
Adaptively Secure Garbling with Near Optimal
Online Complexity?

Sanjam Garg and Akshayaram Srinivasan

University of California, Berkeley
{sanjamg,akshayaram}@berkeley.edu

Abstract. We construct an adaptively secure garbling scheme with an
online communication complexity of n + m + poly(log |C|, λ) where C :
{0, 1}n → {0, 1}m is the circuit being garbled, and λ is the security
parameter. The security of our scheme can be based on (polynomial
hardness of) the Computational Diffie-Hellman (CDH) assumption, or
the Factoring assumption or the Learning with Errors assumption. This
is nearly the best achievable in the standard model (i.e., without random
oracles) as the online communication complexity must be larger than
both n and m. The online computational complexity of our scheme is
O(n+m)+poly(log |C|, λ). Previously known standard model adaptively
secure garbling schemes had asymptotically worse online cost or relied
on exponentially hard computational assumptions.

1 Introduction

Introduced in the seminal work of Yao [Yao86], garbling techniques are one of
the main cornerstones of cryptography. Garbling schemes have found numerous
applications in multiparty computation [Yao86, AF90, BMR90], parallel cryp-
tography [AIK04, AIK05], one-time programs [GKR08], verifiable computation
[GGP10, AIK10], functional encryption [SS10, GVW12, GKP+13], efficient zero-
knowledge proofs [JKO13, FNO15] and program obfuscation [App14, LV16].

Garbling a circuit C and an input x yields a garbled circuit C̃ and a garbled
input x̃ respectively. Next, using C̃ and x̃ anyone can efficiently compute C(x)

but security requires that C̃ and x̃ jointly reveal nothing about C or x beyond
C(x). Typical garbling schemes are only proved to satisfy the weaker notion
of selective security where both the circuit C and the input x are chosen a
priori. However, in certain applications, a stronger notion of adaptive security
wherein the input x can be chosen adaptively based on the garbled circuit C̃
is needed [BHR12a]. We refer to the size of C̃ as the offline communication
complexity and the size of x̃ as the online communication complexity.

? Research supported in part from 2017 AFOSR YIP Award, DARPA/ARL SAFE-
WARE Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, and research
grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecu-
rity (CLTC, UC Berkeley). The views expressed are those of the author and do not
reflect the official policy or position of the funding agencies.

2

Constructing such adaptively secure garbling schemes with better online com-
munication cost has been an active area of investigation [BHR12a, BGG+14,
HJO+16, JW16, AS16, JKK+17, JSW17]. Despite tremendous effort, all stan-
dard model constructions of adaptively secure garbling which are based on poly-
nomially hard assumptions have online communication cost that grows with the
width of the circuit.

1.1 Our Contributions

We obtain a new adaptive garbling scheme with online communication complex-
ity of n + m + poly(log |C|, λ) where n is the input length of the circuit C, m
is its output length and λ is the security parameter. This almost matches the
lower bounds of n and m due to Applebaum et al. [AIKW13].1 Moreover, this
complexity is very close to the best known constructions for the selective security
setting [AIKW13]. More formally, our main result is:

Theorem 1. Assuming either the Computational Diffie-Hellman assumption or
the Factoring assumption or the Learning with Errors assumption, there exists a
construction of adaptive garbling scheme with online communication complexity
of n+m+ poly(log |C|, λ) with simulation security.

All prior constructions of adaptively secure garbling schemes in the standard
model had online communication complexity that grew with either the circuit
depth/width. Moreover, several of these schemes suffered from an exponential
loss in security reduction. We summarize the known constructions and our new
results in Table 1.

Assumption Online Communication Security Loss Model
Complexity

[BHR12a] Const. 1 OWF nλ poly(|C|, λ) RO

[BHR12a] Const. 2 OWF |C|+ nλ poly(|C|, λ) Std.

[BGG+14] Const.1 LWE (n+m)poly(λ, d) 2O(d) Std.

[BGG+14] Const.2 LWE + MDDH O(n+m) + poly(λ, d) 2O(d) Std.

[HJO+16] Const. 1 OWF (n+m+ w)poly(λ) poly(|C|, λ) Std.

[HJO+16] Const. 2 OWF (n+m+ d)poly(λ) 2O(d) Std.

[JW16] OWF (n+m+ d)poly(λ) 2O(d) Std.

[JKK+17] OWF (n+m+ d)poly(λ) 2O(d) Std.

This work CDH/Factoring/LWE n+m+ poly(λ, log |C|) poly(|C|, λ) Std.

Table 1: Constructions of known and new adaptive garbling schemes (with simulation
security).

1 In this work, we consider the standard simulation based security notion. Indeed,
if one considers the weaker notion of indistinguishablity based security this lower
bound can be bypassed as shown in [AS16, JSW17].

3

Additionally, we note that as a special case, our result implies selectively
secure garbling scheme with online cost n+ poly(λ) from the same assumptions.
Previously, this result was not known under CDH or Factoring. Specifically,
constructions were known from DDH or RSA [AIKW13].

1.2 Applications

We now mention some of the applications of our result. These applications were
already noted in the work of Hemenway et al. [HJO+16] and we improve their
efficiency.

One-time Program and Verifiable Computation. Plugging our result in
the one-time program construction of [GKR08], we get a construction of one-time
program where the number of hardware tokens is O(n + m + poly(λ, log |C|)).
Similarly, the running time of verification protocol in the work of [GGP10] can
be improved to match our online complexity.

Compact Functional Encryption. Starting with a single-key, selective func-
tional encryption scheme with weakly compact ciphertexts and using the trans-
formations of [ABSV15, AS16, GS16, LM16] along with our construction of
adaptively secure garbled circuits, we obtain a multi-key secure, adaptive func-
tional encryption scheme whose ciphertext size grows only with the output size
of the functions.

2 Our Techniques

In this section, we outline the main techniques and tools used in the construction
of adaptively secure garbled circuits.

Adaptive Security Game. Before explaining our construction, let us first
explain the adaptive security game in a bit more detail. In this game, the adver-
sary provides the challenger with a circuit C and the challenger responds with
a garbled circuit C̃. The adversary later provides with an input x (that could

potentially depend on C̃) and the challenger responds with garbled input x̃. In
the real world, both the garbled circuit and the garbled input are generated hon-
estly whereas in the ideal world, the garbled circuit C̃ is generated by a simulator
Sim1 that is given the size of C as input and the garbled input x̃ is generated by
another simulator Sim2 that is given C(x) as input. The goal of the adversary is
to distinguish between the real world and the ideal world distributions.

The reason why the proof of Yao’s construction breaks down in the adaptive
setting is because the distribution of the garbled circuit C̃ in the intermediate
hybrids depends on the value of the (adversarily chosen) input x. Naturally,
Yao’s approach is not feasible when the garbled circuit needs to be sent before
the adversary gives its input x.

4

Prior Approaches. To solve the issue with Yao’s construction, Bellare et
al. [BHR12b] encrypted the garbled circuit by an (fully) equivocal encryption
scheme and sent the ciphertext in the offline phase. Later, in the online phase,
the key for decrypting this ciphertext was provided. Since an equivocal cipher-
text can be opened to any value, the simulator in each intermediate hybrid opens
the ciphertext sent in the offline phase to an appropriate simulated value (that
depends on C and x). However, the key size for an equivocal encryption scheme
in the standard model has to grow with the size of the message [Nie02] and in
this case it grows with the size of the circuit. Thus, the online complexity of this
approach has to grow with the size of the circuit.

The work of Hemenway, Jafargholi, Ostrovsky, Scafuro and Wichs [HJO+16]
improved the online complexity by replacing the fully equivocal encryption scheme
with a somewhere equivocal encryption. Roughly speaking, a somewhere equiv-
ocal encryption allows to generate a ciphertext encrypting a vector of messages
with “holes” in some positions. Later, these “holes” could be filled with arbi-
trary message values by deriving a suitable decryption key. Intuitively, in each
intermediate hybrid, “holes” are created in the garbled circuit in those positions
that depend on the input and the simulator fills these “holes” in the online phase
based on the input x. The crucial aspect of a somewhere equivocal encryption
is that its key size is only proportional to number of holes which could be much
smaller than the total length of the message vector. Thus to minimize the on-
line complexity, it is sufficient to come up with a sequence of hybrids where the
number of holes in each intermediate hybrid is minimized. Hemenway et al. pro-
vide two sequences of hybrid arguments: the first sequence where the number of
“holes” in each hybrid is at most the width of the circuit and the second sequence
of hybrids where the number of “holes” in each hybrid is at most the depth (with
2O(depth) hybrids). However, even in this approach the online complexity could
be as large as the circuit size as the circuit width or depth could be as large as
the circuit itself.

Our approach. We follow the high level idea of Hemenway et al. [HJO+16]
in encrypting the garbled circuit using a somewhere equivocal encryption but
employ a crucial trick to minimize the number of “holes” in each intermedi-
ate hybrid. At a very high level, we use the recent construction of updatable
laconic oblivious transfer [CDG+17, DG17, DGHM18, BLSV18] (which can be
constructed based either on CDH/Factoring/LWE) to “linearize” the garbled
circuit. Informally, a garbled circuit is “linearized” if the simulation of a garbled
gate g depends only on simulating one additional gate. We note that all the
prior approaches [HJO+16, JW16] resulted in “non-linearized” garbled circuits.
In particular, in all the prior works, simulating the garbled gate g depended on
simulating all gates that provide inputs to g (which are at least two in number).
With this “linearization” in place, we design a sequence of hybrids (based on the
pebbling strategy of [Ben89]) where the number of “holes” in each intermediate

5

hybrid is O(log(|C|)). This allows us to achieve nearly optimal online complexity.
We elaborate on our approach in the next subsection.

2.1 Our Approach: “Linearizing” the Garbled Circuit

We now explain our construction of “linearized” garbled circuits.

Step Circuits. To understand our construction, it is best to view the circuit C
as a sequence of step circuits. In more details, we will consider C as a sequence
of step circuits along with a database/memory D. For simplicity, we consider a
circuit with a single output bit. The i-th step circuit implements the i-th gate
(with some topological ordering of the gates) in the circuit C. The database D is
initially loaded with the input x and contents of the database represent the state
of the computation. That is, the snapshot of the database before the evaluation
of the i-th step circuit contains the output of every gate g < i in the execution
of C on input x. The i-th step circuit reads contents from two pre-determined
locations in the database and writes a bit to location i. The bits that are read
correspond to the values in the input wires for the i-th gate. The output of
the circuit is easily derived from the contents of the database at the end of the
computation. To garble the circuit C, we must garble each of the step circuits
and the database D.

Garbling Step Circuits. Our approach of garbling the step circuits involves
a primitive called as updatable laconic oblivious transfer [CDG+17]. To make
the exposition easy, we first consider a simplistic setting where the database D
is not protected i.e., it is revealed in the clear to the adversary. We will later
explain how this restriction can be removed.

A laconic oblivious transfer is a protocol between two parties: sender and
a receiver. The receiver holds a large database D ∈ {0, 1}N and sends a short
digest d (with length λ) of the database to the sender. The sender obtains as
input a location L ∈ [N] and two messages m0,m1. The sender computes a
read-ciphertext c using his private inputs and the received digest d by running
in time poly(logN, |m0|, |m1|, λ) and sends c to the receiver. Note that the time
required to compute the read-ciphertext c grows logarithmically with the size
of the database. The receiver recovers the message mD[L] from the ciphertext
c and the security requirement is that the message m1−D[L] is computationally
hidden. A laconic oblivious transfer is said to be updatable if it additionally
allows updates on the database. In particular, the sender on input a location
L ∈ [N], a bit b, digest d and a sequence of λ messages {mj,0,mj,1}j∈[λ] creates
a write-ciphertext cw (by running in time that grows logarithmically with the
size of the database). The receiver on input cw can recover {mj,d∗j

}j∈[λ] where
d∗ is the digest of the updated database with bit b written in location L. As
in the previous case, the security requires that the messages {mj,1−d∗j }j∈[λ] are
computationally hidden. An updatable laconic oblivious transfer was first con-
structed in [CDG+17] from the Decisional Diffie-Hellman (DDH) problem and

6

the assumptions were later improved to CDH/Factoring in [DG17] and to LWE
in [DGHM18, BLSV18].

Let us now give details on how to use updatable laconic OT to garble the
circuit C. At a very high level, the garbled circuit consists of a sequence of

garbled augmented step circuits S̃C
′
1, . . . , S̃C

′
N and the garbled input consists of

the labels for executing the first garbled step circuit S̃C
′
1. These garbled step

circuits are constructed in special way such that the output of the garbled step

circuit S̃C
′
i can be used to derive the labels for executing the next garbled step

circuit S̃C
′
i+1. Thus, starting from S̃C

′
1, we can evaluate every garbled step circuit

in the sequence. Let us now give details on the internals of the augmented step
circuits.

The i-th augmented step circuit SC′i takes as input the digest d of the snap-
shot of database D before the evaluation of i-th gate and two bits αi and βi.
The bits αi and βi correspond to the inputs to gate i in the evaluation of C.
The augmented step circuit SC′i additionally has the set of both labels for each

input wire of S̃C
′
i+1 hardwired in its description. We denote these labels by

{labdj,0, lab
d
j,1}j∈[λ] that correspond to the digest and {labα0 , lab

α
1 } and {labβ0 , lab

β
1}

that correspond to the input bits of gate i+ 1. SC′i first computes the output of
the i-th gate (denoted by γ) using αi and βi. This bit must be written to the
database and the updated hash value must be fed to the next circuit SC′i+1. To-
wards this goal, SC′i computes a write-ciphertext cw using the digest d, location
i, bit γ and {labdj,0, lab

d
j,1}j∈[λ]. This write-ciphertext will be used to derive the

labels corresponding to the updated value of the digest which is fed to SC′i+1.
Recall that SC′i+1 must also take in the input values to the (i+ 1)th gate of the
circuit C. For this purpose, SC′i also computes two read ciphertexts cα, cβ using

the value of the (updated) digest d∗ and labels {labα0 , lab
α
1 } and {labβ0 , lab

β
1} re-

spectively. These read ciphertexts will be used to derive the labels corresponding
to the values of the input wires to the gate i + 1. It finally outputs cw, cα, cβ .
An evaluator for this garbled circuit can recover the set of labels for evaluating

S̃C
′
i+1 from these ciphertexts using the decryption functionality of updatable

laconic OT.
Notice that in order to simulate the garbled step-circuit S̃C

′
i, it is sufficient to

simulate the garbled step-circuit S̃C
′
i−1. This is because the labels for evaluating

S̃Ci are only hardwired in the step-circuit SC′i−1 and are not available anywhere

else. Once the garbled step circuit S̃C
′
i−1 is simulated, we can use the security

of updatable laconic oblivious transfer and (plain) garbled circuits to simulate

S̃C
′
i. This helps us to achieve the right “linearized” structure for simulating the

garbled step circuits.

Protecting the Database. In the above exposition, the database D is revealed
in the clear which is clearly insecure as database holds the values of all the
intermediate wires in the evaluation of the circuit. To protect the database, we
mask the contents of the database with a random string. To be more precise,

7

each step circuit additionally has the masking bits for the two input wires and
the masking bit for the output wire hardwired. When the step circuit is fed
with the masked values of the input wires, it unmasks those values (using the
hardwired masking bits) and computes the output of the gate. Finally, it uses
the hardwired masking bit for the output wire to mask the output and uses this
value to compute the updated digest. This trick of protecting the intermediate
computation values using random masks is closely related to the “point and
permute” construction of garbled circuits [BMR90, MNPS04].

Pebbling Game. As in the work of [HJO+16], we encrypt these garbled step

circuits {S̃C
′
i} using a somewhere equivocal encryption scheme and send the

ciphertext in the offline phase. Later in the online phase, we reveal the key for

decrypting this ciphertext along with the labels for evaluating S̃C
′
1. The task

that remains is to come up with a sequence of hybrids such that the number of
“holes” in each intermediate hybrid is minimized. Recall that a “hole” appears
in a position that depends on the adaptively chosen input. To design a sequence
of hybrids, we consider the following pebbling game.2

Consider a number line 1, 2, . . . , N . We are given some pebbles and we can
place a pebble on the number line according the following rules:

– We can always place or remove a pebble from position 1.

– We can place or remove a pebble from position i if and only if there exists
a pebble in position i− 1.

The goal is to be place at position N by minimizing the number of pebbles
(denoted as the pebbling complexity) present in the graph at any point of time.
A trivial strategy would be to consecutively place pebbles starting from position
1 upto N . The maximum number of pebbles used is N and the hope is to have
a strategy that uses far less pebbles.

Intuitively, a pebble in the above game corresponds to a “hole” in the some-
where equivocal ciphertext. Alternatively, we can view the process of placing a
pebble in position i as simulating the i-th garbled circuit.3 The above two rules
naturally correspond to rules for simulating a garbled step circuit i.e., the first
garbled step circuit can always be simulated and we can simulate the i-th garbled
step circuit if the (i − 1)-th garbled step circuit is simulated. Bennett [Ben89]
showed an inductive pebbling strategy for the above game using O(logN) peb-
bles. This readily gives a sequence of hybrids to prove adaptive security where
the number of “holes” in each intermediate hybrid is logarithmic in the size of
the circuit. This helps us achieve nearly optimal online complexity.

2 The pebble game we describe is a simplification of the actual pebbling game we
design later. This simplification is sufficient to get the main intuition.

3 These two views are equivalent since simulation of a garbled step circuit depends
on the output of that step circuit which in turn depends on the adversarily chosen
input x. Thus, if a garbled step circuit is simulated we must have a “hole” in the
corresponding position of the somewhere equivocal encryption.

8

Why is “linearization” important? The work of Hemenway et al. consider
a pebbling game directly on the topology of the circuit rather than on a line
graph. In more details, they interpreted the circuit C as a DAG with every gate
in C being a node in the graph, the input gates represented as sources in the
graph (nodes with in-degree 0) and output gate represented as sink (node with
out-degree 0). The rules of the pebbling game are 4:

1. A pebble can always be placed or removed from a source.
2. A pebble can be placed or removed from a node if all its predecessors have

pebbles.

The goal is to place a pebble at the sink node by minimizing the number of
pebbles placed in the graph at any point of time. Note that unlike our game, in
order to place a pebble at a node it is required that pebbles are present on all
the predecessors which are at least two in number. This makes the task of using
logarithmic many pebbles extremely difficult and there are strong lower bounds
[PTC76] concerning the pebbling complexity of the above game. In particular,
the work of [PTC76] shows that existence of certain families of DAGs on n nodes
(with in-degree 2 and out-degree more than 1) such that the pebbling complexity
of those graphs is Ω(n

logn). This naturally corresponds to similar lower bounds
on the pebbling complexity of circuits with fan-in 2 and fan-out greater than
1. Thus, to get around these lower bounds, the use of the “linearized” garbled
circuit seems necessary.

Why Garbled RAM fails? To garble the step circuits and the database D,
we could hope to use ideas from the garbled RAM literature [LO13, GHL+14,
GLOS15, GLO15].5 This would have given us a garbling scheme based on just
one-way functions instead of requiring public-key assumptions. However, all
known approaches of constructing garbled RAM introduce additional depen-
dencies in garbling step circuits. This implies that in order to garble a particular
step circuit, at least two other step circuits must be garbled. Thus, the graph to
be pebbled is no longer a straight line and the known lower bounds apply.

3 Preliminaries

Let λ denote the security parameter. A function µ(·) : N → R+ is said to be
negligible if for any polynomial poly(·) there exists λ0 ∈ N such that for all λ > λ0
we have µ(λ) < 1

poly(λ) . For a probabilistic algorithm A, we denote A(x; r) to

be the output of A on input x with the content of the random tape being r.

4 For the sake of exposition, we give a simplified version of the pebbling game con-
sidered in the work of [HJO+16]. We refer the reader to their work for the full
description.

5 We in fact do not require the full power of garbled RAM as the locations that are
accessed by each step circuit are fixed a priori.

9

When r is omitted, A(x) denotes a distribution. For a finite set S, we denote
x← S as the process of sampling x uniformly from the set S. We will use PPT
to denote Probabilistic Polynomial Time. We denote [a] to be the set {1, . . . , a}
and [a, b] to be the set {a, a + 1, . . . , b} for a ≤ b and a, b ∈ Z. For a binary
string x ∈ {0, 1}n, we will denote the ith bit of x by xi. We assume without
loss of generality that the length of the random tape used by all cryptographic
algorithms is λ. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

3.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao82] with selec-
tive security (see Lindell and Pinkas [LP09] and Bellare et al. [BHR12b] for a
detailed proof and further discussion). A garbling scheme for circuits is a tuple
of PPT algorithms (GarbleCkt,EvalCkt). Very roughly, GarbleCkt is the circuit
garbling procedure and EvalCkt the corresponding evaluation procedure. We use
a formulation where input labels for a garbled circuit are provided as input to
the garbling procedure rather than generated as output. (This simplifies the
presentation of our construction.) More formally:

– C̃ ← GarbleCkt
(
1λ, C, {labw,b}w∈[n],b∈{0,1}

)
: GarbleCkt takes as input a se-

curity parameter λ, a circuit C, and input labels labw,b where w ∈ [n] ([n]
is the set of input wires to the circuit C) and b ∈ {0, 1}. This procedure

outputs a garbled circuit C̃. We assume that for each w, b, labw,b is chosen
uniformly from {0, 1}λ.

– y ← EvalCkt
(
C̃, {labw,xw

}w∈[n]
)

: Given a garbled circuit C̃ and a sequence

of input labels {labw,xw
}w∈[n] (referred to as the garbled input), EvalCkt

outputs a string y.

Correctness. For correctness, we require that for any circuit C, input x ∈
{0, 1}|[n]| and input labels {labw,b}w∈[n],b∈{0,1} we have that:

Pr
[
C(x) = EvalCkt

(
C̃, {labw,xw}w∈[n]

)]
= 1

where C̃← GarbleCkt
(
1λ, C, {labw,b}w∈[n],b∈{0,1}

)
.

Selective Security. For security, we require that there exists a PPT simulator
SimCkt such that for any circuit C and input x ∈ {0, 1}|[n]|, we have that{
C̃, {labw,xw}w∈[n]

}
c
≈
{
SimCkt

(
1λ, 1|C|, C(x), {labw,xw}w∈[n]

)
, {labw,xw}w∈[n]

}
where C̃ ← GarbleCkt

(
1λ, C, {labw,b}w∈[n],b∈{0,1}

)
and for each w ∈ [n] and

b ∈ {0, 1} we have labw,b ← {0, 1}λ. Here
c
≈ denotes that the two distributions

are computationally indistinguishable.

Theorem 2 ([Yao86, LP09]). Assuming the existence of one-way functions,
there exists a construction of garbling scheme for circuits.

10

3.2 Updatable Laconic Oblivious Transfer

In this subsection, we recall the definition of updatable laconic oblivious transfer
from [CDG+17] .

Definition 1 ([CDG+17]). An updatable laconic oblivious transfer consists of
the following algorithms:

– crs ← crsGen(1λ) : It takes as input the security parameter 1λ (encoded in
unary) and outputs a common reference string crs.

– (d, D̂) ← Hash(crs, D) : It takes as input the common reference string crs

and database D ∈ {0, 1}∗ as input and outputs a digest d and a state D̂. We

assume that the state D̂ also includes the database D.

– e ← Send(crs, d, L,m0,m1) : It takes as input the common reference string
crs, a digest d, a location L ∈ N and two messages m0,m1 ∈ {0, 1}p(λ) and
outputs a ciphertext e.

– m← ReceiveD̂(crs, e, L) : This is a RAM algorithm with random read access

to D̂. It takes as input a common reference string crs, a ciphertext e, and a
database location L ∈ N and outputs a message m.

– ew ← SendWrite(crs, d, L, b, {mj,0,mj,1}|d|j=1) : It takes as input the common
reference string crs, a digest d, a location L ∈ N, a bit b ∈ {0, 1} to be written,

and |d| pairs of messages {mj,0,mj,1}|d|j=1, where each mj,c is of length p(λ)
and outputs a ciphertext ew.

– {mj}|d|j=1 ← ReceiveWriteD̂(crs, L, b, ew) : This is a RAM algorithm with ran-

dom read/write access to D̂. It takes as input the common reference string

crs, a location L, a bit b ∈ {0, 1} and a ciphertext ew. It updates the state D̂

(such that D[L] = b) and outputs messages {mj}|d|j=1.

We require an updatable laconic oblivious transfer to satisfy the following prop-
erties.

Correctness: We require that for any database D of size at most M = poly(λ),
any memory location L ∈ [M], any pair of messages (m0,m1) ∈ {0, 1}p(λ)
where p(·) is a polynomial that

Pr

m = mD[L]

crs ← crsGen(1λ)

(d, D̂)← Hash(crs, D)
e ← Send(crs, d, L,m0,m1)

m ← ReceiveD̂(crs, e, L)

 = 1,

Correctness of Writes: Let database D be of size at most M = poly(λ) and
let L ∈ [M] be any memory location. Let D∗ be a database that is identical to
D except that D∗[L] = b. For any sequence of messages {mj,0,mj,1}j∈[λ] ∈

11

{0, 1}p(λ) we require that

Pr

m′j = mj,d∗j

∀j ∈ [|d|]

crs ← crsGen(1λ)

(d, D̂) ← Hash(crs, D)

(d∗, D̂∗) ← Hash(crs, D∗)

ew ← SendWrite
(
crs, d, L, b, {mj,0,mj,1}|d|j=1

)
{m′j}

|d|
j=1 ← ReceiveWriteD̂(crs, L, b, ew)

 = 1,

Sender Privacy: There exists a PPT simulator Sim`OT such that the for any
non-uniform PPT adversary A = (A1,A2) there exists a negligible function
negl(·) s.t.,∣∣Pr[SenPrivExptreal(1λ,A) = 1]− Pr[SenPrivExptideal(1λ,A) = 1]

∣∣ ≤ negl(λ)

where SenPrivExptreal and SenPrivExptideal are described in Figure 1.

SenPrivExptreal[1λ,A]

1. crs← crsGen(1λ).
2. (D,L,m0,m1, st)← A1(crs).

3. (d, D̂)← Hash(crs, D).
4. Output
A2(st, Send(crs, d, L,m0,m1)).

SenPrivExptideal[1λ,A]

1. crs← crsGen(1λ).
2. (D,L,m0,m1, st)← A1(crs).

3. (d, D̂)← Hash(crs, D).
4. OutputA2(st, Sim`OT(crs, D, L,mD[L])).

Figure 1: Sender Privacy Security Game

Sender Privacy for Writes: There exists a PPT simulator Sim`OTW such that
the for any non-uniform PPT adversary A = (A1,A2) there exists a negli-
gible function negl(·) s.t.,∣∣Pr[WriSenPrivExptreal(1λ,A) = 1]−Pr[WriSenPrivExptideal(1λ,A) = 1]

∣∣ ≤ negl(λ)

where WriSenPrivExptreal and WriSenPrivExptideal are described in Figure 2.
Efficiency: The algorithm Hash runs in time |D|poly(log |D|, λ). The algorithms

Send, SendWrite, Receive, ReceiveWrite run in time poly(log |D|, λ).

Theorem 3 ([CDG+17, DG17, BLSV18, DGHM18]). Assuming either
the Computational Diffie-Hellman assumption or the Factoring assumption or
the Learning with Errors assumption, there exists a construction of updatable
laconic oblivious transfer.

Remark 1. We note that the security requirements given in Definition 1 is stronger
than the one in [CDG+17] as we require the crs to be generated before the ad-
versary provides the database D and the location L. However, the construction
in [CDG+17] already satisfies this definition since in the proof, we can guess the
location by incurring a 1/D loss in the security reduction.

12

WriSenPrivExptreal[1λ,A]

1. crs← crsGen(1λ).
2. (D,L, b, {mj,0,mj,1}j∈[λ], st)←
A1(crs).

3. (d, D̂)← Hash(crs, D).

4. ew ← SendWrite(crs, d, L, b,

{mj,0,mj,1}|d|j=1)
5. Output A2(st, ew).

WriSenPrivExptideal[1λ,A]

1. crs← crsGen(1λ).
2. (D,L, b, {mj,0,mj,1}j∈[λ], st)←
A1(crs).

3. (d, D̂)← Hash(crs, D).

4. (d∗, D̂∗) ← Hash(crs, D∗) where D∗

be a database that is identical to D
except that D∗[L] = b.

5. ew ← Sim`OTW(crs, D, L, b,
{mj,d∗j

}j∈[λ])
6. Output A2(st, ew).

Figure 2: Sender Privacy for Writes Security Game

3.3 Somewhere Equivocal Encryption

We now recall the definition of Somewhere Equivocal Encryption from the work
of [HJO+16].

Definition 2 ([HJO+16]). A somewhere equivocal encryption scheme with block-
length s, message length n (in blocks) and equivocation parameter t (all polyno-
mials in the security parameter) is a tuple of probabilistic polynomial algorithms
Π = (KeyGen,Enc,Dec,SimEnc,SimKey) such that:

– key ← KeyGen(1λ) : It is a PPT algorithm that takes as input the security
parameter (encoded in unary) and outputs a key key.

– c← Enc(key,m1 . . .mn) : It is a PPT algorithm that takes as input a key key
and a vector of messages m = m1 . . .mn with each mi ∈ {0, 1}s and outputs
a ciphertext c.

– m ← Dec(key, c) : It is a deterministic algorithm that takes as input a key
key and a ciphertext c and outputs a vector of messages m = m1 . . .mn.

– (st, c)← SimEnc((mi)i/∈I , I) : It is a PPT algorithm that takes as input a set
of indices I ⊆ [n] and a vector of messages (mi)i/∈I and outputs a ciphertext
c and a state st.

– key′ ← SimKey(st, (mi)i∈I) : It is a PPT algorithm that takes as input the
state information st and a vector of messages (mi)i∈I and outputs a key key′.

and satisfies the following properties:

Correctness. For every key ← KeyGen(1λ), for every m ∈ {0, 1}s×n it holds
that:

Dec(key,Enc(key,m)) = m

Simulation with No Holes. We require that the distribution of (c, key) com-
puted via (st, c) ← SimEnc(m, ∅) and key ← SimKey(st, ∅) to be identical to

13

key ← KeyGen(1λ) and c ← Enc(key,m1 . . .mn). In other words, simulation
when there are no holes (i.e., I = ∅) is identical to honest key generation and
encryption.

Security. For any PPT adversary A, there exists a negligible function ν = ν(λ)
such that: ∣∣Pr[Expsimenc

A,Π (1λ, 0) = 1]− Pr[Expsimenc
A,Π (1λ, 1) = 1]

∣∣ ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, a vector
(mi)i 6∈I , and a challenge j ∈ [n] \ I. Let I ′ = I ∪ {j}.

2. – If b = 0, compute c as follows: (st, c)← SimEnc((mi)i 6∈I , I).
– If b = 1, compute c as follows: (st, c)← SimEnc((mi)i 6∈I′ , I

′).
3. Send c to the adversary A.
4. The adversary A outputs the set of remaining messages (mi)i∈I .

– If b = 0, compute key as follows: key← SimKey(st, (mi)i∈I).
– If b = 1, compute key as follows: key← SimKey(st, (mi)i∈I′)

5. Send key to the adversary.
6. A outputs b′ which is the output of the experiment.

Theorem 4 ([HJO+16]). Assuming the existence of one-way functions, there
exists a somewhere equivocal encryption scheme for any polynomial message-
length n, black-length s and equivocation parameter t, having key size t·s·poly(λ)
and ciphertext of size n · s · poly(λ) bits.

3.4 Adaptive Garbled Circuits

We provide the definition of adaptive garbled circuits from [HJO+16].

Definition 3. An adaptive garbling scheme for circuits is a tuple of PPT algo-
rithms (AdaGarbleCkt,AdaGarbleInp,AdpEvalCkt) such that:

– (C̃, st)← AdaGarbleCkt(1λ, C) : It is a PPT algorithm that takes as input the
security parameter 1λ (encoded in unary) and a circuit C : {0, 1}n → {0, 1}m
as input and outputs a garbled circuit C̃ and state information st.

– x̃← AdaGarbleInp(st, x) : It is a PPT algorithm that takes as input the state
information st and an input x ∈ {0, 1}n and outputs the garbled input x̃.

– y = AdpEvalCkt(C̃, x̃) : Given a garbled circuit C̃ and a garbled input x̃, it
outputs a value y ∈ {0, 1}m.

Correctness. For every λ ∈ N, C : {0, 1}n → {0, 1}m and x ∈ {0, 1}n it holds
that:

Pr
[
(C̃, st)← AdaGarbleCkt(1λ, C); x̃← AdaGarbleInp(st, x) : C(x) = AdpEvalCkt(C̃, x̃)

]
= 1

14

Adaptive Security. There exists a PPT simulator Sim = (SimC,SimIn) such
that, for any non-uniform PPT adversary A there exists a negligible function ν
such that:∣∣Pr[ExpadaptiveA,GC,Sim(1λ, 0) = 1]− Pr[ExpadaptiveA,GC,Sim(1λ, 1) = 1]

∣∣ ≤ ν(λ)

where the experiment ExpadaptiveA,GC,Sim is defined as follows:

1. The adversary specifies the circuit C and obtains C̃ where C̃ is created as
follows:
– If b = 0: (C̃, st)← AdaGarbleCkt(1λ, C).

– If b = 1: (C̃, st)← SimC(1λ, 1|C|).
2. The adversary A specifies the input x and gets x̃ created as follows:

– If b = 0, x̃← AdaGarbleInp(st, x).
– If b = 1, x̃← SimIn(st, C(x))

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

Online Complexity. The running time of AdaGarbleInp is called as the online
computational complexity and |x̃| is called as the online communication complex-
ity.

4 Our Construction

In this section, we provide our construction of adaptive garbled circuits. The
main theorem is:

Theorem 5. Assuming the existence of updatable laconic oblivious transfer,
somewhere equivocal encryption and garbling scheme for circuits with selective
security, there exists a construction of adaptive garbling scheme for circuits. The
online communication complexity of our scheme is n+m+ poly(λ, log |C|) and
the online computational complexity is O(n+m+ poly(λ, log |C|)).

From Theorems 2, 3, 4 we obtain the following corollary:

Corollary 1. Assuming either the Computational Diffie-Hellman assumption
or the Factoring assumption or the Learning with Errors assumption, there exists
a construction of adaptive garbling scheme for circuits with online communica-
tion complexity of n+m+ poly(λ, log |C|) and online computational complexity
of O(n+m+ poly(λ, log |C|)).

We start with some notation on how we denote circuits. We choose this
notation to simplify the description of our construction. In the rest of the paper,
whenever we mention a circuit C, we implicitly mean the universal circuit U [C]
with the circuit C hardwired in it. This is done so that the topology of the circuit
U [C] does not reveal anything about C except its size.

15

AdaGarbleCkt(1λ, C): On input a circuit C : {0, 1}n → {0, 1}m do:
1. Sample crs← crsGen(1λ), key← KeyGen(1λ) and r ← {0, 1}N .
2. For each g ∈ [n+ 1, N + 1], k ∈ [λ] and b ∈ {0, 1} sample labgk,b ← {0, 1}

λ.
(We use {labgk,b} to denote {labgk,b}k∈[λ],b∈{0,1}.)

3. for each g from N down to n+ 1 do:
(a) Let (i, j) be the description of the gate g.
(b) Compute (where the step-circuit SC is described in Figure 4)

S̃Cg ← GarbleCkt
(

1λ,SC[crs, (ri, rj , rg), (i, j), {labg+1
k,b }, 0], {labgk,b}

)
.

4. Compute c← Enc(key, {S̃Cg}g∈[n+1,N]).

5. Output C̃ := (crs, c) and st := (r, key, {labn+1
k,b }).

AdaGarbleInp(st, x) : On input the state st and a string x ∈ {0, 1}n do:
1. Parse st as (r, key, {labn+1

k,b })
2. Set D := r1⊕x1‖ . . . ‖rn⊕xn‖0N−n and compute (d, D̂) := Hash(crs, D).

3. Output x̃ :=
(
{labn+1

k,dk
}k∈[λ], r1 ⊕ x1‖ . . . ‖rn ⊕ xn, key, rN−m+1, . . . , rN

)
.

AdpEvalCkt(C̃, x̃) : On input garbled circuit C̃, and garbled input x̃ do:

1. Parse C̃ as (crs, c) and x̃ as ({labk}k∈[λ], s1, . . . , sn, key, rN−m+1, . . . rN).

2. Set D := s1‖ . . . ‖sn‖0N−n and compute (d, D̂) := Hash(crs, D).

3. Compute {S̃Cg}g∈[n+1,N] := Dec(key, c).

4. Set lab := {labk}k∈[λ].
5. for each g from n+ 1 to N do:

(a) Let (i, j) be the description of gate g.

(b) Compute (γ, e) := ReceiveD̂(crs,ReceiveD̂(crs,EvalCkt(S̃Cg, lab), i), j).

(c) Set lab := ReceiveWriteD̂(crs, g, γ, e).

6. Recover the contents of the memory D from the final state D̂.
7. Output DN−m+1 ⊕ rN−m+1‖ . . . ‖Dm ⊕ rN .

Figure 3: Adaptive Garbling Scheme for Circuits

16

Step Circuit SC

Input: A digest d.
Hardcoded: The common reference string crs, a triplet of masking bits (ri, rj , rg),
a description (i, j) of gate g, a set of labels {labk,b} and a bit τ (τ = 1 case is only
relevant for the proof).

1. Compute eb ← SendWrite(crs, d, g, b, {labk,0, labk,1}k∈[λ]) for b ∈ {0, 1}.

2. Define for all α, β ∈ {0, 1}, γ(α, β) :=

{
NAND(α⊕ ri, β ⊕ rj)⊕ rg if τ = 0

rg if τ = 1

3. Generate

f0 ← Send
(
crs, d, j, (γ(0, 0), eγ(0,0)), (γ(0, 1), eγ(0,1))

)
,

f1 ← Send
(
crs, d, j, (γ(1, 0), eγ(1,0)), (γ(1, 1), eγ(1,1))

)
.

4. Output
Send (crs, d, i, f0, f1)

Figure 4: Description of the Step Circuit

Notation. We model a circuit C : {0, 1}n → {0, 1}m as a set of N − n NAND
gates, each having fan-in 2. We number the gates of the circuit as follows. The
input gates are given the numbers {1, . . . , n}. The intermediate gates are num-
bered {n + 1, n + 2, . . . , N − m} such that a gate that receives its input from
gates i and j is given a number greater than i and j. The output gates are
numbered {N −m+ 1, . . . , N}. Each gate g ∈ [n+ 1, N] is described by a tuple
(i, j) ∈ [g − 1]2 where outputs of gates i and j serves as inputs to gate g.

Construction. Let (crsGen,Hash,Send,Receive,SendWrite,ReceiveWrite) be an
updatable laconic oblivious transfer scheme, and (GarbleCkt,EvalCkt) be a gar-
bling scheme for circuits. Moreover, let (KeyGen,Enc,Dec,SimEnc,SimKey) be a

somewhere equivocal encryption with the block-length s = |S̃C| (where S̃C de-
notes a garbled version of the step-circuit SC defined in Figure 4), the message-
length equal to N − n and the equivocation parameter t = logN (the choice of
t comes from the security proof).

The formal description of our adaptive garbling scheme appears in Figure 3.
In this construction a selective secure garbling scheme is used to garble a step
circuit SC repeatedly. This step circuit is described in Figure 4. We now provide
an informal overview of this construction. At a high level, the adaptive garbling
of a circuit C simply consists of garbling of the N −n intermediate step circuits
using the standard selectively secure (Yao’s) garbling scheme. The entire N bit
state of the computation is stored in an external memory using laconic OT and

17

each step circuit accesses two bits in this memory. These garbled step circuits
are encrypted using a somewhere equivocal encryption scheme and the resulting
ciphertext is sent in the offline phase. Later in the online phase, the key for
decrypting this ciphertext is revealed. Note that in our description we use the
string r ∈ {0, 1}N as a one time pad to hide the state of the computation.

Communication Complexity of AdaGarbleInp. It follows from the construc-
tion that the communication complexity of AdaGarbleInp is λ2 + n + m + |key|.
From the parameters used in the somewhere equivocal encryption, we note that

|key| = |S̃C|poly(logN,λ). It follows from the efficiency properties of updatable
laconic oblivious transfer that |SC| is poly(logN,λ). Thus, |key| is poly(logN,λ).

Computational Complexity of AdaGarbleInp. The running time of AdaGarbleInp
described in Figure 3 grows with the circuit size N . We note that the running
time can be made independent of the circuit size N by analyzing the specific
laconic OT construction of Cho et al. [CDG+17]. The construction of Cho et
al. uses a Merkle tree to hash a large database into a short digest. Recall that
Merkle hash is efficiently updatable. Specifically, let y and y′ be two strings
given as a sequence of blocks of λ bits and y, y′ differ in only the first k blocks.
Given the Merkle hash on y and a set of log |y| hash values, there is an efficient
procedure running in time O(λ(k + log |y|)) that computes the Merkle hash on
y′. We use this property to reduce the online computational complexity of our
construction.

Recall that in our construction, the contents of the database at the very
beginning of our computation needs to be set to ((r[1,n] ⊕ x)||0N−n) where x is
the n-bit input. However, note that the input x is specified in the online phase.
So the goal is to compute the hash of ((r[1,n] ⊕ x)||0N−n) in the online phase
efficiently. To do this, we compute the hash of 0N in the offline phase and store
the value of this hash along with the specific hash values for updating the first
dn/λe blocks. Once x is specified in the online phase, we use the stored value to
compute the hash on ((r[1,n]⊕x)||0N−n) by performing the Merkle hash update.
The crucial point is that this update is efficient (i.e. grows only with |x|+logN).

Also, the algorithm AdaGarbleInp does not need the entire input r as input. It
suffices to provide the first n and the lastm bits of r (i.e., {r1 . . . rn, rN−m+1 . . . rN}
as input to AdaGarbleInp.

Correctness. Let Dg∗ be the contents of the database at the end of Step 5.(c) of
AdpEvalCkt in the g∗-th iteration of the for loop. We first argue via an inductive
argument that for each gate g∗ ∈ [1, N], Dg∗

g is the output of gate g masked with
rg for every g ∈ [1, g∗]. Given this, the correctness follows by setting g∗ := N and
observing that the {DN

k }k∈[N−m+1,N] is unmasked using r[N−m+1,N] in Step 7
of AdpEvalCkt.

The base case is g∗ = n which is clearly true since in the beginning Dn

is set as (r[1,n] ⊕ x||0N−n). In order to prove the inductive step for a gate g∗

(with description (i, j)), we now argue that that the γ recovered in Step 4.(b)

18

of AdpEvalCkt corresponds to NAND(Dg∗−1
i ⊕ ri, D

g∗−1
j ⊕ rj) ⊕ rg∗ which by

inductive hypothesis corresponds to output of the gate g∗ masked with rg∗ . This
is shown as follows.

(γ, e) := ReceiveD̂(crs,ReceiveD̂(crs,EvalCkt(S̃Cg, lab), i), j)

= ReceiveD̂(crs,ReceiveD̂(crs,Send (crs, d, i, f0, f1) , i), j)

= ReceiveD̂(crs, f
Dg∗−1

i
, j)

= ReceiveD̂
(
crs,Send

(
crs, d, j, (γ(Dg∗−1

i , 0), e
γ(Dg∗−1

i ,0)
), (γ(Dg∗−1

i , 1), e
γ(Dg∗−1

i ,1)
)
)
, j
)

=
(
γ(Dg∗−1

i , Dg∗−1
j), e

γ(Dg∗−1
i ,Dg∗−1

j)

)
=
(
NAND(Dg∗−1

i ⊕ ri, Dg∗−1
j ⊕ rj)⊕ rg∗ , eNAND(Dg∗−1

i ⊕ri,Dg∗−1
j ⊕rj)⊕rg∗

)
5 Proof of Security

In this section, we prove that the construction presented in the previous sec-
tion satisfies adaptive security. In Subsection 5.1, we start by defining circuit
configurations. Next, in Subsection 5.2 we show that both the real and ideal
world executions are special cases of this circuit configuration (this will also
provide a formal description of our simulator). Finally, in the rest of the subsec-
tion we show that the real and ideal world executions are indistinguishable. The
indistinguishability argument proceeds by a sequence of hybrids over different
configurations.

5.1 Circuit Configuration

Our proof of security proceeds via a hybrid argument over different circuit con-
figurations which we describe in this section. A circuit configuration denoted by
conf = (I, {(g,modeg)}g∈[n+1,N]) consists of a set I ⊆ [n + 1, N] and a set of
tuples (g,modeg) where for each gate g ∈ [n+1, N] modeg ∈ {White,Gray,Black}
describes the mode of operation of gate g.

The subset I denotes the set of indices in which there is a “hole” in the
outer encryption layer. At an intuitive level, the White mode corresponds to the
Real Garbling (as is done in the honest execution), the Gray mode corresponds
to the Input Dependent Simulation (where the step circuit for this gate is in
simulation but depends on the input), and the Black mode corresponds to the
Input Independent Simulation (where simulation is done independent of the
input). In other words, White mode matches the real execution, Black mode
matches the ideal execution and Gray mode is an intermediate execution mode.
Looking ahead, initially all the step circuit will be in White mode and the goal
will be to convert all of them to Black in the simulation. Note that we refer to
modes with color names as these modes will coincide with the pebbling game
that we later describe.

19

Valid configurations. We say that a configuration conf = (I, {(g,modeg)}g∈[n+1,N])
is valid if and only if:

1. If modeg = Black then for every k > g, modek = Black.
2. If modeg = Gray then g ∈ I.

In other words, if gate g is in Black mode then we require that all the subsequent
gates are also in Black mode. Moreover, if a gate g is in the Gray mode then there
is a hole in positions g in the outer encryption layer.

Simulation in a valid configuration. In Figure 5 we describe the simulated
circuit garbling SimC and the simulated input garbling SimIn functions for any
given valid configuration conf. Note that these simulated garbling functions take
as input the circuit C and x respective as inputs which the ideal world simulation
does not. We describe our simulator functions with these additional inputs so
that it captures simulation in all of our intermediate hybrids. We note that final
ideal world simulation does not uses these values.

5.2 Our Hybrids

For every valid circuit configuration conf = (I, {(g,modeg)}g∈[n+1,N]), we define

Hybridconf to be a distribution of C̃ and x̃ as given in Figure 5. We start by
observing that both real world and ideal distribution from Definition 3 can be
seen as instance of Hybridconf where conf = (∅, {(g,White)}g∈[n+1,N]) and conf =
(∅, {(g,Black)}g∈[n+1,N]), respectively. In other words, the real world distribution
corresponds to having all gates in White mode and the ideal world distribution
corresponds to having all gates in Black mode. The goal is to move from the real
world distribution to the ideal world distribution while minimizing the maximum
number of gates in the Gray mode in any intermediate hybrid.

5.2.1 Rules of Indistinguishability We will now describe the two rules
(we call these rule A and rule B) to move from one valid circuit configuration
conf to another valid configuration conf ′ such that Hybridconf is computationally
indistinguishable from Hybridconf′ .

Rule A: Very roughly, rule A says that for any valid configuration conf we
can indistinguishably change gate g∗ in White mode to Gray mode if it is
the first gate or if its predecessor is also in Gray mode. More formally, let
conf = (I, {(g,modeg)}g∈[n+1,N]) and conf ′ = (I ′, {(g,mode′g)}g∈[n+1,N]) be
two valid circuit configurations and g∗ ∈ [n+ 1, N] be a gate such that:

– For all g ∈ [n+ 1, N] \ g∗ we have that modeg = mode′g.
– g∗ 6∈ I, I ′ = I∪{g∗}, and |I ′| ≤ t (where t is the equivocation parameter).
– Either g∗ = n+ 1 or (g∗ − 1,Gray) ∈ conf.
– (g∗,White) ∈ conf and (g∗,Gray) ∈ conf ′.

20

SimC(1λ, C): On input a circuit C : {0, 1}n → {0, 1}m do:

1. Sample crs← crsGen(1λ) and r
$← {0, 1}N .

2. For each g ∈ [n+ 1, N + 1], k ∈ [λ] and b ∈ {0, 1} sample labgk,b ← {0, 1}
λ.

(We use {labgk,b} to denote {labgk,b}k∈[λ],b∈{0,1}.)
3. for each g from N down to n+ 1 such that g 6∈ I do:

(a) Let (i, j) be the description of the gate g.
(b) If modeg = White then compute (where the step-circuit SC is de-

scribed in Figure 4)

S̃Cg ← GarbleCkt
(

1λ,SC[crs, (ri, rj , rg), (i, j), {labg+1
k,b }, 0], {labgk,b}

)
.

(c) If modeg = Black then compute

S̃Cg ← GarbleCkt
(

1λ, SC[crs, (0, 0, rg), (i, j), {labg+1
k,b }, 1], {labgk,b}

)
.

4. Compute (st1, c)← SimEnc(I, {S̃Cg}g 6∈I).
5. Output C̃ := (crs, c) and st := (r, st1, {labgk,b}k,b,g).

SimIn(st, x, y): On input state st = (r, st1, {labgk,b}k,b,g), a string x ∈ {0, 1}n, and
y ∈ {0, 1}m do:

Notation: For g ∈ [n+ 1, N + 1] we let Dg be such that

Dg,w =

xw ⊕ rw w ≤ n,
Ew ⊕ rw n+ 1 ≤ w < g,

0 otherwise,

where Ew is the bit assigned to wire w of the circuit C computed on input x.
Finally, we let dg be the digest of Dg (i.e., (dg, ·) := Hash(crs, Dg)) and dg,k
be the kth bit of dg.
1. for each g from N down to n+ 1 such that g ∈ I:

(a) Set e← Sim`OTW(crs, Dg, g,Dg+1,g, {labg+1
k,dg+1,k

}k∈[λ]).
(b) Set out← Sim`OT (crs, Dg, i, Sim`OT (crs, Dg, j, e))

(c) Compute S̃Cg ← SimCkt

(
1λ, 1|SC|, out, {labgk,dg,k}k∈[λ]

)
.

2. Compute key← SimKey(st1, {S̃Cg}g∈I).
3. for each g ∈ [N −m+ 1, N] do:

(a) If modeg ∈ Black then set r′g = rg ⊕ yw−N+m.
(b) Else, r′g = rg.

4. Output x̃ :=
(
{labn+1

k,dn+1,k
}k∈[λ], r1 ⊕ x1‖ . . . ‖rn ⊕ xn, key, r′N−m+1,N . . . r

′
N

)
.

Figure 5: Garbling in configuration conf = (I, {(h,modeh)}h∈[n+1,N]).

In Lemma 3 we show that for an valid configurations conf, conf ′ satisfying

the above constraints we have that Hybridconf
c
≈ Hybridconf′ . Note that we

21

can also use this rule to move a gate g∗ from Gray mode to White mode. We
refer to those invocations of the rule as inverse A rule.

Rule B: Very roughly, rule B says that for any configuration for any valid
configuration conf we can indistinguishably change gate g∗ in Gray mode to
Black mode if all gates subsequent to g∗ is in Black mode and the predecessor
is in Gray mode. More formally, let conf = (I, {(g,modeg)}g∈[n+1,N]) and
conf ′ = (I ′, {(g,mode′g)}g∈[n+1,N]) be two valid circuit configurations and
g∗ ∈ [n+ 1, N] be a gate such that:

– For all g ∈ [n+ 1, N] \ g∗ we have that modeg = mode′g.
– g∗ ∈ I, I ′ = I \{g∗}, and |I| ≤ t (where t is the equivocation parameter).
– For all g ∈ [g∗ + 1, N] we have that (g,Black) ∈ conf.
– Either g∗ = n+ 1 or (g∗ − 1,Gray) ∈ conf.
– (g∗,Gray) ∈ conf and (g∗,Black) ∈ conf ′.

In Lemma 4 we show that for an valid configurations conf, conf ′ satisfying

the above constraints we have that Hybridconf
c
≈ Hybridconf′ .

5.2.2 Interpreting the rules of indistinguishability as a pebbling game
Our sequence of hybrids from the real to the ideal world follow an optimal strat-
egy for the following pebbling game. The two rules described above correspond
to the rules of our pebbling game below.

Consider the positive integer line n+ 1, n+ 2, . . . N . We are given pebbles of
two colors: gray and black . A black pebble corresponds to a gate in the Black
(i.e., input independent simulation) mode and a gray pebble corresponds to a
gate in the Gray (i.e., input dependent simulation) mode. A position without
any pebble corresponds to real garbling or in the White mode. We can place the
pebbles on this positive integer line according to the following two rules:

Rule A: We can place or remove a gray pebble in position i if and only if there
is a gray pebble in position i− 1. This restriction does not apply to position
n+ 1: we can always place or remove a gray pebble at position n+ 1.

Rule B: We can replace a gray pebble in position i with a black pebble as long
as all the positions > i have black pebbles and there is a gray pebble in
position i− 1 or if i = n+ 1.

Optimization goal of the pebbling game. The goal is to pebble the line
[n + 1, N] such that every position has a black pebble while minimizing the
number of gray pebbles that are present on the line at any point in time.

5.2.3 Optimal Pebbling Strategy To provide some intuition, we start with
the näıve pebbling strategy. The näıve pebbling strategy involves starting from
position n + 1 and placing a gray pebble at every position in [n + 1, N] and
then replacing them with black pebbles from N to n+ 1. However, this strategy
uses a total of N − n gray pebbles. Using a more clever strategy it is actually
possible to do the same using only log(N − n) gray pebbles. This is argued in
the following lemmas.

22

Lemma 1. For any integer n + 1 ≤ p ≤ n + 2k − 1, it is possible to make
O((p−n)log2 3) ≈ O((p−n)1.585) moves and get a gray pebble at position p using
k gray pebbles.

Proof. This proof is taken verbatim from [GPSZ17]. First we observe to get a
gray pebble placed at p, for each i ∈ [n+ 1, p− 1] there must have been at some
point a gray pebble placed at location i.

Next, we observe that it suffices to show we can get a gray pebble at position
p = n+ 2k− 1 for every k using O(3k) = O((p−n)log2 3) steps. Indeed, for more
general p, we run the protocol for p′ = n+ 2k − 1 where k = dlog2(p− n− 1)e,
but stop the first time we get a gray pebble at position p. Since p′/p ≤ 3, the
running time is at most O((p− n)log2 3).

Now for the algorithm. The sequence of steps will create a fractal pattern,
and we describe the steps recursively. We assume an algorithm Ak−1 using k−1
gray pebbles that can get a gray pebble at position n+ 2k−1 − 1. The steps are
as follows:

– Run Ak−1. There is now a gray pebble at position n+ 2k−1 − 1 on the line.
– Place the remaining gray pebble at position n+ 2k−1, which is allowed since

there is a gray pebble at position n+ 2k−1 − 1.
– Run Ak−1 in reverse, recovering all of the k−1 gray pebbles used by A. The

result is that there is a single gray pebble on the line at position n+ 2k−1.
– Now associate the portion of the number line starting at n+ 2k−1 + 1 with a

new number line. That is, associate n+ 2k−1 +a on the original number line
with n′+a (where n′ = n+2k−1) on the new number line. We now have k−1
gray pebbles, and on this new number line, all of the same rules apply. In
particular, we can always add or remove a gray pebble from the first position
n′+1 = n+2k−1+1 since we have left a gray pebble at n+2k−1. Therefore, we
can run Ak+1 once more on the new number line starting at n′+ 1. The end
result is a pebble at position n′+2k−1 − 1 = n+2k−1+(2k−1−1) = n+2k−1.

It remains to analyze the running time. The algorithm makes 3 recursive calls
to Ak−1, so by induction the overall running time is O(3k), as desired.

Using the above lemma, we now give an optimal strategy for our pebbling
game.

Lemma 2. For any N ∈ N, there exists a strategy for pebbling the line graph
[n + 1, N] according to rules A and B by using at most logN gray pebbles and
making poly(N) moves.

Proof. The strategy is given below. For each g from N down to n+ 1 do:

1. Use the strategy in Lemma 1 to place a gray pebble in position g. Note that
there exists a gray pebble in position g − 1 as well.

2. Replace the gray pebble in position g with a black pebble. This replacement
is allowed since all positions> g have black pebbles and there is a gray pebble
in position g − 1.

23

3. Recover all the gray pebbles by reversing the moves.

The correctness of this strategy follows by inspection and the number of moves
is polynomial in N .

5.2.4 Completing the Hybrids Using the strategy given in Lemma 2 yields
a sequence of configurations conf0 . . . conf` for an appropriate polynomial ` with
conf0 and conf` being the real and the ideal world distributions and for each

i ∈ [`] we have that Hybridconfi−1

c
≈ Hybridconfi either using rule A (i.e., Lemma 3)

or using rule B (i.e., Lemma 4). Finally note that the number of holes in the
garbled circuit needed is the maximum size of I over the sequence of hybrids
(i.e. the maximum number of gray pebbles used). Thus, it suffices to set the
equivocation parameter t for somewhere equivocal encryption scheme to logN .
This completes the proof of security.

5.3 Proof of Indistinguishability for the Rules

In this subsection, we will use the security of underlying primitives to implement
the two rules.

5.3.1 Implementing Rule A

Lemma 3 (Rule A). Let conf and conf ′ be two valid circuit configurations
satisfying the constraints of rule A, then assuming the security of somewhere
equivocal encryption, garbling scheme for circuits and updatable laconic oblivious

transfer, we have that Hybridconf
c
≈ Hybridconf′ .

Proof. We prove this via a hybrid argument.

– Hybridconf : This is our starting hybrid and is distributed as Hybrid(I,{(g,modeg)}g∈[n+1,N])
.

– Hybrid1: In this hybrid, we change the configuration to (I ′, {(g,modeg)}g∈[n+1,N]).
This hybrid is distributed as Hybrid(I′,{(g,modeg)}g∈[n+1,N])

.

Computational indistinguishability between hybrid Hybridconf and Hybrid1
reduces directly to the security of somewhere equivocal encryption scheme.
We give a formal reduction in Appendix A

– Hybrid2: By conditions of Rule A we have that modeg∗−1 = Gray. Thus, we

have that g∗ − 1 ∈ I ′. Therefore, we note that the input labels {labg
∗

k,b} are

not used in SimC but only in SimIn where it is used to generate S̃Cg∗−1 and

S̃Cg∗ . In this hybrid, we postpone the sampling of {labg
∗

k,b} and the generation

of S̃Cg∗ from SimC to SimIn.

The change in hybrid Hybrid2 from Hybrid1 is just syntactic and the distri-
butions are identical.

24

– Hybrid3: In this hybrid, we change the sampling of {labg
∗

k,b} and the genera-

tion of S̃Cg∗ . Specifically, we do not sample the entire set of labels {labg
∗

k,b}
but a subset namely {labg

∗

k,dg∗,k
}k and we generate S̃Cg∗ from the simulated

distribution. (Note that since g∗−1 is also in Gray mode. Thus we have that

S̃Cg∗−1 is also simulated and only {labg
∗

k,dg∗,k
}k are needed for its generation.)

More formally, we generate

S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

where out← SC[crs, (ri, rj , rg), (i, j), {labg
∗+1
k,b }, 0](dg∗).

The only change in hybrid Hybrid3 from Hybrid2 is in the generation of the

garbled circuit S̃Cg∗ and the security follows directly from the selective se-
curity of the garbling scheme. We show this reduction in Appendix A.

– Hybrid4: In this hybrid, we change how the output value out hardwired in

S̃Cg∗ is generated. Recall that in hybrid Hybrid3 this value is generated
by first computing f0 and f1 as in Figure 4 and then generating out as
Send (crs, d, i, f0, f1). In this hybrid, we just generate fDg∗,i and use the la-
conic OT simulator to generate out. More formally, out is generated as

out← Sim`OT

(
crs, Dg∗ , i, fDg∗,i

)
.

Computational indistinguishability between hybrids Hybrid3 and Hybrid4 fol-
lows directly from the sender privacy of the laconic OT scheme. The reduc-
tion is given in Appendix A.

– Hybrid5: In this hybrid, we change how the value fDg∗,i is generated. Recall
from Figure 4 that fDg∗,i is set as Send(crs, d, j, (γ(Dg∗,i, 0), eγ(Dg∗,i,0)),
(γ(Dg∗,i, 1), eγ(Dg∗,i,1))). We change the distribution of fDg∗,i to Sim`OT(crs, Dg∗ ,
j, eDg∗+1,g∗), where eDg∗+1,g∗ is sampled as in Figure 4.
Computational indistinguishability between hybrids Hybrid4 and Hybrid5 fol-
lows directly from the sender privacy of the laconic OT scheme. The argu-
ment is analogous to the argument of indistinguishability between Hybrid3
and Hybrid4.

– Hybrid6: In this hybrid, we change how eDg∗+1,g∗ is generated. More specifi-
cally, we generate it using the simulator Sim`OTW. In other words, eDg∗+1,g

is generated as

Sim`OTW(crs, Dg∗ , g
∗, Dg∗+1,g∗ , {labg

∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 fol-
lows directly from the sender privacy for writes of the laconic OT scheme.

– Hybrid7: In this hybrid, we reverse the changes made earlier with respect to

sampling of {labg
∗

k,b}. Specifically, we sample all values {labg
∗

k,b} and not just

{labg
∗

k,dg∗,k
}k. Additionally, this is done in SimC rather than SimIn.

Note that this change is syntactic and the hybrids Hybrid6 to Hybrid7 are
identical. Finally, observe that hybrid Hybrid7 is the same as Hybridconf′ .

This completes the proof of the lemma. We additionally note that the above
sequence of hybrids is reversible. This implies the inverse rule A.

25

5.3.2 Implementing Rule B

Lemma 4 (Rule B). Let conf and conf ′ be two valid circuit configurations
satisfying the constraints of rule B, then assuming the security of somewhere
equivocal encryption, garbling scheme for circuits and updatable laconic oblivious

transfer, we have that Hybridconf
c
≈ Hybridconf′ .

Proof. We prove this via a hybrid argument starting with Hybridconf′ and ending
in hybrid Hybridconf . We follow this ordering of the hybrids as this keeps the
proof very close to the proof of Lemma 3. In particular, we start with hybrid
Hybridconf′ and make changes to get a hybrid Hybrid7 which are almost the same
as the hybrids in Lemma 3. One key difference is that we set the value Dg∗+1,g

differently than how it is set in the execution of SimIn in Figure 5. Specifically,
we set Dg∗+1,g∗ as rg∗ rather than Eg∗ ⊕ rg∗ . Note that this also correspond-
ing changes the value of dg∗+1 which is the hash of Dg∗+1. Finally we provide
argument that hybrids Hybrid7 and Hybridconf are identical.

– Hybridconf′ : This is our starting hybrid and is distributed as Hybrid(I′,{(g,mode′g)}g∈[n+1,N])
.

– Hybrid1: In this hybrid, we change the configuration to (I, {(g,mode′g)}g∈[n+1,N]).
This hybrid is distributed as Hybrid(I,{(g,mode′g)}g∈[n+1,N])

.

Computational indistinguishability between hybrid Hybridconf′ and Hybrid1
reduces directly to the security of somewhere equivocal encryption.

– Hybrid2: By conditions of Rule B we have that modeg∗−1 = Gray. Thus, we

have that g∗ − 1 ∈ I ′. Therefore, we note that the input labels {labg
∗

k,b} are

not used in SimC but only in SimIn where it is used to generate S̃Cg∗−1 and

S̃Cg∗ . In this hybrid, we postpone the sampling of {labg
∗

k,b} and the generation

of S̃Cg∗ from SimC to SimIn.
The change in hybrid Hybrid2 from Hybrid1 is just syntactic and the distri-
butions are identical.

– Hybrid3: In this hybrid, we change the sampling of {labg
∗

k,b} and the genera-

tion of S̃Cg∗ . Specifically, we do not sample the entire set of labels {labg
∗

k,b}
but a subset namely {labg

∗

k,dg∗,k
}k and we generate S̃Cg∗ from the simulated

distribution. (Note that since g∗−1 is also in Gray mode. Thus we have that

S̃Cg∗−1 is also simulated and only {labg
∗

k,dg∗,k
}k are needed for its generation.)

More formally, we generate

S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

where out← SC[crs, (0, 0, rg), (i, j), {labg
∗+1
k,b }, 1](dg∗).

The only change in hybrid Hybrid3 from Hybrid2 is in the generation of the

garbled circuit S̃Cg∗ and the security follows directly from the selective se-
curity of the garbling scheme.

– Hybrid4: In this hybrid, we set change how the output value out hardwired

in S̃Cg∗ is generated. Recall that in hybrid Hybrid3 this value is generated

26

by first computing f0 and f1 as in Figure 4 and then generating out as
Send (crs, d, i, f0, f1). In this hybrid, we just generate fDg∗,i and use the la-
conic OT simulator to generate out. More formally, out is generated as

out← Sim`OT

(
crs, Dg∗ , i, fDg∗,i

)
.

Computational indistinguishability between hybrids Hybrid3 and Hybrid4 fol-
lows directly from the sender privacy of the laconic OT scheme.

– Hybrid5: In this hybrid, we change how the how the value fDg∗,i is generated

in hybrid Hybrid4. Recall from Figure 4 that fDg∗,i is set as Send
(
crs, d, j, erg∗ , erg∗

)
.

We change the distribution of fDg∗,i to Sim`OT

(
crs, Dg, j, erg∗

)
, where erg∗

is sampled as in Figure 4.
Computational indistinguishability between hybrids Hybrid3 and Hybrid4 fol-
lows directly from the sender privacy of the laconic OT scheme. The argu-
ment is analogous to the argument of indistinguishability between Hybrid2
and Hybrid3.

– Hybrid6: In this hybrid, we change how erg∗ is generated. More specifically,
we generate it using the simulator Sim`OTW. In other words, erg∗ is generated
as

Sim`OTW(crs, Dg∗ , g
∗, rg∗ , {labg

∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 fol-
lows directly from the sender privacy for writes of the laconic OT scheme.

– Hybrid7: In this hybrid, we reverse the changes made earlier with respect to

sampling of {labg
∗

k,b}. Specifically, we sample all values {labg
∗

k,b} and not just

{labg
∗

k,dg∗,k
}k. Additionally, this is done in SimC rather than SimIn.

Note that this change is syntactic and the hybrids Hybrid6 to Hybrid7 are
identical.

– Hybridconf : This corresponds to the hybrid Hybrid(I,{(g,modeg)}g∈[n+1,N]
.

Observe that the only difference between Hybrid7 and Hybridconf is how
Dg∗+1,g∗ is set. Namely, in Hybrid7 this value is set to be rg∗ while in
Hybridconf this value is set as rg∗ ⊕ NAND(Dg∗,i ⊕ ri, Dg∗,j ⊕ rj ,). We ar-
gue that the distributions Hybrid7 and Hybridconf are identical. Two cases
arise:
• g∗ ≤ N −m: In this case, note that since rg∗ is not anywhere else we

have that the distribution rg∗ and rg∗⊕NAND(Dg∗,i⊕ri, Dg∗,j⊕rj) are
both uniform and identical.
• g∗ > N −m: In this case, we have that rg∗ = yg∗−N+m ⊕ r′g∗ which is

again identical to the distribution of rg∗ in Hybridconf .

This completes the proof of the lemma.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikun-
tanathan. From selective to adaptive security in functional encryption.

27

In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 657–677, Santa Barbara, CA, USA, August 16–
20, 2015. Springer, Heidelberg, Germany.

[AF90] Mart́ın Abadi and Joan Feigenbaum. Secure circuit evaluation. Journal of
Cryptology, 2(1):1–12, 1990.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in
NC0. In 45th Annual Symposium on Foundations of Computer Science,
pages 166–175, Rome, Italy, October 17–19, 2004. IEEE Computer Society
Press.

[AIK05] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally
private randomizing polynomials and their applications. In Proceedings of
the 20th Annual IEEE Conference on Computational Complexity, CCC ’05,
pages 260–274, Washington, DC, USA, 2005. IEEE Computer Society.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to
soundness: Efficient verification via secure computation. In Samson Abram-
sky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and
Paul G. Spirakis, editors, ICALP 2010: 37th International Colloquium on
Automata, Languages and Programming, Part I, volume 6198 of Lecture
Notes in Computer Science, pages 152–163, Bordeaux, France, July 6–10,
2010. Springer, Heidelberg, Germany.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. En-
coding functions with constant online rate or how to compress garbled
circuits keys. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in
Computer Science, pages 166–184, Santa Barbara, CA, USA, August 18–
22, 2013. Springer, Heidelberg, Germany.

[App14] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom func-
tions. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology
– ASIACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer
Science, pages 162–172, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014.
Springer, Heidelberg, Germany.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for
turing machines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A:
13th Theory of Cryptography Conference, Part I, volume 9562 of Lecture
Notes in Computer Science, pages 125–153, Tel Aviv, Israel, January 10–13,
2016. Springer, Heidelberg, Germany.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation.
SIAM J. Comput., 18(4):766–776, 1989.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Niko-
laenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayaga-
murthy. Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, ed-
itors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lec-
ture Notes in Computer Science, pages 533–556, Copenhagen, Denmark,
May 11–15, 2014. Springer, Heidelberg, Germany.

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure
garbling with applications to one-time programs and secure outsourcing.
In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASI-
ACRYPT 2012, volume 7658 of Lecture Notes in Computer Science, pages

28

134–153, Beijing, China, December 2–6, 2012. Springer, Heidelberg, Ger-
many.

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of gar-
bled circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors,
ACM CCS 12: 19th Conference on Computer and Communications Secu-
rity, pages 784–796, Raleigh, NC, USA, October 16–18, 2012. ACM Press.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan.
Anonymous ibe, leakage resilience and circular security from new assump-
tions. To appear in Eurocrypt, 2018. https://eprint.iacr.org/2017/967.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In 22nd Annual ACM Symposium
on Theory of Computing, pages 503–513, Baltimore, MD, USA, May 14–16,
1990. ACM Press.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao,
and Antigoni Polychroniadou. Laconic receiver oblivious transfer and ap-
plications. To appear in Crypto, 2017.

[DG17] Nico Döttling and Sanjam Garg. Identity based encryption from diffie-
hellman assumptions. To appear in Crypto, 2017.

[DGHM18] Nico Dttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny.
New constructions of identity-based and key-dependent message secure en-
cryption schemes. To appear in PKC, 2018. https://eprint.iacr.org/

2017/978.
[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi.

Privacy-free garbled circuits with applications to efficient zero-knowledge.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer
Science, pages 191–219, Sofia, Bulgaria, April 26–30, 2015. Springer, Hei-
delberg, Germany.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive veri-
fiable computing: Outsourcing computation to untrusted workers. In Tal
Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 465–482, Santa Barbara, CA,
USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova,
and Daniel Wichs. Garbled RAM revisited. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014,
volume 8441 of Lecture Notes in Computer Science, pages 405–422, Copen-
hagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. Reusable garbled circuits and succinct
functional encryption. In Dan Boneh, Tim Roughgarden, and Joan Feigen-
baum, editors, 45th Annual ACM Symposium on Theory of Computing,
pages 555–564, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-
time programs. In David Wagner, editor, Advances in Cryptology –
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages
39–56, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg,
Germany.

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM.
In Venkatesan Guruswami, editor, 56th Annual Symposium on Foundations

29

of Computer Science, pages 210–229, Berkeley, CA, USA, October 17–20,
2015. IEEE Computer Society Press.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled
RAM from one-way functions. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th Annual ACM Symposium on Theory of Computing, pages 449–
458, Portland, OR, USA, June 14–17, 2015. ACM Press.

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry.
Breaking the sub-exponential barrier in obfustopia. In Advances in Cryp-
tology - EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April
30 - May 4, 2017, Proceedings, Part III, pages 156–181, 2017.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key func-
tional encryption with polynomial loss. In Martin Hirt and Adam D. Smith,
editors, TCC 2016-B: 14th Theory of Cryptography Conference, Part II, vol-
ume 9986 of Lecture Notes in Computer Science, pages 419–442, Beijing,
China, October 31 – November 3, 2016. Springer, Heidelberg, Germany.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional
encryption with bounded collusions via multi-party computation. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
162–179, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidel-
berg, Germany.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro,
and Daniel Wichs. Adaptively secure garbled circuits from one-way func-
tions. In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryp-
tology – CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Com-
puter Science, pages 149–178, Santa Barbara, CA, USA, August 14–18,
2016. Springer, Heidelberg, Germany.

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski,
Krzysztof Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommit-
ting. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptol-
ogy – CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer
Science, pages 133–163, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-
knowledge using garbled circuits: how to prove non-algebraic statements
efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, ed-
itors, ACM CCS 13: 20th Conference on Computer and Communications
Security, pages 955–966, Berlin, Germany, November 4–8, 2013. ACM Press.

[JSW17] Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs. Adaptively in-
distinguishable garbled circuits. In TCC 2017: 15th Theory of Cryptogra-
phy Conference, Part II, Lecture Notes in Computer Science, pages 40–71.
Springer, Heidelberg, Germany, March 2017.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled
circuits. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th
Theory of Cryptography Conference, Part I, volume 9985 of Lecture Notes
in Computer Science, pages 433–458, Beijing, China, October 31 – Novem-
ber 3, 2016. Springer, Heidelberg, Germany.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance
in functional encryption. In Martin Hirt and Adam D. Smith, editors,

30

TCC 2016-B: 14th Theory of Cryptography Conference, Part II, volume
9986 of Lecture Notes in Computer Science, pages 443–468, Beijing, China,
October 31 – November 3, 2016. Springer, Heidelberg, Germany.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EU-
ROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages
719–734, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, April 2009.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation
from DDH-like assumptions on constant-degree graded encodings. In Irit
Dinur, editor, 57th Annual Symposium on Foundations of Computer Sci-
ence, pages 11–20, New Brunswick, NJ, USA, October 9–11, 2016. IEEE
Computer Society Press.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay -
secure two-party computation system. In Proceedings of the 13th USENIX
Security Symposium, August 9-13, 2004, San Diego, CA, USA, pages 287–
302, 2004.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity the-
oretic proofs: The non-committing encryption case. In Moti Yung, editor,
Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 111–126, Santa Barbara, CA, USA, August 18–22,
2002. Springer, Heidelberg, Germany.

[PTC76] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds
for a game on graphs. Mathematical systems theory, 10(1):239–251, Dec
1976.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional en-
cryption with public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and
Vitaly Shmatikov, editors, ACM CCS 10: 17th Conference on Computer
and Communications Security, pages 463–472, Chicago, Illinois, USA, Oc-
tober 4–8, 2010. ACM Press.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science,
pages 160–164, Chicago, Illinois, November 3–5, 1982. IEEE Computer So-
ciety Press.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th Annual Symposium on Foundations of Computer Sci-
ence, pages 162–167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE
Computer Society Press.

A Completing Proofs of Lemma 3

Claim. Assuming the security of somewhere equivocal encryption scheme, we

have Hybridconf
c
≈ Hybrid1.

Proof. We give a reduction to the security of somewhere equivocal encryption.

Generating the Garbled Circuit. To generate the garbled circuit C̃:
1. Execute the steps 1,2,3 as described in Figure 5.

31

2. Interact with the external challenger by giving {S̃Cg}g 6∈I as the challenge
messages, I as the challenge subset and g∗ as the challenge index. Obtain
c as the challenge ciphertext.

3. Output (crs, c) as the garbled circuit C̃ and (r, st1, {labgk,b}k,b,g) as the
state st.

Generating the Garbled Input. To generate the garbled input x̃:
1. Execute the steps 1,2 as described in Figure 5.

2. Interact with the external challenger by providing {S̃Cg}g∈I as the re-
maining messages and obtain key′.

3. Execute the rest of the steps as described in Figure 5 and output x̃ using
the key key′ obtained from the external challenger.

Notice that if the reduction is playing in the experiment Expsimenc
B,Π (1λ, 0) then

the distribution of inputs to the adversary is identical to Hybridconf . Else, it is
distributed identically to Hybrid1. Thus, the reduction breaks the security of
somewhere equivocal encryption.

Claim. Assuming the selective security of garbling scheme for circuits, Hybrid2
c
≈

Hybrid3

Proof. We give a reduction to the security of garbling scheme for circuits.

Generating the Garbled Circuit. For each g ∈ [n+ 1, N + 1] \ {g∗}, k ∈ [λ]

and b ∈ {0, 1} sample labgk,b ← {0, 1}λ. Generate the garbled circuit C̃ as in
Hybrid2. Note that there is a “hole” in position g∗ in the outer encryption

layer and hence {labg
∗

k,b} is not needed in the generation of C̃. Also, recall
that by assumption the gate g∗ − 1 is Gray or g∗ = n+ 1.

Generating the Garbled Input: To generate the garbled input x̃ do:
1. Interact with the garbled circuits challenger and give SC[crs, (ri, rj , rg), (i, j),

{labg
∗+1
k,b }, 0] (where the description of g∗ is (i, j)) as the challenge circuit

and dg∗ as the challenge input. Obtain S̃Cg∗ and {labg
∗

k,dg∗,k
}k∈[λ].

2. For each g ∈ I ′ \ {g∗}, generate S̃Cg as described in Figure 5. Note that

for generating S̃Cg∗−1 it is sufficient to only know {labg
∗

k,dg∗,k
}k∈[λ].

3. Execute the rest of the steps as described in Figure 5 and output x̃.

Notice that if the garbling S̃Cg∗ is generated using the honest procedure then
the inputs to the adversary are distributed identically to Hybrid2. Else, they
are distributed identically to Hybrid3. Thus, the reduction breaks the selective
security of garbling scheme for circuits which is a contradiction.

Claim. Assuming the sender privacy of updatable laconic oblivious transfer,

Hybrid3
c
≈ Hybrid4

Proof. We show that Hybrid3
c
≈ Hybrid4 by giving a reduction to the sender

privacy of updatable laconic oblivious transfer.

32

Generating the Garbled Circuit. Obtain crs from the external challenger
and generate the garbled circuit C̃ as in Hybrid3.

Generating the Garbled Input: 1. To generate S̃Cg∗ with the description
of g∗ equal to (i, j):
(a) Compute e0, e1, f0, f1 as described in Figure 4.
(b) Interact with the laconic OT challenger by giving Dg∗ as the chal-

lenge database, i as the challenge locations and give f0, f1 as the
challenge messages. Obtain the challenge ciphertext out.

(c) Compute S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

2. Generate S̃Cg for all g ∈ I ′ \ {g∗} as in Hybrid3.
3. Execute the rest of the steps as described in Figure 5 to generate the

garbled input x̃.

Note that if out is generated using the honest procedure then the distribution
of inputs to the adversary is identical to Hybrid3. Else, it is identical to Hybrid4.
Thus, the above reduction breaks the sender privacy of updatable laconic obliv-
ious transfer.

Claim. Assuming the sender privacy for writes of updatable laconic oblivious

transfer, Hybrid5
c
≈ Hybrid6.

Proof. We give a reduction to the sender privacy for writes of updatable laconic
oblivious transfer.

Generating the Garbled Circuit. Obtain crs from the external challenger
and generate the garbled circuit C̃ as in Hybrid5.

Generating the Garbled Input: 1. To generate S̃Cg∗ with the description
of g∗ equal to (i, j):
(a) Interact with the laconic OT challenger by giving Dg∗ as the chal-

lenge database, g∗ as the challenge location,Dg∗+1,g∗ as the challenge

bit and {labg
∗+1
k,b } as the sequence of challenge messages. It obtains

eDg∗+1,g∗ as the challenge ciphertext.
(b) Generate fDg∗+1,g∗ and out as in Hybrid5.

(c) Compute S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

2. Generate S̃Cg for all g ∈ I ′ \ {g∗} as in Hybrid5.
3. Execute the rest of the steps as described in Figure 5 to generate the

garbled input x̃.

Note that if eDg∗+1,g∗ is generated using the honest procedure then the dis-
tribution of inputs to A is identical to Hybrid5. Else, it is identical to Hybrid6.
Thus, the reduction breaks the sender privacy for writes of updatable laconic
oblivious transfer.

