
Shortest Vector from Lattice Sieving:

a Few Dimensions for Free

Léo Ducas?

Cryptology Group, CWI, Amsterdam, The Netherlands

Abstract. Asymptotically, the best known algorithms for solving the
Shortest Vector Problem (SVP) in a lattice of dimension n are sieve algo-
rithms, which have heuristic complexity estimates ranging from (4/3)n+o(n)

down to (3/2)n/2+o(n) when Locality Sensitive Hashing techniques are
used. Sieve algorithms are however outperformed by pruned enumeration
algorithms in practice by several orders of magnitude, despite the larger
super-exponential asymptotical complexity 2Θ(n logn) of the latter.
In this work, we show a concrete improvement of sieve-type algorithms.
Precisely, we show that a few calls to the sieve algorithm in lattices
of dimension less than n − d solves SVP in dimension n, where d =
Θ(n/ logn).
Although our improvement is only sub-exponential, its practical e�ect in
relevant dimensions is quite signi�cant. We implemented it over a sim-
ple sieve algorithm with (4/3)n+o(n) complexity, and it outperforms the
best sieve algorithms from the literature by a factor of 10 in dimensions
70-80. It performs less than an order of magnitude slower than pruned
enumeration in the same range.
By design, this improvement can also be applied to most other variants
of sieve algorithms, including LSH sieve algorithms and tuple-sieve al-
gorithms. In this light, we may expect sieve-techniques to outperform
pruned enumeration in practice in the near future.

Keywords: Cryptanalysis, Lattice, Sieving, Nearest-Plane.

1 Introduction

The concrete hardness of the Shortest Vector Problem (SVP) is at the core of
the cost estimates of attacks against lattice-based cryptosystems. While those
schemes may use various underlying problems (NTRU [?], SIS [?], LWE [?])
their cryptanalysis boils down to solving large instances of the Shortest Vector
Problem inside BKZ-type algorithms. There are two classes of algorithms for
SVP: enumeration algorithms and sieve algorithms.

The �rst class of algorithms (enumeration) was initiated by Pohst [?]. Kan-
nan [?, ?, ?] proved that with appropriate pre-processing, the shortest vector
could be found in time 2Θ(n logn). This algorithm only requires a polynomial

? Supported by a Veni Innovational Research Grant from NWO under project number
639.021.645.

amount of memory. These algorithms can be made much faster in practice using
some heuristic techniques, in particular the pruning technique [?, ?, ?, ?].

The second class of algorithms (sieving) started with Ajtai et al. [?], and
requires single exponential time and memory. Variants were heuristically an-
alyzed [?, ?], giving a (4/3)n+o(n) time complexity and a (4/3)n/2+o(n) mem-
ory complexity. A long line of work, including [?, ?, ?, ?] decrease this time
complexity down to (3/2)n/2+o(n) at the cost of more memory. Other variants
(tuple-sieving) are designed to lower the memory complexity [?, ?].

The situation is rather paradoxical: asymptotically, sieving algorithms should
outperform enumeration algorithms, yet in practice, sieving remains several or-
ders of magnitude slower. This situation makes security estimates delicate, re-
quiring both algorithms to be considered. In that respect, one would much prefer
enumeration to become irrelevant, as the heuristics used in this algorithm makes
prediction of its practical cost tedious and maybe inaccurate.

To this end, an important goal is to improve not only the asymptotic complex-
ity of sieving, but also its practical complexity. Indeed, much can been gained
from asymptotically negligible tricks, �ne-tuning of the parameters, and opti-
mized implementation e�ort [?, ?, ?].

This work. We propose a new practical improvement for sieve algorithms. In
theory, we can heuristically show that it contributes a sub-exponential gain in
the running time and the memory consumption. In practice, our implementa-
tion outperforms all sieving implementations of the literature by a factor of 10
in dimensions 70-80, despite the fact that we did not implement some known
improvements [?, ?]. Our improved sieving algorithm performs reasonably close
to pruned enumeration; more precisely, within less than an order of magnitude of
the optimized pruned enumeration implementation in fplll's library [?, ?, ?].1

In brief, the main idea behind our improvement is exploiting the fact that
sieving produces many short vectors, rather than only one. We use this fact
to our advantage by solving SVP in lattices of dimension n while running a
sieve algorithm in projected sub-lattices of dimension smaller than n − d. Us-
ing an appropriate pre-processing, we show that one may choose d as large as

Θ(n/ log n). Heuristic arguments lead to a concrete prediction of d ≈ n ln(4/3)
ln(n/2πe) .

This prediction is corroborated by our experiments.
At last, we argue that, when combined with the LSH techniques [?, ?], our

new technique should lead to a sieve algorithm that outperforms enumeration in
practice, for dimensions maybe as low as n = 90. We also suggest four approaches
to further improve sieving, including amortization inside BKZ.

Outline. We shall start with preliminaries in Section ??, including a generic pre-
sentation of sieve algorithms in Section ??. Our main contribution is presented
in Section ??. In Section ??, we present details of our implementation, including

1 Please note that this library was not so fast for SVP and BKZ a few years ago and it
recently caught up with the state of the art with the addition of a pruner module [?],
and of an external Strategizer [?].

other algorithmic tricks. In Section ?? we report on the experimental behavior
of our algorithm, and compare its performances to the literature. We conclude
with a discussion in Section ??, on combining our improvement with the LSH
techniques [?, ?, ?], and suggest further improvements.

Acknowledgments

The author wishes to thank Koen de Boer, Gottfried Herold, Pierre Karman,
Elena Kirshanova, Thijs Laarhoven, Marc Stevens and Eamonn Postlethwaite for
enlightening conversations on this topic. The author is also extremely grateful to
Martin Albrecht and the FPLLL development team for their thorough work on
the fplll and fpylll libraries. This work was supported by a Veni Innovational
Research Grant from NWO under project number 639.021.645.

2 Preliminaries

2.1 Notations and Basic De�nitions

All vectors are denoted by bold lower case letters and are to be read as column-
vectors. Matrices are denoted by bold capital letters. We write a matrix B as
B = (b0, · · · ,bn−1) where bi is the i-th column vector of B. If B ∈ Rm×n
has full-column rank n, the lattice L generated by the basis B is denoted by
L(B) = {Bx | x ∈ Zn}. We denote by (b∗0, · · · ,b∗n−1) the Gram-Schmidt or-
thogonalization of the matrix (b0, · · · ,bn−1). For i ∈ {0, · · · , n− 1}, we denote
the orthogonal projection to the span of (b0, · · · ,bi−1) by πi. For 0 ≤ i < j ≤ n,
we denote by B[i,j] the local projected block (πi(bi), · · · , πi(bj−1)), and when
the basis is clear from context, by L[i,j] the lattice generated by B[i,j]. We use
Bi and Li as shorthands for B[i,n] and L[i,n].

The Euclidean norm of a vector v is denoted by ‖v‖. The volume of a lattice
L(B) is Vol(L(B)) =

∏
i ‖b∗i ‖, that is an invariant of the lattice. The �rst

minimum of a lattice L is the length of a shortest non-zero vector, denoted by
λ1(L). We use the abbreviations Vol(B) = Vol(L(B)) and λ1(B) = λ1(L(B)).

2.2 Lattice Reduction

The Gaussian Heuristic predicts that the number |L ∩B| lattice of points inside
a measurable body B ⊂ Rn is approximately equal to Vol(B)/Vol(L). Applied to
Euclidean n-balls, it leads to the following prediction of the length of a shortest
non-zero vector in a lattice.

De�nition 1 (Gaussian Heuristic). We denote by gh(L) the expected �rst
minimum of a lattice L according to the Gaussian Heuristic. For a full rank
lattice L ⊂ Rn, it is given by:

gh(L) =
√
n/2πe ·Vol(L)1/n.

We also denote gh(n) for gh(L) of any n-dimensional lattice L of volume 1:
gh(n) =

√
n/2πe.

De�nition 2 (Hermite-Korkine-Zolotarev and Block-Korkine-Zolotarev
reductions [?]).
The basis B = (b0, . . . ,bn−1) of a lattice L is said to be HKZ reduced if
‖b∗i ‖ = λ1(L(Bi)) for all i < n. It is said BKZ reduced with block-size b (for
short BKZ-b reduced) ‖b∗i ‖ = λ1(L(B[i:max(i+b,n)])) for all i < n.2

Under the Gaussian Heuristic, we can predict the shape `0 . . . `n−1 of an HKZ
reduced basis, i.e., the sequence of expected norms for the vectors b∗i . The se-
quence is inductively de�ned as follows:

De�nition 3. The HKZ-shape of dimension n is de�ned by the following se-
quence:

`0 = gh(n) and `i = gh(n− i) ·
(∏
j<i

`j
)− 1

n−i .

Note that the Gaussian Heuristic is known to be violated in small dimensions [?],
fortunately we only rely on the above prediction for i� n.

De�nition 4 (Geometric Series Assumption). Let B be a BKZ-b reduced
basis of a lattice of volume 1. The Geometric Series Assumption states that:

‖b∗i ‖ = α
n−1
2 −i

b

where αb = gh(b)2/b.

This model is reasonably accurate in practice for b > 50 and b� n. For further
discussion on this model and its accuracy, the reader may refer to [?, ?, ?].

2.3 Sieve Algorithms

There are several variants of sieving algorithms, even among the restricted class
of Sieving algorithms having asymptotic complexity (4/3)n+o(n) [?, ?]. Its generic
form is given below.

Algorithm 1 Sieve(L)
Require: The basis B of a lattice L of dimension n
Ensure: A list L of vectors
L ← a set of N random vectors (of length at most 2n · Vol(L)1/n) from L where
N = (4/3)n/2+o(n).
while ∃(v,w) ∈ L2 such that ‖v −w‖ < ‖v‖ do

v← v −w
end while

return L

2 The notion of BKZ-reduction is typically slightly relaxed for algorithmic purposes,
see [?].

The initialization of the list L can be performed by �rst computing an LLL-
reduced basis of the lattice [?], and taking small random linear combinations of
that basis.

Using heuristic arguments, one can show [?] that this algorithm will terminate
in time N2 · poly(n), and that the output list contains a shortest vector of the
lattice. The used heuristic reasoning might fail in some special lattices, such as
Zn. However, nearly all lattices occurring in a cryptographic context are random-
looking lattices, for which these heuristics have been con�rmed extensively.

Many tricks can be implemented to improve the hidden polynomial factors.
The most obvious one consists of working modulo negation of vectors (halving
the list size), and to exploit the identity ‖v±w‖2 = ‖v‖2+‖w‖2±2〈v,w〉: two
reductions can be tested for the price of one inner product.

More substantial algorithmic improvements have been proposed in [?]: sorting
the list by Euclidean length to make early reduction more likely, having the list
size be adaptive, and having a queue of updated vectors to avoid considering the
same pair several times. Another natural idea used in [?] consists of strengthening
the LLL-reduction to a BKZ-reduction with medium block-size, so as to decrease
the length of the initial random vectors.

One particularly cute low-level trick proposed by Fitzpatrick et al. [?] con-
sists of quickly rejecting pairs of vectors depending on the Hamming weight of
the XOR of their bit signs. We shall re-use (a variant of) this trick in our imple-
mentation. This technique is in fact well known in the Nearest-Neighbor-Search
(NNS) literature [?], and sometimes referred to as SimHash.

The N2 factor may also be improved to a sub-quadratic factor N c, 1 < c < 2
using advanced NNS data-structures [?, ?, ?]. While improving the exponen-
tial term, those techniques introduce extra hidden sub-exponential factors, and
typically require more memory.3 In practice these improvements remain substan-
tial [?]. Yet, as the new improvements presented in this paper are orthogonal,
we leave it to the interested reader to consult this literature.

3 The SubSieve Algorithm and its Analysis

3.1 Approach

Our improvements rely on the remark that the output of the sieve contains
much more information than a shortest vector of L. Indeed, the analysis of [?, ?]
suggests that the outputted list contains the N shortest vector of the lattice,
namely, all the vectors of the lattice of length less than

√
4/3 · gh(L).

We proceed to exploit this extra information by solving SVP in a lattice of
larger dimension. Let us choose an index d, and run the sieve in the projected
sub-lattice Ld, of dimension n− d. We obtain the list:

L := Sieve(Ld) = {x ∈ Ld \ {0}| ‖x‖ ≤
√
4/3 · gh(Ld)}. (1)

3 Becker et al. [?] proposed a way to not require extra memory, yet it may hide an
extra polynomial factor on time.

Our hope is that the desired shortest non-zero vector s (of expected length
gh(L)) of the full lattice L projects to a vector contained in L, i.e. πd(s) ∈ L or
equivalently by equation (??), that ‖πd(s)‖ ≤

√
4/3 gh(Ld). Because ‖πd(s)‖ ≤

‖s‖ = gh(L), it is su�cient that:

gh(L) ≤
√
4/3 · gh(Ld). (2)

In fact, we may relax this condition, as we rather expect the projection to be
shorter: ‖πd(s)‖ ≈

√
(n− d)/n‖s‖ assuming the direction of s is uniform and

independent of the basis B. More precisely, it will happen with constant prob-
ability that ‖πd(s)‖ ≤

√
(n− d)/n‖s‖. Instead we may therefore optimistically

require:

√
n− d
n
· gh(L) ≤

√
4/3 · gh(Ld). (3)

We are now searching for a vector s ∈ L such that ‖s‖ ≈ gh(L), and such
that sd := πd(s) ∈ L. By exhaustive search over the list L, let us assume we
know sd; we now need to recover the full vector s. We write s = Bx and split
x = (x′,x′′) where x′ ∈ Zd and x′′ ∈ Zn−d. Note that sd = πd(Bx) = Bdx

′′, so
we may recover x′′ from sd.

We are left with the problem of recovering x′ ∈ Zd such that B′x′ + B′′x′′

is small where [B′|B′′] = B, i.e., �nding the short vector s in the lattice coset
L(B′)−B′′x.

For appropriate parameters, this is an easy BDD instance over the d-dimensional
lattice spanned by B′. More precisely, a su�cient condition to solve this problem
using Babai's Nearest-Plane algorithm [?] is that |〈b∗i , s〉| ≤ 1

2‖b
∗
i ‖2 for all i < d.

A su�cient condition is that:

gh(L) ≤ 1

2
min
i<d
‖b∗i ‖. (4)

This conditions is far from tight, and in practice should not be a serious issue.
Indeed, even for a strongly reduced basis, the d �rst Gram-Schmidt lengths won't
be much smaller than gh(L), say by more than a factor 2. On the other hand
assuming s has a random direction we expect |〈b∗i , s〉| ≤ ω(lnn)/

√
n · ‖b∗i ‖ · ‖s‖

except with super-polynomially small probability. We will check this condition
in the complexity analysis below (Section ??), and will simply ignore it in the
rest of this paper.

Algorithm 2 SubSieve(L, d)
Require: The basis B = [B′|B′′] of a lattice L of dimension n
Ensure: A short vector of L
L← Sieve(Ld)
for each wi ∈ L do

Compute x′′i such that Bd · x′′i = wi

ti = B′′ · x′′
si ← Babai(B′, ti) + ti

end for

return the shortest si

Heuristic Claim 1 For a random lattice, and under conditions (??) and (??),
SubSieve(L, d) outputs the shortest vector of L, and its complexity is dominated
by the cost N2 · poly(n) of Sieve(Ld), with an additive overhead of n2 · N real
arithmetic operations.

We note that the success of our approach depends crucially on the length
of the Gram-Schmidt norms ‖b∗i ‖ (indeed for a �xed d, gh(Ld) depends only of∏
i≥d ‖b∗i ‖). In the following Section ??, we will argue that our approach can be

successfully instantiated with d = Θ(n/ lnn) using an appropriate pre-processing
of negligible cost.

3.2 Complexity analysis

Assume that our lattice L has volume 1 (without loss of generality by scal-
ing), and that its given basis B is BKZ-b reduced. Using the Geometric Series
Assumption (De�nition ??) we calculate the volume of Ld:

Vol(Ld) =
n−1∏
i=d

‖b∗i ‖ =
n−1∏
i=d

α
n−1
2 −i

b = α
d(d−n)/2
b .

Recalling that for a k-dimensional lattice we have gh(L) ≈ Vol(L)1/k
√
k/(2πe),

condition (??) is rewritten to√
n

2πe
≤
√

4

3
·
√
n− d
2πe

· α−d/2b .

Taking logarithms, we rewrite the above condition as

d lnαb ≤ ln(4/3) + ln(1− d/n).

We (arbitrarily) choose b = n/2 which ensures that the cost of the BKZ-
preprocessing is negligible compared to the cost of sieving in dimension n−o(n).
Unrolling the de�nitions, we notice that lnαb = Θ((ln b)/b) = Θ((lnn)/n). We
conclude that condition (??) is satis�ed for some d = Θ(n/ lnn).

The second condition (??) for the correctness of Babai lifting is easily satis-
�ed: for i < d = o(n) we have ‖b∗i ‖ = gh(b)(n−o(n))/b = gh(b)2−o(1) = n1−o(1),
while gh(n) = Θ(n1/2). This concludes our argument of the following claim.

Heuristic Claim 2 Having preprocessed the basis B of L with the BKZ algo-
rithm with blocksize b = n/2 �for a cost of at most poly(n) time the cost of Sieve
in dimension n/2� our SubSieve(L, d) algorithm will �nd the shortest vector of
L for some d = Θ(n/ lnn).

In particular, SubSieve(L, d) is faster than Sieve(L) by a sub-exponential fac-
tor 2Θ(n/ lnn).

The fact that BKZ-b requires only poly(n) calls to an SVP oracle in dimension
b is justi�ed in [?].

3.3 (Progressive) Iteration as pre-processing

We now propose an alternative approach to provide pre-processing in our con-
text. It consists of applying an extension of the SubSieve algorithm iteratively
from a weakly reduced basis to a strongly reduced one. To proceed, we �rst need
to slightly extend our algorithm, to not only provide one short vector, but a
partial basis V = [v0| . . . |vm] of rank m, such that their Gram-Schmidt lengths
are as short as possible. In other words, the algorithm now attempts to provide
the �rst vectors of an HKZ-reduced basis. For all practical purpose, m = n/2 is
su�ciently large. This extension comes at a negligible additional cost of O(n3)·N
compared to the sieve of complexity poly(n) ·N2.

Algorithm 3 SubSieve+(L, d)
Require: The basis B = [B′|B′′] of a lattice L of dimension n
Ensure: A short vector of L
L← Sieve(Ld)
for each wi ∈ L do

Compute x′′i such that Bd · x′′i = wi

ti = B′′ · x′′
si ← Babai(B′, ti) + ti

end for

for j = 0 . . . n/2− 1 do
Set vj to be the si vector minimizing ‖π(v0...vj−1)⊥(si)‖ such that s 6∈

Span(v0 . . .vj−1)
end for

return (v0 . . .vn/2−1)

Then, the iteration consists of completing V into a basis of L, and to use it
as our new input basis B.4

4 This can be done by applying LLL [?] on the matrix [V|B], which eliminates linear
dependencies. As LLL can only decrease partial determinants, the volume of the �rst
d-vectors after this process can only be smaller than the volume of V: this does not
a�ect condition (??) and (??).

Additionally, as conditions (??) or even its optimistic variant (??) are not
necessary conditions, we may hope that a larger value of d may probabilistically
lead faster to the shortest vector. In fact, hoping to obtain the shortest vector
with d larger than required by the pessimistic condition (??) can be interpreted
in the pruning framework of [?, ?]; this will be discussed in Section ??.

For this work, we proceed with a simple strategy, namely we iterate starting
with a large value of d (say n/4) and decrease d by 1 until the shortest vector (or
a vector of the desired length) is found. This way, the failed attempts with too
small d nevertheless contribute to the approximate HKZ-reduction, improving
the basis for the next attempt.

The author admit to have no theoretical arguments (or even heuristic) to jus-
tify that this iterating approach should be more e�cient than the preprocessing
approach presented in Section ??. Yet, as we shall see, this method works quite
well in practice, and has the advantage of being much simpler to implement.

Remark. One natural tweak is to also consider the vectors in B′ when construct-
ing the new partial basis V so as to ensure that the iteration never introduces
a regression. Yet, as the optimistic condition is probabilistic, we may get stuck
with an unlucky partial basis, and prefer to change it at each iteration. This
is reminiscent of the rerandomization of the basis in the extreme pruning tech-
nique of Gama et al. [?]. It is therefore not entirely clear if this tweak should be
applied. In practice, we noted that applying this trick made the running time
of the algorithm much more erratic, making it hard to determine if it should be
better on average. For the sake of this initial study, we prefer to stick with the
more stable version of the algorithm.

3.4 Tentative prediction of d on quasi-HKZ reduced basis

We now attempt to estimate the concrete maximal value d allowing our algo-
rithm to succeed. We nevertheless warn the reader against strong conclusions
on the concrete hardness of SVP from the analysis below. Indeed, it does not
capture some practical phenomena, such as the fact that (??) is not strictly
true in practice,5 or more subtly that the directions of the vectors of B are
not independent of the direction of the shortest vector s when B is so strongly
reduced. Additionally, we identify in Section ?? avenues for improvements that
could make this analysis obsolete.

We work under the heuristic assumption that the iterations up to dlast − 1
have almost produced an HKZ-reduced basis: ‖b∗i ‖ ≈ `i where `i follows the
HKZ-shape of dimension n (De�nition ??). From there, we determine whether
the last iteration with d = dlast should produce the shortest vector according to
both the pessimistic and optimistic condition. For i � n we use the �rst order
approximation ln `i ≈ ln `0 − i · ln `0/`1 and obtain

ln `i ≈ ln `0 − i ·
ln(n/2π)

2n
.

5 some vectors below the
√

4/3 · gh(Ld) bound may be missing, while other vectors
above this bound may be included.

The pessimistic condition (??) and the optimistic condition (??) respectively
rewrite as:

ln `0 ≤ ln
√
4/3 + ln `d and ln

√
n− d
n

+ ln `0 ≤ ln
√
4/3 + ln `d.

With a bit of rewriting, we arrive at the following maximal value of d respectively
under the following pessimistic and optimistic conditions:

d ≈ n ln 4/3

ln(n/2π)
and d ≈ n ln 4/3

ln(n/2πe)
.

We can also numerically simulate more precisely the maximal value of d using
the exact values of the `i. All four predictions are depicted on Figure ??. Our
plots start at dimension 50, the conventional cut-o� for the validity of the Gaus-
sian Heuristic [?, ?]. We note that the approximated predictions are accurate,
up to an additive term 2 over the value of d for relevant dimensions n ≤ 250.
We also note that in this range the dimension gain d looks very much linear: for
all practical concerns, our improvement should appear essentially exponential.

50 100 150 200 250
n

5

10

15

20

25

d

pessimistic simulation
pessimistic approximation
optimistic simulation
optimistic approximation

Fig. 1. Predictions of the maximal successful choice of d, under various methods and
conditions.

4 Other Optimizations and Implementation Details

In this section, we describe a baseline sieve algorithm and two additional tricks
to improve its practical e�ciency. So as to later report the improvement brought
by each trick and by our main contribution, we shall refer to 4 versions of our
algorithm, activating one feature at the time:

� V0: GaussSieve baseline implementation
� V1: GaussSieve with XOR-POPCNT trick
� V2: GaussSieve with XOR-POPCNT trick and progressive sieving
� V3: Iterated SubSieve+ with XOR-POPCNT trick and progressive sieving.

4.1 Baseline Implementation

As a baseline algorithm, we essentially use the Gauss-Sieve algorithm of [?], with
the following tweaks.

First, we do not resort to Gaussian Sampling [?] for the construction of the
list L as the sphericity of the initial list does not seem so crucial in practice,
and leads to starting the sieve with vectors longer than necessary. Instead, we
choose vectors by sampling their n/4 last coordinates in base B uniformly in
{0,±1,±2}, and choose the remaining coordinates deterministically using the
Babai Nearst-Plane algorithm [?].

Secondly, we do not maintain the list perfectly sorted, but only re-sort it
periodically. This makes the implementation somewhat easier6 and does not
a�ect performances noticeably. Similarly, fresh random vectors are not inserted
in L one by one, but in batches.

Thirdly, we use a hash table to prevent collisions: if v ±w is already in the
list, then we cancel the reduction v ← v ± w. Our hash function is de�ned as
random linear function h : Zn → Z/264Z tweaked so that h(x) = h(−x); hashing
is fast, and false collisions should be very rare. This function is applied to the
integer coordinates of the vector in base B.

At last, the termination condition is as follows: the algorithm terminates
when no pairs can be reduced, and when the ball of radius

√
4/3 gh(L) is half-

saturated according to the Gaussian Heuristic, i.e. when the list L contains at
least 1

2

√
4/3

n
vectors of length less than

√
4/3 gh(L).

At the implementation level, and contrary to most implementations of the
literature, our implementation works by representing vectors in bases B and
B∗ rather than in the canonical basis of Rn. It makes application of Babai's
algorithm [?] more idiomatic, and should be a crucial feature to use it as an
SVP solver inside BKZ.

4.2 The XOR-POPCNT Trick (a.k.a. SimHash)

This trick �which can be traced back to [?]� was developed for sieving in [?].
It consists of compressing vectors to a short binary representation that still
carries some geometrical information: it allows for a quick approximation of
inner-products. In more detail, they choose to represent a real vector v ∈ Rn
by the binary vector ṽ ∈ Zn2 of it signs, and compute the Hamming weight
H = |w̃⊕ ṽ| to determine whether 〈v,w〉 is expected to be small or large (which
in turn informs us about the length ‖v−w‖2 = ‖v‖2 + ‖w‖2− 2〈v,w〉). If H is
small enough then the exact length is computed, otherwise the pair is directly
rejected.

This trick greatly decreases the practical computational cost and the mem-
ory bandwidth of the algorithm, in particular by exploiting the native POPCNT

instruction available on most modern CPUs.

6 It avoids resorting to non-contiguous containers, following the nomenclature of c++
standard library.

Following the original idea [?], we use a generalized version of this trick,
allowing the length of the compressed representation to di�er from the lattice
dimension. Indeed, we can for example choose c 6= n vectors r1, . . . , rc, and
compress v as ṽ ∈ Zc2 where ṽi = sign(〈v, ri〉). This allows not only to align c to
machine-word size, but also to tune the cost and the �delity of this compressed
representation.

In practice we choose c = 128 (2 machine words), and set the ri's to be sparse
random ternary vectors. We set the acceptance threshold to |w̃⊕ṽ| < 47,7 having
optimized this threshold by trial and error. Experimentally, the overall positive
rate of this test is of about 2%, with a false negative rate of less than 30%. The
sieve algorithm automatically compensates for false-negatives by increasing the
list size.

4.3 Progressive Sieving

The trick described in this section was independently invented by Laarhoven and
Mariano in [?]; and their work provides a much more thorough investigation of
it. It consists of progressively increasing the dimension, �rst running the sieve
in sublattices L[0,i] for i increasing from (say) n/2 to n.8

It allows us to obtain an initial small pool of rather short vectors for a
much cheaper cost. In turn, when we increase the dimension and insert new
fresh vectors, the long fresh vectors get shorter noticeably faster thanks to this
initial pool. We use the same terminating condition over L[0,i] to decide when
to increase i than the one described over the full lattice in section ??.

4.4 Implementation details

The core of the our Sieving implementation is written in c++ and the high level
algorithm in python. It relies mostly on the fpylll [?] python wrapper for
the fplll [?] library, used for calls to �oating-point LLL [?] and providing the
Gram-Schmidt orthogonalization. Our code is not templated by the dimensions,
doing so could improve the performance substantially by allowing the compiler
to unroll and vectorize the inner-product loop.

Our implementation is open source, available at https://github.com/lducas/
SubSieve.

5 Experiments and Performances

In this section, we report on the behavior in practice of our algorithm and the
performances of our implementation. All experiments were ran on a single core
(Intel Core i7-4790 @3.60GHz).

7 Of course, we also test wether |w̃ ⊕ ṽ| > 128 − 47 in which case we attempt the
reduction v← v +w instead of v← v −w.

8 Note that unlike in our main algorithm SubSieve, the sublattices considered here are
not projected sublattices, but simply the lattice spanned by the �rst basis vectors.

https://github.com/lducas/SubSieve
https://github.com/lducas/SubSieve

For these experiments, we use the Darmstadt lattice challenges [?]. We make
a �rst run of fplll's pruned enumeration (repeating it until 99% success prob-
ability) to determine the exact shortest vector.9 Then, for our experiments, we
stop our iteration of the SubSieve+ algorithm when it returns a vector of the
same length.

5.1 The dimension gain d in practice

In Figure ??, we compare the experimental value of d to the predictions of
Section ??. The area of each disc at position (n, d) is proportional the number
of experiments that succeeded with dlast = d. We repeated the experiment 20
times for each dimension n.

60 62 64 66 68 70 72 74 76 78 80 82
n

6

7

8

9

10

11

12

13

14

15

16

17

18

19

d

pessimistic simulation
pessimistic approximation
optimistic simulation
optimistic approximation
Experimental average

Fig. 2. Comparsion between experimental value of d with the prediction of Section ??.

We note that the average dlast �ts reasonably well with the simulated opti-
mistic prediction. Also, in the worst case, it is never lower than the simulated
pessimistic prediction, except for one outlier in dimension 62.

Remark. The apparent erratic behavior of the average for varying n is most
likely due to the fact that our experiments are only randomized over the input
basis, and not over the lattice itself. Indeed the actual length of the shortest
vectors vary a bit around the Gaussian Heuristic, and it seems that the shorter
it actually is, the easier it is to �nd with our algorithm.

5.2 Perfomances

We present in Figure ?? the perfomances of the 4 versions of our implementation
and of fplll's pruned enumeration with precomputed strategies [?].

9 Which is signi�cantly harder than �nding the approximation required by [?] to enter
in the hall of fame.

40 50 60 70 80
n

100

101

102

103

T (sec.)

Fit V0: 20. 489n− 21. 6

Fit V1: 20. 505n− 24. 6

Fit V2: 20. 470n− 24. 8

Fit V3: 20. 396n− 23. 6

Fit Enum: 20. 0683n · lnn− 17. 9

V0 (Sieve)
V1 (Sieve)
V2 (Sieve)
V3 (SubSieve)
fplll's Pruned Enum.

Fig. 3. Runing time T of all the 4 versions of sieving from ?? and fplll's pruned
enumeration with precomputed strategies.

Remark. In fplll, a strategy consists of the choice of a pre-processing blocksize
b and of pruning parameters for the enumeration, as an attempt to reconstruct
the BKZ 2.0 algorithm of Chen and Nguyen [?].

The external program Strategizer [?] �rst applies various descent tech-
niques to optimize the pruning parameters, following the analysis of [?, ?, ?],
and iterates over all (reasonable) choices of b, to return the best strategy for
each dimension n. It may be considered near the state of the art, at least for
the dimensions at hand. Unfortunately, we are unaware of timing reports for
exact-SVP in this range of dimensions for other implementations.

It would also be adequate to compare ourselves to the recent discrete-pruning
techniques of Fukase and Kashiwabara [?, ?], but again, we lack matching data.
We note that neither the analysis of [?] nor the experiments of [?] provide ev-
idences that this new method is signi�cantly more e�cient than the method
of [?].

For a fair comparison with SubSieve, we stop repeating the pruned enumera-
tion as soon as it �nds the shortest vector, without imposing a minimal success
probability (unlike the �rst run used to determine the of length shortest vec-
tors). We also inform the enumerator of the exact length of that shortest vector,
making its task somehow easier: without this information, it would enumerate
at a larger radius.

As Algorithms V0, V1 and V2 have a rather deterministic running time
depending only on the dimension, we only provide one sample. For V3 and
enumeration, we provide 20 samples. To compute the �ts, we �rst averaged the

running times for each dimension n, and then computed the least-square linear
�t of their logarithms (computing directly an exponential least-square �t leads
to a �t only capturing the two last dimensions).

The given �ts are only indicative and we warn against extrapolations. In
particular, we note thatthe linear �t of V3 is below the heuristic asymptotic
estimate of (4/3)n+o(n).

We conclude that our main contribution alone contributes a speed-up of more
than an order of magnitude in the dimensions ≥ 70 (V3 versus V2), and that
all the tricks taken together provide a speed-up of more than two orders of
magnitudes (V3 versus V0). It performs within less than an order of magnitude
of enumeration (V3 versus Pruned Enum).

5.3 Performance comparison to the literature

The literature on lattice sieving algorithms is vast [?, ?, ?, ?, ?, ?, ?, ?], and
many papers do report implementation timings. We compare ourselves to four
of them, namely a baseline implementation [?], and three advanced sieve imple-
mentations [?, ?, ?], which represent (to the best of our knowledge) the state of
the art in three di�erent directions. This is given in Table ??.

Algorithms

V0 V1 V2 V3 [?]a [?] [?] [?]

features

XOR-POPCNT trick x x x x
pogressive sieving x x

SubSieve x
LSH (more mem.) x
tuple (less mem.) x

Dimension Running times

n = 60 227s 49s 8s .9s 464s 79s 13s 1080s

n = 70 - - 276s 10s 23933s 4500s ≈ 250s b 33000s
n = 80 - - - 234s - - 4320s 94700s

CPU frequency (GHz) 3.6 3.6 3.6 3.6 4.0 4.0 2.3 2.3

a As reported by [?].
b This value is not given in [?] as their implementation only handles dimensions that
are multiples of 4. We estimated it from the given values for n = 68 (169s) and n = 72
(418s).

Table 1. Comparison with other Sieve implementations.

Accounting for the CPU frequencies, we conclude that the implementation of
our algorithm is more than 10 times faster than the current fastest sieve, namely
the implementation of the Becker et al. algorithm [?] from Mariano et al. [?].10

Remark. While we can hardly compare to this computation considering the lack
of documentation, we note that T. Kleinjung holds the record for the shortest
vector found in Darmstadt Lattice challenge [?] of dimension 116 (seed 0), since
May 2014, and reported having used a sieve algorithm. According to Herold and
Kirshanova [?, Acknowledgments], the algorithm used by Kleinjung is similar to
theirs.

Another Sieving record was achieved by Bos et al. [?], for an ideal lattice
of dimension 128, exploiting symmetries of ideal lattices to improve time and
memory substantially. The computation ran over 1024 cores for 9 days. Similar
computation have been run on GPU's [?], using 8 GPU's for about 35 days.

6 Conclusion

6.1 Sieve will outperform enumeration

While this statement is asymptotically true, it was a bit unclear where the cross-
over should be, and therefore whether sieving algorithms have any practical
relevance for concrete security levels. For example, it is argued in [?] that the
cross-over would happen somewhere between n = 745 and n = 1895.

Our new results suggest otherwise. We do refrain from computing a cross-
over dimension from the �ts of Figure ?? which are far from reliable enough for
such an extrapolation; our prediction is of a di�erent nature.

Our prediction is that �unless new enumerations techniques are discovered�
further improvements of sieving techniques and implementations will outperform
enumeration for exact-SVP in practice, for reachable dimensions, maybe even as
low as n = 90. This, we believe, would constitute a landmark result. This pre-
diction is backed by the following guesstimates, but also by the belief that �ne-
tuning, low-level optimizations and new ideas should further improve the state
of the art. Some avenues for further improvements are discussed in Section ??.

Guesstimates. We can try to guesstimate how our improvements would combine
with other techniques, in particular with List-Decoding Sieve [?]. The exact
conclusion could be a�ected by many technical details, and is mostly meant to
motivate further research and implementation e�ort.

Mariano et al. [?] report a running time of 1850s for LDSieve [?] in dimension
n = 76. First, the XOR-POPCNT trick is not orthogonal to LSH techniques, so we
shall omit it.11 The progressive sieving trick provides a speed up of about 4

10 The CPU frequency may not be the only property of the machines to take account of
for a perfect comparison: memory access delay, memory bandwidth and cache sizes
may have noticeable impacts.

11 It could still be that, with proper tuning, combining them gives an extra speed-up.

in the relevant dimensions (V1 vs V2). Then, our main contribution o�ers 14
dimensions �for free�, (n = 90, dlast = 14). More accurately, the iteration for
increasing d would come at cost a factor

∑
i≥0(

3
2)
−i/2 ≈ 5.5. Overall we may

expect to solve exact-SVP 90 in time ≈ 5.5 · 1850/4 ≈ 2500s. In comparison,
fpylll's implementation of BKZ 2.0 [?] solved exact-SVP in average time 2612s
over Darmstadt lattice challenge 90 (seed 0) over 20 samples on our machine. For
a fairer comparison across di�erent machines, this Enumeration timing could be
scaled up by 3.6GHz/2.3GHz ≈ 1.5.

6.2 Avenues for Further Improvements

Pruning in SubSieve. As we mentioned in Section ??, our optimistic condi-
tion (??) can be viewed as a form of pruning: this condition corresponds in the
framework of [?, ?] to a pruning vector of the form (1, 1, . . . , 1, γ, . . . γ) ∈ Rn with
d many 1's, and γ = (n − d)/n. A natural idea is to attempt running SubSieve
using γ < (n−d)/n, i.e. being even more optimistic than condition (??). Indeed,
rather than cluelessly increasing d at each iteration, we could compute for each
d the success probability, and choose the value of d giving the optimal cost over
success probability ratio.

Walking beyond
√
4/3·gh(Ld). Notingm = n−d, another idea could consist

of trying to get more vectors than the
√

4/3
m

shortest for a similar or slightly
higher cost than the initial sieve, as this would allow d to increase a little bit.
For example, we can extract the sublist A of all the vectors of length less than
α · gh(Ld) where α ≤

√
4/3 from the initial sieve, and use them to walk inside

the ball of radius β · gh(Ld) ≥
√
4/3 where α

β

√
β2 − α2/4 = 1. Indeed, one can

show that the volume of (v + αB) ∩ (βB) = Ω(nc) for some constant c, where
‖v‖ = β. According to the Gaussian Heuristic, this means that from any lattice
point in the ball of radius β + ε, there exists a step in the list A that leads to
another lattice point in the ball of radius β + ε, for some ε = o(1). This kind of
variation have already been considered in the Sieving literature [?, ?].

Each step of this walk would cost αm and there are βm+o(m) many points to
visit. Note that in our context, this walk can be done without extra memory, by
instantly applying Babai lifting and keeping only interesting lifted vectors. We
suspect that this approach could be bene�cial in practice for β =

√
4/3 + o(1),

if not for the running time, at least for the memory complexity.

Amortization inside BKZ. We now consider two potential amortizations in-
side BKZ. Both ideas are not orthogonal to each others (yet may not be incom-
patible). If our SubSieve algorithm is to be used inside BKZ, we suggest �xing
dlast (say, using the optimistic simulation), and to accept that we may not always
solve SVP exactly; this is already the case when using pruned enumeration.

Already pre-processed. One notes that SubSieve+ does more than ensure the
shorteness of the �rst vector, and in fact attempts a partial HKZ reduction.
This means that the second block inside the BKZ loop is already quite reduced
when we are over with the �rst one. One could therefore hope that directly
starting the iteration of Section ?? at d = dlast could be su�cient for the second
block, and so forth.

Optimistically, this would lead to an amortization factor f of f =
∑
i≥0(

4
3)
−i =

4, or even f =
∑
i≥0(

3
2)
−i/2 ≈ 5.5 depending on which sieve is used. In practice,

it may be preferable to start at d = dlast − 1 for example.

5 blocks for the price of 9/4. A second type of amortization consists of overshoot-
ing the blocksize by an additive term k, so as to SVP-reduce k + 1 consecutive
blocks of dimension b for the price of one sieving in dimension b + k. Indeed,
an HKZ-reduction of size b + k as attempted by SubSieve+ directly guarentees
the BKZ-b reduction of the �rst k + 1 blocks: we may jump directly by k + 1
blocks. This overshoot costs a factor (3/2)k/2 using the List-Decoding-Sieve [?].
We therefore expect to gain a factor f = (k + 1)/(3/2)k/2, which is maximal at
k = 4, with f = 20/9 ≈ 2.2.

Further, we note that the obtained basis could be better than a usual BKZ-b
reduced basis, maybe even as good as a BKZ-(b+ k−1

2) reduced basis. If so, the

gain may be as large as f ′ = (k + 1)/(3/2)(k+1)/4, which is maximal at k = 9,
with f ′ ≈ 3.6.

