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Abstract. While symmetric-key steganography is quite well understood
both in the information-theoretic and in the computational setting, many
fundamental questions about its public-key counterpart resist persistent
attempts to solve them. The computational model for public-key steganog-
raphy was proposed by von Ahn and Hopper in EUROCRYPT 2004. At
TCC 2005, Backes and Cachin gave the first universal public-key stegosys-
tem – i. e. one that works on all channels – achieving security against
replayable chosen-covertext attacks (SS-RCCA) and asked whether security
against non-replayable chosen-covertext attacks (SS-CCA) is achievable.
Later, Hopper (ICALP 2005) provided such a stegosystem for every effi-
ciently sampleable channel, but did not achieve universality. He posed
the question whether universality and SS-CCA-security can be achieved
simultaneously. No progress on this question has been achieved since
more than a decade. In our work we solve Hopper’s problem in a somehow
complete manner: As our main positive result we design an SS-CCA-secure
stegosystem that works for every memoryless channel. On the other hand,
we prove that this result is the best possible in the context of universal
steganography. We provide a family of 0-memoryless channels – where
the already sent documents have only marginal influence on the current
distribution – and prove that no SS-CCA-secure steganography for this
family exists in the standard non-look-ahead model.

1 Introduction

Steganography is the art of hiding the transmission of information to achieve
secret communication without revealing its presence. In the basic setting, the
aim of the steganographic encoder (often called Alice or the stegoencoder) is to
hide a secret message in a document and to send it to the stegodecoder (Bob)
via a public channel which is completely monitored by an adversary (Warden
or steganalyst). The channel is modeled as a probability distribution of legal
documents, called covertexts, and the adversary’s task is to distinguish those from
altered ones, called stegotexts. Although strongly connected with cryptographic
encryption, steganography is not encryption: While encryption only tries to hide
the content of the transmitted message, steganography aims to hide both the
message and the fact that a message was transmitted at all.



As in the cryptographic setting, the security of the stegosystems should only
rely on the secrecy of the keys used by the system. Symmetric-key steganography,
which assumes that Alice and Bob share a secret-key, has been a subject of
intensive study both in an information-theoretic [7,36,40] and in a computational
setting [13,22,23,25,26,30]. A drawback of such an approach is that the encoder
and the decoder must have shared a key in a secure way. This may be unhandy,
e. g. if the encoder communicates with several parties.

In order to avoid this problem in cryptography, Diffie and Hellman provided
the notion of a public-key scenario in their groundbreaking work [15]. This idea
has proved to be very useful and is currently used in nearly every cryptographic
application. Over time, the notion of security against so-called chosen ciphertext
attacks (chosen-ciphertext attack (CCA)-security) has established itself as the
“gold standard” for security in the public-key scenario [20,27]. In this setting,
an attacker has also access to a decoding oracle that decodes every ciphertext
different from the challenge-text. Dolev, Dwork and Naor [16] proved that the
simplest assumption for public-key cryptography – the existence of trapdoor
permutations – is sufficient to construct a CCA-secure public key cryptosystem.

Somewhat in contrast to the research in cryptographic encryption, only very
little studies in steganography have been concerned so far within the public-key
setting. Von Ahn and Hopper [38,39] were the first to give a formal framework and
to prove that secure public-key steganography exists. They formalized security
against a passive adversary in which Warden is allowed to provide challenge-
hiddentexts to Alice in hopes of distinguishing covertexts from stegotexts encoding
the hiddentext of his choice. For a restricted model, they also defined security
against an active adversary; It is assumed, however, that Bob must know the
identity of Alice, which deviates from the common bare public-key scenario.

Importantly, the schemes provided in [38,39] are universal (called also black-
box in the literature). This property guarantees that the systems are secure with
respect not only to a concrete channel C but to a broad range of channels. The
importance of universality is based on the fact that typically no good description
of the distribution of a channel is known.

In [3], Backes and Cachin provided a notion of security for public-key
steganography with active attacks, called steganographic chosen-covertext at-
tacks (SS-CCAs). In this scenario the warden may provide a challenge-hiddentext
to Alice and enforce the stegoencoder to send stegotexts encoding the hidden-
text of his choice. The warden may then insert documents into the channel
between Alice and Bob and observe Bob’s responses in hope of detecting the
steganographic communication. This is the steganographic equivalent of a cho-
sen ciphertext attack against encryption and it seems to be the most general
type of security for public-key steganography with active attacks similar to
CCA-security in encryption. Backes and Cachin also gave a universal public-key
stegosystem which, although not secure in the general SS-CCA-setting, satisfies a
relaxed notion called steganographic security against publicly-detectable replayable
adaptive chosen-covertext attacks (steganographic replayable chosen-covertext
attack (SS-RCCA)) inspired by the work of Canetti et al. [8]. In this relaxed



setting, the warden may still provide a hiddentext to Alice and is allowed to
insert documents into the channel between Alice and Bob but with the restriction
that the warden’s document does not encode the chosen hiddentext. Backes and
Cachin left as an open problem if secure public-key steganography exists at all in
the SS-CCA-framework.

This question was answered by Hopper [21] in the affirmative in case Alice
and Bob communicate via an efficiently sampleable channel C. He proved (under
the assumption of a CCA-secure cryptosystem) that for every such channel
C there is an SS-CCA-secure stegosystem PKStSC on C. The system cleverly
“derandomizes” sampling documents by using the sampling-algorithm of the
channel and using a pseudorandom generator to deterministically embed the
encrypted message. Hence, PKStSC is only secure on the single channel C and
is thus not universal. Hopper [21] posed as a challenging open problem to show
the (non)existence of a universal SS-CCA-secure stegosystem. Since more than a
decade, public key steganography has been used as a tool in different contexts
(e. g. broadcast steganography [17] and private computation [9,11]), but this
fundamental question remained open.

We solve Hopper’s problem in a complete manner by proving (under the
assumption of the existence of doubly-enhanced trapdoor permutations and
collision-resistant hash functions) the existence of an SS-CCA-secure public key
stegosystem that works for every memoryless channel, i. e. such that the docu-
ments are independently distributed (for a formal definition see next section). On
the other hand, we also prove that the influence of the history – the already sent
documents – dramatically limits the security of stegosystems in the realistic non-
look-ahead model: We show that no stegosystem can be SS-CCA-secure against
all 0-memoryless channels in the non-look-ahead model. In these channels, the
influence of the history is minimal. We thereby demonstrate a clear dichotomy
result for universal public-key steganography: While memoryless channels do
exhibit an SS-CCA-secure stegosystem, the introduction of the history prevents
this kind of security.

Our Contribution. As noted above, the stegosystem of Backes and Cachin
has the drawback that it achieves a weaker security than SS-CCA-security while
it works on every channel [3]. On the other hand, the stegosystem of Hopper
achieves SS-CCA-security but is specialized to a single channel [21]. We prove
(under the assumption of the existence of doubly-enhanced trapdoor permutations
and collision-resistant hash functions) that there is a stegosystem that is SS-CCA-
secure on a large class of channels (namely the memoryless ones). The main
technical novelty is a method to generate covertexts for the message m such that
finding a second sequence of covertexts that encodes m is hard. Hopper achieves
this at the cost of the universality of his system, while we still allow a very large
class of channels. We thereby answer the question of Hopper in the affirmative,
in case of memoryless channels. Note that before this work, it was not even
known whether an SS-CCA-secure stegosystem exists that works for some class
of channels (Hopper’s system only works on a single channel that is hard-wired



into the system). Furthermore, we prove that SS-CCA-security for memoryless
channels is the best possible in a very natural model: If the history influences
the channel distribution in a minor way, i. e. only by its length, we prove that
SS-CCA-security is not achievable in the standard non-look-ahead model of von
Ahn and Hopper. In Table 1, we compare our results with previous works.

Table 1. Comparison of the public-key stegosystems

Paper Security Channels Applicability

von Ahn and Hopper [38] passive universal possible

Backes and Cachin [3] SS-RCCA universal possible

Hopper [21] SS-CCA single constr. channel possible

This work (Theorem 10) SS-CCA all memoryless channels possible

This work (Theorem 12) SS-CCA universal impossible*

* In the non-look-ahead model against non-uniform wardens.

Related Results. Anderson and Petitcolas [1] and Craver [12], have both, even
before the publication of the work by von Ahn and Hopper [38,39], described ideas
for public-key steganography, however, with only heuristic arguments for security.
Van Le and Kurosawa [28] showed that every efficiently sampleable channel
has an SS-CCA-secure public-key stegosystem. A description of the channel is
built into the stegosystem and it makes use of a pseudo-random generator G
that encoder and decoder share. But the authors make a strong assumption
concerning changes of internal states of G each time the embedding operation
is performed, which does not fit into the usual models of cryptography and
steganography. Lysyanskaya and Meyerovich [32] investigated the influence of the
sampling oracle on the security of public key stegosystems with passive attackers.
They prove that the stegosystem of von Ahn and Hopper [39] becomes insecure
if the approximation of the channel distribution by the sampling oracle deviates
only slightly from the correct distribution. They also construct a channel, where
no incorrect approximation of the channel yields a secure stegosystem. This
strengthens the need for universal stegosystems, as even tiny approximation
errors of the channel distribution may lead to huge changes with regard to
the security of the system. Fazio, Nicolosi and Perera [17] extended public-key
steganography to the multi-recipient setting, where a single sender communicates
with a dynamically set of receivers. Their system is designed such that no outside
party and no unauthorized user is able to detect the presence of these broadcast
communication. Cho, Dachma-Soled and Jarecki [11] upgraded the covert multi-
party computation model of Chandran et al. [9] to the concurrent case and
gave protocols for several fundamental operations, e. g. string equality and set



intersection. Their steganographic (or covert) protocols are based upon the
decisional Diffie-Hellman problem.

The paper is organized as follows. Section 2 contains the basic definitions and
notations. In Section 3, we give an example attack on the stegosystem of Backes
and Cachin to highlight the differences between SS-RCCA-security and SS-CCA-
security. The following Section 4 contains a high-level view of our construction.
Section 5 uses the results of [21] to prove that one can construct cryptosystems
with ciphertexts that are indistinguishable from a distribution on bitstrings
related to the hypergeometric distribution, which we will need later on. The main
core of our protocol is an algorithm to order the documents in an undetectable
way that still allows us to transfer information. This ordering is described in
Section 6. Our results concerning the existence of SS-CCA-secure steganography
for every memoryless channel are then presented and proved in Section 7. Finally,
Section 8 contains the impossibility result for SS-CCA-secure stegosystems in the
non-look-ahead model on 0-memoryless channels.

In order to improve the presentation, we moved proofs of some technical
statements to the appendix.

2 Definitions and Notation

If S is a finite set, we write x� S to denote the random assignment of a uniformly
chosen element of S to x. If A is a probability distribution or a randomized
algorithm, we write x← A to denote the assignment of the output of A, taken
over the internal coin-flips of A.

As our cryptographic and steganographic primitives will be parameterized
by the key length κ, we want that the ability of any polynomial algorithm to
attack this primitives is lower than the inverse of all polynomials in κ. This is
modeled by the definition of a negligible function. A function negl : N → [0, 1]
is called negligible, if for every polynomial p, there is an N0 ∈ N such that
negl(N) < p(N)−1 for every N ≥ N0. For a probability distribution D on
support X, the min-entropy H∞(D) is defined as infx∈X{− logD(x)}.

We also need the notion of a strongly 2-universal hash function, which is a
set of functions G mapping bitstrings of length ` to bitstrings of length `′ < `
such that for all x, x′ ∈ {0, 1}` with x 6= x′ and all (not necessarily different)
y, y′ ∈ {0, 1}`′ , we have |{f ∈ G | f(x) = y ∧ f(x′) = y′}| = |G|

22`′
. If `/`′ ∈ N, a

typical example of such a family is the set of functions

{x 7→
(∑`/`′

i=1 aixi + b
)
mod 2`

′ | a1, . . . , a`/`′ , b ∈ {0, . . . , 2`
′ − 1} },

where xi denotes the i-th block of length `′ of x and we implicitly use the canonical
bijection between {0, 1}n and the finite field {0, . . . , 2n−1}. See e. g. the textbook
of Mitzenmacher and Upfal [33] for more information on this. For two polynomials
` and `′, a strongly 2-universal hash family is a family G = {Gκ}κ∈N such that
every Gκ is a strongly 2-universal hash function mapping strings of length `(κ)
to strings of length `′(κ).



Channels and Stegosystems. In order to be able to embed messages into
unsuspicious communication, we first need to provide a definition for this. We
model the communication as an unidirectional transfer of documents that we will
treat as strings of length n over a constant-size alphabet Σ. The communication
is defined via the concept of a channel C on Σ: A function, that maps, for
every n ∈ N, a history hist ∈ (Σn)∗ to a probability distribution on Σn. We
denote this probability distribution by Chist,n and its min-entropy H∞(C, n) as
minhist{H∞(Chist,n)}.

Definition 1. We say that a channel C is memoryless, if Chist,n = Chist′,n for all
hist, hist′, i. e. if the history has no effect on the channel distribution.

Note the difference between memoryless and 0-memoryless channels of Lysyan-
skaya and Meyerovich [32], where only the length of the history has an influence
on the channel, since the channel distributions are described by the use of
memoryless Markov chains:

Definition 2 ([32]). A channel C is 0-memoryless, if Chist,n = Chist′,n for all
hist, hist′ such that | hist | = | hist′ |.

A stegosystem PKStS tries to embed messages of length PKStS.ml into
PKStS.ol documents of the channel C that each have size PKStS.dl, such that this
sequence is indistinguishable from a sequence of typical documents. A public-key
stegosystem PKStS with message length PKStS.ml : N → N, document length
PKStS.dl : N→ N, and output length PKStS.ol : N→ N (all functions of the secu-
rity parameter κ) is a triple of polynomial probabilistic Turing machines (PPTMs)
[PKStS.Gen,PKStS.Enc,PKStS.Dec]3 with the functionalities:

– The key generation Gen on input 1κ produces a pair (pk, sk) consisting of a
public key pk and a secret key sk (we assume that sk also fully contains pk).

– The encoding algorithm Enc takes as input the public key pk, a message m ∈
{0, 1}ml(κ), a history hist ∈ (Σdl(κ))∗ and some state information s ∈ {0, 1}∗
and produces a document d ∈ Σdl(κ) and state information s′ ∈ {0, 1}∗
by being able to sample from Chist,dl(κ). By EncC(pk,m, hist), we denote the
complete output of ol(κ) documents one by one. Note that generally, the
encoder needs to decide upon document di before it is able to get samples for
the (i+1)-th document, as in the secret-key model of Hopper et al. [23, Section
2, “channel access”] and the public-key model of von Ahn and Hopper [38,39,
Section 3]. This captures the notion that an attacker should have as much
information as possible while the stegosystem is not able to look-ahead into
the future. To highlight this restriction, we call this model the non-look-ahead
model. Note that this is no restriction for memoryless channels.

– The decoding algorithm Dec takes as input the secret key sk, a sequence of
documents d1, . . . , dol(κ), history hist and outputs a message m′.

The following properties are essential for stegosystems PKStS with output length
` = PKStS.ol(κ). It is universal (black box ), if it works on every channel without
3 We will drop the prefix PKStS if the context is clear.



prior knowledge of the probability distribution of the channel. Clearly channels
with too small min-entropy (such as deterministic channels) are not suitable for
steganographic purposes. We thus concentrate only on channels with sufficiently
large min-entropy.

The system is reliable if the probability that the decoding fails is bounded by
a negligible function. Formally, the unreliability UnRelPKStS,C(κ) is defined as
probability that the decoding fails, i. e.

max
m,hist

{ Pr
(pk,sk)←PKStS.Gen(1κ)

[PKStS.Dec(sk,PKStS.EncC(pk,m, hist), hist) 6= m]}.

The system PKStS is secure, if every polynomial attacker W (the warden)
has only negligible success probability. W works in two phases: In the first
phase (called W.Find), the warden has access to the channel C and to a decoding
oracle Decsk(·), that returns upon input d1, . . . , d` and hist the same result as
PKStS.Dec(sk, (d1, . . . , d`), hist). At the end of the first phase, the warden chooses
a message m∗ and a history hist∗.

At the beginning of the second phase (called W.Guess), the warden gets a
sequence of documents d∗ = d∗1, . . . , d

∗
` , which is with probability of 50% the

result of PKStS.EncC(pk,m∗, hist∗) and with probability of 50% just the result of
sampling ` random documents from Chist∗,n, which we denote as C`hist∗,n. Speaking
more precisely, this sampling is done as follows: d∗i ← Chist∗||d∗1 ||...||d∗i−1,n

for
i = 1, . . . , `. Next, the warden should distinguish between these two cases by
having access to another decoding oracle. Depending on the oracle type, two
definitions for security were proposed by Backes and Cachin in [3].

In the SS-CCA-model (chosen covertext attack), the decoding oracle, denoted
as Decsk,d∗(·), works like Decsk(·) on every input different from d∗. If Decsk,d∗(·)
is called with input d∗, it simply returns ⊥. In the weaker SS-RCCA-model (re-
stricted chosen ciphertext attack), the decoding oracle, denoted as Decsk,d∗,m∗(·),
works like Decsk(·) on most inputs: If the input d equals d∗ or is a valid encoding
of m∗ (a replay of d∗), the oracle simply returns ⊥.

Formally, SS-CCA-security is defined by the SS-CCA-security game given below
and the advantage of W = [W.Find,W.Guess] is defined as

Advss-cca
W,PKStS,C(κ) =

∣∣Pr[SS-CCA-Dist(W,PKStS, C, κ) = 1]− 1

2

∣∣.
SS-CCA-security game: SS-CCA-Dist(W,PKStS, C, κ)

Input: warden W, stegosystem PKStS, channel C, security parameter κ
1: (pk, sk)← PKStS.Gen(1κ); (m∗, hist∗, s)←W.FindDecsk,C(pk)
2: b← {0, 1}
3: if b = 0 then d∗ ← PKStS.EncC(pk,m∗, hist∗) else d∗ ← C`hist∗,n
4: b′ ←W.GuessDecsk,d∗ ,C(pk,m∗, hist∗, s,d∗)
5: if b′ = b then return 1 else return 0



A stegosystem PKStS is called SS-CCA-secure against channel C if for some
negligible function negl and all wardens W, we have Advss-cca

W,PKStS,C(κ) ≤ negl(κ).
We define SS-RCCA-security analogously, where the Guess phase uses Decsk,d∗,m∗
as decoding oracle. Formally, a stegosystem is universally SS-CCA-secure (or just
universal), if it is SS-CCA-secure against all channels of sufficiently large (i. e.
super-logarithmic in κ) min-entropy.

Cryptographic Primitives. Due to space constraints, we only give informal
definitions of the used cryptographic primitives and refer the reader to the
textbook of Katz and Lindell [24] for complete definitions.

We will make use of different cryptographic primitives, namely hash functions,
pseudorandom permutations and CCA-secure cryptosystems. A collision-resistant
hash function (CRHF) H = (H.Gen,H.Eval) is a pair of PPTMs such that H.Gen
upon input 1κ produces a key k ∈ {0, 1}κ. The keyed function H.Eval takes the
key k ← H.Gen(1κ) and a string x ∈ {0, 1}H.in(κ) and produces a string H.Evalk(x)
of length H.out(κ) < H.in(κ). The probability of every PPTM Fi to find a collision
– two strings x 6= x′ such that H.Evalk(x) = H.Evalk(x

′) – upon random choice
of k is negligible. For a set X, denote by Perms(X) the set of all permutations
on X. A pseudorandom permutation (PRP) P = (P.Gen,P.Eval) is a pair of
PPTMs such that P.Gen upon input 1κ produces a key k ∈ {0, 1}κ. The keyed
function P.Eval takes the key k ← P.Gen(1κ) and is a permutation on the set
{0, 1}P.in(κ). An attacker Dist (the distinguisher) is given black-box access to P �
Perms({0, 1}P.in(κ)) or to P.Evalk for a randomly chosen k and should distinguish
between those scenarios. The success probability of every Dist is negligible. A
public key encryption scheme (PKES) PKES = (PKES.Gen,PKES.Enc,PKES.Dec)
is a triple of PPTMs such that PKES.Gen(1κ) produces a pair of keys (pk, sk)
with |pk| = κ and |sk| = κ. The key pk is called the public key and the key sk
is called the secret key (or private key). The encryption algorithm PKES.Enc
takes as input pk and a plaintext m ∈ {0, 1}PKES.ml(κ) of length PKES.ml(κ) and
outputs a ciphertext c ∈ {0, 1}PKES.cl(κ) of length PKES.cl(κ). The decryption
algorithm PKES.Dec takes as input sk and the ciphertext c and produces a
plaintext m ∈ {0, 1}PKES.ml(κ). Informally, we will allow an attacker A to first
choose a message m∗ that should be encrypted and denote this by A.Find. In the
next step (A.Guess), the attacker gets c∗, which is either Enc(pk,m∗) or a random
bitstring. He is allowed to decrypt ciphertexts different from c∗ and his task is to
distinguish between these two cases. This security notion is known as security
against chosen-ciphertext$ attacks (CCA$s). For an attacker A on cryptographic
primitive Π ∈ {hash,prp,pkes} with implementation X, we write AdvΠA,X,C(κ)
for the success probability of A against X relative to channel C, i. e. the attacker
A also has access to a sampling oracle of C. In case of encryption schemes, the
superscript cca$ is used instead of pkes.

Due to the works [16,18,31,34] we know that CCA$-secure cryptosystems and
PRPs can be constructed from doubly-enhanced trapdoor permutations resp. one-
way functions, while CRHFs can not be constructed from them in a black-box
way, as Simon showed an oracle-separation in [37].



3 Detecting the Scheme of Backes and Cachin

In order to understand the difference between SS-CCA-security and the closely
related, but weaker, SS-RCCA-security, we give a short presentation of the uni-
versal SS-RCCA-stegosystem of Backes and Cachin [3]. We also show that their
system is not SS-CCA-secure, which was already noted by Hopper in [21]. The
proof of insecurity nicely illustrates the difference between the security models.
It also highlights the main difficulty of SS-CCA-security: One needs to prevent
so called replay attacks, where the warden constructs upon stegotext c another
stegotext c′ – the replay of c – that embeds the same message as c.

Backes and Cachin [3] showed that there is a universal SS-RCCA-secure
stegosystem under the assumption that a replayable chosen-covertext$ attack
(RCCA$)-secure cryptosystem exists.4 They make use of a technique called re-
jection sampling. Let {Gκ}κ∈N be a strongly 2-universal hash function family,
f ∈ Gκ a function, C be a channel, hist be a history and b ∈ {0, 1} be a
bit. The algorithm rejsam(f, C, b, hist) samples documents d ← Chist,dl(κ) until
it finds a document d∗ such that f(d∗) = b or until it has sampled κ docu-
ments. If PKES is an RCCA$-secure cryptosystem, they define a stegosystem that
computes (b1, . . . , b`) ← PKES.Enc(pk,m) and then sends d1, d2, . . . , d`, where
di ← rejsam(f, C, bi, hist ||d1|| . . . ||di−1). The function f ∈ Gκ is also part of the
public key. The system is universal as it does not assume any knowledge on C.

They then prove that this stegosystem is SS-RCCA-secure. And indeed, one
can show that their stegosystem is not SS-CCA-secure by constructing a generic
warden W that works as follows: The first phase W.Find chooses as message
m∗ = 00 · · · 0 and as hist∗ the empty history ∅. The second phase W.Guess gets
d∗ = d∗1, . . . , d

∗
` which is either a sequence of random documents or the output

of the stegosystem on pk, m∗, and hist∗. The warden W now computes another
document d′ via rejection sampling that embedds f(d∗` ) (the replay of d∗) and
decodes d∗1, . . . , d∗`−1, d

′ via the decoder of the rejection sampling stegosystem. It
then returns 0 if the returned message m′ consists only of zeroes. If d∗ was a
sequence of random documents, it is highly unlikely that d∗ decodes to a message
that only consists of zeroes. If d∗ was produced by the stegosystem, the decoder
only returns something different from the all-zero-message if d′ = d∗` which is
highly unlikely. The warden W has advantage of 1− negl(κ) and the stegosystem
is thus not SS-CCA-secure. Backes and Cachin posed the question whether a
universal SS-CCA-secure stegosystem exists.

4 An High-Level View of our Stegosystem

The stegosystem of Backes and Cachin only achieves SS-RCCA-security as a
single ciphertext has many different possible encodings in terms of the documents
used. Hopper achieves SS-CCA-security by limiting those encodings: Due to
the sampleability of the channel, each ciphertext has exactly one deterministic
4 The definition of a RCCA$-secure cryptosystem is analogous to SS-RCCA-security
given in Section 2.



encoding in terms of the documents. While Hopper achieves SS-CCA-security,
he needs to give up the universality of the stegosystem, as a description of the
channel is hard-wired into the stegosystem. In order to handle as many channels
as possible, we will allow many different encodings of the same ciphertext, but
make it hard to find them for anyone but the stegoencoder. To simplify the
presentation, we focus on the case of embedding a single bit per document.
Straightforward modifications allow embedding of log(κ) bits.

Our stegosystem, named PKStS∗ will use the following approach to encode a
message m: It first samples, for sufficiently large N , a set D of N documents from
the channel C and uses a strongly 2-universal hash function f ∈ Gκ to split these
documents into documents D0 that encode bit 0 (i. e. D0 = {d ∈ D | f(d) = 0})
and D1 that encode bit 1 (i. e. D1 = {d ∈ D | f(d) = 1}). Now we encrypt the
message m via a certain public-key encryption system, named PKES* (described
in the next section), and obtain a ciphertext b = b1, . . . , bL of length L = bN/8c.
Next our goal is to order the documents in D into a sequence d = d1, . . . , dN such
that the first L documents d1, . . . , dL encode b (i. e. f(d)i = bi). This ordering
is performed by the algorithm generate. However, the attacker still has several
possibilities for a replay attack on this scheme, for example:

– He could exchange some document di by another document d′i with f(di) =
f(d′i) (as f is publicly known) and the sequence d1, . . . , di−1, d′i, di+1, . . . , dN
would be a replay of d. Such attacks will be called sampling attacks. To
prevent the attacker from exchanging a sampled document by a non-sampled
one, we also encode a hash-value of all sampled documents D and transmit
this hash value to Bob.

– The attacker can exchange documents di and dj , with i < j and f(di) = f(dj),
and the resulting sequence d1, . . . , di−1, dj , di+1, . . . , dj−1, di, dj+1, . . . , dN
would be a replay of d. Such attacks will be called ordering attacks. We
thus need to prevent the attacker from exchanging the positions of sampled
documents. We achieve this by making sure that the ordering of the docu-
ments generated by generate is deterministic, i. e. for each set of documents D
and each ciphertext b, the ordering d generated by generate is deterministic.
This property is achieved by using PRPs to sort the sampled documents D.
The corresponding keys of the PRPs are also transmitted to Bob and the
stegodecoder can thus also compute this deterministic ordering.

In total, our stegoencoder PKStS∗.Enc works on a secret message m and on a
publicly known hash-function f as follows:

1. Sample N documents D from the channel;
2. Get a hash-key kH and compute a hash-value h = H.EvalkH(lex(D)) of the

sampled documents, where lex(D) denotes the sequence of elements of D
in lexicographic order. This prevents sampling attacks, where a sampled
document is replaced by a non-sampled one;



3. Get two5 PRP-keys kP and k′P that will be used to determine the unique
ordering of the documents in D via generate. This prevents ordering attacks,
where the order of the sampled documents is switched;

4. Encrypt the concatenation of m, kH, kP, k′P, h via a certain public key en-
cryption scheme PKES* and obtain the ciphertext b of length L = bN/8c.
As long as PKES* is secure, the stegodecoder is thus able to verify whether
all sampled documents were sent and can also verify the ordering of the
documents.

5. Compute the ordering d of the documents D via generate that uses the PRP
keys kP and k′P to determine the ordering of the documents. It also uses
the ciphertext b to guarantee that the first L send documents encode the
ciphertext b, i. e. b1 . . . bL = f(d1) . . . f(dL);

6. Send the ordering of the documents d.

To decode a sequence of documents d = d1, . . . , dN , the stegodecoder of
PKStS∗ computes the ciphertext b1 = f(d1), . . . , bL = f(dL) encoded in the first
L documents of d. It then decodes this ciphertext b1 . . . bL via PKES* to obtain
the message m, the PRP keys kP and k′P, the hash-key kH and the hash-value h.
First it verifies the hash-value by checking whether H.EvalkH(lex({d1, . . . , dN}))
equals the hash-value h to prevent sampling attacks. It then uses the PRP keys
kP and k′P′ to compute an ordering of the received documents via generate to
verify that no ordering attack was used. If these validations are successful, the
decoder PKStS∗.Dec returns m; Otherwise, it concludes that d is not a valid
stegotext and returns ⊥.

Intuitively, it is clear that a successful sampling attack on this scheme would
break the collision-resistant hash function H, as it needs to create a collision
of lex(D) in order to pass the first verification step. Furthermore, a successful
ordering attack would need manipulate the ciphertext b and thus break the
security of the public key encryption scheme PKES*, as the PRP keys kP and k′P
guarantee a deterministic ordering of the documents.

As explained above, our stegoencoder computes the ordering d = d1, . . . , dN of
the documents D = {d1, . . . , dN} via the deterministic algorithm generate, that is
given the following parameters: the set of documents D, the hash-function f and
the ciphertext b to ensure that the first documents of the ordering encode b. It
has furthermore access to the PRP keys kP and k′P that guarantee a deterministic
ordering of the documents in D and thus prevents ordering attacks. As the
ordering d produced by generate is sent by the stegoencoder, this ordering must
be indistinguishable from a random permutation on D (which equals the channel
distribution) in order to be undetectable. As f(d1) = b1, . . . , f(dL) = bL, not
every distribution upon the ciphertext b can be used to guarantee that d is
indistinguishable from a uniformly random permutation. This indistinguishability
is guaranteed by requiring that the ciphertext b is distributed according to a
certain distribution corresponding to a random process modeled by drawing black

5 We believe that one permutation suffices. But in order to improve the readability of
the proof for security, we use two permutations in our stegosystem.



and white balls from an urn without replacement. In our setting, the documents
in D will play the role of the balls and the coloring is given by the function f .

Section 5 describes this random process in detail and proves that we can
indeed construct a public-key encryption system that produces ciphertexts that
are indistinguishable from this process. Section 6 contains a formal description of
generate, proves that no attacker can produce a replay of its output and shows that
the generated permutation is indeed indistinguishable from a random permutation.
Finally, Section 7 contains the complete description of the stegosystem.

5 Obtaining Biased Ciphertexts

We will now describe a probability distribution and show how one can derive a
symmetric encryption scheme with ciphertexts that are indistinguishable from
this distribution. In order to do this, we first define a channel that represents the
required probability distribution together with appropriate parameters, use The-
orem 3 to derive a stegosystem for this channel, and finally derive a cryptosystem
from this stegosystem.

Based upon a CCA$-secure public-key cryptosystem PKES, Hopper [21] con-
structs for every efficiently sampleable channel C an SS-CCA-secure stegosystem
PKStSC by “derandomizing” the rejection sampling algorithm. The only require-
ment upon the channel C is the existence of the efficient sampling algorithm and
that the stegoencoder and the stegodecoder use the same sampling algorithm.
Importantly, due to the efficient sampleability of C, the encoder of PKStSC does
not need an access to the sample oracle. Thus, we get the following result.

Theorem 3 (Theorem 2 in [21]). If C is an efficiently sampleable channel
and PKES is a CCA$-secure public-key cryptosystem (which can be constructed
from doubly enhanced trapdoor permutations6) then there is a stegosystem PKStSC
(without an access to the sample oracle) such that for all wardens W there is a
negligible function negl such that

Advss-cca
W,PKStSC,C(κ) ≤ negl(κ) + 2−H∞(C,κ)/2.

Note that the system PKStSC is guaranteed to be secure (under the assumption
that CCA$-secure public-key cryptosystems exist), if the channel C is efficiently
sampleable and has min-entropy ω(log κ). We call such a channel suitable.

The probability distribution for the ciphertexts we are interested in is the
distribution for the bitstrings b we announced in the the previous section. As we
will see later, the required probability can be described equivalently as follows:

– We are given N elements: N0 of them are labeled with 0 and the remaining
N −N0 elements are labeled with 1.

– We draw randomly a sequence of K elements from the set (drawing without
replacements) and look at the generated bitstring b = b1 . . . bK of length K
determined by the labels of the elements.

6 See e. g. the work [18] of Goldreich and Rothblum.



We will assume that there are enough elements of both types, i. e. that N0 ≥ K
and N −N0 ≥ K. The resulting probability distribution, denoted as D*

(N,N0,K),
upon bitstrings of length K is then given as

Pr[D*
(N,N0,K) = b1 . . . bK ] =

1(
K
|b|0

) · (N0

|b|0

)
·
(
N−N0

K−|b|0

)(
N
K

) =

(K−1∏
j=0

1

N − j
)
·
(|b|0−1∏
j=0

[N0 − j]
)
·
(|b|1−1∏
j=0

[N −N0 − j]
)
,

(1)

where |b|0 denotes the number of zero bits in b = b1, . . . , bK and |b|1 the number
of one bits in b. Note that the distribution on the number of zeroes within such
bitstrings is a hypergeometric distribution with parameters N , N0, and K.

Now we will construct a channel C* upon key parameter κ with document
length n = dl(κ) = κ. In the definition below, bin(x)y denotes the binary
representation of length exactly y for the integer x.

– For the empty history ∅, let C*∅,κ be the uniform distribution on all strings
bin(N)dκ/2e bin(N0)bκ/2c that range over all positive integers N,N0 ≤ 2bκ/2c

such that N ≥ 8κ and 1/3 ≤ N0/N ≤ 2/3 (in our construction we need
initially a stronger condition than just N0 ≥ κ and N −N0 ≥ κ).

– If the history is of the form hist′ = bin(N)dκ/2e bin(N0)bκ/2c hist for some
hist ∈ {0, 1}∗ then we consider two cases: if | hist | ≤ 1

8N then the distribution
C*hist′,κ equals D*

(N−| hist |,N0−| hist |0,κ); Otherwise, i. e. if | hist | > 1
8N then

C*hist′,κ equals the uniform distribution over {0, 1}κ.

It is easy to see that the min-entropy H∞(C*, n) = minhist′{H∞(C*hist′,n)} of
the channel C* is obtained for the history hist′ = bin(N)dκ/2e bin(N0)bκ/2c hist,
with 8κ ≤ N ≤ 2bκ/2c and such that (i) N0 = 1

3N and hist = 00 . . . 0 of length
1
8N −κ or (ii) N0 = 2

3N and hist = 11 . . . 1 of length 1
8N −κ. In the first case we

get that the min-entropy of the distribution C*hist′,n is achieved on the bitstring
11 . . . 1 of length κ and in the second case on 00 . . . 0 of length κ. By Eq. (1) the
probabilities to get such strings are equal to each other and, since κ ≤ N/8, they
can be estimated as follows:

κ−1∏
j=0

2N/3− j
7N/8− κ− j

≤
(

2N/3

7N/8− κ

)κ
≤
(
2N/3

6N/8

)κ
= (8/9)κ.

Thus, we get that H∞(C*, n) ≥ κ log(9/8).
Moreover one can efficiently simulate the choice of N,N0, the sampling process

of D*
(N,N0,κ)

and the uniform sampling in {0, 1}κ. Therefore we can conclude

Lemma 4. The channel C* is suitable, i. e. it is efficiently sampleable and has
min-entropy ω(log κ). Furthermore, for history hist = bin(N)dκ/2e bin(N0)bκ/2c,
with 8κ ≤ N ≤ 2dκ/2e and 1/3 ≤ N0/N ≤ 2/3, and for any integer ` ≤ N

8κ , the



bitstrings b = b1 . . . bK of length K = κ · ` ≤ N/8 obtained by the concatenation
of ` consecutive documents sampled from the channel with history hist, i. e.
bi ← C*hist b1...bi−1,n=κ, have distribution D*

(N,N0,K).

A proof for the second statement of the lemma follows directly from the
construction of the channel. Now, combining the first claim of the lemma with
Theorem 3 we get the following corollary.

Corollary 5. If doubly enhanced trapdoor permutations exists, there is a stegosys-
tem PKStSC* (without an access to the sample oracle) such that for all wardens
W there is a negligible function negl such that Advss-cca

W,PKStSC* ,C
*(κ) ≤ negl(κ).

Based upon this stegosystem PKStS = PKStSC* , we construct a public-key
cryptosystem PKES*, with ciphertexts of length PKES*.cl(κ) = κ · PKStS.cl(κ)
such that PKES* also has another algorithm, called PKES*.Setup that takes
parameters: two integers N and N0 which satisfy 8 · PKES*.cl(κ) ≤ N ≤ 2bκ/2c

and N0/N ∈ [1/3, 2/3]. Calling PKES*.Setup(N,N0) stores the values N,N0 such
that PKES*.Enc and PKES*.Dec can use them.

– The key generation PKES*.Gen simply equals the key generation algorithm
PKStS.Gen.

– The encoding algorithm PKES*.Enc takes as parameters the public key pk and
a message m. It then simulates the encoder PKStS.Enc on key pk, message
m and history hist = bin(N)dκ/2e bin(N0)bκ/2c and produces a bitstring of
length PKES*.cl(κ) = PKStS.ol(κ) · κ.

– The decoder PKES*.Dec simply inverts this process by simulating the stegode-
coder PKStS.Dec on key sk and history hist = bin(N)dκ/2e bin(N0)bκ/2c.

Clearly, the ciphertexts of PKES*.Enc(pk,m) are indistinguishable from the
distribution D*

(N,N0,PKES*.cl(κ))
by the second statement of Lemma 4. This gener-

alization of Theorem 3 yields the following corollary:

Corollary 6. If doubly-enhanced trapdoor permutations exist, there is a secure
public-key cryptosystem PKES*, equipped with the algorithm PKES*.Setup that
takes two parameters N and N0, such that its ciphertexts are indistinguishable
from the probability distribution D*

(N,N0,PKES*.cl(κ)))
whenever N and N0 satisfy

that 8 · PKES*.cl(κ) ≤ N ≤ 2bκ/2c and N0/N ∈ [1/3, 2/3].

6 Ordering the Documents

As described before, to prevent replay attacks, we need to order the sampled
documents. This is done via the algorithm generate described in this section. To
improve the readability, we will abbreviate some terms and define L = PKES*.cl(κ)

and n = PKStS∗.dl(κ), where PKES* is the public-key encryption scheme from
the last section and PKStS∗ is our target stegosystem that we will provide later
on. We also define N = 8L.



To order the set of documents D ⊆ Σn, we use the algorithm generate,
presented below. It takes the set of documents D with |D| = N , a hash function
f : Σn → {0, 1} from Gκ, a bitstring b1, . . . , bL, and two keys kP, k′P for PRPs. It
then uses the PRPs to find the right order of the documents.

Algorithm: generate(D, f, b1, . . . , bL, kP, k′P)

Input: set D with |D| = N , hash function f , bits b1, . . . , bL, PRP-keys kP, k′P
1: let D0 = {d ∈ D | f(d) = 0} and D1 = {d ∈ D | f(d) = 1} . We assert that
|D| = N , and furthermore |D0| ∈ [N/3, 2N/3]

2: for i = 1 to L do
3: di := argmind∈Dbi {P.EvalkP(d)}; Dbi := Dbi \ {di}
4: let D′ = D0 ∪D1 . collect remaining documents
5: for i = L+ 1, . . . , N do
6: di := argmind∈D′{P.Evalk′

P
(d)}; D′ := D′ \ {di}

7: return d1, d2, . . . , dN

Note that the permutation P.EvalkP is a permutation upon the set {0, 1}n
(i. e. on the documents themselves) and the canonical ordering of {0, 1}n thus
implicitly gives us an ordering of the documents.

We note the following important property of generate that shows where the urn
model of the previous section comes into play. For uniform random permutations
P and P ′, we denote by generate(· · · , P, P ′) the run of generate, where the use
of P.EvalkP is replaced by P and the use of P.Evalk′P is replaced by P ′. If the bits
b = b1, . . . , bL are distributed according to D*

(N,|D0|,L), the resulting distribution
on the documents then equals the channel distribution.

Lemma 7. Let C be any memoryless channel, f be some hash function and
D be a set of N = 8L documents of C such that N/3 ≤ |D0| ≤ 2N/3, where
D0 = {d ∈ D | f(d) = 0}. If the permutations P, P ′ are uniformly random and
the bitstring b = b1, . . . , bL is distributed according to D*

(N,|D0|,L), the output of
generate(D, f, b, P, P ′) is a uniformly random permutation of D.

Proof. Fix any document set D of size N = 8L and a function f that splits D into
D0∪̇D1, with |D0| ≥ N/3 and |D1| ≥ N/3. Let d̂ = d̂1, . . . , d̂N be any permuta-
tion onD. We will prove that the probability (upon bits b and permutations P , P ′)
that d̂ is produced, is 1/N ! and thus establish the result. Let d = d1, . . . , dN be
the random variables that denote the outcome of generate(D, f, b1, . . . , bL, P, P ′).

Note that if d[i] (resp. d̂[i]) denotes the prefix of length i of d (resp. d̂), then
using the chain rule formula we get

Pr
b,P,P ′

[d1d2 . . . dN = d̂1d̂2 . . . d̂N ] =

N∏
i=1

Pr
b,P,P ′

[di = d̂i | d[i− 1] = d̂[i− 1]].

To estimate each of the factors of the product, we consider two cases:



– Case i ≤ L: Let b̂ = b̂1, . . . , b̂L be the bitstring such that b̂i = f(d̂i) and
let b̂[i] be the prefix b̂1, . . . , b̂i of b̂ of length i. Clearly, for i ≤ L it holds
that the event di = d̂i under the condition d[i − 1] = d̂[i − 1] occurs iff
(A) di ∈ Db̂i

and (B) di is put on position |b̂[i]|b̂i by the permutation P
with respect to Db̂i

. Due to the distribution of bit bi in the random bits b,
the event di ∈ Db̂i

occurs with probability (|Db̂i
| − |b̂[i− 1]|b̂i)/(N − i+ 1)

(under the above condition). As d[i− 1] = d̂[i− 1] holds, exactly |b̂[i− 1]|b̂i
documents from Db̂i

are already used in the output. As P is a uniform
random permutation, the probability that di is put on position |b̂[i]|b̂i by the
permutation P (with respect to Db̂i

) is thus 1/(|Db̂i
| − |b̂[i − 1]|b̂i). Since

(A) and (B) are independent, we conclude for i ≤ L that the probability
Prb,P,P ′ [di = d̂i | d[i− 1] = d̂[i− 1]] is equal to

Prb[di ∈ Db̂i
| d[i− 1] = d̂[i− 1]] ×

PrP [P puts di on position |b̂[i]|b̂i | d[i− 1] = d̂[i− 1]] =

|Db̂i
| − |b̂[i− 1]|b̂i
N − i+ 1

· 1

|Db̂i
| − |b̂[i− 1]|b̂i

=
1

N − i+ 1
.

– Case i > L: As the choice of P ′ is independent from the choice of P , the
remaining 2L items are ordered completely random. Hence, for i > L we also
have

Pr
b,P,P ′

[di = d̂i | d[i− 1] = d̂[i− 1]] =
1

N − i+ 1
.

Putting it together, we get

Pr
b,P,P ′

[d1d2 . . . dN = d̂1d̂2 . . . d̂N ] =

N∏
i=1

1

N − i+ 1
=

1

N !
. ut

As explained above, a second property that we need is that no attacker should
be able to produce a “replay” of the output of generate. Below, we formalize this
notion and analyze the security of the algorithm. An attacker A on generate is a
PPTM, that receives nearly the same input as generate: a set D of N documents,
a hash function f : Σn → {0, 1} from the family Gκ, a sequence b1, . . . , bL of L
bits, and a key kH for the CRHF H. Then A outputs a sequence d′1, . . . , d′N of
documents. We say that the algorithm A is successful if

1. f(di) = f(d′i) for all i = 1, . . . , N ,
2. d′1, . . . , d′N = generate(D′, f, b1, . . . , bL, kP, k

′
P), and

3. H.EvalkH(lex(D
′)) = H.EvalkH(lex(D)),

where D′ denotes the set {d′1, . . . , d′N} and, recall, lex(X) denotes the sequence
of elements of set X in lexicographic order. We can then conclude the following
lemma.



Lemma 8 (Informal). Let D ⊆ Σn be a set of documents with |D| = N , let
b1, . . . , bL be a bitstring, and f ∈ Gκ. For every attacker A on generate, there is
a collision finder Fi for the CRHF H such that the probability that A is successful
on D, f, b1, . . . , bL, kH is bounded by Advhash

Fi,H,C(κ).

The formal definition of “A is successful” as well as a formal statement of the
lemma can be found in the Appendix, Section A.

7 The Steganographic Protocol PKStS∗

We now have all of the ingredients of our stegosystem, namely the CCA-secure
cryptosystem PKES* from Section 5 and the ordering algorithm generate from
Section 6. To improve the readability, we will abbreviate some terms and define
n = PKStS∗.dl(κ), ` = PKStS∗.ol(κ), and L = PKES*.cl(κ), where PKES* is the
public-key encryption scheme from Section 5 and PKStS∗ is the stegosystem that
we will define in this section. We also let N = 8L.

In the following, let C be a memoryless channel, P be a PRP relative to C, H
be a CRHF relative to C and G = {Gκ}κ∈N be a strongly 2-universal hash family.
Remember, that PKES* has the algorithm PKES*.Setup that takes the additional
parametersN,N0 ≤ 2dκ/2e, such that ifN ≥ 8·PKES*.cl(κ) andN0/N ∈ [1/3, 2/3]

then the output of PKES*.Enc(pk,m) is indistinguishable from D*
(N,N0,PKES*.cl(κ))

(see Section 5 for a discussion). Furthermore, we assume that PKES* has very
sparse support, i. e. the ratio of valid ciphertexts compared to {0, 1}PKES*.cl(κ) is
negligible: If PKES*.Enc(pk,m) is called, we first use some public key encryption
scheme PKES with very sparse support to compute c ← PKES.Enc(pk,m) and
then encrypt c via PKES*. This construction is due to Lindell [29] and also
maintains the indistinguishability of the output of PKES*.Enc and the distribution
D*, as this properties hold for all fixed messages m. Now we are ready to provide
our stegosystem named PKStS∗. Its main core is the ordering algorithm generate.

– The key generating PKStS∗.Gen queries PKES*.Gen for a key-pair (pk, sk) and
chooses a hash-function f � Gκ. The public key of the stegosystem will be
pk∗ = (pk, f) and the secret key will be sk∗ = (sk, f).

– The encoding algorithm PKStS∗.Enc presented below (as Cn is memoryless
we skip hist in the description) works as described in Section 4: It chooses ap-
propriate keys, samples documents D, computes a hash value of D, generates
bitstring b via PKES*, and finally orders the documents via generate. 7

– To decode a sequence of documents d1, . . . , dN , the stegodecoder PKStS∗.Dec
first computes the bit string b1 = f(d1), . . . , bN = f(dN ) and computes the
number N0 = |{di : f(di) = 0}|. In case |{d1, . . . , dN}| < N or N0/N 6∈

7 That the number of produced documents is always divisible by 8 does not hurt
the security: The warden always gets the same number of documents, whether
steganography is used or not.



[1/3, 2/3], the decoder PKStS∗.Dec returns ⊥ and halts. Otherwise, us-
ing PKES*.Dec with sk and parameters N,N0, it decrypts from the ci-
phertext b1, b2, . . . , bL the message m, the keys kH, kP, k′P and the hash-
value h. It then checks whether the hash-value h is correct and whether
d1, . . . , dN = generate({d1, . . . , dN}, f, b1, . . . , bL, kP, k′P). Only if this is the
case, the message m is returned. Otherwise, PKStS∗.Dec decides that it can
not decode the documents and returns ⊥.

The steganographic encoder: PKStS∗.Enc(pk∗,m)

Input: public key pk∗ = (pk, f), message m; access to channel Cn
1: let L = PKES*.cl(κ) and N = 8L; let D0 := ∅ and D1 := ∅
2: for j = 1 to N do
3: sample dj from Cn; let Df(dj) := Df(dj) ∪ {dj}
4: N0 = |D0|
5: if |D0 ∪D1| < N or N0/N 6∈ [1/3, 2/3] then return d1, . . . , dN and halt
6: choose hash key kH ← H.Gen(1κ)
7: choose PRP keys kP, k′P ← P.Gen(1κ)
8: let h := H.EvalkH(lex(D0 ∪D1)) . compute hash
9: call PKES*.Setup(N,N0) . setup N,N0

10: let b1, b2, . . . , bL ← PKES*.Enc(pk,m || kH || kP || k′P || h)
11: let d := generate(D0 ∪D1, f, b1, . . . , bL, kP, k

′
P)

12: return d

Proofs of Reliabiliy and Security. We will first concentrate on the reliability
of the system PKStS∗ and prove that its unreliability is negligible. This is due
to the fact, that the decoding always works and the encoding can only fail if
a document was drawn more than once or if the sampled documents are very
imbalanced with regard to f .

Theorem 9. The probability that a message is not correctly embedded by the
encoder PKStS∗.Enc is at most 3N2 · 2−H∞(C,κ) + 2 exp(−N/54).

If 1 < λ ≤ log(κ) bits per document are embedded, this probability is bounded
by 22λ · 3N2 · 2−H∞(C,κ) + 2λ+1 exp(−N/54), which is negligible in κ if H∞(C, κ)
sufficiently large. Now, it only remains to prove that our construction is secure.
The proof proceeds similar to the security proof of Hopper [21]. But instead of
showing that no other encoding of a message exists, we prove that finding any
other encoding of the message is infeasible via Lemma 8.

Theorem 10. Let C be a memoryless channel, P be a PRP relative to C, the
algorithm H be a CRHF relative to C, the cryptosystem PKES* be the cryptosystem
designed in Section 5 with very sparse support relative to C, and G be a strongly
2-universal hash family. The stegosystem PKStS∗ is SS-CCA-secure against every
memoryless channel.



H1 = CNn

1 : pk∗ = (pk, f)← PKStS∗.Gen(1κ)

2 : for j := 1, 2, . . . , N :

3 : dj ← Cdl(κ)
4 : return ((d1, . . . , dN ), pk∗)

H2

pk∗ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 4 in PKStS∗.Enc

5 : P � Perms

6 : return ((dP (1), . . . , dP (N)), pk
∗)

H3

pk∗ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 4 in PKStS∗.Enc

5 : P � Perms;P ′ � Perms; kH ← H.Gen(1κ)

6 : b1, b2, . . . , bL ← D*
(N,N0,L)

7 : return (generate(D0 ∪D1, f, b1, . . . , bL, P, P
′), pk∗)

// generate(. . . , P, P ′) uses the permutations P, P ′

H4

pk∗ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 4 in PKStS∗.Enc

5 : kP ← P.Gen(1κ);P ′ � Perms; kH ← H.Gen(1κ)

6 : b1, b2, . . . , bL � D*
(N,N0,L)

7 : return (generate(D0 ∪D1, f, b1, . . . , bL, kP, P
′), pk∗)

// generate(. . . , P ′) uses the permutation P ′

H5

pk∗ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 4 in PKStS∗.Enc

5 : kP ← P.Gen(1κ); k′P ← P.Gen(1κ); kH ← H.Gen(1κ)

6 : b1, b2, . . . , bL � D*
(N,N0,L)

7 : return (generate(D0 ∪D1, f, b1, . . . , bL, kP, k
′
P), pk

∗)

H6 = PKStS∗.Enc

pk∗ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 4 in PKStS∗.Enc

5 : kP ← P.Gen(1κ); k′P ← P.Gen(1κ); kH ← H.Gen(1κ)

6 : h := H.EvalkH(lex(D0 ∪D1))

7 : PKES*.Setup(N,N0)

8 : b1, b2, . . . , bL ← PKES*.Enc(pk,m || kH || kP || k′P || h)
9 : return (generate(D0 ∪D1, f, b1, . . . , bL, kP, k

′
P), pk

∗)

Fig. 1. An overview of hybrids H1 and H6 used in the proof of Theorem 10.
Changes between the hybrids are marked as shadowed.



Proof (Proof sketch). We prove that the above construction is secure via a hybrid
argument. We thus define six distributions H1, . . . ,H6 shown in Figure 1.

We now proceed by proving that Hi and Hi+1 are SS-CCA-indistinguishable
(denoted by Hi ∼ Hi+1). Informally, this means that we replace in SS-CCA-Dist
the call to the stegosystem (if b = 0) by Hi and the call to the channel (if
b = 1) by Hi+1. Denote by Adv

(i)
W (κ) the advantage of a warden W in this

situation. Clearly, the SS-CCA-advantage ofW is bounded as Advss-cca
W,PKStS∗,C(κ) ≤

Adv
(1)
W (κ) +Adv

(2)
W (κ) +Adv

(3)
W (κ) +Adv

(4)
W (κ) +Adv

(5)
W (κ). This implies the

theorem, as H1 simply describes the channel and H6 describes the stegosystem.
Informally, we argue that:

1. H1 ∼ H2 because a uniform random permutation on a memoryless channel
does not change any probabilities;

2. H2 ∼ H3 because our choice of b1, . . . , bL and random permutations equal
the channel by Lemma 7;

3. H3 ∼ H4 because P is a PRP;
4. H4 ∼ H5 because P is a PRP;
5. H5 ∼ H6 because PKES* is secure due to Corollary 6 and because of Lemma 8.

ut

8 An Impossibility Result

We first describe an argument for truly random channels using an infeasible
assumption and then proceed to modify those channels to get rid of this. All
channels will be 0-memoryless and we thus write Cη,dl instead of Chist,dl, if hist
contains η document.

The main idea of our construction lies on the unpredictability of random
channels. If Cη and Cη+1 are independent and sufficiently random, we can not
deduce anything about Cη+1 before we have sampling access to it, which we only
have after we sent the document of Cη in the standard non-look-ahead model. To
be reliable, there must be enough documents in Cη+1 continuing the already sent
documents (call those documents suitable). To be SS-CCA-secure, the number
of suitable documents in Cη+1 must be very small to prevent replay attacks like
those in Section 3. By replacing the random channels with pseudorandom ones,
we can thus prove that every stegosystem is either unreliable or SS-CCA-insecure
on one of those channels. To improve the readability, fix some stegosystem PKStS
and let n = PKStS.dl(κ) and ` = PKStS.ol(κ).

Lower Bound on Truly Random Channels. For n ∈ N, we denote by Rn
all subsets R of {0, 1}n such that there is a negligible function negl with

– |R| ≥ negl(n)−1 and
– |R| ≤ 2n/2.

This means each subset R has super-polynomial cardinality in n without being
too large. For an infinite sequence R = R0, R1, . . . with Ri ∈ Rn, we construct



a channel C(R) where the distribution C(R)i,n is the uniform distribution on
Ri. The family of all such channels is denoted by F(Rn). We assume that a
warden can test whether a document d belongs to the support of C(R)i,n and
denote this warden by WR. In the next section, we replace the totally random
channels by pseudorandom ones and will get rid of this infeasible assumption. For
a stegosystem PKStS – like the system PKStS∗ from the last section – we are now
interested in two possible events that may occur during the run of PKStS.Enc
on a channel C(R). The first event, denoted by ENq (for Nonqueried), happens
if PKStS.Enc outputs a document it has not seen due to sampling. We are also
interested in the case that PKStS.Enc outputs something in the support of the
channel, denoted by EInS for In Support. Clearly, upon random choice of R, η
(the length of the history), m and pk we have

Pr[EInS | ENq] ≤ ` ·
2n/2 − PKStS.query(κ)

2n − PKStS.query(κ)
≤ ` · 2−n/2,

where PKStS.query(κ) denotes the number of queries performed by PKStS. This
is negligible in κ as n, query and ` are polynomials in κ. As warden WR can test
whether a document belongs to the random sets, we have Advss-cca

WR,PKStS,C(R)(κ) ≥
Pr[EInS]. Clearly, since we can assume EInS ⊆ ENq we thus obtain

Pr[ENq] =
Pr[EInS ∧ ENq]

Pr[EInS | ENq]
≤

Advss-cca
WR,PKStS,C(R)(κ)

1− ` · 2−n/2
.

Hence, if PKStS is SS-CCA-secure, the term Pr[ENq] must be negligible.
If PKStS is given a history of length η and it outputs documents d1, . . . , d`,

we note that PKStS.Enc only gets sampling access to C(R)η+`−1,n after it sent
d1, . . . , d`−1 in the standard non-look-ahead model. Clearly, due to the random
choice of R, the set Rη+` is independent of Rη, Rη+1, . . . , Rη+`−1. The encoder
PKStS.Enc thus needs to decide on the documents d1, . . . , d`−1 without any
knowledge of Rη+`. As PKStS.Enc draws a sample set D from C(R)η+`−1,n with
at most q = PKStS.query(κ) documents, we now look at the event ENsui (for Not
suitable) that none of the documents in D are suitable for the encoding, i. e. if
the sequence d1, d2, . . . , d`−1, d is not a suitable encoding of the message m for all
d ∈ D. Denote the unreliabiliy of the stegosystem by ρ. Clearly, if ENsui occurs,
there are two possibilities for the stegosystem: It either outputs something from D
and thus increases the unreliability or it outputs something it has not queried. We
thus have Pr[ENsui] ≤ max{ρ, (1− ρ) · Pr[ENq]}. Note that ρ must be negligible
if PKStS.Enc is reliable and, as discussed above, the term Pr[ENq] (and thus the
term (1− ρ) · Pr[ENq]) must be negligible if PKStS.Enc is SS-CCA-secure. Hence,
if PKStS.Enc is SS-CCA-secure and reliable, the probability Pr[ENsui] must be
negligible. The insight, that Pr[ENsui] must be negligible directly leads us to the
construction of a warden WR on the channel C(R). The warden chooses a random
history of length η and a random message m and sends those to its challenging
oracle. It then receives the document sequence d1, . . . , d`. If di 6∈ Rη+i, the warden
returns »Stego«. Else, it samples q documents D from C(R)η+`,n and tests for



all d ∈ D via the decoding oracle PKStS.Decsk if the sequence d1, d2, . . . , d`−1, d
decodes to m. If we find such a d, return »Stego« and else return »Not Stego«. If
the documents are randomly chosen from the channel, the probability to return
»Stego« is at most q/|2PKStS.ml(κ)|, i. e. negligible. If the documents are chosen
by the stegosystem, the probability of »Not Stego« is exactly Pr[ENsui]. Hence,
PKStS must be either unreliable or SS-CCA-insecure on some channel in F(Rn).

Lower Bound on Pseudorandom Channels. To give a proof, we will replace
the random channels C(R) by pseudorandom ones. The construction assumes
existence of a CCA$-secure cryptosystem PKES with PKES.cl(κ) ≥ 2PKES.ml(κ).

For ω = (pk, sk) ∈ supp(PKES.Gen(1κ)), let C(ω)i,dl(κ) be the distribution
PKES.Enc(pk,bin(i)dl(κ)), where bin(i)dl(κ) is the binary representation of the
number i of length exactly dl(κ) modulo 2dl(κ). The family of channels CPKES =
{C(ω)}ω thus has the following properties:

1. There is a negligible function negl such that for each ω and each i, we have
2PKES.ml(κ)/2 ≥ | C(ω)i,dl(κ)| ≥ negl(κ)−1 if PKES is CCA$-secure. This follows
easily from the CCA$-security of PKES: If | C(ω)i,dl(κ)| would be polynomial,
an attacker could simply store all corresponding ciphertexts.

2. An algorithm with the knowledge of ω can test in polynomial time, whether
d ∈ supp(C(ω)i,dl(κ)), i. e. whether d belongs to the support by simply testing
whether PKES.Dec(sk, d) equals bin(i)dl(κ).

3. Every algorithm Q that tries to distinguish C(ω) from a random channel
C(R) fails: For every polynomial algorithm Q, we have that the term∣∣ Pr

R�R∗
dl(κ)

[QC(R)(1κ) = 1]− Pr
ω←PKES.Gen(1κ)

[QC(ω)(1κ) = 1]
∣∣

is negligible in κ if PKES is CCA$-secure. This follows from the fact that
no polynomial algorithm can distinguish C(R) upon random choice of R
from the uniform distribution on {0, 1}n, as | C(R)i,n| is super-polynomial.
Furthermore, an attacker A on PKES can simulate Q for a successful attack.

Note that the third property directly implies that no polynomial algorithm
can conclude anything about C(ω)i,dl(κ) from samples of previous distributions
C(ω)0,dl(κ), . . . , C(ω)i−1,dl(κ), except for a negligible term. The second property
directly implies that we can get rid of the infeasible assumption of the previous
section concerning the ability of the warden to test whether a document belongs
to the support of C(ω): We simply equip the warden with the seed ω. Call the
resulting warden Wω. Note that this results in a non-uniform warden. As above,
we are interested in the events that a stegosystem outputs a document that it
has not seen (E

N̂q
), that a document is outputted which does not belong to the

support (E
ÎnS

) and the event that a random set of q documents is not suitable to
complete a given document prefix d1, d2, . . . , d`−1 (E

N̂sui
).

As E
ÎnS

is a polynomially testable property (due to the second property of
our construction), we can conclude a similar bound as above:



Lemma 11. Let PKStS be an SS-CCA-secure universal stegosystem. For ev-
ery warden W and every CCA$-attacker A, Pr[E

N̂q
] ≤ Advss-cca

W,PKStS,C(ω)(κ)

1−`·2−n/2 +

Advpkes
A,PKES(κ).

Hence, if the stegosystem PKStS is SS-CCA-secure and PKES is CCA$-secure, the
term Pr[E

N̂q
] must be negligible. As above, we can conclude that Pr[E

N̂sui
] ≤

max{ρ, (1 − ρ) · Pr[E
N̂q

]} for unreliabiliy ρ. The warden Wω similar to WR

from the preceding section thus suceeds with very high probability. Hence, no
SS-CCA-secure and reliable stegosystem can exist for the family CPKES:

Theorem 12. If doubly-enhanced trapdoor permutations exist, for every stegosys-
tem PKStS in the non-look-ahead model there is a 0-memoryless channel C such
that PKStS is either unreliable or it is not SS-CCA-secure on C against non-
uniform wardens.

9 Discusssion

The work of Dedić et al. [13] shows that provable secure universal steganography
needs a huge number of sample documents to embed long secret messages as
high bandwidth stegosystems are needed for such messages. This limitation
also transfers to the public-key scenario. However, such a limitation does not
necessarily restrict applicability of steganography, especially in case of specific
communication channels or if the length of secret messages is sufficiently short.

A prominent recent example for such applications is the use of steganography
for channels determined by cryptographic primitives, like symmetric encryption
schemes (SESs) or digital signature schemes. Bellare, Paterson, and Rogaway
introduced in [5] so called algorithm substitution attacks against SESs, where
an attacker replaces an honest implementation of the encryption algorithm by
a modified version which allows to extract the secret key from the ciphertexts
produced by the corrupted implementation. Several follow-up works have been
done based on this paper, such as those by Bellare, Jaeger, and Kane [4], Ateniese,
Magri, and Ventur [2], or Degabriele, Farshim, and Poettering [14]. These works
strengthened the model proposed in [5] and presented new attacks against
SESs or against other cryptographic primitives, e. g. against signature schemes.
Surprisingly, as we show in [6], all such algorithm substitution attacks can be
analyzed in the framework of computational secret-key steganography and in
consequence, the attackers can be identified as stegosystems on certain channels
determined by the primitives. In such scenarios, the secret message embedded by
the stegosystem corresponds to a secret key of the cryptographic algorithm.

A similar approach was used by Pasquini, Schöttle, and Böhme [35] to show
that so called password decoy vaults used for example by Chatterjee, Bonneau,
Juels, and Ristenpart [10] and Golla, Beuscher, and Dürmuth [19] can also be
interpreted as steganographic protocols.
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A Remaining Proofs

To improve the readability, we will abbreviate some terms and define n =
PKStS∗.dl(κ), ` = PKStS∗.ol(κ) and L = PKES*.cl(κ), where PKStS∗ is our
stegosystem constructed in Section 7 and PKES* is the public-key cryptosystem
constructed in Section 5. We also define N = 8L.

A.1 Formal Statement of Lemma 8 and its Proof

We start with a formal definition for “A is successful on D, f, b1, . . . , bL, kH”.

Definition 13. An attacker A on generate is a PPTM, that receives the following
input:
– a sequence d1, . . . , dN of N pairwise different documents
– a hash function f : Σn → {0, 1} from the family G = {Gκ}κ∈N,
– a sequence b1, . . . , bL of L bits, and
– a hash-key kH for H.

The attacker A then outputs a sequence d′1, . . . , d′N of documents. Note that the
attacker knows the mapping function f and even the hash-key kH for H.

We say that A is successful if the experiment Sgen(A, D, f, b1, . . . , bL) returns
value 1:

Security of generate: Sgen(A, D, f, b1, . . . , bL)

Input: Attacker A, set D, function f , bits b1, . . . , bL
1: kP, k′P ← P.Gen(1κ)
2: kH ← H.Gen(1κ)
3: d1, . . . , dN := generate(D, f, b1, . . . , bL, kP, k

′
P)

4: d′1, . . . , d′N ← A(d1, . . . , dN , f, b1, . . . , bL, kH)
5: if f(d′i) = bi for every i = 1, . . . L then
6: D′0 = {d′j | f(d′j) = 0}; D′1 = {d′j | f(d′j) = 1}
7: if d′1, . . . , d

′
N = generate(D′0 ∪D′1, f, b1, . . . , bL, kP, k′P) then

8: if H.EvalkH(lex(D
′
0 ∪D′1)) = H.EvalkH(lex(D0 ∪D1)) then

9: if d′1, . . . , d′N 6= d1, . . . , dN then
10: return 1 and halt
11: return 0



We are now ready to give the formal version of Lemma 8:

Lemma (formal version of Lemma 8). Let D ⊆ Σn be a set of documents,
with |D| = N , let b1, . . . , bL be a bitstring, and f ∈ Gκ. For every attacker A on
generate, there is a collision finder Fi for the CRHF H such that

Pr[Sgen(A, D, f, b1, . . . , bL) = 1] ≤ Advhash
Fi,H,C(κ),

where the probability is taken over the random choices made in experiment Sgen.

Proof. Let A be an attacker on generate with maximal success probability. Let
D = D0∪̇D1 be the input to generate, the sequence d1, . . . , dN its output and
d′1, . . . , d

′
N be the output of A. Furthermore, let D′b = {d′j | f(d′j) = b} and

D′ = D′0 ∪D′1. We now distinguish three cases of the relation between D and
D′. If D′ ( D, the sequence d′1, . . . , d′N must contain the same element on at
least two positions, but generate does only accept sets of size exactly N . Hence,
A was not successful in this case. If D′ = D and A was successful, it holds that
d′1, . . . , d

′
N 6= d1, . . . , dN . Hence, there must be positions i < j and j′ < i′ such

that di = di′ and dj = dj′ . As kP and k′P define a total order, the sequence
d′1, . . . , d

′
N could not be produced by generate. Thus, A can not be successful in

this case.
The only remaining case is D′ \ D 6= ∅. If A was successful, it holds that

HkH(lex(D
′)) = HkH(lex(D)), i. e. this is a collision with regard to H. We will

now construct a finder Fi for H, such that Advhash
Fi,H,C(κ) ≥ Pr[A succeeds]. The

finder Fi receives a hash key kH. It then chooses f � Gκ, samples D documents
of cardinality |D| = N via rejection sampling and PRP-keys kP, k′P. The finder
simulates A and receives

d′1, . . . , d
′
N ← A(generate(D, f, b1, . . . , bL, kP, k

′
P), f, b1, . . . , bL, kH).

Then, it returns D and D′ = {d′1, . . . , d′N}. Whenever A succeeds, we have
D 6= D′ by the discussion above and thus also HkH(lex(D)) = HkH(lex(D

′)).
Hence, Fi has successfully found a collision. This implies that Advhash

Fi,H,C(κ) ≥
Pr[A succeeds]. ut

A.2 Proof of Theorem 9

Recall the statement of the theorem:

Theorem (Theorem 9). The probability that a message is not correctly embed-
ded by PKStS∗.Enc is at most 3N2 · 2−H∞(C,κ) + 2 exp(−N/54).

Proof. Note that PKStS∗.Enc may not correctly embed a message m if (a) |D0 ∪
D1| < N i. e. a document sampled in line 3 was drawn twice, or (b) N0/N 6∈
[1/3, 2/3] i. e. the bias is too large, or (c) the number of elements of D0 or D1

is too small to embed b1, b2, . . . , bL by generate. The probability of (a) can be
bounded similar to the birthday attack. It is roughly bounded by 3N2 · 2−H∞(C,κ)

as the probability of every document is bounded by 2−H∞(C,κ).



A simple calculation shows that the probability of (b) and (c) is negligible.
Note that the algorithm always correctly embeds a message, if |D0| ≥ L and
|D1| ≥ L. As N0/N = |D0|/N , this implies that N0/N ∈ [1/3, 2/3]. We will thus
estimate the probability for this. As f is drawn from a strongly 2-universal hash
family, we note that the probability that a random document d is mapped to
1 is equal to 1/2. For i = 1, . . . , N , let Xi be the indicator variable such that
Xi equals 1 if the i-th element drawn from the channel maps to 1. The random
variable X =

∑N
i=1Xi thus has the size of D1. Clearly, its expected value is N/2.

The probability that |X −N/2| > L (and thus |D1| < L or |D0| < L) is hence
bounded by

Pr[|X −N/2| > L] ≤ 2 exp(−L · (1/3)
2

3
) = 2 exp(−N/54)

using a Chernoff-like bound. The probability that the message m is incorrectly
embedded is thus bounded by 2−H∞(C,κ) + 2 exp(−N/54). ut

A.3 Proof of Theorem 10

We recall:

Theorem (Theorem 10). Let C be a memoryless channel, P be a PRP relative
to C, the algorithm H be a CRHF relative to C, the cryptosystem PKES* be the
cryptosystem designed in Section 5 with very sparse support relative to C, and G
be a strongly 2-universal hash family. The stegosystem PKStS∗ is SS-CCA-secure
against every memoryless channel.

Proof. We prove that the above construction is secure via a hybrid argument. We
thus define six distributions H1, . . . ,H6 shown in Figure 1.

If P and Q are two probability distributions, denote by SS-CCA-DistP,Q the
modification of the game SS-CCA-Dist, where the call to the stegosystem (if b = 0)
is replaced by a call to P and the call to the channel (if b = 1) is replaced by a call
to Q. If W is some warden, denote by Advss-cca

W,P,Q(κ) the winning probability of W
in SS-CCA-DistP,Q. If Advss-cca

W,P,Q(κ) ≤ negl(κ) for a negligible function negl, we
denote this situation as P ∼ Q and say that P and Q are indistinguishable with
respect to SS-CCA-Dist. Furthermore, we define Adv

(i)
W (κ) = Advss-cca

W,Hi,Hi+1
(κ).

As the term Adv
(i)
W (κ) can also be written as∣∣Pr[W.Guess outputs b′ = 0 | b = 0]− Pr[W.Guess outputs b′ = 0 | b = 1]

∣∣,
the triangle inequality implies that Advss-cca

W,PKStS∗,C(κ) ≤ Adv
(1)
W (κ)+Adv

(2)
W (κ)+

Adv
(3)
W (κ) +Adv

(4)
W (κ) +Adv

(5)
W (κ).

Informally, we argue that:

1. H1 = H2 =⇒ H1 ∼ H2 because a uniform random permutation on a
memoryless channel does not change any probabilities;



2. H2 = H3 =⇒ H2 ∼ H3 because our choice of b1, . . . , bL and random
permutations equal the channel by Lemma 7;

3. H3 ∼ H4 because P is a PRP;
4. H4 ∼ H5 because P is a PRP;
5. H5 ∼ H6 PKES* is secure due to Corollary 6 and because of Lemma 8.

Distribution H1 can be specified as follows:

H1 = CNn

1 : pk∗ = (pk, f)← PKStS∗.Gen(1κ)

2 : for j := 1, 2, . . . , N :

3 : dj ← Cdl(κ)
4 : return ((d1, . . . , dN ), pk∗)

Indistinguishability of H1 and

H2

pk∗ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 4 in PKStS∗.Enc

5 : P � Perms

6 : return ((dP (1), . . . , dP (N)), pk
∗)

If |D0∪D1| < N , i. e. a document was sampled twice or |D0|/|D| 6∈ [1/3, 2/3],
the system only outputs the sampled documents. Hence H1 equals H2 in this
case. In the other case, we first permute the items before we output them.
But, as P is a uniform random permutation and the documents are drawn
independently from a memoryless channel, we have

Pr
H1

[d1, . . . , dN are drawn] = Pr
H1

[dP (1), . . . , dP (N) are drawn].

As pk is not used in these hybrids, H1 = H2 follows.

Indistinguishability of H2 and

H3

pk∗ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 4 in PKStS∗.Enc

5 : P � Perms;P ′ � Perms; kH ← H.Gen(1κ)

6 : b1, b2, . . . , bL ← D*
(N,N0,L)

7 : return (generate(D0 ∪D1, f, b1, . . . , bL, P, P
′), pk∗)

// generate(. . . , P, P ′) uses the permutations P, P ′

If |D0∪D1| < N , i. e. a document was sampled twice or |D0|/|D| 6∈ [1/3, 2/3],
the system only outputs the sampled documents. Hence H2 equals H3 in this
case. If |D0 ∪D1| = N , Lemma 7 shows that H2 equals H3.



Indistinguishability of H3 and

H4

pk∗ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 4 in PKStS∗.Enc

5 : kP ← P.Gen(1κ);P ′ � Perms; kH ← H.Gen(1κ)

6 : b1, b2, . . . , bL � D*
(N,N0,L)

7 : return (generate(D0 ∪D1, f, b1, . . . , bL, kP, P
′), pk∗)

// generate(. . . , P ′) uses the permutation P ′

We will construct a distinguisher Dist on the PRP P with Advprp
Dist,P,C(κ) =

Adv
(3)
W (κ). Note that such a distinguisher has access to an oracle that either

corresponds to a truly random permutation or to P.Evalk for a key k ←
P.Gen(1κ).
The PRP-distinguisher Dist simulates the run of W. It first chooses a key-pair
(pk, sk) ← PKStS∗.Gen(1κ). It then simulates W. Whenever the warden W
makes a call to its decoding-oracle PKStS∗.Dec, it computes PKStS∗.Dec(sk, ·)
(or ⊥ if necessary). In order to generate the challenge sequence d̂ upon the
message m, it simulates the run of PKStS∗.Enc and replaces every call to P or
P.EvalkP by a call to its oracle. Similarly, the bits output by PKES*.Enc(pk,m)
are ignored and replaced by truly random bits distributed according to
D*

(N,|D0|,L). If the oracle is a truly random permutation, the simulation yields
exactly H3 and if the oracle equals P.Evalk for a certain key k, the simulation
yields H4. The advantage of Dist is thus exactly Adv

(3)
W (κ). As P is a secure

PRP, this advantage is negligible and H3 and H4 are thus indistinguishable.

Indistinguishability of H4 and

H5

pk∗ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 4 in PKStS∗.Enc

5 : kP ← P.Gen(1κ); k′P ← P.Gen(1κ); kH ← H.Gen(1κ)

6 : b1, b2, . . . , bL � D*
(N,N0,L)

7 : return (generate(D0 ∪D1, f, b1, . . . , bL, kP, k
′
P), pk

∗)

We will construct a distinguisher Dist on the PRP P with Advprp
Dist,P,C(κ) =

Adv
(4)
W (κ). Note that such a distinguisher has access to an oracle that either

corresponds to a truly random permutation or to P.Evalk for a key k ←
P.Gen(1κ).
The PRP-distinguisher Dist simulates the run of W. It first chooses a key-pair
(pk, sk)← PKStS∗.Gen(1κ) and a key kP ← P.Gen(1κ) for the PRP P. It then
simulates W. Whenever the warden W makes a call to its decoding-oracle
PKStS∗.Dec, it computes PKStS∗.Dec(sk, ·) (or ⊥ if necessary). In order to



generate the challenge sequence d̂ upon the message m, it simulates the run
of PKStS∗.Enc and replaces every call to P ′ or P.EvalkP by a call to its oracle.
Similarly, the bits output by PKES*.Enc(pk,m) are ignored and replaced by
truly random bits distributed according to D*

(N,|D0|,L). If the oracle is a truly
random permutation, the simulation yields exactly H4 and if the oracle equals
P.Evalk for a certain key k, the simulation yields H5. The advantage of Dist
is thus exactly Adv

(4)
W (κ). As P is a secure PRP, this advantage is negligible

and H4 and H5 are thus indistinguishable.

Indistinguishability of H5 and

H6 = PKStS∗.Enc

pk∗ = (pk, f)← PKStS∗.Gen(1κ)

Lines 1 to 4 in PKStS∗.Enc

5 : kP ← P.Gen(1κ); k′P ← P.Gen(1κ); kH ← H.Gen(1κ)

6 : h := H.EvalkH(lex(D0 ∪D1))

7 : PKES*.Setup(N,N0)

8 : b1, b2, . . . , bL ← PKES*.Enc(pk,m || kH || kP || k′P || h)
9 : return (generate(D0 ∪D1, f, b1, . . . , bL, kP, k

′
P), pk

∗)

We construct an attacker A on PKES* such that there is a negligible function
negl with Advcca

A,PKES*,C(κ)+negl(κ) ≥ Adv
(5)
W (κ). Note that such an attacker

A has access to the decryption-oracle PKES*.Decsk(·).
The attacker A simply simulates W. First, it chooses f � Gκ. Whenever
W uses its decryption-oracle to decrypt d1, . . . , dN , the attacker A simulates
PKStS∗.Dec(d1, . . . , dN ) and uses its own decryption-oracle PKES*.Decsk(·)
in this. When W outputs the challenge m, the attacker A chooses all of the
parameters D0, D1, kH, kP, k

′
P as in PKStS∗.Enc and chooses its own challenge

m̃ := m || kH || kP || k′P || h, where h = H.EvalkH(D0 ∪D1).
The attacker now either receives b← PKES*.Enc(pk, m̃) or L random bits b
from D*

(N,|D0|,L) and computes

d1, . . . , dN = generate(D0 ∪D1, f, b1, . . . , bL, kP, k
′
P).

If the bits correspond to PKES*.Enc(pk, m̃), this simulates the stegosystem
and thus H6 perfectly. If the bits are random, this equals H5.
After the challenge is determined, A continues to simulate W. Whenever
W uses its decryption-oracle to decrypt d1, . . . , dN , it behaves as above.
There is now a significant difference to the pre-challenge situation: The
attacker A is not allowed to decrypt the bits b = b1, . . . , bL. Hence, when W
tries to decrypt documents d1, . . . , dN such that f(di) = bi, it has no way
to use its decryption-oracle and must simply return ⊥. Suppose that this
situation arises. Note that the decryption-oracle of W would only return a



message not equal to ⊥ then iff d1, . . . , dN = generate(D0 ∪D1, f, b, kP, k
′
P)

and H.EvalkH({d1, . . . , dN}) = h.
If b is a truly random string from D*

(N,|D0|,L), the sparsity of PKES* implies
that the probability that b is a valid encoding is negligible. Hence the
probability that the decryption-oracle of W would return a message not
equal to ⊥ is negligible. It only remains to prove that the probability that
the decryption-oracle of W returns a message not equal to ⊥ is negligible
if b is a valid encryption of a message. But Lemma 8 states just that. We
thus have Advcca

A,PKES*,C(κ) + negl(κ) ≥ Adv
(5)
W (κ). As the system PKES* is

CCA-secure by Corollary 6, this advantage is negligible. Hence, H5 and H6

are indistinguishable.

Hence, the stegosystem PKStS* is SS-CCA-secure on C. ut
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