Masking the GLP Lattice-Based
Signature Scheme at Any Order

Gilles Barthe!, Sonia Belaid?, Thomas Espitau?, Pierre-Alain Fouque?,
Benjamin Grégoire®, Mélissa Rossi®”, and Mehdi Tibouchi®

! IMDEA Software Institute
gilles.barthe@imdea.org
2 CryptoExperts
sonia.belaid@cryptoexperts.com
* UPMC
thomas.espitau@lip6.fr
4 Univ Rennes
pierre-alain.fouque@univ-rennesl.fr
® Inria Sophia Antipolis
benjamin.gregoire@sophia.inria.fr
6 Thales
7 Département d’informatique de I’'Ecole normale supérieure de Paris,
CNRS, PSL Research University, INRIA
melissa.rossi@ens.fr
8 NTT Secure Platform Laboratories
tibouchi.mehdi@lab.ntt.co. jp

Abstract. Recently, numerous physical attacks have been demonstrated
against lattice-based schemes, often exploiting their unique properties
such as the reliance on Gaussian distributions, rejection sampling and
FFT-based polynomial multiplication. As the call for concrete imple-
mentations and deployment of postquantum cryptography becomes more
pressing, protecting against those attacks is an important problem. How-
ever, few countermeasures have been proposed so far. In particular, mask-
ing has been applied to the decryption procedure of some lattice-based
encryption schemes, but the much more difficult case of signatures (which
are highly non-linear and typically involve randomness) has not been
considered until now.

In this paper, we describe the first masked implementation of a lattice-
based signature scheme. Since masking Gaussian sampling and other
procedures involving contrived probability distribution would be pro-
hibitively inefficient, we focus on the GLP scheme of Giineysu, Lyuba-
shevsky and Poppelmann (CHES 2012). We show how to provably mask
it in the Ishai-Sahai-Wagner model (CRYPTO 2003) at any order in a
relatively efficient manner, using extensions of the techniques of Coron et
al. for converting between arithmetic and Boolean masking. Our proof re-
lies on a mild generalization of probing security that supports the notion
of public outputs. We also provide a proof-of-concept implementation to
assess the efficiency of the proposed countermeasure.
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1 Introduction

As the demands for practical implementations of postquantum cryptographic
schemes get more pressing ahead of the NIST postquantum competition and
in view of the recommendations of various agencies, understanding the security
of those schemes against physical attacks is of paramount importance. Lattice-
based cryptography, in particular, is an attractive option in the postquantum
setting, as it allows to design postquantum implementations of a wide range of
primitives with strong security guarantees and a level of efficiency comparable to
currently deployed RSA and elliptic curve-based schemes. However, it poses new
sets of challenges as far as side-channels and other physical attacks are concerned.
In particular, the reliance on Gaussian distributions, rejection sampling or the
number-theoretic transform for polynomial multiplication have been shown to
open the door to new types of physical attacks for which it is not always easy
to propose efficient countermeasures.

The issue has in particular been laid bare in a number of recent works for the
case of lattice-based signature schemes. Lattice-based signature in the random
oracle model can be roughly divided into two families: on the one hand, con-
structions following Lyubashevsky’s “Fiat—Shamir with aborts” paradigm [23],
and on the other hand, hash-and-sign signatures relying on lattice trapdoors,
as introduced by Gentry, Peikert and Vaikuntanathan [19]. Attempts have been
made to implement schemes from both families, but Fiat—Shamir signatures
are more common (although their postquantum security is admittedly not as
well grounded). The underlying framework is called Fiat—Shamir with aborts
because, unlike RSA and discrete logarithm-based constructions, lattice-based
constructions involve sampling from sets that do not admit a nice algebraic struc-
ture. A nalve sampling algorithm would leak partial key information, in much
the same way as it did in early heuristic schemes like GGH and NTRUSign;
this is avoided by forcing the output signature to be independent of the secret
key using rejection sampling. Many instantiations of the framework have been
proposed [23,24,21,15,27], some of them quite efficient: for example, the BLISS
signature scheme [15] boasts performance and key and signature sizes roughly
comparable to RSA and ECDSA signatures.

However, the picture becomes less rosy once physical attacks are taken into
account. For instance, Groot Bruinderink et al. [20] demonstrated a cache attack
targetting the Gaussian sampling of the randomness used in BLISS signatures,
which recovers the entire secret key from the side-channel leakage of a few thou-
sand signature generations. Fault attacks have also been demonstrated on all
kinds of lattice-based signatures [17,6]. In particular, Espitau et al. recover the
full BLISS secret key using a single fault on the generation of the random-
ness (and present a similarly efficient attack on GPV-style signatures). More
recently, ACM CCS 2017 has featured several papers [18,26] exposing further
side-channel attacks on BLISS, its variant BLISS-B, and their implementation
in the strongSwan VPN software. They are based on a range of different side
channels (cache attacks, simple and correlation electromagnetic analysis, branch



tracing, etc.), and some of them target new parts of the signature generation
algorithm, such as the rejection sampling.

In order to protect against attack such as these, one would like to apply pow-
erful countermeasures like masking. However, doing so efficiently on a scheme
like BLISS seems hard, as discussed in [18]. Indeed, the sampling of the Gaus-
sian randomness in BLISS signature generation involves either very large lookup
tables, which are expensive to mask efficiently, or iterative approaches that are
hard to even implement in constant time—let alone mask. Similarly, the rejection
sampling step involves transcendental functions of the secret data that have to
be computed to high precision; doing so in masked form seems daunting.

However, there exist other lattice-based signatures that appear to support
side-channel countermeasures like masking in a more natural way, because they
entirely avoid Gaussians and other contrived distributions. Both the sampling
of the randomness and the rejection sampling of signatures target uniform dis-
tributions in contiguous intervals. Examples of such schemes include the GLP
scheme of Giineysu, Lyubashevsky and Péppelmann [21], which can be seen as
the ancestor of BLISS, and later variants like the Dilithium scheme of Ducas et
al. [16] (but not Dilithium-G).

In this paper, we show how to efficiently mask the GLP scheme at any mask-
ing order, so as to achieve security against power analysis and related attacks
(both simple power analysis and higher-order attacks like differential/correlation
power analysis). This is to the best of our knowledge the first time a masking
countermeasure has been applied to protect lattice-based signatures.

Related work. Masking is a well-known technique introduced by Chari, Rao
and Rohatgi at CHES 2002 [7] and essentially consists in splitting a secret value
into d+1 ones (d is thus the masking order), using a secret sharing scheme. This
will force the adversary to read many internal variables if he wants to recover the
secret value, and he will gain no information if he observes fewer than d values.
The advantage of this splitting is that linear operations cost nothing, but the
downside is that non-linear operations (such as the AES S-box) can become quite
expensive. Later, Ishai, Sahai and Wagner [22] developed a technique to prove the
security of masking schemes in the threshold probing model (ISW), in which the
adversary can read off at most d wires in a circuit. Recently, Duc, Dziembowski
and Faust [14] proved the equivalence between this threshold model and the more
realistic noisy model, in which the adversary acquires leakage on all variables,
but that leakage is perturbed with some noise distribution, as is the case in
practical side-channel attacks. Since the ISW model is much more convenient
for designing and proving masking countermeasures, it is thus preferred, as the
equivalence results of Duc et al. ultimately ensure that a secure implementation
in the ISW model at a sufficiently high masking order is going to be secure
against practical side-channel attacks up to a given signal-to-noise ratio.
Masking has been applied to lattice-based encryption schemes before [29,28].
However, in these schemes, only the decryption procedure needs to be protected,
and it usually boils down to computing a scalar product between the secret



key and the ciphertext (which is a linear operation in the secret data) followed
by a comparison (which is non-linear, but not very difficult to mask). Oder et
al. [25] point out a number of issues with those masked decryption algorithms,
and describe another one, for a CCA2-secure version of Ring-LWE public-key
encryption.

Our results. Masking lattice-based signatures, even in the comparatively sim-
ple case of GLP, turns out to be surprisingly difficult—possibly more so than any
of the previous masking countermeasures considered so far in the literature. The
probabilistic nature of signature generation, as well as its reliance on rejection
sampling, present challenges (both in terms of design and of proof techniques)
that had not occurred in earlier schemes, most of them deterministic. In addi-
tion, for performance reasons, we are led to require a stronger security property
of the original, unprotected signature scheme itself, which we have to establish
separately. More precisely, the following issues arise.

Conversion between Boolean and mod-p arithmetic masking. Most steps of the
signing algorithm involve linear operations on polynomials in the ring R =
Zy[z]/(z™ + 1). They can thus be masked very cheaply using mod-p arithmetic
masking: each coefficient is represented as a sum of d+ 1 additive shares modulo
p. For some operations, however, this representation is less convenient.

This is in particular the case for the generation of the randomness at the
beginning of the algorithm, which consists of two polynomials y,ys with uni-
formly random coeflicients in a subinterval [—k, k] of Z,. Generating such a ran-
dom value in masked form is relatively easy with Boolean masking, but seems
hard to do efficiently with arithmetic masking. Therefore, we have to carry out
a conversion from Boolean masking to mod-p arithmetic masking. Such conver-
sions have been described before [13,11], but only when the modulus p was a
power of 2. Adapting them to our settings requires some tweaks.

Similarly, the rejection sampling step amounts to checking whether the poly-
nomials in the signature have their coefficients in another interval [—%’, k’]. Car-
rying out the corresponding comparison is again more convenient with Boolean
masking, and hence we need a conversion algorithm in the other direction, from
mod-p arithmetic masking to Boolean masking. We are again led to adapt ear-
lier works on arithmetic-to-Boolean masking conversion [13,12] to the case of a
non-prime modulus.

Security of the signature scheme when revealing the “commitment” value. One
of the operations in signature generation is the computation of a hash function
mapping to polynomials in R of a very special shape. Masking the computation
of this hash function would be highly inefficient and difficult to combine with the
rest of the algorithm. Indeed, the issue with hashing is not obtaining a masked
bit string (which could be done with something like SHA-3), but expanding that
bit string into a random-looking polynomial ¢ of fixed, low Hamming weight
in masked form. The corresponding operation is really hard to write down as



a circuit. Moreover, even if that could be done, it would be terrible for per-
formances because subsequent multiplications by ¢ are no longer products by
a known sparse constant, but full-blown ring operations that have to be fully
masked.

But more importantly, this masking should intuitively be unnecessary. In-
deed, when we see the signature scheme as the conversion of an identification
protocol under the Fiat—Shamir transform, the hash function computation cor-
responds to the verifier’s sampling of a random challenge ¢ after it receives the
commitment value r from the prover. In particular, the verifier always learns the
commitment value r (corresponding to the input of the hash function), so if the
identification protocol is “secure”, one should always be able to reveal this value
without compromising security. But the security of the signature scheme only
offers weak guarantees on the security of the underlying identification protocol,
as discussed by Abdalla et al. [1].

In usual Fiat—Shamir signatures, this is never an issue because the commit-
ment value can always be publicly derived from the signature (as it is necessary
for signature verification). However, things are more subtle in the Fiat—Shamir
with aborts paradigm, since the value r is not normally revealed in executions
of the signing algorithm that do not pass the rejection sampling step. In our set-
ting, though, we would like to unmask the value to compute the hash function in
all cases, before knowing whether the rejection sampling step will be successful.
If we do so, the side-channel attacker can thus learn the pair (r, ¢) corresponding
to rejected executions as well, and this is not covered by the original security
proof, nor does security with this additional leakage look reducible to the original
security assumption.

However, it is heuristically a hard problem to distinguish those pairs from
uniform (an LWE-like problem with a rather unusual distribution), so one pos-
sible approach, which requires no change at all to the algorithm itself, is to redo
the security proof with an additional, ad hoc hardness assumption. This is the
main approach that we suggest in this paper. Although heuristically safe, it is
rather unsatisfactory from a theoretical standpoint, so we additionally propose
another approach:? compute the hash function not in terms of r itself, but of f(r)
where f is a statistically-hiding commitment scheme whose opening information
is added to actual signatures, but not revealed in executions of the algorithm
that do not pass the rejection sampling. Using a suitable f, f(r) can be efficiently
computed in masked form, and only the result needs to be unmasked. It is then
clear that the leakage of (f(r),c) is innocuous, and the modified scheme can be
proved entirely with no additional hardness assumption. The downside of this
approach is of course that the commitment key increases the size of the public
key, the opening information increases the size of signatures, and the masked
computation of the commitment itself takes a not insignificant amount of time.
For practical purposes, we therefore recommend the heuristic approach.

9 We are indebted to Vadim Lyubashevsky for suggesting this approach.



Security of masking schemes with output-dependent probes. In order to prove the
security of our masked implementation we see that we reveal some public value
r or a commitment of it. Consequently, we must adapt the notion of security
from the threshold probing model to account for public outputs; the idea here
is not to state that public outputs do not leak relevant information, but rather
that the masked implementation does not leak more information than the one
that is released through public outputs. We capture this intuition by letting the
simulator depend on the distribution of the public outputs. This extends the
usual “non-interference” (NI) security notion to a new, more general notion of
“non-interference with public outputs” (Nlo).

Security proofs. The overall security guarantee for the masked implementation
is established by proving the security of individual gadgets and asserting the
security of their combination. For some gadgets, one establishes security in the
usual threshold probing model, opening the possibility to resort to automated
tools such as maskComp [4] to generate provably secure masked implementations.
For other gadgets, the proofs of security are given by exhibiting a simulator, and
checking its correctness manually. Finally, the main theorem is deduced from
the proof of correctness and security in the threshold probing model with public
outputs for the masked implementation, and from a modified proof of security
for the GLP scheme.

Organization of the paper. In §2, we describe the GLP signature scheme
and the security assumption on which its security is based. In §3, we present the
new security notions used in our proofs. Then, in §4, we describe how to mask
the GLP algorithm at any masking order. Finally, in §5, we describe an imple-
mentation of this masking countermeasure, and suggest some possible efficiency
improvements.

2 The GLP signature scheme

2.1 Parameters and security

Notations. Throughout this paper, we will use the following notations: n is a

power of 2, p is a prime number congruent to 1 modulo 2n, R is the polynomial

ring modulo z" + 1, R = Z,[x]/(2™ + 1). The elements of R can be represented
p—1 p—1

by polynomials of degree n — 1 with coefficients in the range [—25~, 5=]. For an

integer k such that 0 < k < (p — 1)/2, we denote by Ry, the elements of R with
coefficients in the range [—k, k]. We write & 5 for picking uniformly at random

in aset S or & D for picking according to some distribution D.



The key generation algorithm for the GLP signature scheme is as follows:

Algorithm 1: GLP key derivation
Result: Signing key sk, verification key pk

S1,S2 &R, //s1 and sg have coefficients in {—1,0,1}

=

2ad R

3 t < asq + sso
4 sk < (s1,s2)
5 pk + (a,t)

Given the verification key pk = (a, t), if an attacker can derive the signing
key, he can be used to also solve a DCK,, ,, problem defined in [21].

Definition 1 The DCK,,, problem (Decisional Compact Knapsack problem)
is the problem of distinguishing between the uniform distribution over R X R and
the distribution (a,asy + sq) with s1,82 uniformly random in R.

In the security proof of our variant of the signature scheme, we introduce a
new computational problem.

Definition 2 The R-DCK,,,, problem (Rejected-Decisional Compact Knap-
sack problem) is the problem of distinguishing between the uniform distribution
over R X R x D and the distribution (a,ay; +ya,c) where (a,c,y1,y2) is uni-
formly sampled in R x DI x R2, conditioned by the event sic +y1 ¢ Ri—a Or
seC+y2 & Ri—a-

As shown in the full version of this paper [5], assuming the hardness of
R-DCK,,,, can be avoided entirely by computing the hash value ¢ not in terms
of r = ay; +y2, but of a statistically hiding commitment thereof. This approach
shows that masking can be done based on the exact same assumptions as the
original scheme, but at some non-negligible cost in efficiency.

To obtain a scheme that more directly follows the original one and to keep
the overhead reasonable, we propose to use R-DCK,, ,, as an extra assumption,
which we view as a pragmatic compromise. The assumption is admittedly some-
what artificial, but the same can be said of DCK,, ,, itself to begin with, and
heuristically, R-DCK,, ,, is similar, except that it removes smaller (hence “eas-
ier”) instances from the distribution: one expects that this makes distinguishing
harder, even though one cannot really write down a reduction to formalize that
intuition.

2.2 The signature scheme

This part describes the signature scheme introduced in [21]. Additional functions
like transform and compress introduced in [21] can be used to shorten the size of
the signatures. Note however that for masking purposes, we only need to consider
the original, non-compressed algorithm of Giineysu et al., which we describe
below. Indeed, signature compression does not affect our masking technique at



all, because it only involves unmasked parts of the signature generation algorithm
(the input of the hash function and the returned signature itself). As a result,
although this paper only discusses the non-compressed scheme, we can directly
apply our technique to the compressed GLP scheme with no change, and in fact
this is what our proof-of-concept implementation in section 5 actually does.

The signature scheme needs a particular cryptographic hash function, H :
{0,1}* — D2, where D is the set of polynomials in R that have all zero coef-
ficients except for at most o = 32 coefficients that are in {—1,+1} (or o = 16
when using the updated parameters presented in [g]).

Let k be a security parameter. Algorithms 2 and 3 respectively describe the
GLP signature and verification. Here is the soundness equation for the verifica-
tion : az; + zo, — tc = ay; + ys.

The parameter k controls the trade-off between the security and the runtime
of the scheme. The smaller k gets, the more secure the scheme becomes and the
shorter the signatures get but the time to sign will increase. The authors of the
implementation of [21] suggest k = 2!, n = 512 and p = 8383489 for ~ 100 bits
of security and k = 2'®, n = 1024 and p = 16760833 for > 256 bits of security.

2.3 Security proof of the r-GLP variant

As mentioned above, masking the hash function of the GLP signature directly
has a prohibitive cost, and it is thus preferable to unmask the input r = ay; +y-
to compute the hash value ¢ = H(r, m). Doing so allows a side-channel attacker
to learn the pair (r, ¢) corresponding to rejected executions as well, and since that
additional information is not available to the adversary in the original setting,
we need to show that it does not affect the security of the scheme.

This stronger security requirement can be modeled as the unforgeability un-
der chosen message attacks of a modified version of the GLP signature scheme in
which the pair (r,c) is made public when a rejection occurs. We call this mod-
ified scheme r-GLP, and describe it as Algorithm 4. The modification means
that, in the EUF-CMA security game, the adversary gets access not only to cor-
rectly generated GLP signatures, but also to pairs (r,c) when rejection occurs,

Algorithm 2: GLP signature Algorithm 3: GLP verification
Data: m, pk, sk Data: m, o, pk
Result: Signature o 1 if 21, 2o € Ri_o and
1yLye & Ry c = H(az; + z2 — tc,m) then
2 ¢+ H(r=ay; +y2,m) 2 ‘ accept
3 Z] < S1C+Yy1 3 else
4 Zy ¢ SaC+ Y2 4 ‘ reject
5 if z; or zy ¢ Ri_o then 5 end
6 ‘ restart
7 end
8 return o = (21,22, ¢)




Algorithm 4: Tweaked signature with public r

Data: m, pk = (a,t), sk = (s1,s2)
Result: Signature o

$
y1 < R

=

y2 ERy

r<-ayi+yz

c < H(r,m)

Z1 < S1C+ Y1

Zo < S2C+Yy2

if z1 or za2 ¢ Ry_, then
‘ (Zl,Zz) — (J_,J_)

end

return o = (z1,22,c,r)

© 0 N O oA W N

[y
o

which is exactly the setting that arises as a result of unmasking the value 7.
The following theorem, proved in the full version of this paper [5], states that
the modified scheme is indeed secure, at least if we are willing to assume the
hardness of the additional DCK,, ,, assumption.

Theorem 1. Let n,p, R and D as defined in section 2.1. Assuming the hard-
ness of the DCK,, , and R-DCK, , problems, the signature r-GLP is EUF-
CMA secure in the random oracle model.

Remark 1. As mentioned previously, we can avoid the non-standard assumption
R-DCK,, ,, by hashing not r but f(r) for some statistically hiding commitment
f (which can itself be constructed under DCK,, ,,, or standard lattice assump-
tions). See the full version of this paper for details [5]. The downside of that
approach is that it has a non negligible overhead in terms of key size, signature
size, and to a lesser extent signature generation time.

3 Threshold probing model with public outputs

In this section, we briefly review the definition of the threshold probing model,
and introduce an extension to accommodate public outputs.

3.1 Threshold probing model

The threshold probing model introduced by Ishai, Sahai and Wagner considers
implementations that operate over shared values [22].

Definition 3 Let d be a masking order. A shared value is a (d 4+ 1)-tuple of
values, typically integers or Booleans.

A (u,v)-gadget is a probabilistic algorithm that takes as inputs u shared val-
ues, and returns distributions over v-tuples of shared values. (u,v)-gadgets are
typically used to implement functions that take u inputs and produce v outputs.



Gadgets are typically written in pseudo-code, and induce a mapping from u-
tuples of shared values (or equivalently u(d+1)-tuples of values) to a distribution
over v-tuples of values, where the output tuple represents the joint distribution
of the output shared values as well as all intermediate values computed during
the execution of the gadget.

We now turn to the definition of probing security. Informally, an implemen-
tation is d-probing secure if and only if an adversary that can observe at most
d intermediate values cannot recover information on secret inputs.

Definition 4 d-non-interference (d-NI): A gadget is d-non-interfering if and
only if every set of at most d intermediate variables can be perfectly simulated
with at most d shares of each input.

Definition 5 d-strong-non-interference (d-SNI): A gadget is d-strongly non in-
terfering if and only if every set of size dy < d containing dy intermediate vari-
ables and do = do — dy returned values can be perfectly simulated with at most
dy shares of each input.

This notion of security is formulated in a simulation-based style. It is however
possible to provide an equivalent notion as an information flow property in the
style of programming language security and recent work on formal methods for
proving security of masked implementations.

The maskComp tool. For certain composition proofs, we will use the maskComp
tool from Barthe et al. [4]. It uses a type-based information flow analysis with
cardinality constraints and ensures that the composition of gadgets is d-NI secure
at arbitrary orders, by inserting refresh gadgets when required.

3.2 Threshold probing model with public outputs

The security analysis of our masked implementation of GLP requires an adapta-
tion of the standard notion of security in the threshold probing model. Specifi-
cally, our implementation does not attempt to mask the computation of H(r, m)
at line 2 of Algorithm 2; instead, it recovers r from its shares and then computes
H(r,m). This optimization is important for the efficiency of the masked algo-
rithm, in particular because it is not immediately clear whether one can mask
the hash function H efficiently—note that this kind of optimization is also remi-
niscent of the method used to achieve efficient sorting algorithms in multi-party
computations.

From a security perspective, recombining r in the algorithm is equivalent
to making r a public output. In contrast with “return values”, we will refer
to “outputs” as values broadcast on a public channel during the execution of
the masked algorithm. The side-channel attacker can therefore use outputs in
attacks. Since the usual notions of NI and SNI security do not account for outputs
in that sense, we need to extend those notions of security to support algorithms
that provide such outputs. The idea here is not to state that public outputs do
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not leak relevant information, but rather that the masked implementation does
not leak more information than the one that is released through public outputs.
We capture this intuition by letting the simulator depend on the distribution of
the public outputs.

Definition 6 A gadget with public outputs is a gadget together with a distin-
guished subset of intermediate variables whose values are broadcast during exe-
cution.

We now turn to the definition of probing security for gadgets with public
outputs.

Definition 7 d-non-interference for gadgets with public outputs(d-NIo): A gad-
get with public outputs X is d-Nlo if and only if every set of at most d interme-
diate variables can be perfectly simulated with the public outputs and at most d
shares of each input.

Again, it is possible to provide an equivalent notion as an information flow
property in the style of programming language security.
Note that the use of public outputs induces a weaker notion of security.

Lemma 1. Let G be a d-NI-gadget. Then G is d-Nlo secure for every subset X
of intermediate variables.

Informally, the lemma states that a gadget that does not leak any information
also does not leak more information than the one revealed by a subset of its
intermediate variables. The lemma is useful to resort to automated tools for
proving NI security of some gadgets used in the masked implementations of
GLP. In particular, we will use the maskComp tool.

Since d-Nlo security is weaker than d-NI security, we must justify that it
delivers the required security guarantee. This is achieved by combining the proofs
of security for the modified version of GLP with public outputs, and the proofs
of correctness and security for the masked implementations of GLP.

4 Masked algorithm

In this section, the whole GLP scheme is turned into a functionally equivalent
scheme secure in the d-probing model with public outputs. Note that it suf-
fices to mask the key derivation in the d-probing model and the signature in
the d-probing model with public output 7, since the verification step does not
manipulate sensitive data.

Remark 2. The masked version of GLP scheme with commitment has also been
turned into a functionally equivalent scheme proved secure in the d-probing
model with public output r. Its masked version is a little more complex, it is
detailed in the full version of this paper [5].

11



4.1 Overall structure

For simplicity, we will show the masking on a single iteration version of the
signature. The masking can be generalized by calling the masked signature again
if it fails.

To ensure protection against d-th order attacks, we suggest a masking coun-
termeasure with d + 1 shares for the following sensitive data : y1, yo, s1 and ss.
All the public variables are (a,t) (i.e., the public key), m (i.e., the message),
RejSp (i.e., the bit corresponding to the success of the rejection sampling),
(z1,22,c) (i.e., the signature). As mentioned before, because of the need of r
recombination, even if r is an intermediate value, it is considered as a public
output.

Most operations carried out in the GLP signing algorithm are arithmetic
operations modulo p, so we would like to use arithmetic masking. It means for
example that y; will be replaced by y1,0,...y1,4 € R such that

Y1 =Y1,0+..+Yy1,4 modp.

The issue is that at some points of the algorithm, we need to perform operations
that are better expressed using Boolean masking. Those parts will be extracted
from both the key derivation and the signature to be protected individually and
then securely composed. The different new blocks to achieve protection against
d-th order attacks are depicted hereafter and represented in Figures 1 and 2:

— Generation of the shared data (DG), masked version of line 1 in Algorithm 2
and line 1 in Algorithm 1, is a function to generate shares of y, yo, s; and
so. It will be described in Algorithm 7, decomposed and proved d-Nlo secure
by decomposition.

— Rejection Sampling (RS), masked version of line 5 in Algorithm 2, is a test
to determine if z; and zs belong to the set Ri_.. It will be detailed in
Algorithm 15 and proved d-NI secure by decomposition.

(s1,)o<i<a

(s1,i)o<i<d

(s2,i)o<i<a

(s2,i)o<i<a

Fig. 1. Composition of mKD (The blue gadgets will be proved d-Nlo, the white ones
will be proved d-NI)
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(Y1.i)o<i<a

(y2,i)o<i<a

(s1,i)o<i<d
(y1,i)o<i<d

(2z1,i)o<i<a

FullAdd ) —>

Li)o<i<d

2,i)0<i<d
22
FullAdd > —>

(¥2,i)o<i<d

Fig. 2. Composition of mSign (The blue gadgets will be proved d-Nlo, the white ones
will be proved d-NT and the red one won’t be protected)

— Refresh and unmask (FullAdd) is a function that unmasks securely a variable

by adding together its shares modulo p without leaking the partial sums. It
will be described in Algorithm 16 and proved d-Nlo secure and d-NI secure
when used at the end.

H! and H? are the elementary parts, masked versions of line 2, 3-4 and then
5-6 in Algorithm 2. H' is also the masked version of the instruction called
in line 3 of the key derivation algorithm (Algorithm 1). They are made of
arithmetic computations. They are depicted in Algorithm 17 and 18. They
will be proved d-NI secure.

Hash function, line 2 in Algorithm 2. As mentioned before, is left unmasked
because it manipulates only public data.

Algorithm 6 shows a high level picture of mSign with all these blocks and

Algorithm 5 shows mKD.

Algorithm 5: mKD

N =

© W0 N O ok W

Result: Signing key sk, verification key pk
(s1,i)o<i<a + DG(1,d)

(52,i)0§i§d “— DG(l7 d)

a ﬁ R

(ti)o<i<a < H'(a, (s1,:)o<i<d (S2,i)o<i<a)

t FU”Add((ti)ogigd)

sk < ((s1,i)o<i<d; (S2,i)0<i<d)

pk + (a,t)

return as public key (a,t)

return as secret key ((s1,;)o<i<d, (52,i)o<i<d)

13



Algorithm 6: mSign

Data: m, pk = (a,t), sk = ((s1,)o<i<d, (S2,i)0<i<d)
Result: Signature o

1 (¥1,i)o<i<d < DG(k,d)

2 (yz2,i)o<i<a < DG(k,d)

3 (ri)o<i<a ¢+ H'(a, (y1,i)o<i<d: (¥2,i)0<i<d)
4 T < FU”Add((ri)Ogigd)

5 ¢ < hash(r,m)

6 (Z1,i)0§igd <—H1(C> (Sl,z‘)ogigch (YI,i)Ogigd)
7 (22,4)o<i<d < H' (¢, (ts2.i)o<i<d, (¥2.i)o<i<d)
8 RejSp + RS((z1,i)o<i<a, (22,i)o<i<a, k — @)
9 (21,1)o<i<a < H?(RejSp, (z1,i)o<i<d)

10 (22,)o<i<d + H?(RejSp, (z2,:)o<i<a)

11 Zq1 (—FU”Add((ZLZ‘)OSiSd)

12 Zo (—FU”Add((Z27i)0§i§d)

13 return o = (21, %, ¢)

The proofs of dNI or d-Nlo security will be given in the following subsection.
Then, the composition will be proved in Section 4.3 to achieve global security in
the d-probing model with public outputs. This yields the d-NIo security of the
masked signature and masked key generation algorithms in Theorems 2 and 3,
respectively. By combining these results with the refined analysis of the GLP
signature in Theorem 1, one obtains the desired security guarantee, as discussed
in Section 3.

4.2 Masked gadgets

In this section each gadget will be described and proved d-NT or d-Nlo secure. The
difficulty is located in the gadgets containing Boolean/arithmetic conversions.
In those gadgets (DG and RS) a detailed motivation and description has been
made.

Data generation (DG). In the unmasked GLP signing algorithm, the coef-
ficients of the “commitment” polynomials y;, yo are sampled uniformly and
independently from an integer interval of the form [—k, k]. In order to mask the
signing algorithm, one would like to obtain those values in masked form, using
order-d arithmetic masking modulo p. Note that since all of these coefficients
are completely independent, the problem reduces to obtaining an order-d mod-p
arithmetic masking of a single random integer in [—k, k].

Accordingly, we will first create an algorithm called Random Generation
(RG) which generates an order-d mod-p arithmetic masking of a single random
integer in [—k, k]. Next, we will use RG in an algorithm called Data Generation
(DG) which generates a sharing of a value in Rj. DG is calling RG n times

14



Algorithm 7: Data Generation (DG)
Data: k and d
Result: A uniformly random y integer in Ry in arithmetic masked form
(yi)o<i<a-
(yi)o<i<a + {0}
for j =1 tondo
(ai)o<i<a + RG(k,d)
(¥i)o<i<a < (¥i + a;ix? )o<i<d
end
return (y;)o<i<d

[ B NI VI

and is described in Algorithm 7. RG is described hereafter and will be given in
Algorithm 14.

Let us now build RG. Carrying out this masked random sampling in arith-
metic form directly and securely seems difficult. On the other hand, it is relatively
easy to generate a Boolean masking of such a uniformly random value. We can
then convert that Boolean masking to an arithmetic masking using Coron et
al.’s higher-order Boolean-to-arithmetic masking conversion technique [13]. The
technique has to be modified slightly to account for the fact that the modulus
p of the arithmetic masking is not a power of two, but the overall structure of
the algorithm remains the same. To obtain a better complexity, we also use the
Kogge—Stone adder based addition circuit already considered in [12].

A more precise description of our approach is as follows. Let K = 2k+1, and
wg be the smallest integer such that 20 > K. Denote also by w the bit size of the
Boolean masking we are going to use; we should have w > wg + 1 and 2% > 2p.
For GLP masking, a natural choice, particularly on a 32-bit architecture, would
be w = 32.

Now the first step of the algorithm is to generate wg-bit values (2?)p<i<a
uniformly and independently at random, and apply a multiplication-based share
refreshing algorithm Refresh, as given in Algorithm 8, to obtain a fresh w-bit
Boolean masking (z;)o<i<q of the same value z:

Note that  is then a uniform integer in [0,2%° — 1].

We then carry out a rejection sampling on x: if x > K, we restart the al-
gorithm. If this step is passed successfully, z will thus be uniformly distributed
in [0, K — 1] = [0,2k]. Of course, the test has to be carried out securely at
order d. This can be done as follows: compute a random w-bit Boolean mask-
ing (ki)o<i<a of the constant (—K) (the two’s complement of K over w bits;
equivalently, one can use 2% — K), and carry out the d-order secure addition
SecAdd((:ci)OgiSd, (ki)0§i§d>, given in Algorithm 9 (where Refresh denotes the
d-SNI multiplication-based refresh as proven in [4] and recalled in Algorithm 8).
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Algorithm 8: Multiplication-based refresh algorithm for Boolean masking
(Refresh)

Data: A Boolean masking (z;)o<;<q of some value x; the bit size w of the
returned masks

Result: An independent Boolean masking (x})o<;<q of

1 (2f)o<ica < (¥i)o<i<d

2 for i =0 to d do

3 for j=i+1 toddo

4 pick a uniformly random w-bit value r

5 T T Br

6 T O

7 end

8 end

9 return (z})o<i<d

Algorithm 9: Integer addition of Boolean maskings (SecAdd), as generated
by the maskComp tool from the Kogge—Stone adder of [12]

Data: Boolean maskings (z;)o<i<d, (¥i)o<i<a Of integers x, y; the bit size
w of the masks
Result: A Boolean masking (z;)o<i<aq of z +y

1 (pi)o<i<d < (@i ® Yi)o<i<d
2 (9i)o<i<d ¢ SecAnd((z)o<i<d, (¥i)o<i<d, W)
3 for j=1to W :=[logy(w—1)] — 1 do
a pow < 2971
5 (ai)o<i<d <+ (9i € pow)o<i<d
6 (a;)o<i<a < SecAnd((a;)o<i<d, (Pi)o<i<d, w)
7 (9i)o<i<a < (9i ® ai)o<i<d
8 (af)o<i<a < (pi € POW)o<i<d
9 | (af)o<i<a < Refresh((a;)o<i<d,w)
10 | (pi)o<icd < SecAnd((pi)o<i<a, (0f)o<i<d, w)
11 end
12 (as)o<i<d + (98 < 2" )o<i<a
13 (a;)o<i<a < SecAnd((a;)o<i<d (Pi)o<i<d, W)
14 (gs)o<i<d < (9: D ai)o<i<d
15 (Zi)OSiSd «— (xi Dy D (gi < 1))O<i<d
16 return (z;)o<i<d S
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Algorithm 10: Mod-p addition of Boolean maskings (SecAddModp)
Data: Boolean maskings (z;)o<i<d, (¥i)o<i<d Of integers x, y; the bit size
w of the masks (with 2 > 2p)
Result: A Boolean masking (z;)o<i<a of £ + y mod p
pi)Ogigd < (2w — D, 07 . ,0)
o<i<d < SecAdd((zi)o<i<d, (¥i)o<i<d; w)
o<i<d + SecAdd((s;)o<i<d, (Pi)o<i<d, W)
io<i<d < (57> (w—=1)) ..
Ci)O i<d < Refresh((bi)ogigd,w)
zi)o<i<d < SecAnd((s;)o<i<d, (€i)o<i<d, W)
ci)o<i<a < Refresh((b;)o<i<a, w)
0<i<
n

i)
0

S
s
b

(
(
(
(
(
(
(
(

IANIA A IA

zi)o<i<d  (2i)o<i<a ® SecAnd((s})o<i<d, (7Ci)o<i<d, W)
retu (Zi)Ogigd

© 00 N O s W N

=1

The result is a Boolean masking (0;)o<i<q of the difference 6 = z — K in two’s
complement form. In particular, the most significant bit b of ¢ is 0 if and only
if x > K. Since computing the most significant bit is an Fo-linear operation,
we can carry it out componentwise to obtain a masking (b;)o<i<q of b with
b; = 6; > (w — 1). The resulting bit b is non-sensitive, so we can unmask it to
check whether to carry out the rejection sampling.

After carrying out these steps, we have obtained a Boolean masking of a
uniformly random integer in [0, 2k]. What we want is a mod-p arithmetic masking
of a uniformly random integer in the interval [—k, k|, which is of the same length
as [0,2k]. If we can convert the Boolean masking to an arithmetic masking, it
then suffices to subtract k from one of the shares and we obtain the desired
result. To carry out the Boolean-to-arithmetic conversion itself, we essentially
follow the approach of [13, §5], with a few changes to account for the fact that
p is not a power of two.

The main change is that we need an algorithm for the secure addition mod-
ulo p of two values y, z in Boolean masked form (y;)o<i<d, (2i)o<i<a (assuming
that y,z € [0,p)). Such an algorithm SecAddModp is easy to construct from
SecAdd (see Algorithm 10 with SecAnd the d-order secure bitwise AND op-
eration from [22,30] and recalled in Algorithm 11) and the comparison trick
described earlier. More precisely, the approach is to first compute (s;)o<i<qd =
SecAdd((yi)OSiSd, (Zi)ogigd), which is a Boolean sharing of the sum s = y + 2
without modular reduction, and then (s))o<;<a = SecAdd((si)OSiSd, (pi)ogigd)
for a Boolean masking (p;)o<i<a of the value —p in two’s complement form (or
equivalently 2 — p). The result is a masking of ' = s — p in two’s complement
form. In particular, we have s > p if and only if the most significant bit b of s’
is 0. Denote by r the desired modular addition y + z mod p. We thus have:

s ifb=1;
T =
s’ ifb=0.
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Algorithm 11: Bitwise AND of Boolean maskings (SecAnd) from [22,30]
Data: Boolean maskings (z;)o<i<d, (¥i)o<i<d Of integers x, y; the bit size
w of the masks
Result: A Boolean masking (r;)o<i<q of z Ay

1 (ri)o<i<d < (Ti A Yi)o<i<d
2 for i =0 to d do
3 for j =i+ 1 toddo
4 pick a uniformly random w-bit value z;;
5 Zji < (xz A y]) S Zij
6 Zji < Zji D (.Tj A yz)
7 T 1; D Zij
8 rj 1 D 2y
9 end
10 end

11 return (7;)o<i<d

As a result, we can obtain the masking of r in a secure way as:
(ri)o<i<a = SecAnd((si)o<i<d; (bNi)ogigd) @ SecAnd ((s})o<i<ds (:bi)ogigd),

where we denote by b the extension of the bit b to the entire w-bit register (this
is again an Fy-linear operation that can be computed componentwise). This
concludes the description of SecAddModp.

Using SecAddModp instead of SecAdd in the algorithms of [13, §4], we also im-
mediately obtain an aldgorithm SecArithBoolModp for converting a mod-p arith-
metic masking a = >"." ; a; mod p of a value a € [0,p) into a Boolean masking
a= @?:0 a; of the same value. The naive way of doing so (see Algorithm 12),
which is the counterpart of [13, §4.1], is to simply construct a Boolean masking
of each of the shares a;, and to iteratively apply SecAddModp to those masked
values. This is simple and secure, but as noted by Coron et al., this approach
has cubic complexity in the masking order d (because SecAdd and hence SecAd-
dModp are quadratic). A more advanced, recursive approach allows to obtain
quadratic complexity for the whole conversion: this is described in [13, §4.2],
and directly applies to our setting.

With both algorithms SecAddModp and SecArithBoolModp in hand, we can
easily complete the description of our commitment generation algorithm by mim-
icking [13, Algorithm 6]. To convert the Boolean masking (z;)o<i<aq of = to a
mod-p arithmetic masking, we first generate random integer shares a; € [0, p),

1 < i < d, uniformly at random. We then define a; = —a; mod p = p — a; for
1 <i<dand af =0. The tuple (a})o<i<q is thus a mod-p arithmetic masking
of the sum a’ = — 3, ,.,a; mod p. Using SecArithBoolModp, we convert this

arithmetic masking to a Boolean masking (y;)o<i<d, so that @?:0 y; = a’. Now,
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Algorithm 12: Secure conversion from mod-p arithmetic masking to
Boolean masking (SecArithBoolModp); this is the simple version (cubic in
the masking order)

Data: Arithmetic masking (a;)o<i<q¢ modulo p of an integer a; the bit
size w of the returned masks (with 2% > 2p)
Result: A Boolean masking (a})o<i<q of a
(af)o<i<a < (0,...,0)
for j =0 to d do
(bi)OSiSd «— (aj, O7 A ,O)
(bi)OgiSd < Refresh ((bi)0§i§d7 w)
(a})o<i<a < SecAddModp((a})o<i<a, (bi)o<i<d, w)
end
return (a})o<i<d

N 0 s WN e

Algorithm 13: Refresh-and-unmask algorithm for Boolean masking
(FullXor) from [13]
Data: A Boolean masking (z;)o<;<q of some value x; the bit size w of the
masks
Result: The value x

1 (2})o<iza + FullRefresh((2;)o<i<a, w)
2 x4z fori=1toddo

3 | v azoa]

4 end

5 return =

let (2zi)o<i<d = SecAddModp((xi)ogiSd, (yi)ogigd); this is a Boolean masking of:

d
z=(r+d)modp= (m—ZaZ) mod p.

i=1

We then securely unmask this value using Coron et al.’s FullXor procedure,
recalled in Algorithm 13, and set a9 = z — k mod p. Then, we have:

d d d d
Zai mod p = z—k‘—&—z a; mod p = x—k—z aﬁ—Z a; mod p = z—k mod p.

=0 =1 =1 i=1

Thus, (a;)o<i<a is a correct mod-p arithmetic masking of a uniformly random
value in [—k, k| as required. The whole procedure is summarized in Algorithm 14
and described in Figure 3 where xGen stands for the generation of z%’s shares,
Refresh for the multiplication-based refreshing from [22,4], kGen for the genera-
tion of k’s shares, > for the right shift of §’s shares, FullX for FullXor, aGen for
the generation of a’s shares, SecABM for SecArithBoolModp, and SecAMp for
SecAddModp.
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Fig. 3. Randomness Generation RG (The green (resp. white, red) gadgets will be proved
d-SNI (resp. d-NI, unmasked))

Algorithm 14: Randomness generation (RG)

Data: k£ and d
Result: A uniformly random «a integer in [k, k] in mod-p arithmetic

masked form (a;)o<i<a-

1 generate uniformly random wg-bit values (JC?)ogigd

2 (2)o<i<d & Refresh((x?)ogigd)

initialize (k;)o<i<d4 t0 & w-bit Boolean sharing of the two’s complement

value —K = -2k —1

(6:)o<i<a < SecAdd((z;)o<i<d, (ki)o<i<a)

(bi)o<i<d  (di)o<i<a > (w —1)

b« FU“XOF((bi)ogigd)

output b

if b =0 then

‘ restart

10 end

11 generate uniform integers (a;)1<i<q in [0, p)

12 af + —a;modpfori=1,...,d

13 ap + 0

14 (Yi)o<i<d < SecArithBooIModp((ag)ogigd)

15 (2;)o<i<a + SecAddModp((z;)o<i<d, (¥i)o<i<d)

16 ag FuIIXor((zi)Ogigd)

17 return (a;)o<i<d

w

© 0 N O Gk
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The success probability of the rejection sampling step (the masked compar-
ison to K) is K/2*°, and hence is at least 1/2 by definition of wg. Therefore,
the expected number of runs requiered to complete is at most 2 (and in fact, a
judicious choice of k, such as one less than a power of two, can make the suc-
cess probability very close to 1). Since all the algorithms we rely on are at most
in the masking order and (when using the masked Kogge—Stone adder of [12])
logarithmic in the size w of the Boolean shares, the overall complexity is thus
O(d?log w).

Now that the randomness generation is decribed, each intermediate gadget
will be proven either d-NI or d-Nlo secure. Then, the global composition is proven
d-Nlo secure as well.

Lemma 2. Gadget SecAdd is d-NI secure.

Proof. Gadget SecAdd is built from the Kogge-Stone adder of [12] with secure
AND and secure linear functions such as exponentiations and Boolean additions.
As to ensure its security with the combination of these atomic masked functions,
the tool maskComp was used to properly insert the mandatory d-SNI refreshings,
denoted as Refresh in Algorithm 9. As deeply explained in its original paper,
maskComp provides a formally proven d-NI secure implementation. a

Lemma 3. Gadget SecAddModp is d-NI secure.

Proof. Gadget SecAddModp is built from the gadget SecAdd and SecAnd and
linear operations (like ®). We use the tool maskComp to generate automatically
a verified implementation. Note that the tool automatically adds the two refreshs
(line 5 and 7) and provides a formally proven d-NI secure implementation. O

Lemma 4. Gadget SecArithBoolModp is d-SNI secure.

Proof. A graphical representation of SecArithBoolModp is in Figure 4. Let O be
a set of observations performed by the attacker on the final returned value, let
I4, be the set of internal observations made in step j in the gadget SecAddModp
(line 5), and Ig, be the set of internal observations made in the step j in the
initialisation of b (line 3) or in the Refresh (line 4). Assuming that [O]4+> (|14, |+
|Ig,|) < d, the gadget is d-SNI secure, if we can build a simulator allowing to
simulate all the internal and output observations made by the attacker using a
set S of shares of a such that |S| < (|1a,| + IR, ).

At the last iteration (see figure 5), the set of observations O U I4, can be
simulated using a set S,/ of shares of a’ and Sy, , of shares of b with [S,, | <
|O| + |1a,] and |Sp,_,| < |O] + |14,] (because the gadget SecAddModp is d-NI
secure). Since the Refresh is d-SNI secure, the sets Sy, , and I, can be simulated
using a set Sy, of input share with |Sy | < |Ig,|. If I, is not empty, then
Sb:F1 may contain ag, so we add ag to S. For each iteration of the loop this
process can be repeated. At the very first iteration, several shares of a’ may be
necessary to simulate the set of observations. However, there are all initialized

to 0, nothing is added to S.
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—
(20,0, ...,0) (bi)o<i<a

Refresh Step 0

o
(@'i)o<i<a
N
(a1,0,...,0) (bi)o<i<a

Refresh Step 1

N
(a/i)()gigd

Fig. 4. Graphical Representation of SecArithBoolModp (The green (resp. white) gad-
gets will be proved d-SNI (resp. d-NI))

(bi)o<i<a
Step d

(@'i)o<i<a

(aq,0,...,0) Refresh

Step d

Fig.5. Last step of SecArithBoolModp with probes (The green (resp. white) gadgets
will be proved d-SNI (resp. d-NI))

At the end we can conclude that the full algorithm can be simulated using
the set S of input shares. Furthermore we have |S| < > |Ig,| (since a; is added
in S only if I, is not empty), so we can conclude that S| < Y7 [Ia,| + |Ir;]
which concludes the proof. a

Lemma 5. Gadget RG is d-Nlo secure with public output b.

Proof. Here we need to ensure that the returned shares of a cannot be revealed
to the attacker through a d-order side-channel attack. Since xGen and aGen are
just random generation of shares, the idea is to prove that any set of ¢ < d
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observations on RG including these inputs can be perfectly simulated with at
most ¢ shares of x and ¢ shares of a.

Gadget RG is built with no cycle. In this case, from the composition results
of [4], it is enough to prove that each sub-gadget is d-NI to achieve global secu-
rity. In our case, it is enough to prove that each sub-gadget is d-Nlo with the
knowlegde of b to achieve global security.

From Lemmas 2, 4, and 3, SecAdd, SecArithBoolModp, and SecAddModp are
d-NI secure. > is trivially d-NI secure as well since it applies a linear function,
gadget FullRefresh is d-SNI secure thus d-NI secure by definition, and gadget
kGen is generating shares of a non sensitive value.

At this point, both gadgets FullXor have to be analyzed to achieve the ex-
pected overall security. We start with the gadget computing b. After its execu-
tion, b is broadcasted. Since b have to be public, its knowledge does not impact
the security but because of this output, the security of RG will be d-Nlo with
public output b and not d-NI. FullXor is composed of a d-SNI secure refreshing
(made of d+1 linear refreshing) of the shares and of a Boolean addition of these
resulting shares. The attacker is not able to observe intermediate variable of all
the linear refreshings (since he only has § < d available observations), thus we
consider that the i*" refreshing is left unobserved. As a consequence, all the pre-
vious observations involve only one b’s share and all the following observations
are independent from b’s share except for their sum. That is, FullXor is d-NI se-
cure. As for its second instance to compute ag, FullXor is still d-NI secure but ag
is not revealed after its execution. While the attacker is able to observe its value,
it is not returned for free. All the dg < d observations made by the attacker of
this last instance of FullXor can be perfectly simulated with ag (for the observa-
tions performed after the unobserved linear refreshing) and at most dp — 1 shares
of z (for the observations made before the unobserved linear refreshing). O

Remark 8. The knowledge of b (ie. the success of the randomness generation) is
not sensitive and we decided to consider it as a public output. To simplify the
notation when we report the security on the whole scheme, we will omit b in the
public outputs.

Lemma 6. Gadget DG is d-Nlo secure with public output b.

Proof. From Lemma 5, Gadget DG is d-Nlo secure since it only consists in the
linear application of Gadget RG to build the polynomial coefficients. O

Rejection sampling (RS). Right before the rejection sampling step of the
masked signing algorithm, the candidate signature polynomials z; and zs have
been obtained as sums of d + 1 shares modulo p, and we want to check whether
the coefficients in Z/pZ represented by those shares are all in the interval [—k 4+
a, k — a]. Again, carrying out this check using mod-p arithmetic masking seems
difficult, so we again resort to Boolean masking.

For each coefficient z; ; of z; and z2, one can trivially obtain a mod-p arith-
metic masked representation of both z; ; and —z;;, and the goal is to check
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Algorithm 15: Rejection sampling (RS)

Data: The 4n values a¥) to check, in mod-p arithmetic masked
representation (agj))ogigd.
Result: The bit r equal to 1 if all values satisfy that a¥) +k —a > 0,
and 0 otherwise.
initialize (r;)o<i<aq as a single-bit Boolean masking of 1
initialize (p;)o<i<q @s a w-bit Boolean masking of —p
initialize (p})o<i<q @8 & w-bit Boolean masking of —(p + 1)/2
initialize (k})o<i<4 as a w-bit Boolean masking of k — «
for j =1 to 4n do
( ;)O<z<d — SecArlthBoolModp(( 7(])) Sigd)
5z o<i<d < SecAdd((a})o<i<a, (P})o<i<a)

o<i<d < (0i)o<i<a > (w — 1)

o<i<d < SecAdd((a})o<i<a, (Pi)o<i<d)
0<i<d < Refresh((bi)ogigd)
o<i<a < SecAnd((a})o<i<a, (Ci)o<i<a)
<d Refresh((b )O<z<d)

© 0N O A W N
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13 ; o<i<d < (a})o<i<a ® SecAnd((si)o<i<d, ~(Ci)o<i<d)
14 8i)o<i<a < SecAdd((a})o<i<d, (k))o<i<d
15 bi)o<i<d < (6:)o<i<a > (w —1)
16 ri)o<i<d < SecAnd((ri)o<i<a, ~(bi)o<i<a)

17 end
18 7« FullXor((r;)o<i<a)
19 return r

whether those values, when unmasked modulo p in the interval [(—p+1)/2, (p—
1)/2)], are all greater than —k + a.

Let a be one of those values, and a = ag+- - - +a4 mod p its masked represen-
tation. Using SecArithBoolModp as above, we can convert this mod-p arithmetic
masking to a w-bit Boolean masking (a})o<i<q. From this masking, we first want
to obtain a masking of the centered representative of a mod p, i.e. the value a”
such that:

a,,_{a ifa<(p—1)/2,

a—q otherwise.

This can be done using a similar approach as the one taken for randomness

generation: compute a Boolean masking (b;)o<i<q of the most significant bit
—(p+1)/2 (which is 1 in the first case and 0 in the second case), and a Boolean

masking (s;)o<i<q of the sum a — ¢. Then, a Boolean masking of (a})o<;<q is

obtained as:

(ai')o<i<a = SecAnd((a})o<i<d, (bNi)ogigd) @ SecAnd((si)o<i<a, 7(bi)o<i<d)-
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Finally, once this Boolean masking is obtained, it suffices to add k& — w to it and
check the most significant bit to obtain the desired test.

We cannot directly unmask that final bit, but we can compute it in masked
form for all the 4n values to be tested, and apply SecAnd iteratively on all of
these values to compute a Boolean masked representation of the bit equal to 1
if all the coefficients are in the required intervals, and 0 otherwise. This bit can
be safely unmasked, and is the output of our procedure. The whole algorithm is
summarized as Algorithm 15.

Since both SecArithBoolModp and SecAnd have quadratic complexity in the
masking order (and SecArithBoolModp has logarithmic complexity in the size w
of the Boolean shares), the overall complexity of this algorithm is O(nd? logw).

Lemma 7. Gadget RS is d-NI secure.

Proof. From Lemmas 2 and 4, Gadgets SecArithBoolModp and SecAdd are d-NI
secure. Gadget SecAnd is d-SNI secure from [30,4] and >> is linear, thus trivially
d-NI secure as well.

As done for Gadget SecAdd, the tool maskComp was called to generate a
d-NT circuit from the initial sequence of gadgets. It inserted gadgets Refresh (as
shown in Algorithm 15) at specific locations so that the overall circuit is formally
proven to be d-NI secure. a

Refresh and Unmask (FullAdd). This part provides a computation of the
sensitive value as the sum of all its shares. It is a gadget with public output
because the final value is returned and also output. This output is useful when
FullAdd is used to recombine the intermediate value r.

Before summing, the sharing is given as input for FullRefresh [10, Algorithm
4], which is made of a succession of d + 1 linear refresh operations. Those linear
refreshing modify the sharing by adding randoms elements to each share while
keeping constant the value of the sum. Their number is strictly superior to d
which is useful to consider that any share or strictly partial sum of shares at
the output of the final linear refreshing is independent from the original sharing.
Then, the following partial sums do not give any information about the original
sharing which is dependent of the sensitive values. The whole algorithm, given
in Algorithm 16 has a quadratic complexity in d.

Lemma 8. Gadget FullAdd is d-Nlo secure with public output 7.

Proof. Let § < d be the number of observations made by the attacker. We use
a combination of d + 1 linear refresh operations. That is, there is at least one of
the linear refreshing (we call it the i*" refreshing) which is not observed by the
attacker. For all the §; < § observations preceding the i*" refreshing in FullAdd,
they can be perfectly simulated with at most §; shares of r since each one of
them involves at most one r;. As for the observations performed after the "
refreshing, each one of them is independent from the r; inside the refresh mask
and each intermediate sum of the unmask part is independent of the r; as well
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Algorithm 16: FullAdd
Data: (r;)o<i<d

Result: r
1 if (ri)OSigd = 1 then
2 ‘ return L
3 end
4 (r;)o<i<a < FullRefresh ((r;)o<i<q)
5 1< (rg+..+rg)
6 output (r)
7 return (r)
Algorithm 17: H! Algorithm 18: H?
Data: a, (y1,i)0§i§d Data: Rejsp, (zl,i)OSigd
1 for0 <7< ddo 1 if RejSp =0 then
2 ‘ I, <—ay;; +¥y2 2 ‘ (Z1,i)o<i<d + L
3 end 3 end
4 return (r;)o<i<d 4 return (21 ;)o<i<d

with the knowledge of r. Then, during the sum computation, all the r; can be
simulated with fresh random that sum to r (the public output). Thus, at most
6 shares of r and r itself are enough to simulate further probes. a

Remark 4. When FullAdd is used at the very end of the whole algorithm (mKD or
mSign), the public outputs are also among the returned values. Then, in those
cases, it can be considered as d-NI.

Transition parts. The elementary parts H' and H? are quite easy to build since
they perform only linear operations on the input data. A masked implementation
only performs these linear operations on each share to securely compute the
returned shares. H' and H? are described in Algorithms 17 and 18.

Lemma 9. Gadget H? and H' are d-NI secure.

The straightforward proof is given in the full version of this paper.

Hash function. The hash function does not manipulate any sensitive data.
Thus, it is left unmasked.

4.3 Proofs of composition

Theorem 2. The masked GLP sign in algorithm 6 is d-Nlo secure with public
output {r,b}.
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Proof. From Lemmas 6,7 and 9, Algorithms DG, RS, H', and H? are all d-NL.
From Lemma 8, FullAdd is d-Nlo secure.

Let us assume that an attacker has access to § < d observations on the whole
signature scheme. Then, we want to prove that all these § observations can be
perfectly simulated with at most ¢ shares of each secret among y;, ys, s; and
so and the public variables. With such a result, the signature scheme is then
secure in the d-probing model since no set of at most d observations would give
information on the secret values.

In the following, we consider the following distribution of the attacker’s &
observations: 01 (resp. d2) on the instance of DG that produces shares of y;
(resp. y2), 63 on H', §4 on FullAdd of r, d5 (resp. dg) on H' which produces z;
(resp. z2), 67 on the instance of RS, g (resp. dg) on H? applied on z; (resp.
Z3), and d19 (resp. d11) on FullAdd of z; (resp. z2). Some other observations can
be made on the Hash function, their number won’t matter during the proof.
Finally, we have 311 6 < 3210 405400 < 6.

Now, we build the proof from right to left as follows.

Both last FullAdd blocks in the very end of mSign are d-NI secure, then all
the observations performed during the execution of FullAdd on z; (resp. z2) can
be perfectly simulated with at most d1g (resp. d11) shares of z; (resp. z2).

H? is d-NI secure, then all the observations from the call of H? on z; (resp.
Z3) can be perfectly simulated with dg+ 019 (resp. dg+d11) shares of the sensitive
input z; (resp. z2). The inputs z; and zs do not come from RS which do not act
on them. They are directly taken from the returned values of H'.

RS is d-NI secure and do not return any sensitive element, then all the obser-
vations performed in gadget RS can be perfectly simulated with at most d7 shares
of z; and z,. So, after H!, the observations can be simulated with §7 + (ds + d10)
shares of z; and 7 + (dg + d11) shares of z,.

H! is d-NI secure as well, thus all the observations from the call of H' on
y1 can be perfectly simulated with 65 + d7 + g + d19 < d shares of y; and s;.
Respectively, on ys, the observations can be perfectly simulated from dg + d7 +
dg + 011 < § shares of ys and s».

The left FullAdd gadget is d-Nlo secure and do not return any sensitive ele-
ment, then all the observations performed in this gadget can be perfectly simu-
lated with at most d4 shares of r.

The left H! gadget is d-NI secure, thus all the observations from its call can
be perfectly simulated with at most d3 + d4 shares of each one of the inputs y;
and ys.

DG is also d-NI secure, thus we need to ensure that the number of reported
observations does not exceed §. At the end of DG, the simulation relies on (d3 +
04) + (05 + 97 + ds + d10) < 6 shares of y1 and (03 + d4) + (06 + 67 + Jg + 611) < &
shares of yo. With the additional §; (resp. d2) observations performed on the first
(resp. the second) instance of DG, the number of observations remains below §
which is sufficient to ensure security of the whole scheme in the d-probing model.

(]
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Table 1. Implementation results. Timings are provided for 100 executions of the signing
and verification algorithms, on one core of an Intel Core i7-3770 CPU-based desktop
machine.

Number of shares (d + 1) Unprotected 2 3 4 5 6
Total CPU time (s) 0.540 8.15 16.4 39.5 62.1 111
Masking overhead — x15 x30 x73 x115 x206

Theorem 3. The masked GLP key derivation in algorithm 5 is d-Nlo secure
with public output b.

Proof. From Lemmas 6 and 9, Algorithms DG, H' are all d-NI. From Lemma, 8,
FullAdd is d-NIo secure.

Here too, let us assume that an attacker has access to d < d observations on
the whole signature scheme. Then, we want to prove that all these § observations
can be perfectly simulated with at most ¢ shares of each secret among s; and
Sa.

We now consider the following distribution of the attacker’s § observations:
01 (resp. d2) on the instance of DG that produces shares of s; (resp. s2), d3 on
H!, and 0, on FullAdd, such that 3%, 6; = 4.

Now, we build the proof from right to left: FullAdd is used at the very end of
mKD, so it is d-NI secure. Thus, all the observations from the call of FullAdd can
be perfectly simulated with §, < J sensitive shares of the input t.

H! is d-NI, thus all the observations from its call can be perfectly simulated
with at most 03 + d4 <  shares of each one of the inputs s; and ss.

DG is d-Nlo, thus we need to ensure that the number of reported observations
does not exceed §. At the end of DG, the simulation relies on (d3+9d4) < § shares
of s; and sy. With the additional d; (resp. d3) observations performed on the
first (resp. the second) instance of DG, the number of observations on each block
remains below §. All the observations can thus be perfectly simulated with the
only knowledge of the outputs, that is, the key derivation algorithm is this d-Nlo
secure.

(|

5 Implementation of the countermeasure

We have carried out a completely unoptimized implementation of our masking
countermeasure based on a recent, public domain implementation of the GLP
signature scheme called GLYPH [8,9]. The GLYPH scheme actually features a
revised set of parameters supposedly achieving a greater level of security (namely,
n = 1024, p = 59393, k = 16383 and o = 16), as well as a modified technique for
signature compression. We do not claim to vouch for those changes, but stress
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that, for our purposes, they are essentially irrelevant. Indeed, the overhead of our
countermeasure only depends on the masking order d, the bit size w of Boolean
masks (which should be chosen as w = 32 both for GLYPH and the original GLP
parameters) and the degree n of the ring R (which is the same in GLYPH as
in the high-security GLP parameters). Therefore, our results on GLYPH should
carry over to a more straightforward implementation of GLP as well.

Implementation results on a single core of an Intel Core i7-3770 CPU are pro-
vided in Table 1. In particular, we see that the overhead of our countermeasure
with 2, 3 and 4 shares (secure in the d-probing model for d = 1, 2, 3 respectively)
is around 15x, 30x and 73x. In view of the complete lack of optimizations
of this implementation, we believe that those results are quite promising. The
memory overhead is linear in the masking order, so quite reasonable in practice
(all masked values are simply represented as a vector of shares).

For future work, we mention several ways in which our implementation could
be sped up:

— For simplicity, we use a version of SecArithBoolModp with cubic complex-
ity in the masking order, as in [13, §4.1]. Adapting the quadratic algorithm
of [13, §4.2] should provide a significant speed-up. Moreover, for small val-
ues of d, Coron’s most recent algorithm [11] should be considerably faster.
However, the technique from [11] unfortunately has an overhead exponential
in the masking order, so it is not suitable for our purpose of masking GLP
at any order.

— Several of our algorithms call SecAdd on two masked values one of which is
actually a public constant. One could use a faster SecAddConst procedure
that only protect the secret operand instead.

— Our algorithms are generic, and do not take advantage of the special shape
of k for example. In the case of GLYPH, a comparison to k = 214 — 1 could
be greatly simplified.

— One key way in which masking affects the efficiency of GLP signing is in the
computation of the product a-y;. This product is normally carried out using
a number-theoretic transform (NTT), with O(nlogn) complexity. However,
the NTT is not linear, and is thus inconvenient to use when y; is masked. In
our implementation, we use the schoolbook O(n?) polynomial multiplication
instead. However, one could consider other approaches: either use a faster
linear algorithm, like Karatsuba or Toom—Cook, or try and mask the NTT
itself.

— Many other more technical improvements are also possible: for example, we
have made no attempt to reduce the number of unnecessary array copies.

6 Conclusion

In this paper, we have described a provably secure masking of the GLP lattice-
based signature scheme, as well as a proof-of-concept implementation thereof.
The security proof itself involved a number of new techniques in the realm of
masking countermeasures. Our method should apply almost identically to other
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lattice-based Fiat—Shamir type signature schemes using uniform distributions in
intervals (as opposed to Gaussian distributions). This includes the Bai-Galbraith
signature scheme [2], as well as the recently proposed Dilithium signature [16].

We have mostly ignored the issue of signature compression, which is an im-
portant one in all of these constructions, GLP included. However, it is easy to see
that compression can be securely applied completely separately from our coun-
termeasure: this is because it only affects already generated signatures (which
are non-sensitive) as well as the input to the hash function (which is already
unmasked in our technique).

On the other hand, extending our approach to schemes using Gaussian dis-
tributions appears to be really difficult: neither Boolean masking nor arithmetic
masking with uniform masks seems particularly well-suited to address the prob-
lem. One way to tackle the problem might be to consider masking with non-
uniform noise, and only achieving statistically close instead of perfect simulata-
bility. Developing such a framework, however, is certainly a formidable challenge.

Masking hash-and-sign type signatures in using GPV lattice trapdoors is
probably even harder, as they involve Gaussian sampling not only in Z but on
arbitrary sublattices of Z™, with variable centers. It seems unlikely that a masked
GPV signature scheme can achieve a reasonable level of efficiency.

Finally, while we have used the maskComp tool to securely instantiate the
masked versions of some of the gadgets we use in our construction, it would
be interesting to leverage recent advances in verification [3] and synthesis [4] of
masked implementations in a more systematic way in the lattice-based setting.
Even for verification, the sheer size of the algorithms involved poses significant
challenges in terms of scalability; however, automated tool support would be
invaluable for the further development of masking in the postquantum setting.
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