
Quasi-Optimal SNARGs via
Linear Multi-Prover Interactive Proofs∗

Dan Boneh1,4, Yuval Ishai2,3,4, Amit Sahai3,4, and David J. Wu1,4

1 Stanford University
2 Technion
3 UCLA

4 Center for Encrypted Functionalities

Abstract. Succinct non-interactive arguments (SNARGs) enable verify-
ing NP computations with significantly less complexity than that required
for classical NP verification. In this work, we focus on simultaneously min-
imizing the proof size and the prover complexity of SNARGs. Concretely,
for a security parameter λ, we measure the asymptotic cost of achieving
soundness error 2−λ against provers of size 2λ. We say a SNARG is quasi-
optimally succinct if its proof length is Õ(λ), and that it is quasi-optimal,
if moreover, its prover complexity is only polylogarithmically greater
than the running time of the classical NP prover. We show that this
definition is the best we could hope for assuming that NP does not have
succinct proofs. Our definition strictly strengthens the previous notion of
quasi-optimality introduced in the work of Boneh et al. (Eurocrypt 2017).

This work gives the first quasi-optimal SNARG for Boolean circuit
satisfiability from a concrete cryptographic assumption. Our construction
takes a two-step approach. The first is an information-theoretic construc-
tion of a quasi-optimal linear multi-prover interactive proof (linear MIP)
for circuit satisfiability. Then, we describe a generic cryptographic com-
piler that transforms our quasi-optimal linear MIP into a quasi-optimal
SNARG by relying on the notion of linear-only vector encryption over
rings introduced by Boneh et al. Combining these two primitives yields
the first quasi-optimal SNARG based on linear-only vector encryption.
Moreover, our linear MIP construction leverages a new robust circuit de-
composition primitive that allows us to decompose a circuit satisfiability
instance into several smaller circuit satisfiability instances. This primitive
may be of independent interest.

Finally, we consider (designated-verifier) SNARGs that provide optimal
succinctness for a non-negligible soundness error. Concretely, we put
forward the notion of “1-bit SNARGs” that achieve soundness error 1/2
with only one bit of proof. We first show how to build 1-bit SNARGs
from indistinguishability obfuscation, and then show that 1-bit SNARGs
also suffice for realizing a form of witness encryption. The latter result
highlights a two-way connection between the soundness of very succinct
argument systems and powerful forms of encryption.

∗The full version of this paper is available at https://eprint.iacr.org/2018/133.pdf.



1 Introduction

Proof systems are fundamental to modern cryptography. Many works over the last
few decades have explored different aspects of proof systems, including interactive
proofs [35, 48, 56], zero-knowledge proofs [35], probabilistically checkable proofs [3,
26, 2], and computationally sound proofs [44, 49]. In this work, we study one such
aspect: NP proof systems where the proofs can be significantly shorter than the
NP witness and can be verified much faster than the time needed to check the
NP witness. We say that such proof systems are succinct.

In interactive proof systems for NP with statistical soundness, non-trivial
savings in communication and verification time are highly unlikely [16, 32, 33, 65].
However, if we relax the requirements and consider proof systems with compu-
tational soundness, also known as argument systems [17], significant efficiency
improvements become possible. Kilian [44] gave the first succinct four-round
interactive argument system for NP based on collision-resistant hash functions
and probabilistically checkable proofs (PCPs). Subsequently, Micali [49] showed
how to convert Kilian’s four-round argument into a single-round argument for
NP by applying the Fiat-Shamir heuristic [27] to Kilian’s interactive protocol. Mi-
cali’s “computationally-sound proofs” (CS proofs) represents the first candidate
construction of a succinct non-interactive argument (that is, a “SNARG” [30]).
In the standard model, single-round succinct arguments are highly unlikely for
sufficiently hard languages [4, 65], so we consider the weaker goal of two-message
succinct arguments systems where the initial message from the verifier is inde-
pendent of the statement being verified. We refer to this message as the common
reference string (CRS).

In this work, we focus on simultaneously minimizing both the proof size
and the prover complexity of succinct non-interactive arguments. For a security
parameter λ, we measure the asymptotic cost of achieving soundness against
provers of size 2λ with 2−λ error. We say that a SNARG is quasi-optimally
succinct if its proof length is Õ(λ), and that it is quasi-optimal if in addition, the
prover’s runtime is only polylogarithmically greater than the the running time of
the classical prover. In Section 5.1, we show that this notion of quasi-optimal
succinctness is tight (up to polylogarithmic factors): assuming NP does not have
succinct proofs, no succinct argument system can provide the same soundness
guarantees with proofs of size o(λ). Our notion of quasi-optimality is a strict
strengthening of the previous notion from [14], which imposed a weaker soundness
requirement on the SNARG. Notably, under the definition in [14], we show that it
is possible to construct SNARGs with even shorter proofs than what they consider
to be (quasi)-optimally succinct. We discuss the differences in these notions of
quasi-optimality in Section 1.1 as well as the full version of this paper [15].

In this paper, we construct the first quasi-optimal SNARG whose security is
based on a concrete cryptographic assumption similar in flavor to those of previous
works [13, 14]. To our knowledge, all previous candidates are either not quasi-
optimal or rely on a heuristic security argument. Similar to previous works [13,
14], we take a two-step approach to construct our quasi-optimal SNARGs. First,
we construct an information-theoretic proof system that provides soundness



against a restricted class of provers (e.g., linearly-bounded provers [41]). We
then leverage cryptographic tools (e.g., linear-only encryption [13, 14]) to compile
the information-theoretic primitive into a succinct argument system. In this
work, the core information-theoretic primitive we use is a linear multi-prover
interactive proof (linear MIP). One of the main contributions in this work is
a new construction of a quasi-optimal linear MIP that can be compiled to a
quasi-optimal SNARG using similar cryptographic tools as those in [14]. We give
an overview of our quasi-optimal linear MIP construction in Section 2, and the
formal construction in Section 4.

Background on SNARGs. We briefly introduce several properties of succinct non-
interactive argument systems. In this work, we focus on constructing SNARGs for
the problem of Boolean circuit satisfiability. (This suffices for building SNARGs
for general RAM computations, cf. [13].) A SNARG is publicly verifiable if anyone
can verify the proofs, and it is designated-verifier if only the holder of a secret
verification state (generated along with the CRS) can verify proofs. In this work,
we focus on constructing quasi-optimal designated-verifier SNARGs. In addition,
we say a SNARG is fully succinct if the setup algorithm (i.e., the algorithm that
generates the CRS, and in the designated-verifier setting, the secret verification
state), is also efficient (i.e., runs in time that is only polylogarithmic in the circuit
size). A weaker notion is the concept of a preprocessing SNARG, where the setup
algorithm is allowed to run in time that is polynomial in the size of the circuit
being verified. In this work, we consider preprocessing SNARGs. We provide
additional background on SNARGs and other related work in Section 1.3.

1.1 Quasi-Optimal SNARGs

In this section, we summarize the main results of this work on defining and
constructing quasi-optimal SNARGs. In Section 2, we provide a more technical
survey of our main techniques.

Defining quasi-optimality. In this work, we are interested in minimizing the
prover complexity and proof size in succinct non-interactive argument systems.
To reiterate, our definition of quasi-optimality considers the prover complexity
and proof size needed to ensure soundness error 2−λ against provers of size 2λ.
We say a SNARG (for Boolean circuit satisfiability) is quasi-optimal if the proof

size is Õ(λ) and the prover complexity is Õ(|C|)+poly(λ, log |C|), where C is the
Boolean circuit.1 In Lemma 5.2, we show that this notion of quasi-optimality is the
“right” one in the following sense: assuming NP does not have succinct proofs, the
length of any succinct argument system that provides this soundness guarantee
is necessarily Ω(λ). Thus, SNARG systems with strictly better parameters are
unlikely to exist. Our notion is a strict strengthening of the previous notion of
quasi-optimality from [14] which only required soundness error negl(λ) against

1We write Õ(·) to suppress factors that are polylogarithmic in the circuit size |C| and
the security parameter λ.



provers of size 2λ. In fact, we show in the full version [15] that the previous notion
of quasi-optimality from [14] is not tight. If we only want ρ bits of soundness
where ρ = o(λ), it is possible to construct a designated-verifier SNARG where
the proofs are exactly ρ bits. This means that there exists a designated-verifier
SNARG which meet the soundness requirements in [14], but whose size is strictly
shorter than what would be considered “optimal.”

Previous SNARG constructions. Prior to this work, the only SNARG candi-
date that satisfies our notion of quasi-optimal prover complexity is Micali’s CS
proofs [49]. However, to achieve 2−λ soundness, the length of a CS proof is Ω(λ2),
which does not satisfy our notion of quasi-optimal succinctness. Conversely, if we
just consider SNARGs that provide quasi-optimal succinctness, we have many
candidates [37, 45, 29, 13, 46, 24, 38, 14]. With the exception of [14], the SNARG
proof in all of these candidates contains a constant number of bilinear group
elements, and so, is quasi-optimally succinct. The drawback is that to construct
the proof, the prover has to perform a group operation for every gate in the
underlying circuit. Since each group element is Ω(λ) bits, the prover overhead is
at least multiplicative in λ. Consequently, none of these existing constructions
satisfy our notion of quasi-optimal prover complexity. The lattice-based construc-
tion in [14] has the same limitation: the prover needs to operate on an LWE
ciphertext per gate in the circuit, which introduces a multiplicative overhead
Ω(λ) in the prover’s computational cost.

Quasi-optimal linear MIPs. This work gives the first construction of a quasi-
optimal SNARG for Boolean circuit satisfiability from a concrete cryptographic
assumption. Following previous works on constructing SNARGs [13, 14], our
construction can be broken down into two components: an information-theoretic
component (linear MIPs), and a cryptographic component (linear-only vector
encryption). We give a brief description of the information-theoretic primitive we
construct in this work: a quasi-optimal linear MIP. At the end of this section, we
discuss why the general PCPs and linear PCPs that have featured in previous
SNARG constructions do not seem sufficient for building quasi-optimal SNARGs.

We first review the notion of a linear PCP [41, 13]. A linear PCP over a
finite field F is an oracle computing a linear function π : Fm → F. On any query
q ∈ Fm, the linear PCP oracle responds with the inner product q>π = 〈q,π〉 ∈ F.
More generally, if ` queries are made to the linear PCP oracle, the ` queries can
be packed into the columns of a query matrix Q ∈ Fm×`. In this case, we can
express the response of the linear PCP oracle as the matrix-vector product Q>π.

Linear MIPs are a direct generalization of linear PCPs to the setting where
there are ` independent proof oracles (π1, . . . ,π`), each implementing a linear
function πi : Fm → F. In the linear MIP model, the verifier’s queries consist
of a `-tuple (q1, . . . ,q`) where each qi ∈ Fm. For each query qi ∈ Fm to the
proof oracle πi, the verifier receives the response 〈qi,πi〉. We review the formal
definitions of linear PCPs and linear MIPs in the full version [15].

In this work, we say that a linear MIP for Boolean circuit satisfiability is
quasi-optimal if the MIP prover (for proving satisfiability of a circuit C) can be



implemented by a circuit of size Õ(|C|) + poly(λ, log |C|), and the linear MIP
provides soundness error 2−λ. Existing linear PCP constructions [13, 14] (which
can be viewed as linear MIPs with a single prover) are not quasi-optimal: they
either require embedding the Boolean circuit into an arithmetic circuit over a
large field [13], or rely on making O(λ) queries, each of length m = O(|C|) [14].

Constructing quasi-optimal linear MIPs. Our work gives the first construction of
a quasi-optimal linear MIP for Boolean circuit satisfiability. We refer to Section 2
for an overview of our construction and to Section 4 for the full description. At a
high-level, our quasi-optimal linear MIP construction relies on two key ingredients:
a robust circuit decomposition and a method for enforcing consistency.

Robust circuit decomposition. Our robust decomposition primitive takes a circuit
C and produces from it a collection of constraints f1, . . . , ft, each of which can
be computed by a circuit of size roughly |C| /t. Each constraint reads a subset of
the bits of a global witness (computed based on the statement-witness pair for
C). The guarantee provided by the robust decomposition is that for any false
statement x (that is, a statement x where for all witnesses w, C(x,w) = 0),
no single witness to f1, . . . , ft can simultaneously satisfy more than a constant
fraction of the constraints. Now, to prove satisfiability of a circuit C, the prover
instead proves that there is a consistent witness that simultaneously satisfies
all of the constraints f1, . . . , ft. Each of these proofs can be implemented by a
standard linear PCP. The advantage of this approach is that for a false statement,
only a constant fraction of the constraints can be satisfied (for any choice of
witness), so even if each underlying linear PCP instance only provided constant
soundness, the probability that the prover is able to satisfy all of the instances is
amplified to 2−Ω(t) = 2−Ω(λ) if we let t = Θ(λ). Finally, even though the prover
now has to construct t proofs for the t constraints, each of the constraints can
themselves be computed by a circuit of size Õ(|C| /t). The robustness property
of our decomposition is reminiscent of the relation between traditional PCPs and
constraint-satisfaction problems, and one might expect that we could instantiate
such a decomposition using PCPs. However, in our settings, we require that the
decomposition be input-independent, which to the best of our knowledge, is not
satisfied by existing (quasilinear) PCP constructions. We discuss this in more
detail in the full version [15].

The robust decomposition can amplify soundness without introducing much
additional overhead. The alternative approach of directly applying a constant-
query linear PCP to check satisfiability of C has the drawback of only providing
1/poly(λ) soundness when working over a small field (i.e., as would be the case
with Boolean circuit satisfiability). We state the formal requirements of our
robust decomposition in Section 4.1, and give one instantiation in the full version
by combining MPC protocols with polylogarithmic overhead [23] with the “MPC-
in-the-head” paradigm [42]. Since the notion of a robust decomposition is a very
natural one, we believe that our construction is of independent interest and will
have applications beyond quasi-optimal linear MIP constructions.



Enforcing consistency. The second ingredient we require is a way for the verifier
to check that the individual proofs the prover constructs (for showing satisfiability
of each constraint f1, . . . , ft) are self-consistent. Our construction here relies on
constructing randomized permutation decompositions, and we refer to Section 2
for the technical overview, and Section 4 for the full description.

Preprocessing SNARGs from linear MIPs. To complete our construction of quasi-
optimal SNARGs, we show a generic compiler from linear MIPs to preprocessing
SNARGs by relying on the notion of a linear-only vector encryption scheme over
rings introduced by Boneh et al. [14]. We give our construction in Section 5. Our
primary contribution here is recasting the Boneh et al. construction, which satisfies
the weaker notion of quasi-optimality, as a generic framework for compiling linear
MIPs into preprocessing SNARGs. Combined with our information-theoretic
construction of quasi-optimal linear MIPs, this yields the first quasi-optimal
designated-verifier SNARG for Boolean circuit satisfiability in the preprocessing
model (Corollaries 5.6 and 5.7).

Why linear MIPs? A natural question to ask is whether our new linear MIP
to preprocessing SNARG compiler provides any advantage over the existing
compilers in [13, 14], which use different information-theoretic primitives as
the underlying building block (namely, linear interactive proofs [13] and linear
PCPs [14]). After all, any k-query, `-prover linear MIP with query length m can be
transformed into a (k`)-query linear PCP with query length m` by concatenating
the proofs of the different provers together, and likewise, padding the queries
accordingly. While this still yields a quasi-optimal linear PCP (with sparse
queries), applying the existing cryptographic compilers to this linear PCP incurs
an additional prover overhead that is proportional to `. In our settings, ` = Θ(λ),
so the resulting SNARG is no longer quasi-optimal. By directly compiling linear
MIPs to preprocessing SNARGs, our compiler preserves the prover complexity of
the underlying linear MIP, and so, combined with our quasi-optimal linear MIP
construction, yields a quasi-optimal SNARG for Boolean circuit satisfiability.

Alternatively, one might ask whether a similar construction of quasi-optimal
SNARGs is possible starting from standard PCPs or linear PCPs with quasi-
optimal prover complexity. Existing techniques for compiling general PCPs [49,
10, 9] to succinct argument systems all rely on some form of cryptographic hashing
to commit to the proof and then open up a small number of bits chosen by the
verifier. In the random oracle model [49], this kind of construction achieves quasi-
optimal prover complexity, but not quasi-optimal succinctness [14, Remark 4.16].
In the standard model [11, 9], additional cryptographic tools (notably, a private
information retrieval protocol) are needed in the construction, which do not
preserve the prover complexity of the underlying construction.

If instead we start with linear PCPs and apply the compilers in [13, 14], the
challenge is in constructing a quasi-optimal linear PCP that provides soundness er-
ror 2−λ over a small field F. As noted above, existing linear PCP constructions [13,
14] are not quasi-optimal for Boolean circuit satisfiability.



1.2 Optimally-Laconic Arguments and 1-Bit SNARGs

More broadly, we can view our quasi-optimal SNARGs in the preprocessing model
as a quasi-optimal interactive argument system with a maximally laconic prover.
Here, we allow the verifier to send an arbitrarily long string (namely, the CRS),
and our goal is to minimize the prover’s computational cost and the number of
bits the prover communicates to the verifier. Our quasi-optimal SNARG thus
gives the first interactive argument system with a quasi-optimal laconic prover.

Optimally-laconic arguments and 1-bit SNARGs. Independent of our results
on constructing quasi-optimal SNARGs, we also ask the question of what is
the minimal proof length needed to ensure ρ bits of soundness where ρ is a
concrete soundness parameter. Lemma 5.2 shows that achieving 2−ρ soundness
error only requires proofs of length Ω(ρ). When ρ = Ω(λ), many existing SNARG
candidates, including the one we construct in this paper, are quasi-optimally
succinct [37, 29, 13, 14]. More generally, this question remains interesting when
ρ = o(λ), and even independently of achieving quasi-optimal prover complexity.
A natural question to ask is whether there exist SNARGs where the size of the
proofs achieves the lower bound of Ω(ρ) for providing ρ bits of soundness. Taken
to the extreme, we ask whether there exists a 1-bit SNARG with soundness error
1/2 + negl(λ). We note that a 1-bit SNARG immediately implies an optimally-
succinct SNARG for all soundness parameters ρ: namely, to build a SNARG with
soundness error 2−ρ, we concatenate ρ independent instances of a 1-bit SNARG.

In the full version [15], we show that the designated-verifier analog of the
Sahai-Waters [53] construction of non-interactive zero-knowledge proofs from
indistinguishability obfuscation and one-way functions is a 1-bit SNARG. In
the interactive setting, we show that we can construct 1-bit laconic arguments
from witness encryption. We do not know how to build 1-bit SNARGs and 1-bit
laconic arguments for general languages from weaker assumptions,2 and leave
this as an open problem.

The power of optimally-laconic arguments. Finally, we show an intriguing con-
nection between 1-bit laconic arguments and a variant of witness encryption.
Briefly, a witness encryption scheme [28] allows anyone to encrypt a message
m with respect to a statement x in an NP language; then, anyone who holds
a witness w for x is able to decrypt the ciphertext. In the full version [15], we
show that a 1-bit laconic argument (or SNARG) for a cryptographically-hard3

language L implies a relaxed form of witness encryption for L where semantic
security holds for messages encrypted to a random false instance (as opposed to
an arbitrary false instance in the standard definition). While this is a relaxation
of the usual notion of witness encryption, it already suffices to realize some of the

2Note that for some special languages such as graph non-isomorphism, we do have 1-bit
laconic arguments [31].

3Here, we say a language is cryptographically-hard if there exists a distribution over yes
instances that is computationally indistinguishable from a distribution of no instances
for the language.



powerful applications of witness encryption described in [28]. This implication
thus demonstrates the power of optimally-laconic arguments, as well as some of
the potential challenges in constructing them from simple assumptions.

Our construction of witness encryption from 1-bit arguments relies on the
observation that for a (random) false statement x, any computationally-bounded
prover can only produce a valid proof π ∈ {0, 1} with probability that is negligibly
close to 1/2. Thus, the proof π can be used to hide the message m in a witness
encryption scheme (when encrypting to the statement x). Here, we implicitly
assume that a (random) statement x has exactly one accepting proof—this
assumption holds for any cryptographically-hard language. Essentially, our con-
struction shows how to leverage the soundness property of a proof system to obtain
a secrecy property in an encryption scheme. Previously, Applebaum et al. [1]
showed how to leverage secrecy to obtain soundness, so in some sense, we can
view our construction as a dual of their secrecy-to-soundness construction. The
recent work of Berman et al. [8] also showed how to obtain public-key encryption
from laconic zero-knowledge arguments. While their construction relies on the
additional assumption of zero-knowledge, their construction does not require the
argument system be optimally laconic.

We can also view a 1-bit argument for a cryptographically-hard language as
a “predictable argument” (c.f., [25]). A predictable argument is one where there
is exactly one accepting proof for any statement. Faonio et al. [25] show that any
predictable argument gives a witness encryption scheme. In this work, we show
that soundness alone suffices for this transformation, provided we make suitable
restrictions on the underlying language.

1.3 Additional Related Work

Gentry and Wichs [30] showed that no construction of an adaptively-secure
SNARG (for general NP languages) can be proven secure via a black-box reduc-
tion from any falsifiable cryptographic assumption [51].4 As a result, most existing
SNARG constructions (for general NP languages) in the standard model have re-
lied on non-falsifiable assumptions such as knowledge-of-exponent assumptions [21,
40, 5, 50, 37, 45, 29, 46, 24, 47, 39], extractable collision-resistant hashing [10, 22,
9], extractable homomorphic encryption [12, 29], and linear-only encryption [13,
14]. Other constructions have relied on showing security in idealized models
such as the random oracle model [49, 59] or the generic group model [38]. In
many of these constructions, the underlying SNARGs also satisfy a knowledge
property, which says that whenever a prover generates an accepting proof π of a
statement x, there is an efficient extractor that can extract a witness w from
π such that C(x,w) = 1. SNARGs with this property are called SNARGs of
knowledge, or more commonly, SNARKs. In many cases, SNARGs also have a
zero-knowledge property [37, 45, 29, 13, 46, 24, 47, 39] which says that the proof π

4In the case of non-adaptive SNARGs, Sahai and Waters give a construction from
indistinguishability obfuscation and one-way functions [53].



does not reveal any additional information about the witness w other than the
fact that C(x,w) = 1.

A compelling application of succinct argument systems is to verifiable delega-
tion of computation. Over the last few years, there has been significant progress
in leveraging SNARGs (and their variants) for implementing scalable systems for
verifiable computation both in the interactive setting [34, 19, 58, 54, 55, 57, 60–62]
as well as the non-interactive setting [52, 6, 18, 7, 63, 20]. We refer to [64] and the
references therein for a more comprehensive survey of this area.

2 Quasi-Optimal Linear MIP Construction Overview

In this section, we give a technical overview of our quasi-optimal linear MIP
construction for arithmetic circuit satisfiability over a finite field F. Combined
with our cryptographic compiler based on linear-only vector encryption over
rings, this gives the first construction of a quasi-optimal SNARG from a concrete
cryptographic assumption.

Robust circuit decomposition. The first ingredient we require in our quasi-optimal
linear MIP construction is a robust way to decompose an arithmetic circuit
C : Fn′ × Fm′ → Fh′ into a collection of t constraint functions f1, . . . , ft, where
each constraint fi : Fn×Fm → {0, 1} takes as input a common statement x ∈ Fn
and witness w ∈ Fm. More importantly, each constraint fi can be computed by a
small arithmetic circuit Ci of size roughly |C| /t. This means that each arithmetic
circuit Ci may only need to read some subset of the components in x and w.
There is a mapping inp : Fn′ → Fn that takes as input a statement x′ for C and
outputs a statement x for f1, . . . , ft, and another mapping wit : Fn′ × Fm′ → Fm
that takes as input a statement-witness pair (x′,w′) for C, and outputs a witness
w for f1, . . . , ft. The decomposition must satisfy two properties: completeness and
robustness. Completeness says that whenever a statement-witness pair (x′,w′) is
accepted by C, then fi(x,w) = 1 for all i if we set x = inp(x′) and w = wit(x′,w′).
Robustness says that for a false statement x′ ∈ Fn′ , there are no valid witnesses
w ∈ Fm that can simultaneously satisfy more than a constant fraction of the
constraints f1(x, ·), . . . , ft(x, ·), where x = inp(x′).

Roughly speaking, a robust decomposition allows us to reduce checking
satisfiability of a large circuit C to checking satisfiability of many smaller circuits
C1, . . . , Ct. The gain in performance will be due to our ability to check satisfiability
of all of the C1, . . . , Ct in parallel. The importance of robustness will be critical for
soundness amplification. We give the formal definition of a robust decomposition
in Section 4.1.

Instantiating the robust decomposition. In the full version [15], we describe one
way of instantiating the robust decomposition by applying the “MPC-in-the-
head” paradigm of [42] to MPC protocols with polylogarithmic overhead [23].
We give a brief overview here. For an arithmetic circuit C : Fn′ × Fm′ → Fh′ ,
the encoding of a statement-witness pair (x,w) will be the views of each party



in a (simulated) t-party MPC protocol computing C on (x,w), where the bits
of the input and witness are evenly distributed across the parties. Each of the
constraint functions fi checks that party i outputs 1 in the protocol execution
(indicating an accepting input), and that the view of party i is consistent with
the views of the other parties. This means that the only bits of the encoded
witness that each constraint fi needs to read are those that correspond to
messages that were sent or received by party i. Then, using an MPC protocol
where the computation and communication overhead is polylogarithmic in the
circuit size (c.f., [23]), and where the computational burden is evenly distributed
across the computing parties, each f1, . . . , ft can be implemented by a circuit
of size Õ(|C| /t). Robustness of the decomposition follows from security of the
underlying MPC protocol. We give the complete description and analysis in the
full version [15].

Blueprint for linear MIP construction. The high-level idea behind our quasi-
optimal linear MIP construction is as follows. We first apply a robust circuit
decomposition to the input circuit to obtain a collection of constraints f1, . . . , ft,
which can be computed by smaller arithmetic circuits C1, . . . , Ct, respectively.
Each arithmetic circuit takes as input a subset of the components of the statement
x ∈ Fn and the witness w ∈ Fm. In the following, we write xi and wi to denote
the subset of the components of x and w, respectively, that circuit Ci reads.
We can now construct a linear MIP with t provers as follows. A proof of a true
statement x′ with witness w′ consists of t proof vectors (π1, . . . ,πt), where each
proof πi is a linear PCP proof that Ci(xi, ·) is satisfiable. Then, in the linear
MIP model, the verifier has oracle access to the linear functions π1, . . . ,πt, which
it can use to check satisfiability of Ci(xi, ·). Completeness of this construction is
immediate from completeness of the robust decomposition.

Soundness is more challenging to argue. For any false statement x′, robustness
of the decomposition of C only ensures that for any witness w ∈ Fm, at least
a constant fraction of the constraints fi(x,w) will not be satisfied, where x =
inp(x′). However, this does not imply that a constant fraction of the individual
circuits Ci(xi, ·) is unsatisfiable. For instance, for all i, there could exist some
witness wi such that Ci(xi,wi) = 1. This does not contradict the robustness of
the decomposition so long as the set of all satisfying witnesses {wi} contain many
“inconsistent” assignments. More specifically, we can view each wi as assigning
values to some subset of the components of the overall witness w, and we say
that a collection of witnesses {wi} is consistent if whenever two witnesses wi and
wj assign a value to the same component of w, they assign the same value. Thus,
robustness only ensures that the prover cannot find a consistent set of witnesses
{wi} that can simultaneously satisfy more than a fraction of the circuits Ci. Or
equivalently, if x is the encoding of a false statement x′, then a constant fraction
of any set of witnesses {wi} where Ci(xi,wi) = 1 must be mutually inconsistent.

The above analysis shows that it is insufficient for the prover to independently
argue satisfiability of each circuit Ci(xi, ·). Instead, we need the stronger require-
ment that the prover uses a consistent set of witnesses {wi} when constructing its
proofs π1, . . . ,πt. Thus, we need a way to bind each proof πi to a specific witness



wi, as well as a way for the verifier to check that the complete set of witnesses
{wi} are mutually consistent. For the first requirement, we introduce the notion
of a systematic linear PCP, which is a linear PCP where the linear PCP proof
vector πi contains a copy of a witness wi where Ci(xi,wi) = 1 (Definition 4.2).
Now, given a collection of systematic linear PCP proofs π1, . . . ,πt, the verifier’s
goal is to decide whether the witnesses w1, . . . ,wt embedded within π1, . . . ,πt
are mutually consistent. Since the witnesses wi are part of the proof vectors πi,
in the remainder of this section, we will simply assume that the verifier has oracle
access to the linear function 〈wi, ·〉 for all i since such queries can be simulated
using the proof oracle 〈πi, ·〉.

2.1 Consistency Checking

The robust decomposition ensures that for a false statement x′, any collection
of witnesses {wi} where Ci(xi,wi) = 1 for all i is guaranteed to have many
inconsistencies. In fact, there must always exists Ω(t) (mutually disjoint) pairs
of witnesses that contain some inconsistency in their assignments. Ensuring
soundness thus reduces to developing an efficient method for testing whether
w1, . . . ,wt constitute a consistent assignment to the components of w or not.
This is the main technical challenge in constructing quasi-optimal linear MIPs,
and our construction proceeds in several steps, which we describe below.

Notation. We begin by introducing some notation. First, we pack the different
witnesses w1, . . . ,wt ∈ Fq into the rows of an assignment matrix W ∈ Ft×q.
Specifically, the ith row of W is the witness wi. Next, we define the replication
structure for the circuits C1, . . . , Ct to be a matrix A ∈ [m]t×q. Here, the (i, j)

th

entry Ai,j encodes the index in w ∈ Fm to which the jth entry in wi corresponds.
With this notation, we say that the collection of witnesses w1, . . . ,wt are consis-
tent if for all indices (i1, j1) and (i2, j2) where Ai1,j1 = Ai2,j2 , the assignment
matrix satisfies Wi1,j1 = Wi2,j2 .

Checking global consistency. To check whether an assignment matrix W ∈ Ft×q
is consistent with respect to the replication structure A ∈ [m]t×q, we can leverage
an idea from Groth [36], and subsequently used in [43, 14] for performing similar
kinds of consistency checks. The high-level idea is as follows. Take any index
z ∈ [m] and consider the positions (i1, j1), . . . , (id, jd) where z appears in A. In
this way, we associate a disjoint set of Hamiltonian cycles over the entries of
A, one for each of the m components of w. Let Π be a permutation over the
entries in the matrix A such that Π splits into a product of the Hamiltonian
cycles induced by the entries of A. In particular, this means A = Π(A), and
moreover, W is consistent with respect to A if and only if W = Π(W). The
insight in [36] is that the relation W = Π(W) can be checked using two sets of

linear queries. First, the verifier draws vectors r1, . . . , rt
r←− Fq and defines the

matrix R ∈ Ft×q to be the matrix whose rows are r1, . . . , rt. Next, the verifier
computes the permuted matrix R′ ← Π(R). Let r′1, . . . , r

′
t be the rows of R′.



Similarly, let w1, . . . ,wt be the rows of W. Finally, the verifier queries the linear
MIP oracles 〈wi, ·〉 on ri and r′i for all i and checks the relation∑

i∈[t]

〈wi, ri〉
?
=
∑
i∈[t]

〈wi, r
′
i〉 ∈ F. (2.1)

By construction of Π, if W = Π(W), this check always succeeds. However,
if W 6= Π(W), then by the Schwartz-Zippel lemma, this check rejects with
probability 1/ |F|. When working over a polynomial-size field, this consistency
check achieves 1/poly(λ) soundness (where λ is a security parameter). We can
use repeated queries to amplify the soundness to negl(λ) without sacrificing
quasi-optimality. However, this approach cannot give a linear MIP with 2−λ

soundness and still retain prover overhead that is only polylogarithmic in λ (since
we would require Ω(λ) repetitions). This is one of the key reasons the construction
in [14] only achieves negl(λ) soundness rather than 2−λ soundness. To overcome
this problem, we require a more robust consistency checking procedure.

Checking pairwise consistency. The consistency check described above and used
in [36, 43, 14] is designed for checking global consistency of all of the assignments
in W ∈ Ft×q. The main disadvantage of performing the global consistency
check in Eq. (2.1) is that it only provides soundness 1/ |F|, which is insufficient
when F is small (e.g., in the case of Boolean circuit satisfiability). One way
to amplify soundness is to replace the single global consistency check with t/2
pairwise consistency checks, where each pairwise consistency check affirms that
the assignments in a (mutually disjoint) pair of rows of W are self-consistent.
Specifically, each of the t/2 checks consists of two queries (ri, rj) and (r′i, r

′
j)

to 〈wi, ·〉 and 〈wj , ·〉, constructed in exactly the same manner as in the global
consistency check, except specialized to only checking for consistency in the
assignments to the variables in rows i and j. Since all of the pairwise consistency
checks are independent, if there are Ω(t) pairs of inconsistent rows, the probability
that all t/2 checks pass is bounded by 2−Ω(t). This means that for the same cost
as performing a single global consistency check, the verifier can perform Ω(t)
pairwise consistency checks. As long as many of the pairs of rows the verifier
checks contain inconsistencies, we achieve soundness amplification.

Recall from earlier that our robust decomposition guarantees that whenever
x1, . . . ,xt correspond to a false statement, any collection of witnesses {wi} where
Ci(xi,wi) is satisfied for all i necessarily contains many pairs wi and wj that
are inconsistent. Equivalently, many pairs of rows in the assignment matrix W
contain inconsistencies. Now, if the verifier knew which pairs of rows of W are
inconsistent, then the verifier can apply a pairwise consistency check to detect
an inconsistent W with high probability. The problem, however, is that the
verifier does not know a priori which pairs of rows in W are inconsistent, and
so, it is unclear how to choose the rows to check in the pairwise consistency test.
However, if we make the stronger assumption that not only are there many pairs
of rows in W that contain inconsistent assignments, but also, that most of these
inconsistencies appear in adjacent rows, then we can use a pairwise consistency



test (where each test checks for consistency between an adjacent pair of rows)
to decide if W is consistent or not. When the assignment matrix W has many
inconsistencies in pairs of adjacent rows, we say that the inconsistency pattern
of W is “regular,” and can be checked using a pairwise consistency test.

Regularity-inducing permutations. To leverage the pairwise consistency check, we
require that the assignment matrix W has a regular inconsistency structure that is
amenable to a pairwise consistency check. To ensure this, we introduce the notion
of a regularity-inducing permutation. Our construction relies on the observation
that the assignment matrix W is consistent with a replication structure A if and
only if Π(W) is consistent with Π(A), where Π is an arbitrary permutation over
the entries of a t-by-q matrix. Thus, if we want to check consistency of W with
respect to A, it suffices to check consistency of Π(W) with respect to Π(A).
Then, we say that a specific permutation Π is regularity-inducing with respect
to a replication structure A if whenever W has many pairs of inconsistent rows
with respect to A (e.g., W is a set of accepting witnesses to a false statement),
then Π(W) has many inconsistencies in pairs of adjacent rows with respect to
Π(A). In other words, a regularity-inducing permutation shuffles the entries
of the assignment matrix such that any inconsistency pattern in W maps to a
regular inconsistency pattern according to the replication structure Π(A). In the
construction, instead of performing the pairwise consistency test on W, which
can have an arbitrary inconsistency pattern, we perform it on Π(W), which has
a regular inconsistency pattern. We define the notion more formally in Section 4.2
and show how to construct regularity-inducing permutations in the full version.

Decomposing the permutation. Suppose Π is a regularity-inducing permutation
for the replication structure A associated with the circuits C1, . . . , Ct from the
robust decomposition of C. Robustness ensures that for any false statement x′, for
all collections of witnesses {wi} where Ci(xi,wi) = 1 for all i, and x = inp(x′),
the permuted assignment matrix Π(W) has inconsistencies in Ω(t) pairs of
adjacent rows with respect to Π(A). This can be detected with probability
1− 2−Ω(t) by performing a pairwise consistency test on the matrix W′ = Π(W).
The problem, however, is that the verifier only has oracle access to 〈wi, ·〉, and it
is unclear how to efficiently perform the pairwise consistency test on the permuted
matrix W′ given just oracle access to the rows wi of the unpermuted matrix.
Our solution here is to introduce another set of t linear MIP provers for each row
w′i of W′ = Π(W). Thus, the verifier has oracle access to both the rows of the
original assignment matrix W, which it uses to check satisfiability of Ci(xi, ·), as
well as the rows of the permuted assignment matrix W′, which it uses to check
consistency of the assignments in W. The verifier accepts only if both sets of
checks pass. The problem with this basic approach is that there is no reason the
prover chooses the matrix W′ so as to satisfy the relation W′ = Π(W). Thus,
to ensure soundness from this approach, the verifier needs a mechanism to also
check that W′ = Π(W), given oracle access to the rows of W and W′.

To facilitate this check, we decompose the permutation Π into a sequence
of α permutations (Π1, . . . ,Πα) where Π = Πα ◦ · · · ◦ Π1. Moreover, each



of the intermediate permutations Πi has the property that they themselves
can be decomposed into t/2 independent permutations, each of which only
permutes entries that appear in 2 distinct rows of the matrix. This “2-locality”
property on permutations is amenable to the linear MIP model, and we show in
Construction 4.8 a way for the verifier to efficiently check that two matrices W
and W′ (approximately) satisfy the relation W = Πi(W

′), where Πi is 2-locally
decomposable. To complete the construction, we have the prover provide not
just the matrix W and its permutation W′, but all of the intermediate matrices
Wi = (Πi ◦Πi−1 ◦· · ·◦Π1)(W) for all i = 1, . . . , α. Since each of the intermediate
permutations applied are 2-locally decomposable, there is an efficient procedure
for the prover to check each relation Wi = Πi(Wi−1), where we write W0 = W
to denote the original assignment matrix. If each of the intermediate permutations
are correctly implemented, then the verifier is assured that W′ = Π(W), and
it can apply the pairwise consistency check on W′ to complete the verification
process. We use a Beneš network to implement the decomposition. This ensures
that the number of intermediate permutations required is only logarithmic in t,
so introducing these additional steps only incurs logarithmic overhead, and does
not compromise quasi-optimality of the resulting construction.

Randomized permutation decompositions. There is one additional complication

in that the intermediate consistency checks W′ ?
= Πi(W) are imperfect. They

only ensure that most of the rows in W′ agree with the corresponding rows
in Πi(W). What this means is that when the prover crafts its sequence of
permuted assignment matrices W = W0,W1, . . . ,Wα, it is able to “correct”
a small number of inconsistencies that appear in W in each step. Thus, we
must ensure that for the particular inconsistency pattern that appears in W,
the prover is not able to find a sequence of matrices W1, . . . ,Wα, where each
of them approximately implements the correct permutation at each step, but
at the end, is able to correct all of the inconsistencies in W. To achieve this,
we rely on a randomized permutation decomposition, where the verifier samples
a random sequence of intermediate permutations Π1, . . . ,Πα that collectively
implement the target regularity-inducing permutation Π. There are a number of
technicalities that arise in the construction and its analysis, and we refer to the
full version [15] for the full description.

Putting the pieces together. To summarize, our quasi-optimal linear MIP for
circuit satisfiability consists of two key components. First, we apply a robust
decomposition to the circuit to obtain many constraints with the property that for
a false statement, a malicious prover either cannot satisfy most of the constraints,
or if it does satisfy all of the constraints, it must have used an assignment with
many inconsistencies. The second key ingredient we introduce is an efficient way
to check if there are many inconsistencies in the prover’s assignments in the
linear MIP model. Our construction here relies on first constructing a regularity-
inducing permutation to enable a simple method for consistency checking, and
then using a randomized permutation decomposition to enforce the consistency
check. We give the formal description and analysis in Section 4.



3 Preliminaries

We begin by defining some notation. For an integer n, we write [n] to denote the
set of integers {1, . . . , n}. We use bold uppercase letters (e.g., A,B) to denote
matrices and bold lowercase letters (e.g., x,y) to denote vectors. For a matrix
A ∈ Ft×q over a finite field F, we write A[i1,i2] (where i1, i2 ∈ [t]) to denote the
sub-matrix of A containing rows i1 through i2 of A (inclusive). For i ∈ [t] and
j ∈ [q], we use Ai,j and A[i, j] to refer to the entry in row i and column j of A.

For a graph G with n nodes, labeled with the integers 1, . . . , n, a matching
M is a set of edges (i, k) ∈ [n] × [n] with no common vertices. For a finite set

S, we write x
r←− S to denote that x is drawn uniformly at random from S.

For a distribution D, we write x ← D to denote a draw from distribution D.
Unless otherwise noted, we write λ to denote the security parameter. We say
that a function f(λ) is negligible in λ if f(λ) = o(1/λc) for all c ∈ N. We write
f(λ) = poly(λ) to denote that f is bounded by some (fixed) polynomial in λ,
and f = polylog(λ) if f is bounded by a (fixed) polynomial in log λ. We say that
an algorithm is efficient if it runs in probabilistic polynomial time in the length
of its input.

For a Boolean circuit C : {0, 1}n×{0, 1}m → {0, 1}, the Boolean circuit satis-
faction problem is defined by the relationRC = {(x,w) ∈ Fn × Fm : C(x,w) = 1}.
We refer to x ∈ {0, 1}n as the statement and w ∈ {0, 1}m as the witness. We write
LC to denote the language associated with RC : namely, the set of statements
x ∈ {0, 1}n for which there exists a witness w ∈ {0, 1}m such that C(x,w) = 1.
In many cases in this work, it will be more natural to work with arithmetic
circuits. For an arithmetic circuit C : Fn × Fm → Fh over a finite field F, we
say that C is satisfied if on an input (x,w) ∈ Fn × Fm, all of the outputs are
0. Specifically, we define the relation for arithmetic circuit satisfiability to be
RC =

{
(x,w) ∈ Fn × Fm : C(x,w) = 0h

}
. We include additional preliminaries

in the full version [15].

4 Quasi-Optimal Linear MIPs

In this section, we present our core information-theoretic construction of a linear
MIP with quasi-optimal prover complexity. We refer to Section 2 for a high-level
overview of the construction. In Sections 4.1 and 4.2, we introduce the key
building blocks underlying our construction. We give the full construction of our
quasi-optimal linear MIP in Section 4.3. We show how to instantiate our core
building blocks in the full version [15].

4.1 Robust Decomposition for Circuit Satisfiability

In this section, we formally define our notion of a robust decomposition of an
arithmetic circuit. We refer to the technical overview in Section 2 for a high-
level description of how we implement our decomposition by combining the
MPC-in-the-head paradigm [42] with robust MPC protocols with polylogarithmic
overhead [23]. We provide the complete description in the full version [15].



Definition 4.1 (Quasi-Optimal Robust Decomposition). Let C : Fn′ ×
Fm′ → Fh′ be an arithmetic circuit of size s over a finite field F, RC be its
associated relation, and LC ⊆ Fn′ be its associated language. A (t, δ)-robust
decomposition of C consists of the following components:

– A collection of functions f1, . . . , ft where each function fi : Fn×Fm → {0, 1}
can be computed by an arithmetic circuit Ci of size Õ(s/t) + poly(t, log s).
Note that a function fi may only depend on a (fixed) subset of its input
variables; in this case, its associated arithmetic circuit Ci only needs to take
the (fixed) subset of dependent variables as input.

– An efficiently-computable mapping inp : Fn′ → Fn that maps between a state-
ment x′ ∈ Fn′ for C to a statement x ∈ Fn for f1, . . . , ft.

– An efficiently-computable mapping wit : Fn′ × Fm′ → Fm that maps between
a statement-witness pair (x′,w′) ∈ Fn′ × Fm′ to C to a witness w ∈ Fm for
f1, . . . , ft.

Moreover, the decomposition must satisfy the following properties:

– Completeness: For all (x′,w′) ∈ RC , if we set x = inp(x′) and w =
wit(x′,w′), then fi(x,w) = 1 for all i ∈ [t].

– δ-Robustness: For all statements x′ /∈ LC , if we set x = inp(x′), then it
holds that for all w ∈ Fm, the set of indices Sw = {i ∈ [t] : fi(x,w) = 1} sat-
isfies |Sw| < δt. In other words, any single witness w can only simultaneously
satisfy at most a δ-fraction of the constraints.

– Efficiency: The mappings inp and wit can be computed by an arithmetic
circuit of size Õ(s) + poly(t, log s).

Systematic linear PCPs. Recall from Section 2 that our linear MIP for checking
satisfiability of a circuit C begins by applying a robust decomposition to the
circuit C. The MIP proof is comprised of linear PCP proofs π1, . . . ,πt to show
that each of the circuits C1(x1, ·), . . . , Ct(xt, ·) in the robust decomposition of C
is satisfiable. Here, xi denotes the bits of the statement x that circuit Ci reads.
To provide soundness, the verifier needs to perform a sequence of consistency
checks to ensure that the proofs π1, . . . ,πt are consistent with some witness w.
To facilitate this, we require that the underlying linear PCPs are systematic:
namely, each proof πi contains a copy of some witness wi where (xi,wi) ∈ RCi .
The consistency check then affirms that the witnesses w1, . . . ,wt associated with
π1, . . . ,πt are mutually consistent. We give the formal definition of a systematic
linear PCP below, and then describe one such instantiation by Ben-Sasson et al. [6,
Appendix E].

Definition 4.2 (Systematic Linear PCPs). Let (P,V) be an input-oblivious
k-query linear PCP for a relation RC where C : Fn × Fm → Fh. We say that
(P,V) is systematic if the following conditions hold:

– On input a statement-witness pair (x,w) ∈ Fn × Fm the prover’s output of
P(x,w) has the form π = [w,p] ∈ Fd, for some p ∈ Fd−m. In other words,
the witness is included as part of the linear PCP proof vector.



– On input a statement x and given oracle access to a proof π∗ = [w∗,p∗], the
knowledge extractor Eπ∗(x) outputs w∗.

Fact 4.3 ([6, Claim E.3]). Let C : Fn × Fm → Fh be an arithmetic circuit of
size s over a finite field F where |F| > s. There exists a systematic input-oblivious
5-query linear PCP (P,V) forRC over F with knowledge error O(s/ |F|) and query
length O(s). Moreover, letting V = (Q,D), the prover and verifier algorithms
satisfy the following properties:

– the prover algorithm P is an arithmetic circuit of size Õ(s);
– the query-generation algorithm Q is an arithmetic circuit of size O(s);
– the decision algorithm D is an arithmetic circuit of size O(n).

4.2 Consistency Checking

As described in Section 2, in our linear MIP construction, we first apply a
robust decomposition to the input circuit C to obtain smaller arithmetic circuits
C1, . . . , Ct, each of which depends on some subset of the components of a witness
w ∈ Fm. The proof then consists of a collection of systematic linear PCP proofs
π1, . . . ,πt that C1, . . . , Ct are individually satisfiable. The second ingredient we
require is a way for the verifier to check that the prover uses a consistent witness
to construct the proofs π1, . . . ,πt. In this section, we formally introduce the
building blocks we use for the consistency check. We refer to Section 2.1 for
an overview of our methods. We begin by defining the notion of a replication
structure induced by the decomposition C1, . . . , Ct, and what it means for a
collection of assignments to the circuit C1, . . . , Ct to be consistent.

Definition 4.4 (Replication Structures and Inconsistency Matrices).
Fix integers m, t, q ∈ N. A replication structure is a matrix A ∈ [m]t×q. We say
that a matrix W ∈ Ft×q is consistent with respect to a replication structure A
if for all i1, i2 ∈ [t] and j1, j2 ∈ [q], whenever Ai1,j1 = Ai2,j2 , Wi1,j1 = Wi2,j2 .
If there is a pair of indices (i1, j1) and (i2, j2) where this relation does not hold,
then we say that there is an inconsistency in W (with respect to A) at locations
(i1, j1) and (i2, j2). For a replication structure A ∈ [m]t×q and a matrix of values
W ∈ Ft×q, we define the inconsistency matrix B ∈ {0, 1}t×q where Bi,j = 1 if
and only if there is an inconsistency in W at location (i, j) with respect to the
replication structure A. In the subsequent analysis, we will sometimes refer to an
arbitrary inconsistency matrix B ∈ {0, 1}t×q (independent of any particular set
of values W or replication structure A).

Definition 4.5 (Consistent Inputs to Circuits). Let C1, . . . , Ct be a col-
lection of circuits where each Ci : Fm → Fh only depends on at most q ≤ m

components of an input vector w ∈ Fm. For each i ∈ [t], let a
(i)
1 , . . . , a

(i)
q ∈ [m]

be the indices of the q components of the input w on which Ci depends. The
replication structure of C1, . . . , Ct is the matrix A ∈ [m]t×q, where the ith row of

A is the vector a
(i)
1 , . . . , a

(i)
q (namely, the subset of indices on which Ci depends).

We say that a collection of inputs w1, . . . ,wt ∈ Fq to C1, . . . , Ct is consistent if



the assignment matrix W, where the ith row of W is wi for i ∈ [t], is consistent
with respect to the replication structure A.

To simplify the analysis, we introduce the notion of an inconsistency graph
for an assignment matrix W ∈ Ft×q with respect to a replication structure
A ∈ [m]t×q. At a high level, the inconsistency graph of W with respect to A is a
graph with t nodes, one for each row of W, and there is an edge between two
nodes i, j ∈ [t] if assignments wi and wj (in rows i and j of W, respectively)
contain an inconsistent assignment with respect to A.

Definition 4.6 (Inconsistency Graph). Fix positive integers m, t, q ∈ N and
take a replication structure A ∈ [m]t×q. For any assignment matrix W ∈ Ft×q,
we define the inconsistency graph GW,A of W with respect to A as follows:

– Graph GW,A is an undirected graph with t nodes, with labels in [t]. We
associate node i ∈ [t] with the ith row of A.

– Graph GW,A has an edge between nodes i1 and i2 if there exists j1, j2 ∈ [q]
such that Ai1,j1 = Ai2,j2 but Wi1,j1 6= Wi2,j2 . In other words, there is an
edge in GW,A whenever there is an inconsistency in the assignments to rows
i1 and i2 in W (with respect to the replication structure A).

Definition 4.7 (Regular Matchings). Fix integers m, t, q ∈ N where t is even,
and take any replication structure A ∈ [m]t×q and assignment matrix W ∈ Ft×q.
We say that the inconsistency graph GW,A contains a regular matching of size s
if GW,A contains a matching M of size s, where each edge (v1, v2) ∈M satisfies
(v1, v2) = (2i − 1, 2i) for some i ∈ [t/2]. In other words, all matched edges are
between nodes corresponding to adjacent rows in W.

Having defined these notions, we can reformulate the guarantees provided
by the (t, δ)-robust decomposition (Definition 4.1). For a constant δ > 0, let
(f1, . . . , ft, inp,wit) be a (t, δ)-robust decomposition of a circuit C. Let A be the
replication structure of the circuits C1, . . . , Ct computing f1, . . . , ft. Take any
statement x′ /∈ LC , and consider any collection of witnesses w1, . . . ,wt where
Ci(xi,wi) = 1 for all i ∈ [t]. As usual, xi denotes the bits of x = inp(x′) that Ci
reads. Robustness of the decomposition ensures that no single w can be used to
simultaneously satisfy more than a δ-fraction of the constraints. In particular,
this means that there must exist Ω(t) pairs of witnesses wi and wj which are
inconsistent. Equivalently, we say that the inconsistency graph GW,A contains a
matching of size Ω(t). We prove this statement formally in the full version [15].

Approximate consistency check. By relying on the robust decomposition, it
suffices to construct a protocol where the verifier can detect whether the incon-
sistency graph GW,A of the prover’s assignments W with respect to a replication
structure A contains a large matching. To facilitate this, we first describe an
algorithm to check whether two assignment matrices W,W′ ∈ Ft×q (approxi-
mately) satisfy the relation W′ = Π(W) in the linear MIP model, where Π is a
2-locally decomposable permutation. This primitive can then be used directly



to detect whether an inconsistency graph GW,A contains a regular matching
(Corollary 4.11). Subsequently, we show how to permute the entries in W ac-
cording to a permutation Π ′ so as to convert an arbitrary matching in GW,A

into a regular matching in GΠ′(W),Π′(A). Our construction of the approximate
consistency check is a direct generalization of the pairwise consistency check
procedure described in Section 2.1.

Construction 4.8 (Approximate Consistency Check). Fix an even integer
t ∈ N, and let P1, . . . , Pt, P

′
1, . . . , P

′
t be a collection of 2 · t provers in a linear

MIP system. For i ∈ [t], let πi ∈ Fd be the proof vector associated with prover
Pi and π′i ∈ Fd be the proof vector associated with prover P ′i . We can associate
a matrix W ∈ Ft×d with provers (P1, . . . , Pt), where the ith row of W is πi.
Similarly, we associate a matrix W′ with provers (P ′1, . . . , P

′
t ). Let Π be a 2-locally

decomposable permutation on the entries of a t-by-d matrix. Then, we describe
the following linear MIP verification procedure for checking that W′ ≈ Π(W).

– Verifier’s query algorithm: The verifier chooses a random matrix R
r←−

Ft×d, and sets R′ ← Π(R). Let ri and r′i denote the ith row of R and R′,
respectively. The query algorithm outputs the query ri for prover Pi and the
query r′i to prover P ′i .

– Verifier’s decision algorithm: Since Π is 2-locally decomposable, we can
decompose Π into t′ = t/2 independent permutations, Π1, . . . ,Πt′ , where
each Πi only operates on a pair of rows (j2i−1, j2i), for all i ∈ [t′]. Given
responses yi = 〈πi, ri〉 ∈ F and y′i = 〈π′i, r′i〉 ∈ F for i ∈ [t], the verifier
checks that the relation

yj2i−1
+ yj2i

?
= y′j2i−1

+ y′j2i ,

for all i ∈ [t′]. The verifier accepts if the relations hold for all i ∈ [t′].
Otherwise, it rejects.

By construction, we see that if W′ = Π(W), then the verifier always accepts.

Lemma 4.9 (Consistency Check Soundness). Define t, Π, W, and W′ as
in Construction 4.8. Then, if the matrix W′ disagrees with Π(W) on κ rows,
the verifier in Construction 4.8 will reject with probability at least 1− 2−Ω(κ).

Proof. Consider the event where W′ disagrees with Ŵ = Π(W) on κ rows. We
show that the probability of the verifier accepting in this case is bounded by
2−Ω(κ). In the linear MIP model, the verifier’s decision algorithm corresponds to
checking the following relation:〈

πj2i , rj2i
〉

+
〈
πj2i+1

, rj2i+1

〉 ?
=
〈
π′j2i , r

′
j2i

〉
+
〈
π′j2i+1

, r′j2i+1

〉
. (4.1)

By assumption, there are at least κ/2 indices i ∈ [t] where W′
[j2i−1,j2i]

6=
Ŵ[j2i−1,j2i]. By the Schwartz-Zippel lemma, for the indices i ∈ [t] where W′

[j2i,j2i+1]
6=

Ŵ[j2i,j2i+1], the relation in Eq. (4.1) holds with probability at most 1/ |F| (over
the randomness used to sample rj2i−1

and rj2i) Since there are at least κ/2
such indices, the probability that Eq. (4.1) holds for all i ∈ [t′] is at most
(1/ |F|)κ/2 = 2−Ω(κ). Hence, the verifier rejects with probability 1− 2−Ω(κ). ut



The approximate consistency check from Construction 4.8 immediately gives a
way to check whether an inconsistency graph GW,A contains a regular matching of
size Ω(t). To show this, it suffices to exhibit a 2-locally decomposable permutation
Π where the assignment matrix W is consistent on adjacent pairs of rows if
and only if W = Π(W). The construction can be viewed as composing many
copies of the global consistency check permutation used in [36] (and described in
Section 2.1), each applied to a pair of adjacent rows. We give the construction
below.

Construction 4.10 (Pairwise Consistency in Adjacent Rows). Fix inte-
gers m, t, q ∈ N with t even, and let A ∈ [m]t×q be a replication structure. Let
t′ = t/2. For each i ∈ [t′], let Πi be a permutation over 2-by-q matrices such
that Πi splits into a disjoint set of Hamiltonian cycles based on the entries of
A[2i−1,2i]. Define a permutation Π on t-by-q matrices where the action of Π on
rows 2i− 1 and 2i is given by Πi for all i ∈ [t′]. By construction, the permutation
Π is 2-locally decomposable, and moreover, W ∈ Ft×q is pairwise consistent on
adjacent rows with respect to A if and only if W = Π(W).

Corollary 4.11. Fix integers m, t, q ∈ N with t even. Let A ∈ [m]t×q be a
replication structure, and Π be the pairwise consistency test permutation for A
from Construction 4.10. Then, for any assignment matrix W ∈ Ft×q where the
inconsistency graph GW,A contains a regular matching of size Ω(t), the verifier

Construction 4.8 will reject the relation W
?
= Π(W) with probability 1− 2−Ω(t).

Proof. Since GW,A contains a regular matching of size Ω(t), there are inconsisten-
cies in Ω(t) pairs of adjacent rows of W. By construction of Π, this means that
W and Π(W) differ on Ω(t) rows. The claim then follows by Lemma 4.9. ut

Regularity-inducing permutations. Recall that our objective in the consistency
check is to give an algorithm that detects whether an inconsistency graph
GW,A contains a matching of size Ω(t). Corollary 4.11 gives a way to detect
if the inconsistency graph GW,A contains a regular matching of size Ω(t) with
soundness error 2−Ω(t). Thus, to perform the consistency check, we first construct
a permutation Π on W such that whenever GW,A contain a matching of size
Ω(t), the inconsistency graph GΠ(W),Π(A) contains a regular matching of similar
size Ω(t). We say that such permutations are regularity-inducing. While we are
not able to construct a single permutation Π that is regularity-inducing for
all assignment matrices W, we are able to construct a family of permutations
(Π1, . . . ,Πz) for a fixed replication structure A such that for all assignment
matrices W ∈ Ft×q, there is at least one β ∈ [z] where GΠβ(W),Πβ(A) contains a
regular matching of size Ω(t).

Definition 4.12 (Regularity-Inducing Permutations). Fix integers m, t, q ∈
N, and let A ∈ [m]t×q be a replication structure. Let Π be a permutation on
t-by-q matrices and W ∈ Ft×q be a matrix such that the inconsistency graph
GW,A contains a matching M of size s. We say that Π is ρ-regularity-inducing
for W with respect to A if the inconsistency graph GΠ(W),Π(A) contains a regular



matching M ′ of size at least s/ρ. Moreover, there is a one-to-one correspondence
between the edges in M ′ and a subset of the edges in M (as determined by Π).
We say that (Π1, . . . ,Πz) is a collection of ρ-regularity-inducing permutations
with respect to a replication structure A if for all W ∈ Ft×q, there exists β ∈ [z]
such that Πβ is ρ-regularity-inducing for W.

In this work, we will construct regularity-inducing permutations where ρ =
O(1). To simplify the following description, we will implicitly assume that ρ =
O(1). Given an assignment matrix W and a collection of ρ-regularity-inducing
permutations (Π1, . . . ,Πz) for a replication structure A, we can affirm that the
inconsistency graph GW,A does not contain a matching of size Ω(t) by checking
that each of the graphs GΠβ(W),Πβ(A) does not contain a regular matching of size
Ω(t/ρ) = Ω(t) for all β ∈ [z] and assuming ρ = O(1). By Corollary 4.11, each of
these checks can be implemented in the linear MIP model using Construction 4.8.
However, to apply the protocol in Construction 4.8 to Πβ(W), the verifier
requires oracle access to the individual rows of Πβ(W). Thus, in the linear MIP
construction, in addition to providing oracle access to the rows of the assignment
matrix W, we also provide the verifier oracle access to the rows of Πβ(W) for
all β ∈ [z]. Of course, a malicious MIP prover may provide the rows of a different
matrix W′ ∈ Ft×q (so as to pass the consistency check). Thus, the final ingredient
we require is a way for the verifier to check that two matrices W,W′ ∈ Ft×q
satisfy the relation W′ = Πβ(W). Note that Construction 4.8 does not directly
apply because the permutation Πβ is not necessarily 2-locally decomposable.

Decomposing the permutation. To complete the description, we now describe a
way for the verifier to check that two matrices W,W′ ∈ Ft×q satisfy the relation
W′ = Π(W), for an arbitrary permutation Π. We assume that the verifier is given
oracle access to the rows of W and W′ in the linear MIP model. Construction 4.8
provides a way to check the relation whenever Π is 2-locally decomposable, so
a natural starting point is to decompose the permutation Π into a sequence of
2-locally-decomposable permutations Π1, . . . ,Πα, where Π = Πα ◦· · ·◦Π1. Then,
the linear MIP proof consists of the initial and final matrices W and W′, as well
as the intermediate matrices Wi = (Πi ◦ · · · ◦Π1)(W). The linear MIP proof
would consist of the rows of all of the matrices W = W0,W1, . . . ,Wα = W′,
and the verifier would apply Construction 4.8 to check that for all ` ∈ [α],
Wi = Πi(Wi−1).

While this general approach seems sound, there is a subtle problem. The
soundness guarantee for the consistency check in Construction 4.8 only states
that on input W,W′ and a permutation Π, the verifier will only reject with
probability 1− 2Ω(t) when W′ and Π(W) differ on Ω(t) rows. This means that
a malicious prover can provide a sequence of matrices W,W1, . . . ,Wα where
each W` differs from Π`(W`−1) on a small number of rows (e.g., o(t) rows), and
in doing so, correct all of the inconsistent assignments that appear in the final
matrix Wα.

Randomizing the decomposition. Abstractly, we can view the problem as fol-
lows. Let B ∈ {0, 1}t×q be the inconsistency matrix for W with respect to A



(Definition 4.4). In other words, Bi,j = 1 whenever Wi,j encodes a value that
is inconsistent with another assignment elsewhere in W. Since GW,A contains
a matching of size Ω(t), we know that there are at least Ω(t) rows in B that
contain a 1. The permutation Π is chosen so that Π(W) has a regular matching
of size Ω(t) with respect to Π(A). In particular, this means that the permuted
inconsistency matrix Π(B) contains a 1 in Ω(t) adjacent pairs of rows.

Consider the sequence of matrices W1, . . . ,Wα chosen by the prover. Using
the approximate pairwise consistency check, we can ensure that Wi agrees with
Πi(Wi−1) on all but some κ1 rows. Now suppose that there exists some ` ∈ [α]
where B` = (Π` ◦ · · · ◦Π1)(B) has the property that all of the locations with
a 1 in B appear in just κ1 rows of B`. If this happens, then the malicious
prover can construct W1, . . . ,W`−1 honestly, and then choose W` such that
W` = Π`(W`−1) on all rows where B` does not contain a 1, and set the values
in the rows where B` does contain a 1 to be consistent with the other rows
of W. Notably, all the entries in W` are now consistent, and moreover, W`

differs from Π`(W`−1) on at most κ1 rows (and so, will not be detected with high
probability by the pairwise consistency check). This means that from the verifier’s
perspective, the final matrix Π(W) has no inconsistencies, and thus, the verifier’s
final pairwise consistency check passes with probability 1 (even though the original
inconsistency graph GW,A contains a matching of size Ω(t)). Thus, we require a
stronger property on the permutation decomposition. It is not sufficient that there
is a matching of size Ω(t) in the starting and ending configurations W and W′.
Rather, we need that the size of the matching in every step of the decomposition
cannot shrink by too much, or equivalently, the intermediate permutations
Π1, . . . ,Πα cannot “concentrate” all of the inconsistencies in W into a small
number of rows (which the malicious prover can fix without being detected). We
say permutation decompositions with this property are non-concentrating. We now
formally define the notion of a non-concentrating permutation decomposition and
what it means for a collection of permutation sequences to be non-concentrating.

Definition 4.13 (Non-Concentrating Permutations). Fix positive integers
t, q ∈ N, and let Γ = (Π1, . . . ,Πα) be a sequence of permutations over t-by-
q matrices. Let B ∈ {0, 1}t×q be an inconsistency matrix. For ` ∈ [α], define
B` = (Π`◦· · ·◦Π1)(B). We say that Γ is a sequence of (κ1, κ2)-non-concentrating
permutations with respect to B if for all ` ∈ [α], the inconsistency matrix B`

has the property that no subset of κ1 rows contains more than κ2 inconsistencies
(indices where the value is 1). Next, we say a collection of permutation sequences

Γ (1), . . . , Γ (γ) where each Γ (j) =
(
Π

(j)
1 , . . . ,Π

(j)
α

)
is (κ1, κ2)-non-concentrating

for a set B ⊆ {0, 1}t×q of inconsistency matrices if for all B ∈ B, there is some
j ∈ [γ] such that Γ (j) is (κ1, κ2)-non-concentrating with respect to B.

Putting the pieces together. To summarize, the goal of the consistency check is
to decide whether the inconsistency graph GW,A of some assignment matrix W
with respect to a replication structure A contains a matching of size Ω(t). Our
strategy relies on the following:



– Let (Π1, . . . ,Πz) be a collection of regularity-inducing permutations with
respect to A.

– For each β ∈ [z], let Γ
(1)
β , . . . , Γ

(γ)
β be a collection of non-concentrating per-

mutations that implement Πβ , where Γ
(j)
β = (Π

(j)
β,1, . . . ,Π

(j)
β,α) for all j ∈ [γ],

and each of the intermediate permutations Π
(j)
β,` are 2-locally decomposable

for all j ∈ [γ], β ∈ [z], and ` ∈ [α].

The proof then consists of the initial assignment matrix W in addition to all of the

intermediate matrices W
(j)
β,` = Π

(j)
β,`(W

(j)
β,`−1), where we define W

(j)
β,0 = W for all

j ∈ [γ], β ∈ [z]. The verifier checks consistency of all of the intermediate matrices
using Construction 4.8, and applies a pairwise consistency test (Construction 4.10)

to each of W
(j)
β,α for all j ∈ [γ] and β ∈ [z]. The soundness argument then proceeds

roughly as follows:

– Since (Π1, . . . ,Πz) is regularity-inducing, there is some β ∈ [z] where
GΠβ(W),Πβ(A) contains a regular matching.

– Since Γ
(1)
β , . . . , Γ

(γ)
β is a collection of non-concentrating permutations that

implement Πβ , and all of the intermediate consistency checks pass, then there
must be some j ∈ [γ] such that G

W
(j)
β,α,Πβ(A)

contains a regular matching of

size Ω(t). The verifier then rejects with exponentially-small probability (in t)
by soundness of the pairwise consistency test.

Finally, in our concrete instantiation (described in the full version [15]), we
show how to construct our collection of regularity-inducing permutations and
non-concentrating permutations sequences where z = O(1), γ = O(log3 t),
α = Θ(log t). For this setting of parameters, the overall consistency check only
incurs polylogarithmic overhead to the prover complexity and the proof size.
In Section 4.3, we give the formal description and analysis of our linear MIP
construction.

4.3 Quasi-Optimal Linear MIP Construction

In this section, we describe our quasi-optimal linear MIP for circuit satisfiability.
We give our construction (Construction 4.14) but defer the security theorem and
analysis to the full version. By instantiating Construction 4.14 with the appro-
priate primitives, we obtain the first quasi-optimal linear MIP (Theorem 4.15).

Construction 4.14 (Linear MIP). Fix parameters t, δ, k, ε, d, ρ, κ1, κ2, and
let C be an arithmetic circuit of size s over a finite field F. The construction
relies on the following ingredients:

– Let (f1, . . . , ft, inp,wit) be a quasi-optimal (t, δ)-robust decomposition of C.
Let Ci be the arithmetic circuit that computes each constraint fi : Fn×Fm →
{0, 1}.

– Let (P1,V1), . . . , (Pt,Vt) be k-query systematic linear PCP systems for cir-
cuits C1, . . . , Ct, respectively, with knowledge error ε and query length d.



– Let A ∈ [m]t×q be the replication structure of C1, . . . , Ct (where q is a bound
on the number of indices in a witness w ∈ Fm on which each circuit depends).
Let Π1, . . . ,Πz be a collection of ρ-regularity-inducing permutations on t-by-q
matrices with respect to the replication structure A (Definition 4.12).

– For β ∈ [z], let Bβ ⊆ {0, 1}t×q be the set of inconsistency patterns where B

and Πβ(B) have at most one inconsistency in each row. Let Γ
(1)
β , . . . , Γ

(γ)
β be

a collection of permutation sequences implementing Πβ that is (κ1, κ2)-non-

concentrating for Bβ (Definition 4.13). In particular, each Γ
(j)
β is a sequence

of α permutations
(
Π

(j)
β,1, . . . ,Π

(j)
β,α

)
, where each intermediate permutation

Π
(j)
β,` is 2-locally decomposable.

The linear MIP with t · (1 +αγz) provers and query length d is defined as follows:

– Syntax: The linear MIP consists of t · (1 + αγz) provers. We label the

provers as Pi and P
(j)
β,`,i for i ∈ [t], j ∈ [γ], β ∈ [z], and ` ∈ [α]. To simplify

the description, we will often pack the proof vectors from different provers
into the rows of a matrix. To recall, when we say we associate a matrix
Ŵ ∈ Ft×d with provers (P1, . . . , Pt), we mean that the ith row of Ŵ is the
proof vector assigned to prover Pi for all i ∈ [t]. Similarly, when we say the
verifier distributes a query matrix Q ∈ Ft×d to provers (P1, . . . , Pt), we mean
that it submits the ith row of Q as a query to Pi for all i ∈ [t].

– Prover’s algorithm: On input the statement x′ ∈ Fn′ and witness w′ ∈ Fm′ ,
the prover prepares the proof vectors as follows:

• Linear PCP proofs. First, the prover computes x ← inp(x′) and
w ← wit(x′,w′). For each i ∈ [t], it computes a proof πi ← Pi(xi,wi),
where xi and wi denote the bits of the statement x and witness w on
which circuit Ci depends, respectively. Since (Pi,Vi) is a systematic linear
PCP, we can write πi = [wi,pi] where wi ∈ Fq and pi ∈ Fd−q. For i ∈ [t],
the prover associates the vector πi with Pi.

• Consistency proofs. Let W ∈ Ft×q be the matrix where the ith row

is the vector wi. Now, for all j ∈ [γ], β ∈ [z], and ` ∈ [α], let W
(j)
β,` =(

Π
(j)
β,` ◦Π

(j)
β,`−1◦· · ·◦Π

(j)
β,1

)
(W). Let Ŵ

(j)
β,` =

[
W

(j)
β,`,0

t×(d−q)]. The prover

associates Ŵ
(j)
β,` with provers (P

(j)
β,`,1, . . . , P

(j)
β,`,t).

– Verifier’s query algorithm: To simplify the description, we will sometimes

state the query vectors the verifier submits to each prover Pi and P
(j)
β,`,i rather

than the explicit query matrices. The verifier’s queries are constructed as
follows:

• Linear PCP queries. For i ∈ [t], the verifier invokes the query genera-
tion algorithm Qi for each of the underlying linear PCP instances (Pi,Vi)
to obtain a query matrix Qi ∈ Fd×k and some state information sti. The
verifier gives Qi to prover Pi, and saves the state st = (st1, . . . , stt).
• Routing consistency queries. For all j ∈ [γ], β ∈ [z], and ` ∈ [α], the

verifier invokes the query generation algorithm of Construction 4.8 on

permutation Π
(j)
β,` to obtain two query matrices R

(j)
β,` and S

(j)
β,` ∈ Ft×q.



The verifier pads the matrices to obtain R̂
(j)
β,` =

[
R

(j)
β,`,0

t×(d−q)] and

Ŝ
(j)
β,` =

[
S
(j)
β,`,0

t×(d−q)]. There are two cases:

∗ If ` = 1, the verifier distributes the queries R̂
(j)
β,` to provers (P1, . . . , Pt).

∗ If ` > 1, the verifier distributes the queries R̂
(j)
β,` to provers

(
P

(j)
β,`−1,1, . . . , P

(j)
β,`−1,t

)
.

In addition, the verifier distributes the queries Ŝ
(j)
β,` to provers

(
P

(j)
β,`,1, . . . , P

(j)
β,`,t

)
.

Intuitively, the verifier is applying the approximate consistency check

from Construction 4.8 to every permutation Π
(j)
β,`.

• Pairwise consistency queries. For each β ∈ [z], let Aβ = Πβ(A), and
let Π ′β be the pairwise consistency test matrix for Aβ (Construction 4.10).
The verifier invokes the query generation algorithm of Construction 4.8
on permutation Π ′β to obtain two query matrices Rβ and Sβ ∈ Ft×q. It

pads the matrices to obtain R̂β = [Rβ ,0
t×(d−q)] and Ŝβ = [Sβ ,0

t×(d−q)].

Next, it distributes R̂β and Ŝβ to (P
(j)
β,α,1, . . . , P

(j)
β,α,t) for all j ∈ [γ]. In

this step, the verifier is checking pairwise consistency of the permuted

assignment matrices W
(j)
β,α for all j ∈ [γ] and β ∈ [z].

In total, the verifier makes a total of k + αγz queries to each prover Pi for
i ∈ [t]. It makes O(1) queries to the other provers.

– Verifier’s decision algorithm: First, the verifier computes the statement
x ← inp(x′). For i ∈ [t], let xi denote the bits of x on which circuit Ci
depends. The verifier processes the responses from each set of queries as
follows:
• Linear PCP queries. For i ∈ [t], let yi ∈ Fk be the response of prover
Pi to the linear PCP queries. For i ∈ [t], the verifier invokes the decision
algorithm Di for each of the underlying linear PCP instances (Pi,Vi) on
the state sti, the statement xi, and the response yi. It rejects the proof
if Di(sti,xi,yi) = 0 for any i ∈ [t].

• Consistency queries. For each set of routing consistency query re-

sponses (for checking consistency of the intermediate permutations Π
(j)
β,`),

and for each set of pairwise consistency query responses (for checking con-
sistency of the final configurations Π ′β), the verifier applies the decision
algorithm from Construction 4.8, and rejects if any check fails.

If all of the checks pass, then the verifier accepts the proof.

Instantiating the construction. We defer the security analysis of Construction 4.14
to the full version [15]. In the full version, we additionally show how to instan-
tiate the robust decomposition, the regularity-inducing permutations, and the
non-concentrating permutation sequences needed to apply Construction 4.14.
Combining Construction 4.14 with our concrete instantiations, we obtain a quasi-
optimal linear MIP. We state the formal theorem below, and give the proof in
the full version.

Theorem 4.15 (Quasi-Optimal Linear MIP). Fix a security parameter λ.
Let C : Fn × Fm → Fh be an arithmetic circuit of size s over a poly(λ)-size finite
field F where |F| > s. Then, there exists an input-oblivious k-query linear MIP



(P,V) with ` = Õ(λ) provers for RC with soundness error 2−λ, query length

Õ(s/λ) + poly(λ, log s), and k = polylog(λ). Moreover, letting V = (Q,D), the
prover and verifier algorithms satisfy the following properties:

– the prover algorithm P is an arithmetic circuit of size Õ(s) + poly(λ, log s);

– the query-generation algorithm Q is an arithmetic circuit of size Õ(s) +
poly(λ, log s);

– the decision algorithm D is an arithmetic circuit of size Õ(λn).

Remark 4.16 (Soundness Against Affine Provers). To leverage our linear MIP
to construct a SNARG, we often require that the linear MIP provide soundness
against affine provers. We note that Construction 4.14 inherits this property as
long as the underlying linear PCPs and approximate consistency check primitives
provide soundness against affine strategies. It is straightforward to see that
Construction 4.8 remains sound even against affine adversarial strategies, and in
the full version, we show how the underlying linear PCPs can be made robust
against affine strategies with minimal overhead. Importantly, these modifications
do not increase the asymptotic complexity of Construction 4.14.

5 Quasi-Optimal SNARGs

In this section, we formally introduce the notion of a quasi-optimal SNARG.
Next, in Section 5.2, we show how to compile a linear MIP into a designated-
verifier SNARG in the preprocessing model using the notion of a linear-only
vector encryption over rings introduced in [14]. Combined with our quasi-optimal
linear MIP from Section 4, this yields a quasi-optimal designated-verifier SNARG
for Boolean circuit satisfiability in the preprocessing model. We refer to the
full version [15] for the formal definition of a succinct non-interactive argument
(SNARG) and for the definitions of a linear-only vector encryption that we use
in our construction. We also introduce the notion of a 1-bit SNARG in the full
version.

5.1 Defining Quasi-Optimality

In this section, we formally define our notion of a quasi-optimal SNARG. Then, in
the full version, we compare our notion to the previous notion of quasi-optimality
introduced in [14], as well as describe a heuristic approach for instantiating
quasi-optimal SNARGs.

Definition 5.1 (Quasi-Optimal SNARG). Let ΠSNARG = (Setup,Prove,Verify)
be a SNARG for a family of Boolean circuits C = {Cn}n∈N. Then, ΠSNARG is

quasi-optimal if it achieves 2−λ soundness error against provers of size 2λ and
satisfies the following properties:

– Prover Complexity: The running time of Prove is Õ(|Cn|)+poly(λ, log |Cn|).
– Succinctness: The length of the proof output by Prove is Õ(λ).



Next, in Lemma 5.2, we show that our notion of quasi-optimality is tight in
the following sense: assuming NP does not have succinct proofs, any argument
system for NP that provides soundness error 2−λ must have proofs of length
Ω(λ). We state the lemma below and give the proof in the full version [15].

Lemma 5.2. Let C = {Cn}n∈N be a family of Boolean circuits for some language

L =
⋃
n∈N LCn , where Cn : {0, 1}n × {0, 1}m(n) → {0, 1} for all n ∈ N. Fix a

soundness parameter ρ and a security parameter λ. Let ΠSNARG = (Setup,Prove,
Verify) be a SNARG for C with soundness 2−ρ against provers of size poly(λ). If
LCn 6⊆ DTIME(2o(n)), then the length `(ρ) of an argument in ΠSNARG is Ω(ρ).

5.2 Quasi-Optimal SNARGs from Quasi-Optimal Linear MIPs

In this section, we show how to combine a linear MIPs with linear-only vector
encryption over rings to obtain a quasi-optimal SNARG. We refer to the full
version for the definition of a linear-only vector encryption from [14]. We describe
the construction and state its security theorems here, but defer the security
proofs to the full version [15].

Construction 5.3 (SNARG from Linear MIP). Fix a prime p and let
C = {Cn}n∈N be a family of arithmetic circuits over Fp. Let RC be the relation
associated with C. Let (P,V) be a k-query linear MIP with ` provers and
query length d for the relation RC . Let Πvenc = (KeyGen,Encrypt,Decrypt) be a
secret-key vector encryption scheme over Rk where R ∼= F`p. Our single-theorem,
designated-verifier SNARG ΠSNARG = (Setup,Prove,Verify) in the preprocessing
model for RC is given below:

– Setup(1λ, 1n) → (σ, τ): On input the security parameter λ and the circuit
family parameter n, the setup algorithm does the following:

1. Invoke the query-generation algorithm Q for the linear MIP to obtain a
tuple of query matrices Q1, . . . ,Q` ∈ Fd×kp and state information st.

2. Generate a secret key sk ← KeyGen(1λ, 1`) for the vector encryption
scheme.

3. Pack the ` query matrices Q1, . . . ,Q` into a single query matrix Q ∈ Rd×k
(recall that the ring R splits into ` isomorphic copies of Fp).

4. Encrypt each row of Q (an element of Rk) using the vector encryption
scheme. In other words, for i ∈ [d], let qi ∈ Rd be the ith row of Q. In
this step, the setup algorithm computes ciphertexts cti ← Encrypt(sk,qi).

5. Output the common reference string σ = (ct1, . . . , ctd) and the verification
state τ = (sk, st).

– Prove(σ,x,w)→ π. On input the common reference string σ = (ct1, . . . , ctd),
a statement x, and a witness w, the prover’s algorithm works as follows:

1. For each i ∈ [`], invoke the linear MIP prover algorithm Pi on input x
and w to obtain a proof πi ← Pi(x,w) ∈ Fdp.



2. Pack the ` proof vectors π1, . . . ,π` ∈ Fdp into a single proof vector

π ∈ Rd. Then, viewing the ciphertexts ct1, . . . , ctm as vector encryptions
of the rows of the query matrix Q ∈ Rd×k, homomorphically compute an
encryption of the matrix-vector product Q>π ∈ Rk. In particular, the
prover homomorphically computes the sum ct′ =

∑
i∈d πi · cti.

3. Output the proof ct′.
– Verify(τ,x,π) → {0, 1}: On input the verification state τ = (sk, st), the

statement x, and the proof π = ct′, the verifier does the following:
1. Decrypt the proof ct′ using the secret key sk to obtain the prover’s

responses y ← Decrypt(sk, ct′). If y = ⊥, the verifier terminates with
output 0.

2. The verifier decomposes y ∈ Rk into vectors y1, . . . ,y` ∈ Fkp. It then
invokes the linear MIP decision algorithm D on the statement x, the re-
sponses y1, . . . ,y`, and the verification state st and outputsD(st,x,y1, . . . ,y`).

Theorem 5.4. Fix a security parameter λ and a prime p. Let C = {Cn}n∈N
be a family of arithmetic circuits over Fp, RC be the relation associated with
C, and (P,V) be a k-query linear MIP with ` provers, query length d, and
soundness error ε(λ) against affine provers for the relation RC. Let Πvenc =
(KeyGen,Encrypt,Decrypt) be a vector encryption scheme over a ring R ∼= F`p with
linear targeted malleability. Then, applying Construction 5.3 to (P,V) and Πvenc

yields a non-adaptive designated-verifier preprocessing SNARG with soundness
error 2 · ε(λ) + negl(λ).

Theorem 5.5. Fix a security parameter λ and a prime p. Let C = {Cn}n∈N
be a family of arithmetic circuits over Fp, RC be the relation associated with
C, and (P,V) be a k-query linear MIP with ` provers, query length d, and
soundness error ε(λ) against affine provers for the relation RC. Let Πvenc =
(KeyGen,Encrypt,Decrypt) be a linear-only vector encryption scheme. Then, ap-
plying Construction 5.3 to (P,V) and Πvenc yields an adaptive designated-verifier
preprocessing SNARG with soundness error ε(λ) + negl(λ).

Instantiating the construction. To conclude this section, we show that combining
the candidate vector encryption scheme Πvenc over polynomial rings Rk, where
R ∼= F`p from [14, §4.4] with our quasi-optimal linear MIP construction from
Theorem 4.15 yields a quasi-optimal SNARG from linear-only vector encryption.
We first recall from [14, §4.4] that the candidate vector encryption scheme Πvenc

has the following properties:

– When k = polylog(λ), ` = Õ(λ), and |F| = poly(λ), each ciphertext encrypt-

ing an element of Rk has length Õ(λ).
– Scalar multiplication and homomorphic addition of two ciphertexts can be

performed in time Õ(λ).

When we apply Construction 5.3 to the linear MIP from Theorem 4.15 and Πvenc,
the prover complexity and proof sizes are then as follows (targeting soundness
error 2−λ):



– Prover complexity: The SNARG prover first invokes the underlying linear
MIP prover to obtain proofs π1, . . . ,π` for each of the ` = Õ(λ) provers.

From Theorem 4.15, this step requires time Õ(s) + poly(λ, log s), where s
is the size of the circuit. To construct the proof, the prover has to perform
d homomorphic operations, where d = Õ(s/λ) + poly(λ, log s) is the query
length of the construction from Theorem 4.15. Since each homomorphic
operation can be computed in Õ(λ) time, the overall prover complexity is

Õ(s) + poly(λ, log s).
– Proof size: The proof in Construction 5.3 consists of a single ciphertext,

which for our parameter settings, have length Õ(λ).

From this analysis, we obtain the following quasi-optimal SNARG instantiations:

Corollary 5.6. Assuming the vector encryption scheme Πvenc from [14, §4.4]
satisfies linear targeted malleability (with exponential security), then applying
Construction 5.3 to the quasi-optimal linear MIP from Theorem 4.15 and Πvenc

yields a non-adaptive designated-verifier quasi-optimal SNARG for Boolean circuit
satisfiability in the preprocessing model.

Corollary 5.7. Assuming the vector encryption scheme Πvenc from [14, §4.4]
(with the “double-encryption” transformation described in [14, Remark C.4])
is linear-only (with exponential security), then applying Construction 5.3 to
the quasi-optimal linear MIP from Theorem 4.15 and Πvenc yield an adaptive
designated-verifier quasi-optimal SNARG for Boolean circuit satisfiability in the
preprocessing model.

Construction 5.3 gives a construction of a single-theorem SNARG from any
linear MIP system. In the full version [15], we discuss some of the challenges in
extending our construction to provide multi-theorem security.

Remark 5.8 (Multi-Theorem SNARGs). Construction 5.3 gives a construction
of a single-theorem SNARG from any linear MIP system. The works of [13, 14]
show how to construct multi-theorem designated-verifier SNARGs by relying on
a stronger notion of soundness at the linear PCP level coupled with a stronger
interactive linear-only encryption assumption. While we could rely on the same
type of cryptographic assumption as in [14], our linear MIP from Section 4 does
not satisfy the notion of “reusable” or “strong” soundness from [13]. Strong
soundness essentially says that for all proofs, the probability that the verifier
accepts or that it rejects is negligible close to 1 (where the probability is taken
over the randomness used to generate the queries). In particular, whether the
verifier decides to accept or reject should be uncorrelated with the randomness
associated with its secret verification state. In our linear MIP model, we operate
over a polynomial-size field, so a prover making a local change will cause the
verifier’s decision procedure to change with noticeable probability. This reveals
information about the secret verification state, which can enable the malicious
prover to break soundness. We leave it as an open problem to construct a quasi-
optimal linear MIP that provides strong soundness. Such a primitive would be
useful in constructing a quasi-optimal multi-theorem SNARGs.
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