinates of a
codeword determine uniquely the input to Encode that produces this code-
word (otherwise, there would be two codewords that agreed on k elements
and thus had distance n − k + 1, which is less than the minimum distance
of C). Therefore, the mapping given by EncodeJ : Fkq → F|J|q is bijective;
thus coordinates in J are uniform when the input to Encode is uniform. The
algorithm Share chooses the input to Encode uniformly subject to fixing the
coordinate n + 1 of the output. Therefore, the remaining coordinates (i.e.,
the coordinates in A) are uniform.

– r-robustness: Note that C has minimum distance n−k+2, and therefore C ′
has minimum distance n− k + 1 (because dropping one coordinate reduces
the distance by at most 1). Therefore, C ′ can correct b(n − k)/2c = n − r
errors. Since cA = c̃A and |A| ≥ r, there are at most n− r errors in c̃, so the
call to C ′.Decode(c′) made by Reconstruct(c′) will output W ′ = W . Then
Reconstruct(c′) will output s =W ′ · L =W · L.

Note that the Shamir’s secret sharing scheme is exactly the above construction
with Reed-Solomon codes [47].

4.1.3 Implicit-Only PAKE PAKE protocols can have two types of authenti-
cation: implicit authentication, where at the end of the protocol the two parties
share the same key if they used the same pass-string and random indepen-
dent keys otherwise; or explicit authentication where, in addition, they actu-
ally know which of the two situations they are in. A PAKE protocol that only

20



achieves implicit authentication can provide explicit authentication by adding
key-confirmation flows [7].

The standard PAKE functionality FpwKE from [20] is designed with explicit
authentication in mind, or at least considers that success or failure will later be
detected by the adversary when he will try to use the key. Thus, it reveals to the
adversary whether a pass-string guess attempt was successful or not. However,
some applications could require a PAKE that does not provide any feedback, and
so does not reveal the situation before the keys are actually used. Observe that,
regarding honest players, already FpwKE features implicit authentication since
the players do not learn anything but their own session key.

Definition of implicit-only PAKE. Hence, we introduce a new notion, called
implicit-only PAKE or iPAKE (see Figure 7). This ideal functionality is designed
to implement implicit authentication also with respect to an adversary, namely
by not providing him with any feedback upon a dictionary attack. Of course, in
many cases, the parties as well as the adversary can later check whether their
session keys match or not, and so whether the pass-strings were the same or not.
We stress that this is not a leakage from the PAKE protocol itself, but from the
global system.

In terms of functionalities, there are two differences from FpwKE to FiPAKE.
First, the TestPwd query only silently updates the internal state of the record
(from fresh to either compromised or interrupted), meaning that its outcome
is not given to the adversary S. Second, the NewKey query is modified so that
the adversary gets to choose the key for a non-corrupted party only if it uses the
correct pass-string (corruption of the other party is no longer enough), as already
discussed earlier. Without going too much into the details, it is intuitively clear
that simulation of an honest party is hard if the simulator does not know whether
it should proceed the simulation with a pass-string extracted from a dictionary
attack or not. Regarding the output, i.e., the question whether the session keys
computed by both parties should match or look random, the simulator thus gets
help from our functionality by modifying the NewKey queries.

We further alter this functionality to allow for public labels, as shown in the
full version of this paper [28]. The resulting functionality F`-iPAKE idealizes what
we call labeled implicit-only PAKE (or `-iPAKE for short), resembling the notion
of labeled public key encryption as formalized in [56]. In a nutshell, labels are
public authenticated strings that are chosen by each user individually for each
execution of the protocol. Authenticated here means that tampering with the
label can be efficiently detected. Such labels can be used to, e.g., distribute public
information such as public keys reliably over unauthenticated channels.

A UC-Secure `-iPAKE Protocol. In the seminal paper by Bellovin and Merritt [8],
the Encrypted Key Exchange protocol (EKE) is proposed, which is essentially
a Diffie-Hellman [24] key exchange. The two flows of the protocol are encrypted
using the pass-string as key with an appropriate symmetric encryption scheme.
The EKE protocol has been further formalized by Bellare et al. [7] under the
name EKE2. We present its labeled variant in Figure 8. The idea of appending
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The functionality FiPAKE is parameterized by a security parameter λ. It interacts
with an adversary S and the (dummy) parties P0 and P1 via the following queries:
– Upon receiving a query (NewSession, sid, pwi) from party Pi:
• Send (NewSession, sid,Pi) to S;
• If this is the first NewSession query, or if this is the second NewSession

query and there is a record (P1−i, pw1−i), then record (Pi, pwi) and mark
this record fresh.

– Upon receiving a query (TestPwd, sid,Pi, pw
′
i) from S :

If there is a fresh record (Pi, pwi), then:
• If pwi = pw′i, mark the record compromised;
• If pwi 6= pw′i, mark the record interrupted.

– Upon receiving a query (NewKey, sid,Pi, sk) from S, where |sk| = λ:
If there is no record of the form (Pi, pwi), or if this is not the first NewKey
query for Pi, then ignore this query. Otherwise:
• If at least one of the following is true, then output (sid, sk) to player Pi:
∗ The record is compromised
∗ Pi is corrupted
∗ The record is fresh, P1−i is corrupted, and there is a

record (P1−i, pw1−i) with pwi = pw1−i
• If this record is fresh, both parties are honest, there is a

record (P1−i, pw1−i) with pwi = pw1−i, a key sk′ was sent to P1−i, and
(P1−i, pw1−i) was fresh at the time, then output (sid, sk′) to Pi;

• In any other case, pick a new random key sk′ of length λ and send (sid, sk′)
to Pi.

• Mark the record (Pi, pwi) as completed.

Fig. 7. Functionality FiPAKE

the label to the symmetric key is taken from [1]. We prove security of this protocol
in the FRO,FIC,FCRS-hybrid model. That is, we use an ideal random oracle
functionality FRO to model the hash function, and ideal cipher functionality
FIC to model the encryption scheme and assume a publicly available common
reference string modeled by FCRS. Formal definitions of these functionalities are
given in the full version of this paper [28].

Theorem 4. If the CDH assumption holds in G, the protocol EKE2 depicted
in Figure 8 securely realizes F`-iPAKE in the FRO,FIC,FCRS-hybrid model with
respect to static corruptions.

We note that this result is not surprising, given that other variants of EKE2 have
already been proven to UC-emulate FpwKE. Intuitively, a protocol with only two
flows not depending on each other does not leak the outcome to the adversary
via the transcript, which explains why EKE2 is implicit-only. Hashing of the
transcript keeps the adversary from biasing the key unless he knows the correct
pass-string or breaks the ideal cipher. For completeness, we include the full proof
in the full version of this paper [28].
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A(pw ∈ Fp) B(pw′ ∈ Fp)

x
$← FP , `← L, X ← gx

X∗ ← Epw||`(X)
`,X∗−−−−−−−→ y

$← FP , `′ ← L, Y ← gy
`′, Y ∗←−−−−−−− Y ∗ ← Epw′||`′(Y )

Z ← Dpw||`′(Y
∗)x Z′ ← Dpw′||`(X

∗)y

k ← H(X∗, Y ∗, Z) k′ ← H(X∗, Y ∗, Z′)
output (`′, k) output (`, k′)

Fig. 8. Protocol EKE2, in a group G = 〈g〉 of prime order P , with a hash function
H : G3 → {0, 1}k and a symmetric cipher E ,D onto G for keys in Fp × L, where L is
the label space.

4.2 Construction

We show how to combine an RSS with a signature scheme and an `-iPAKE to
obtain an fPAKE. The high-level idea is to fix the issue that arose in the protocol
from the full version of this paper [28] due to pass-strings being used as one-
time pads. Instead, we first expand the pass-string characters to session keys with
large entropy using `-iPAKE. The resulting session keys are then used as a one-
time pad on the entirety of shares of a nonce. We also apply known techniques
from the literature, such as executing the protocol twice with reversed roles to
protect against malicious parties, and adding signatures and labels to prevent
man-in-the-middle attacks. Our full protocol is depicted in Figure 9. It works as
follows:

1. In the first phase, the two parties aim at enhancing their pass-strings to a
vector of session keys with good entropy. For this, pass-strings are viewed
as vectors of characters. The parties repeatedly execute a PAKE on each of
these characters separately. The PAKE will ensure that the key vectors held
by the two parties match in all positions where their pass-strings matched,
and are uniformly random in all other positions.

2. In the second phase, the two parties exchange nonces of their choice, in such
a way that the nonce reaches the other party only if enough of the key vector
matches. This is done by applying an RSS to the nonce, and sending it to
the other party using the key vector as a one time pad. Both parties do this
symmetrically, each using half of the bits of the key vector. The robustness
property of the RSS ensures that a few non-matching pass-string characters
do not prevent both parties from recovering the other party’s nonce. The
final key is then obtained by adding the nonces (again, as a one-time pad):
this is a scalar in Fq.

When using the RSS from MDS codes described in Lemma 3, the one-time
pad encryption of the shares (which form a codeword) can be viewed as the
code-offset construction for information reconciliation (aka secure sketch) [27,
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A(pw ∈ Fnp ) B(pw′ ∈ Fnp )

(vk, sk)
$← SigGen(1λ) (vk′, sk′)

$← SigGen(1λ)
(vk,pwt)t−−−−−−−→

(vk′,pw′t)t←−−−−−−−
for t = 1, . . . , n `-iPAKE for t = 1, . . . , n

abort if `′t 6= `′s for
(`′t,(Kt,Lt))t←−−−−−−−−−−

(`t,(K
′
t,L

′
t))t−−−−−−−−−−→ abort if `t 6= `s for

any t, s or `′1 /∈ VK any t, s or `1 /∈ VK
Let K := (Kt)t∈[n] Let L′ := (L′

t)t∈[n]

U
$← Fq, C ← Share(U) V ′ $← Fq, D′ ← Share(V ′)

E ← C +K F ← D′ + L′

σE ← Sign(vk, E)
F, σF , vk

′
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁

E,σE , vk
σF ← Sign(vk′, F )

abort if vk′ 6= `′1 abort if vk 6= `1
or Vfy(vk′, σF , F ) = 0 or Vfy(vk, σE , E) = 0

V ← Reconstruct(F − L) U ′ ← Reconstruct(E −K′)
output k← U + V ∈ Fq output k′ ← U ′ + V ′ ∈ Fq

Fig. 9. Protocol fPAKERSS where q ≈ 2λ is a prime number and + denotes the group
operation in Fnq . (Share,Reconstruct) is a Robust Secret Sharing scheme with Share :
Fq → Fnq , and (SigGen → VK × SK, Sign,Vfy) is a signature scheme. The parties
repeatedly execute a labeled implicit-only PAKE protocol with label space VK and key
space F2

q, which takes inputs from Fp. If at any point an expected message fails to
arrive (or arrives malformed), the parties output a random key.

36] applied to the key vectors. While our presentation goes through RSS as a
separate object, we could instead present this construction using information
reconciliation. The syndrome construction of secure sketches 3 can also be used
here instead of the code-offset construction.

4.3 Security of fPAKERSS

We show that our protocol realizes functionality FMfPAKE in the F`-iPAKE-hybrid
model. In a nutshell, the idea is to simulate without the pass-strings by adjusting
the keys outputted by F`-iPAKE to the mask of the pass-strings, which is leaked
by FMfPAKE.

Theorem 5. If (Share : Fq → Fnq ,Reconstruct : Fnq → Fq) is an (n, t, r) RSS and
(SigGen,Sign,Vfy) is an EUF-CMA secure one-time signature scheme, protocol
fPAKERSS securely realizes FMfPAKE with γ = n − t − 1 and δ = n − r in the
F`-iPAKE-hybrid model with respect to static corruptions.

In particular, if we wish key agreement to succeed as long as there are fewer
than δ errors, we instantiate RSS using the construction of Lemma 3 based on a
(n+ 1, k)q MDS code, with k = n− 2δ. This will give r = d(n+ k)/2e = n− δ,
so δ will be equal to n− r, as required. It will also give γ = n− t− 1 = 2δ.

We thus obtain the following corollary:

Corollary 6. For any δ and γ = 2δ, given an (n + 1, k)q-MDS code for k =
n−2δ (with minimal distance d = n−k+2) and an EUF-CMA secure one-time
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signature scheme, protocol fPAKERSS securely realizes FMfPAKE in the F`-iPAKE-
hybrid model with respect to static corruptions.

Proof sketch of Theorem 5. We start with the real execution of the protocol and
indistinguishably switch to an ideal execution with dummy parties relaying their
inputs to and obtaining their outputs from FMfPAKE. To preserve the view of the
distinguisher, the environment Z, a simulator S plays the role of the real world
adversary by controlling the communication between FMfPAKE and Z. During the
proof, we built FMfPAKE and S by subsequently randomizing pass-strings (since
the final simulation has to work without them) and session keys (since FMfPAKE
hands out random session keys in certain cases). We have to tackle the following
difficulties, which we will describe in terms of attacks.

– Passive attack: in this attack, Z picks two pass-strings and then observes the
transcript and outputs of the protocol, without having access to any internal
state of the parties. We show that Z cannot distinguish between transcript
and outputs that were either produced using Z’s pass-strings or random
pass-strings. Regarding the outputs, we argue that even in the real execution
the session keys were chosen uniformly at random (with Z not knowing
the coins consumed by this choice) as long as the distance check is reliable.
Using properties of the RSS, we show that this is the case with overwhelming
probability. Regarding the transcript, randomization is straightforward using
properties of the one-time pad.

– Man-in-the-middle attack: in this attack, Z injects a malicious message into
a session of two honest parties. There are several ways to secure protocols
that have to run in unauthenticated channels and are prone to this attack.
Basically, all of them introduce methods to bind messages together to prevent
the adversary from injecting malicious messages. To do this, we need the
labeled version of our iPAKE and a one-time signature scheme9. Unless Z is
able to break a one-time-signature scheme, this attack always results in an
abort.

– Active attack: in this attack, Z injects a malicious message into a session
with one corrupted party, thereby knowing the internal state of this party. We
show how to produce transcript and outputs looking like in a real execution,
but without using the pass-strings of the honest party. Since Z can now
actually decrypt the one-time pad and therefore the transcript reveals the
positions of the errors in the pass-strings, S has to rely on FMfPAKE revealing
the mask of the pass-strings used in the real execution. If, on the other hand,
the pass-strings are too far away from each other, we show that the privacy
property of the RSS actually hides the number and positions of the errors.
This way, S can use a random pass-string to produce the transcript in that
case.

9 Instead of labels and one-time signature, one could just sign all the messages, as
would be done using the split-functionality [4], but this would be less efficient. This
trade-off, with labels, is especially useful when we use a PAKE that admits adding
labels basically for free, as it is the case with the special PAKE protocol we use.
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One interesting subtlety that arises is the usage of the iPAKE. Observe that
the UC security notion for a regular PAKE as defined in [20] and recalled in
the full version of this paper [28] provides an interface to the adversary to test
a pass-string once and learn whether it is right or wrong. Using this notion,
our simulator would have to answer to such queries from Z. Since this is not
possible without FMfPAKE leaking the mask all the time, it is crucial to use the
iPAKE variant that we introduced in section 4.1.3. Using this stronger notion,
the adversary is still allowed one pass-string guess which may affect the output,
but the adversary learns nothing more about the outcome of his guess than he
can infer from whatever access he has to the outputs alone. Since our protocol
uses the outputs of the PAKE as one-time pad keys, it is intuitively clear that by
preventing Z from getting additional leakage about these keys, we protect the
secrets of honest parties.

4.4 Further Discussion

4.4.1 Adaptive Corruptions Adaptive security of our protocol is not achiev-
able without relying on additional assumptions. To see this, consider the fol-
lowing attack: Z starts the protocol with two equal pass-strings and, without
corrupting anyone, silently observes the transcript produced by S using random
pass-strings. Afterwards, Z corrupts both players to learn their internal state.
S may now choose a value K. This also fixes L′ = K since the pass-strings were
equal. Now note that S is committed to E,F since signatures are not equivoca-
ble. Since perfect shares are sparse in Fnq , the probability that there exists a K
such that E −K and F −K are both perfect shares is negligible. Thus, there
do not exist plausible values U, V ′ that explain the transcript10.

4.4.2 Removing Modeling Assumptions All modeling assumptions of our
protocol come from the realization of the ideal F`-iPAKE functionality. E.g., the
`-iPAKE protocol from section 4.1.3 requires a random oracle, an ideal cipher and
a CRS. We note that we can remove everything up to the CRS by, e.g., taking
the PAKE protocol introduced in [37]. This protocol also securely realizes our

10 We note that additional assumptions like assuming erasures can enable an adaptive
security proof.
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F`-iPAKE functionality11. However, it is more costly than our `-iPAKE protocol
since both messages each contain one non-interactive zero knowledge proof.

Since fPAKE implies a regular PAKE (simply set δ = 0), [20] gives strong
evidence that we cannot hope to realize FfPAKE without a CRS.

5 Comparison of fPAKE Protocols

In this section, we give a brief comparison of our fPAKE protocols. First, in
Figure 10, we describe the assumptions necessary for the two constructions, and
the security parameters that they can achieve.

Assumptions Threshold δ Gap γ − δ
fPAKERSS UC-secure `-iPAKE < n/2 δ

fPAKEYGC (1) UC-secure OT (2) projective,
output-projective and garbled-output

random secure garbling scheme

Any None

Fig. 10. Assumptions, Distance Thresholds and Functionality/Security Gaps achieved
by the two schemes. fPAKERSS is the construction in Figure 9. fPAKEYGC is the con-
struction in Figure 4 with the split functionality transformation of Barak et al. [4].

Then, in Figure 11, we describe the efficiency of the constructions when
concrete primitives (OT / `-iPAKE) are used to instantiate them. fPAKERSS
is instantiated as the construction in Figure 9 with the `-iPAKE in Figure 8
and an RSS. fPAKEYGC is instantiated as the construction in Figure 4 with
the UC-secure oblivious transfer protocol of Chou and Orlandi [21], with the
garbling scheme of Bal et al. [3], and with the split functionality transformation
of Barak et al. [4]. Though fPAKEYGC can handle any efficiently computable
notion of distance, Figure 11 assumes that both constructions use Hamming
distance (and that, specifically, fPAKEYGC uses the circuit described in Figure 6).
We describe efficiency in terms of sub-operations (per-party, not in aggregate).

Note that these concrete primitives each have their own set of required as-
sumptions. Specifically, the `-iPAKE in Figure 8 requires a random oracle (RO),

11 In a nutshell, their protocol is implicit-only for the same reason as the `-iPAKE
protocol we use here: there are only two flows that do not depend on each other,
so the transcript cannot reveal the outcome of a guess unless it reveals the pass-
string to anyone. Regarding the session keys, usage of a hash function takes care
of randomizing the session key in case of a failed dictionary attack. Furthermore,
the protocol already implements labels. A little more detailed, looking at the proof
in [37], the simulator does not make use of the answer of TestPwd to simulate any
messages. Regarding the session key that an honest player receives in an corrupted
session, they are chosen to be random in the simulation (in Expt3). Letting this
happen already in the functionality makes the simulation independent of the answer
of TestPwd also regarding the computation of the session keys.
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ideal cipher (IC) and common reference string (CRS). The oblivious transfer pro-
tocol of Chou and Orlandi [21] requires a random oracle. The garbling scheme of
Bal et al. [3] requires a mixed modulus circular correlation robust hash function,
which is a weakening of the random oracle assumption.

For fPAKERSS, the factor of n arises from the n times EKE2 is executed.
For fPAKEYGC, the factor of n comes from the garbled circuit. Additionally, in
fPAKEYGC, three rounds of communication come from OT. The last of these is
combined with sending the garbled circuits. Two additional rounds of communi-
cation come from the split functionality transformation. The need for signatures
also arises from the split functionality transformation.
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fPAKERSS Fq 2 2n n n n 1 1 1 1 1

fPAKEYGC {0, 1}λ 5 3n+ 2 4n+ 7 2n n − − 1 5 5

Fig. 11. Efficiency (in Terms of Sub-Operations) of the Two Constructions. fPAKERSS is
the construction in Figure 9 instantiated with the `-iPAKE in Figure 8. fPAKEYGC is the
construction in Figure 4 instantiated with the UC-secure oblivious transfer protocol
of Chou and Orlandi [21], the garbling scheme of Bal et al. [3], and with the split
functionality transformation of Barak et al. [4].

Efficiency Optimizations to fPAKEYGC We can make several small efficiency
improvements to the fPAKEYGC construction which are not reflected in Figure 11.
First, instead of using the split functionality transformation of Barak et al. [4],
we can use the split split functionality of Camenisch et al. [16]. It uses a split
key exchange functionality to establish symmetric keys, and then uses those to
symmetrically encrypt and authenticate each flow. While this does not save any
rounds, it does reduce the number of public key operations needed. Second, if
the pass-strings are more than λ bits long (where λ is the security parameter),
OT extensions that are secure against malicious adversaries [2] can be used. If
the pass-strings are fewer than λ bits long, then nothing is to be gained from
using OT extensions, since OT extensions require λ “base OTs”. However, if the
pass-strings are longer — say, if they are some biometric measurement that is
thousands of bits long — then OT extensions would save on the number of public
key operations, at the cost of an extra round of communication.
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