
Homomorphic Lower Digits Removal and
Improved FHE Bootstrapping

Hao Chen1 and Kyoohyung Han2?

1 Microsoft Research, USA, haoche@microsoft.com
2 Seoul National University, Korea, satanigh@snu.ac.kr

Abstract. Bootstrapping is a crucial operation in Gentry’s breakthrough
work on fully homomorphic encryption (FHE), where a homomorphic
encryption scheme evaluates its own decryption algorithm. There has
been a couple of implementations of bootstrapping, among which HE-
lib arguably marks the state-of-the-art in terms of throughput, cipher-
text/message size ratio and support for large plaintext moduli.
In this work, we applied a family of “lowest digit removal” polynomials
to design an improved homomorphic digit extraction algorithm which is
a crucial part in bootstrapping for both FV and BGV schemes. When
the secret key has 1-norm h = ||s||1 and the plaintext modulus is t = pr,
we achieved bootstrapping depth log h+ log(logp(ht)) in FV scheme. In
case of the BGV scheme, we brought down the depth from log h+2 log t
to log h+ log t.
We implemented bootstrapping for FV in the SEAL library. We also
introduced another “slim mode”, which restrict the plaintexts to batched
vectors in Zpr . The slim mode has similar throughput as the full mode,
while each individual run is much faster and uses much smaller memory.
For example, bootstrapping takes 6.75 seconds for vectors over GF (127)
with 64 slots and 1381 seconds for vectors over GF (257128) with 128
slots. We also implemented our improved digit extraction procedure for
the BGV scheme in HElib.

Keywords: Homomorphic Encryption, Bootstrapping, Implementation

1 Introduction

Fully Homomorphic Encryption (FHE) allows an untrusted party to evaluate
arbitrary functions on encrypted data, without knowing the secret key. Gentry
introduced the first FHE scheme in the breakthrough work [?]. Since then, there
has been a large collection of work (e.g., [?, ?, ?, ?, ?, ?, ?, ?, ?, ?]), introducing
more efficient schemes.

These schemes all follow Gentry’s original blueprint, where each ciphertext is
associated with a certain amount of “noise”, and the noise grows as homomorphic

? Supported by Institute for Information & communications Technology Promo-
tion (IITP) grant funded by the Korea government (MSIT) (No.B0717-16-0098,
Development of homomorphic encryption for DNA analysis and biometry authenti-
cation).

evaluations are performed. When the noise is too large, decryption will fail to
give the correct result. Therefore, if no additional measure is taken, one set
of parameters can only evaluate circuits of a bounded depth. This approach is
called leveled homomorphic encryption (LHE) and is used in a many works.

However, if we wish to homomorphically evaluate functions of arbitrary com-
plexity using one single set of parameters, then we need a procedure to lower
the noise in a ciphertext. This can be done via Gentry’s brilliant bootstrapping
technique. Roughly speaking, bootstrapping a ciphertext in some given scheme
means running its own decryption algorithm homomorphically, using an encryp-
tion of the secret key. The result is a new ciphertext which encrypts the same
message while having lower noise.

Bootstrapping is a very expensive operation. The decryption circuit of a
scheme can be complex, and may not be conveniently supported by the scheme
itself. Hence, in order to perform bootstrapping, one either needs to make sig-
nificant optimizations to simplify the decryption circuit, or design some scheme
which can handle its decryption circuit more comfortably. Among the best works
on bootstrapping implementations, the work of Halevi and Shoup [?], which opti-
mized and implemented bootstrapping over the scheme of Brakerski, Gentry and
Vaikuntanathan (BGV), is arguably still the state-of-the-art in terms of through-
put, ciphertext/message size ratio and flexible plaintext moduli. For example,
they were able to bootstrap a vector of size 1024 over GF (216) within 5 minutes.
However, when the plaintext modulus reaches 28, bootstrapping still takes a
few hours to perform. The reason is mainly due to a digit extraction procedure,
whose cost grows significantly with the plaintext modulus. The Fan-Vercauteran
(FV) scheme, a scale-invariant variant of BGV, has also been implement in [?,?]
and used in applications. We are not aware of any previous implementation of
bootstrapping for FV.

1.1 Contributions

In this paper, we aim at improving the efficiency of bootstrapping under large
prime power plaintext moduli.

• We used a family of low degree lowest-digit-removal polynomials to design an
improved algorithm to remove v lowest base-p digits from integers modulo
pe. Our new algorithm has depth v log p+ log e, compared to (e− 1) log p in
previous work.

• We then applied our algorithm to improve the digit extraction step in the
bootstrapping procedure for FV and BGV schemes. Let h = ||s||1 denote
the 1-norm of the secret key, and assume the plaintext space is a prime
power t = pr. Then for FV scheme, we achieved bootstrapping depth log h+
log logp(ht). In case of BGV, we have reduced the bootstrapping degree from
log h+ 2 log(t) to log h+ log t.

• We provided a first implementation of the bootstrapping functionality for
FV scheme in the SEAL library [?]. We also implemented our revised digit
extraction algorithm in HElib which can directly be applied to improve HElib
bootstrapping for large plaintext modulus pr.

2

• We also introduced a light-weight mode of bootstrapping which we call the
“slim mode” by restricting the plaintexts to a subspace. In this mode, mes-
sages are vectors where each slot only holds a value in Zpr instead of a
degree-d extension ring. The slim mode might be more applicable in some
use-cases of FHE, including machine learning over encrypted data. We im-
plemented the slim mode of bootstrapping in SEAL and showed that in this
mode, bootstrapping is about d times faster, hence we can achieve a similar
throughput as in the full mode.

1.2 Application: Machine Learning Over Encrypted Data

Machine learning over encrypted data is one of the signature use-cases of FHE
and an active research area. Research works in this area can be divided into two
categories: evaluating a pre-trained machine learning model over private testing
data, or training a new model on private training data. Often times, the model
evaluation requires a lower-depth circuit, and thus can be achieved using LHE.
On the other hand, training a machine learning model requires a much deeper
circuit, and bootstrapping becomes necessary. This may explain that there are
few works in the model training direction.

In the model evaluation case (e.g. [?,?,?,?]), one encodes the data as either
polynomials in Rt, or as elements of Zt when batching is used. One distinguish-
ing feature of these methods is that the scheme maintains the full precision of
plaintexts as evaluations are performed, in contrast to computations over plain-
text data, where floating point numbers are used and only a limited precision is
maintained. This implies that the plaintext modulus t needs to be taken large
enough to “hold the result”.

In the training case, because of the large depth and size of the circuit, the
above approach is simply infeasible: t needs to be so large that the homomorphic
evaluations become too inefficient, as pointed out in [?]. Therefore, some analog
of plaintext truncation needs to be performed alongside the evaluation. However,
in order to perform the truncation function homomorphically, one has to express
the function as a polynomial. Fortunately, our digit removal algorithm can also
be used as a truncation method over Zpr . Therefore, we think that improving
bootstrapping for prime power plaintext modulus has practical importance.

There is one other work [?] which does not fall into either categories. It per-
forms homomorphic evaluation over point numbers and outputs an approximate
result. It modifies the BGV and FV schemes: instead of encoding noise and mes-
sage in different parts of a ciphertexts, one puts noise in lower bits of messages,
and uses modulus switching creatively as a plaintext management technique.
As a result, they could evaluate deeper circuits with smaller HE parameters. It
is then an interesting question whether there exists an efficient bootstrapping
algorithm for this modified scheme.

3

1.3 Related works

After bootstrapping was introduced by Gentry at 2009, many methods are pro-
posed to improve its efficiency. Existing bootstrapping implementations can be
classified into three branches. The first branch [?, ?] builds on top of some-
what homomorphic encryption schemes based on the RLWE problem. The second
branch aims at minimizing the time to bootstrap one single bit of message after
each boolean gate evaluation. Works in this direction include [?, ?, ?, ?]. They
were able to obtain very fast results: less than 0.1 seconds for a single bootstrap-
ping. The last branch considers bootstrapping over integer-based homomorphic
encryption schemes under the sparse subset sum problem assumption. Some
works [?, ?, ?, ?] used a squashed decryption circuit and evaluate bit-wise (or
digit-wise) addition in encrypted state instead of doing a digit extraction. In [?],
they show that using digit extraction for bootstrapping results in lower com-
putational complexity while consuming a similar amount of depth as previous
approaches.

Our work falls into the first branch. We aim at improving the bootstrapping
procedure for the two schemes BGV and FV, with the goal of improving the
throughput and after level for bootstrapping in case of large plaintext modulus.
Therefore, our main point of comparison in this paper will be the work of Halevi
and Shoup [?]. We note that a digit extraction procedure is used for all branches
except the second one. Therefore, improving the digit extraction procedure is
one of the main tasks for an efficient bootstrapping algorithm.

1.4 Roadmap

In section ??, we introduce notations and necessary background on the BGV
and FV schemes. In section ??, after reviewing the digit extraction procedure
of [?], we define the lowest digit removal polynomials, and use them to give an
improved digit removal algorithm. In section ??, we describe our method for
bootstrapping in the FV scheme, and how our algorithm leads to an improved
bootstrapping for BGV scheme when the plaintext modulus is pr with r > 1. In
section ??, we present and discuss our performance results. Finally, in section ??
we conclude with future directions. Proofs and more details regarding the SEAL
implementation of bootstrapping are included in the Appendix.

1.5 Acknowledgements

We wish to thank Kim Laine, Amir Jalali and Zhicong Huang for implementing
significant performance optimizations to SEAL. We thank Shai Halevi for helpful
discussions on bootstrapping in HElib.

2 Background

2.1 Basics of BGV and FV schemes

First, we introduce some notations. Both BGV and FV schemes are initialized
with integer parameters m, t and q. Here m is the cyclotomic field index, t is

4

the plaintext modulus, and q is the coefficient modulus. Note that in BGV, it is
required that (t, q) = 1.

Let φm(x) denote the m-th cyclotomic polynomial and let n denote its degree.
We use the following common notations R = Z[x]/(φm(x)), Rt = R/tR, and
Rq = R/qR. In both schemes, the message is a polynomial m(x) in Rt, and the
secret key s is an element of Rq. In practice, s is usually taken to be ternary
(i.e., each coefficient is either -1, 0 or 1) and often sparse (i.e., the number of
nonzero coefficients of s are bounded by some h � n). A ciphertext is a pair
(c0, c1) of elements in Rq.

Decryption formula. The decryption of both schemes starts with a dot-
product with the extended secret key (1, s). In BGV, we have

c0 + c1s = m(x) + tv + αq,

and decryption returns m(x) = ((c0 + c1s) mod q) mod t. In FV, the equation
is

c0 + c1s = ∆m(x) + v + αq

and decryption formula is m(x) = b (c0+c1s) mod q
∆ e.

Plaintext space. The native plaintext space in both schemes is Rt, which
consists of polynomials with degree less than n and integer coefficients between
0 and t − 1. Additions and multiplications of these polynomials are performed
modulo both φm(x) and t.

A widely used plaintext-batching technique [?] turns the plaintext space into
a vector over certain finite rings. Since batching is used extensively in our boot-
strapping algorithm, we recall the details here. Suppose t = pr is a prime power,
and assume p and m are co-prime. Then φm(x) mod pr factors into a product
of k irreducible polynomials of degree d. Moreover, d is equal to the order of p
in Z∗m, and k is equal to the size of the quotient group Z∗m/〈p〉. For convenience,
we fix a set S = {s1, . . . , sk} of integer representatives of the quotient group. Let
f(x) be one of the irreducible factors of φm(x) mod pr, and consider the finite
extension ring

E = Zpr [x]/(f(x)).

Then all primitive m-th roots of unity exist in E. Fix ζ ∈ E to be one such root.
Then we have a ring isomorphism

Rt → Ek

m(x) 7→ (m(ζs1),m(ζs2), . . . ,m(ζsk))

Using this isomorphism, we can regard the plaintexts as vectors over E, and
additions/multiplications between the plaintexts are executed coefficient-wise
on the components of the vectors, which are often called slots.

In the reset of the paper, we will move between the above two ways of viewing
the plaintexts, and we will distinguish them by writing them as polynomials (no

5

batching) and vectors (batching). For example, Enc(m(x)) means an encryption
of m(x) ∈ Rt, whereas Enc((m1, . . . ,mk)) means a batch encryption of a vector
(m1, . . . ,mk) ∈ Ek.

Modulus switching. Modulus switching is a technique which scales a cipher-
text (c0, c1) with modulus q to another one (c′0, c

′
1) with modulus q′ that decrypts

to the same message. In BGV, modulus switching is a necessary technique to
reduce the noise growth. Modulus switching is not strictly necessary for FV, at
least if used in the LHE mode. However, it will be of crucial use in our boot-
strapping procedure. More precisely, modulus switching in BGV requires q and
q′ to be both co-prime to t. For simplicity, suppose q ≡ q′ ≡ 1(mod t). Then

c′i equals the closest integer polynomial to q′

q c such that c′i ≡ ci mod t. For FV,

q and q′ do not need to be co-prime to t, and modulus switching simply does
scaling and rounding to integers, i.e., c′i = bq′/qcie.

We stress that modulus switching slightly increase the noise-to-modulus ratio
due to rounding errors in the process. Therefore, one can not switch to arbitrarily
small modulus q′. On the other hand, in bootstrapping we often like to switch
to a small q′. The following lemma puts a lower bound on the size of q′ for FV
(the case for BGV is similar).

Lemma 1 Suppose c0+c1s = ∆m+v+aq is a ciphertext in FV with |v| < ∆/4.
if q′ > 4t(1 + ||s||1), and (c′0, c

′
1) is the ciphertext after switching the modulus to

q′, then (c′0, c
′
1) also decrypts to m.

Proof. See appendix.

We remark that although the requirement in BGV that q and t are co-prime
seems innocent, it affects the depth of the decryption circuit when t is large.
Therefore, it results in an advantage for doing bootstrapping in FV over BGV.
We will elaborate on this point later.

Multiply and divide by p in plaintext space. In bootstrapping, we will
use following functionalities: dividing by p, which takes an encryption of pm
mod pe and returns an encryption of m mod pe−1, and multiplying by p which
is the inverse of division. In BGV scheme, multiply by p can be realized via a fast
scalar multiplication (c0, c1)→ ((pc0) mod q, (pc1) mod q). In the FV scheme,
these operations are essentially free, because if c0 +c1s = b q

pe−1 cm+v+qα, then

the same ciphertext satisfies c0 + c1s = b qpe cpm+ v + v′ + qα for some small v′.
In the rest of the paper, we will omit these operations, assuming that they are
free to perform.

3 Digit Removal Algorithm

The previous method for digit extraction used certain lifting polynomials with
good properties. We used a family of “lowest digit removal” polynomials which

6

have a stronger lifting property. We then combined these lowest digit removal
polynomials with the lifting polynomials to construct a new digit removal algo-
rithm.

For convenience of exposition, we use some slightly modified notations from
[?]. Fix a prime p. Let z be an integer with (balanced) base-p expansion z =∑e−1
i=0 zip

i. For integers i, j ≥ 0, we use zi,j to denote any integer with first base-p
digit equal to zi and the next j digits zero. In other words, we have zi,j ≡ zi
mod pj+1.

3.1 Reviewing the digit extraction method of Halevi and Shoup

The bootstrapping procedure in [?] consists of five main steps: modulus switch-
ing, dot product (with an encrypted secret key), linear transform, digit extrac-
tion, and another “inverse” linear transform. Among these, the digit extraction
step dominates the cost in terms of both depth and work. Hence we will focus on
optimizing the digit extraction. Essentially, we need the following functionality.

DigitRemove(p, e, v) : fix prime p, for two integers v < e and an input u
mod pe, let u =

∑
uip

i with |ui| ≤ p/2 when p is odd (and ui = 0, 1 when
p = 2), returns

u〈v, . . . , e− 1〉 :=

e−1∑
i=v

uip
i.

We say this functionality “removes ” the v lowest significant digits in base p
from an e-digits integer. To realize the above functionality over homomorphically
encrypted data, the authors in [?] constructed some special polynomials Fe(·)
with the following lifting property.

Lemma 2 (Corollary 5.5 in [?]) For every prime p and e ≥ 1 there exist a
degree p-polynomial Fe such that for every integer z0, z1 with z0 ∈ [p] and every
1 ≤ e′ ≤ e we have Fe(z0 + pe

′
z1) = z0 (mod pe

′+1).

For example, if p = 2, we can take Fe(x) = x2. One then uses these lifting
polynomials Fe to extract each digit ui from u in a successive fashion. The digit
extraction procedure is defined in Figure 1 in [?] and can be visualized in the
following diagram.

In the diagram, the top-left digit is the input. This algorithm starts with
the top row. From left to right, it successively applies the lifting polynomial to
obtain all the blue digits. Then the green digits on the next row can be obtained
from subtracting all blue digits on the same diagonal from the input and then
dividing by p. When this procedure concludes, the (i, j)-th digit of the diagram
will be ui,j . In particular, digits on the final diagonal will be ui,e−1−i. Then we
can compute

u〈v, · · · , e− 1〉 = u−
v−1∑
i=0

ui,e−1−i · pi.

7

u = u0,0 u0,1 · · · u0,r−1 · · · u0,e−1

u1,0 u1,1 · · · u1,r−2 · · · u1,e−2

...
... . .

.

ue−2,0 ue−2,1

ue−1,0

3.2 Lowest digit removal polynomials

We first stress that in the above method, it is not enough to obtain the ui
mod p. Rather, one requires ui,e−1−i. The reason is one has to clear the higher
digits to create numbers with base -p expansion (ui, 0, 0, . . . , 0︸ ︷︷ ︸

e−1−i

), otherwise it will

mess up the u′i for i′ > i. Previously, to obtain ui,j , one needs to apply the lifting
polynomial j times. Fortunately, there is a polynomial of lower degree with the
same functionality, as shown in the following lemma.

Lemma 3 Let p be a prime and e ≥ 1. Then there exists a polynomial f of
degree at most (e− 1)(p− 1) + 1 such that for every integer 0 ≤ x < pe, we have

f(x) ≡ x− (x mod p) mod pe,

where |x mod p| ≤ (p− 1)/2 when p is odd.

Proof. We complete the proof sketch in [?] by adding in the necessary details.
To begin, we introduce a function

FA(x) :=

∞∑
j=0

(−1)j
(
A+ j − 1

j

)(
x

A+ j

)
.

This function FA(x) converges on every integer, and for M ∈ Z,

FA(M) =

{
1 if M > A

0 otherwise.

Define f̂(x) as

f̂(x) = p

∞∑
j=1

Fj·p(x) =

∞∑
m=p

a(m)

(
x

m

)
. (1)

We can verify that the function f̂(x) satisfies the properties in the lemma (for
the least residue system), but its degree is infinite. So we let

f(x) =

(e−1)(p−1)+1∑
m=p

a(m)

(
x

m

)
.

Now we will prove that the polynomial f(x) has p-integral coefficients and has

the same value with f̂(x) for x ∈ Zpe .

8

Claim. f(x) has p-integral coefficients and a(m)
(
x
m

)
is multiple of pe for all x ∈ Z

when m > (e− 1)(p− 1) + 1.

Proof. If we rewrite the equation ??,

f̂(x) = p

∞∑
j=1

Fj·p(x) = p

∞∑
j=1

(∞∑
i=0

(−1)i
(
jp+ i− 1

i

)(
x

jp+ i

))
.

By replacing the jp+ i to m, we arrive at the following equation:

a(m) = p

∞∑
k=1

(−1)m−kp
(
m− 1

m− kp

)
.

In the equation, we can notice that the term (−1)m−kp
(
m−1
m−kp

)
is the coefficient

of Xm−pk in the Taylor expansion of (1+X)−kp. Therefore, a(m) is actually the
coefficient of Xm in the Taylor expansion of

∑∞
k=1 pX

kp(1 +X)−kp.

∞∑
k=1

pXkp(1 +X)−kp = p

∞∑
k=1

(
X

X + 1
)kp = p

(1 +X)p

(1 +X)p −Xp

We can get a m-th coefficient of Taylor expansion from following equation:

p
(1 +X)p

(1 +X)p −Xp
= p

(1 +X)p

1 +B(X)
= p(1 +X)p(1−B(X) +B(X)2 − · · ·).

Because B(X) is multiple of pX, the coefficient of Xm can be obtained from a
finite number of powers of B(X). We can also find out the degree of B(X) is
p− 1, so

Deg(p(1 +X)p(1−B(X) + · · ·+ (−1)(e−2)B(X)(e−2))) = (e− 1)(p− 1) + 1.

Hence these terms do not contribute to Xm. This means that a(m) is m-th
coefficient of

p(1 +X)pB(X)e−1
∞∑
i=0

(−1)iB(X)i

which is multiple of pe (since B(X) is multiple of p). �

By the claim above, the p-adic valuation of a(m) is larger than m
p−1 and it

is trivial that the p-adic valuation of m! is less than m
p−1 . Therefore, we proved

that the coefficients of f(x) are p-integral. Indeed, we proved that a(m)
(
x
m

)
is

multiple of pn for any integer when m > (e − 1)(p − 1) + 1. This means that

f̂(x) = f(x) mod pe for all x ∈ Zpe .
As a result, the degree (e−1)(p−1)+1 polynomial f(x) satisfies the conditions

in lemma for the least residue system. For balanced residue system, we can just
replace f(x) by f(x+ (p− 1)/2). �

9

Note that the above polynomial f(x) removes the lowest base-p digit in an
integer. It is also desirable sometimes to “retain” the lowest digit, while setting
all the other digits to zero. This can be easily done via g(x) = x− f(x). In the
rest of the paper, we will denote such polynomial that retains the lowest digit
in the balanced base-p representation by Ge,p(x) (or Ge(x) if p is clear from
context). In other words, if x ∈ Zpe and x ≡ x0 mod p with |x0| ≤ p/2, then
Ge(x) = x0 mod pe.

Example 4 When e = 2, we have f(x) = −x(x−1) · · · (x−p+ 1) and G2(x) =
x− f(x+ (p− 1)/2).

We recall that in the previous method, it takes degree pe−i−1 and (e− i− 1)
evaluations of polynomials of degree p to obtain ui,e−i. With our lowest digit
removing polynomial, it only takes degree (e − i − 1)(p − 1) + 1. As a result,
by combining the lifting polynomials and lowest digit removing polynomials, we
can make the digit extraction algorithm faster with lower depth.

The following diagram illustrates how our new digit removal algorithm works.
First, each blue digit is obtained by evaluating a lifting polynomial to the entry
on its left. Then, the red digit on each row is obtained by evaluating the remain-
ing lowest digit polynomial to the left-most digit on its row. Green digits are
obtained by subtracting all the blue digits on the same diagonal from the input,
and dividing by p. Finally, in order to remove the v lowest digits, we subtract
all the red digits from the input.

u0,0 u0,1 · · · u0,v−2 u0,v−1 u0,e−1

u1,0 u1,1 · · · u1,v−2 u1,e−2

...
uv−2,0 uv−2,1 uv−2,e−r+1

uv−1,0 uv−1,e−v

We remark that the major difference of this procedure is that we only need
to populate the top left triangle of side length v, plus the right most v-by-1
diagonal, where as the previous method needs to populate the entire triangle of
side length e.

Moreover, the red digits in our method has lower depth: in the previous
method, the i-th red digit is obtained by evaluating lift polynomial (e − i − 1)
times, hence its degree is pe−i−1 on top of the i-th green digit. However, in our
method, its degree is only (p − 1)(e − i − 1) + 1 on top of the i-th green digit,
which has degree at most pi, the total degree of the algorithm is bounded by the
maximum degree over all the red digits, that is

max
0≤i<r

pi((e− 1− i)(p− 1) + 1).

Since each individual term is bounded by epv, the total degree of the procedure
is at most epv. This is lower than pe−1 in the previous method when v ≤ e− 2
and p > e.

10

3.3 Improved algorithm for removing digits

We discuss one further optimization to remove v lowest digits in base p from an
e-digit integer. If ` is an integer such that p` > (p− 1)(e− 1) + 1, then instead
of using lifting polynomials to obtain the `-th digit, we can just use the result
of evaluating the Gi polynomial (or, the red digit) to obtain the green digit in
the next row. This saves some work and also lowers the depth of the overall
procedure. This optimization is incorporated into Algorithm ??.

The depth and computation cost of Algorithm 1 is summarized in Theo-
rem ??. The depth is simply the maximum depth of all the removed digits.
To determine the computational cost to evaluate Algorithm 1 homomorphi-
cally, we need to specify the unit of measurement. Since scalar multiplication

Data: x ∈ Zpe

Result: x− [x]pv mod pe

// Fi(x) : lifting polynomial with Fi(x+O(pi)) = x+O(pi+1)

// Gi(x) : lowest digit retain polynomial with Gi(x) = [x]p mod pi

Find largest ` such that p` < (p− 1)(e− 1) + 1;
Initialize res = x;
for i ∈ [0, v) do

// evaluate lowest digit retain polynomial

Ri = Ge−i(x
′) ; // Ri = xi mod pe−i

Ri = Ri · pi ; // Ri = xip
i mod pe

if i < v − 1 then
// evaluate lifting polynomial

Li,0 = F1(x
′)

end
for j ∈ [0, `− 2) do

if i+ j < v − 1 then
Li,j+1 = Fj+2(Li,j)

end

end
if i < v − 1 then

x′ = x;
for j ∈ [0, i+ 1) do

if i− j > `− 2 then
x′ = x′ −Rj

end
else

x′ = x′ − Lj,i−j

end

end

end
res = res−Ri;

end
return res;

Algorithm 1: Removing v lowest digits from x ∈ Zpe

11

is much faster than FHE schemes than ciphertext multiplication, we choose to
measure the computational cost by the number of ciphertext multiplications.
The Paterson-Stockmeyer algorithm [?] evaluates a polynomial of degree d with
∼
√

2d non-constant multiplications, and we use that as the base of our estimate.

Theorem 5. Algorithm 1 is correct. Its depth is bounded above by

log(epv) = v log(p) + log(e).

The number of non-constant multiplications is asymptotically equal to
√

2pev.

Table ?? compares the asymptotic depth and number of non-constant mul-
tiplications between our method for digit removal and the method of [?]. From
the table, we see that the advantage of our method grows with the difference
e − v. In the bootstrapping scenario, we have e − v = r, the exponent of the
plaintext modulus. Hence, our algorithm compares favorably for larger values of
r.

Method Depth No. ciphertext multiplications

[?] e log(p) 1
2
e2
√
2p

This work v log(p) + log(e)
√
2pev

Table 1: Complexity of DigitRemove(p, e, v)

4 Improved Bootstrapping for FV and BGV

4.1 Reviewing the method of [?]

The bootstrapping for FV scheme follows the main steps from [?] for the BGV
scheme, while we make two modifications in modulus switching and digit extrac-
tion. First, we review the procedure in [?].

Modulus Switching. One fixes some q′ < q and compute a new ciphertext c′

which encrypts the same plaintext but has much smaller size.

Dot product with bootstrapping key. Here we compute homomorphically
the dot product 〈c′, s〉, where s is an encryption of a new secret key s′ under a
large coefficient modulus Q and a new plaintext modulus t′ = pe. The result of
this step is an encryption of m+ tv under the new parameters (s′, t′, Q).

12

Enc(m(x)) = Enc((m0(x); · · · ;mk−1(x)))

Enc((m0 · p
e−r + e0; · · · ;mk−1 · p

e−r + ek−1)); · · ·Enc((mn−k · pe−r + en−k; · · · ;mn−1 · p
e−r + en−1))

Enc((m0;m1; · · · ;mk−1));Enc((mk; · · · ;m2k−1)); · · ·Enc((mn−k; · · · ;mn−1))

Enc(m(x) · pe−r + e(x))

Modulus Switching and Dot Product

LinearTransformation

d number of Digit Extraction

InverseLinearTransformation

Enc(m(x)) = Enc(m0(x); · · · ;mk−1(x))

#

#

#

#

Fig. 1: bootstrapping procedure

Linear Transformation. Let d denote the multiplicative order of p in Z∗m
and k = n/d be the number of slots supported in plaintext batching. Suppose

the input to linear transform is an encryption of
∑n−1
i=0 aix

i, then the output
of this step is d ciphertexts C0, . . . , Cd−1, where Cj is a batch encryption of
(ajk, ajk+1, . . . , ajk+k−1).

Digit Extraction. When the above steps are done, we obtain d ciphertexts,
where the first ciphertext is a batch encryption of

(m0 · pe−r + e0,m1 · pe−r + e1, · · · ,mk−1 · pe−r + ek−1).

Assuming that |ei| ≤ pe−r

2 for each i, we will apply Algorithm ?? to remove the
lower digits ei, resulting in d new ciphertexts encrypting ∆mi for 0 ≤ i < n in
their slots. Then we perform a free division to get d ciphertexts, encrypting mi

in their slots.

Inverse Linear Transformation. Finally, we apply another linear transfor-
mation which combines the d ciphertexts into one single ciphertext encrypting
m(x).

4.2 Our modifications

FV Suppose t = pr is a prime power, and we have a ciphertext (c0, c1) modulo
q. Here, instead of switching to a modulus q′ co-prime to p as done in BGV, we
switch to q′ = pe, and obtain ciphertext (c′0, c

′
1) such that

c′0 + c′1s = pe−rm+ v + αpe.

Then, one input ciphertext to the digit extraction step will be a batch encryption

Enc((pe−rm0 + v0, . . . , p
e−rmk + vk))

under plaintext modulus pe. Hence this step requires DigitRemove(p, e, e− r).

13

BGV To apply our ideas to the digit extraction step in BGV bootstrapping,
we simply replace the algorithm in [?] with our digit removal Algorithm ??.

4.3 Comparing bootstrapping complexities

The major difference in the complexities of bootstrapping between the two
schemes comes from the parameter e. In case of FV, by Lemma ??, we can
choose (roughly) e = r + logp(||s||1)). On the other hand, the estimate of e for
correct bootstrapping in [?] for the BGV scheme is

e ≥ 2r + logp(||s||1).

We can analyze the impact of this difference on the depth of digit removal, and
therefore on the depth of bootstrapping. Setting v = e − r in Theorem ??, the
depth for the BGV case is

(r + logp(||s||1) log p+ log(2r + logp(||s||1)).

Substituting r = logp(t) into the above formula and throwing away lower or-
der terms, we obtain the improved depth for the digit extraction in step BGV
bootstrapping as

log t+ log(||s||1) + log(logp(t
2 · ||s||1)) ≈ log t+ log(||s||1).

Note that the depth grows linearly with the logarithm of the plaintext modulus
t. On the other hand, the depth in the FV case turns out to be

log(||s||1) + log(logp(t · ||s||1)).

which only scales with log log t. This is smaller than BGV in the large plaintext
modulus regime.

We can also compare the number of ciphertext multiplications needed for
the digit extraction procedures. Replacing v with e− r in the second formula in
Theorem ?? and letting e = 2r + logp(||s||1) for BGV (resp. e = r + logp(||s||1)
for FV), we see that the number of ciphertext multiplications for BGV is asymp-
totically equal to

√
2p

(log p)3/2
(2 log(t) + log(||s||1))1/2(log(t) + log(||s||1)).

In the FV case, the number of ciphertext multiplications is asymptotically
equal to √

2p

(log p)3/2
(log(t) + log(||s||1))1/2 log(||s||1)).

Hence when t is large, the digit extraction procedure in bootstrapping requires
less work for FV than BGV.

For completeness, we also analyze the original digit extraction method in
BGV bootstrapping. Recall that the previous algorithm has depth (e− 1) log p,

14

and takes about 1
2e

2 homomorphic evaluations of polynomials of degree p. If we
use the Paterson-Stockmeyer method for polynomial evaluation, then the total
amount of ciphertext multiplications is roughly 1

2e
2
√

2p. Plugging in the lower
bound e ≥ 2r + logp(||s||1), we obtain an estimate of depth and work needed
for the digit extraction step in the original BGV bootstrapping method in [?].
Table ?? summarizes the cost for three different methods.

Method Depth No. ciphertext multiplications

[?] (BGV) 2 log(t) + log(h)
√
2p

2(log p)2
(2 log(t) + log(h))2

This work (BGV) log(t) + log(h)
√
2p

(log p)3/2
(2 log(t) + log(h))1/2(log(t) + log(h))

This work (FV) log log(t) + log(h)
√
2p

(log p)3/2
(log(t) + log(h))1/2 log(h)

Table 2: Asymptotic complexity of digit extraction step in bootstrapping. Here
h = ||s||1 is the 1-norm of the secret key, and t = pr is the plaintext modulus.

Fixing p and h in the last column of Table ??, we can see how the number of
multiplications grows with log t. The method in [?] scales by (log t)2, while our
new method for BGV improves it to (log t)3/2. In the FV case, the number of
multiplications scales by only (log t)1/2.

Remark 1. As another advantage of our revised BGV bootstrapping, we make a
remark on security. From Table ??, we see that in order for bootstrapping to be
more efficient, it is advantageous to use a secret key with smaller 1-norm. For
this reason, both [?] and this work choose to use a sparse secret key, and a recent
work [?] shows that sparseness can be exploited in the attacks. To resolve this,
note that it is easy to keep the security level in our situation: since our method
reduces the overall depth for the large plaintext modulus case, we could use a
smaller modulus q, which increases the security back to a desired level.

4.4 Slim bootstrapping algorithm

The bootstrapping algorithm for FV and BGV is expensive also due to the
d repetitions of digit extraction. For some parameters, the extension degree d
can be large. However, many interesting applications requires arithmetic over
Zpr rather than its degree-d extension ring, making it hard to utilize the full
plaintext space.

Therefore we will introduce one more bootstrapping algorithm which is called
“slim” bootstrapping. This bootstrapping algorithm works with the plaintext
space Zkt , embedded as a subspace of Rt through the batching isomorphism.

This method can be adapted using almost the same algorithm as the original
bootstrapping algorithm, except that we only need to perform one digit extrac-
tion operation, hence it is roughly d times faster than the full bootstrapping

15

algorithm. Also, we need to revise the linear transformation and inverse linear
transformation slightly. We give an outline of our slim bootstrapping algorithm
below.

Enc(m0 +m1x
d + · · ·+mk−1x

d(k−1))

Enc(m0;m1;m2; · · · ;mk−1)

Enc(m(x) · pe−r + e(x))

Modulus Switching and Dot Product

Enc(m0 · p
e−r + e0; · · · ;mk−1 · p

e−r + ek−1)

Digit Extraction

LinearTransformation

InverseLinearTransformation

Enc(m0;m1;m2; · · · ;mk−1)

#

#

#

#

Fig. 2: slim bootstrapping

Inverse Linear Transformation. We take as input a batch encryption of
(m1 . . . ,mk) ∈ Zkpr . In the first step, we apply an “inverse” linear transformation

to obtain an encryption of m1 +m2x
d+ . . .+mkx

d(k−1). This can be done using
k slot permutations and k plaintext multiplications.

Modulus Switching and Dot product with bootstrapping key. These
two steps are exactly the same as the full bootstrapping procedure. After these
steps, we obtain a (low-noise) encryption of

(∆m1 + v1 + (∆m2 + v2)xd + . . .+ (∆mk + vk)xd(k−1)).

Linear Transformation. In this step, we apply another linear transformation
consisting of k slot permutations and k scalar multiplications to obtain a batch
encryption of (∆m1 + v1, . . . ,∆mk + vk). Details of this step can be found in
the appendix.

Digit extraction. Then, we apply digit-removal algorithm to remove the noise
coefficients vi, resulting in a batch encryption of (∆m1, . . . ,∆mk). We then
execute the free division and obtain a batch encryption of (m1, . . . ,mk). This
completes the slim bootstrapping process.

5 Implementation and Performance

We implemented both the full mode and the slim mode of bootstrapping for FV
in the SEAL library. We also implemented our revised digit extraction procedure

16

[?] Our Method

(p, e, v) Timing (sec) Before/After level Timing (sec) Before/After level

(2, 11, 5) 15 23/3 16 23/10
(2, 21, 13) 264 56/16 239 56/22
(5, 6, 3) 49.5 39/5 30 39/13
(17, 4, 2) 61.2 38/5 35.5 38/14
(31, 3, 1) 26.3 32/8 12.13 32/18
(127, 3, 1) 73.2 42/3 38 42/20

Table 3: Comparison of digit removal algorithms in HElib (Toshiba Portege
Z30t-C laptop with 2.6GHz CPU and 8GB memory)

Parameters Result

n log q Plaintext
Space

Slots Security Fresh
/After
Level

Recrypt
Time
(sec)

Memory
usage
(GB)

Recrypt
init. time
(sec)

16384 558 GF(127256) 64 92.9 24/7 2027 8.9 193
16384 558 GF(257128) 128 92.9 22/4 1381 7.5 242
32768 806 R(1272, 256) 64 126.2 32/12 21295 27.6 658
32768 806 R(2572, 128) 128 126.2 23/6 11753 26.6 732

Table 4: Time table for bootstrapping for FV scheme, hw=128 (Intel(R)
Core(TM) i7-4770 CPU with 3.4GHZ CPU and 32GB memory)

in HElib. Since SEAL only supports power-of-two cyclotomic rings, and p needs
to be co-prime to m in order to use batching, we can not use p = 2 for SEAL
bootstrapping. Instead we chose p = 127 and p = 257 because they give more
slots among primes of reasonable size.

The following tables in this section illustrate some results. We used sparse
secrets with hamming weight 64 and 128, and we estimated security levels using
Martin Albrecht’s LWE estimator [?].

We implemented Algorithm ?? in HElib and compared with the results of the
original HElib implementation for removing v digits from e digits. From Table ??,
we see that for e ≥ v+2 and large p, our digit removal procedure can outperform
the current HElib implementation in both depth and work. Therefore, for these
settings, we can replace the digit extraction procedure in the recryption function
in HElib, and obtain a direct improvement on after level and time for recryption.
When p = 2 and r, e are small, the current HElib implementation can be faster
due to the fact that the lifting polynomial is Fe(x) = x2 and squaring operation
is faster than generic multiplication. Also, when e = v + 1, i.e., the task is to
remove all digits except the highest one, our digit removal method has similar
performance as the HElib counterpart.

Table ?? and ?? present timing results for the full and slim modes of boot-
strapping for FV implemented in SEAL. In both tables, the column labeled

17

Parameters Result

n log q Plaintext
Space

Number
of Slots

Security
Parame-
ter

Fresh
/After
level

Recrypt
init time
(sec)

Memory
usage
(GB)

Recrypt
Time
(sec)

16384 558 Z127 64 92.9 23/10 57 2.0 6.75
32768 806 Z1272 64 126.2 25/11 59 2.0 30.2
32768 806 Z1273 64 126.2 20/6 257 8.9 34.5

16384 558 Z257 128 92.9 22/7 59 2.0 10.8
32768 806 Z257 128 126.2 31/15 207 7.4 36.8
32768 806 Z2572 128 126.2 23/7 196 7.4 42.1

Table 5: Time table for slim bootstrapping for FV scheme, hw=128 (Intel(R)
Core(TM) i7-4770 CPU with 3.4GHZ CPU and 32GB memory)

“recrypt init. time” shows the time to compute the necessary data needed in
bootstrapping. The “recrypt time” column shows the time it takes to perform
one bootstrapping. The before (resp. after) level shows the maximal depth of
circuit that can be evaluated on a freshly encrypted ciphertext (resp. freshly
bootstrapped ciphertext). Here R(pr, d) denotes a finite ring with degree d over
base ring Zpr , and GF(pr) denotes the finite field with pr elements.

Comparing the corresponding entries from Table ?? and ??, we see that the
slim mode of bootstrapping is either close to or more than d times faster than
the full mode.

6 Future directions

In this work, we designed bootstrapping algorithms for the FV scheme whose
depth depend linearly on log log t. For the BGV scheme, we were able to improve
the dependence on t from 2 log t to log t. One interesting direction is to explore
whether we can further improve the bootstrapping depth for BGV.

We also presented a slim mode of bootstrapping, which operates on a sub-
space of the plaintext space equivalent to a vector over Zpr . The slim mode has
a similar throughput as the full mode while being much faster. For example, it
takes less than 7 seconds to bootstrap a vector in Z64

127 with after level 10. How-
ever, the ciphertext sizes of the slim mode are the same as those of the full mode,
resulting in a larger ciphertext/message expansion ratio. It would be interesting
to investigate whether we could reduce the ciphertext sizes while keeping the
performance results.

A Optimizing the Linear Transform for Slim
Bootstrapping

In our slim mode of bootstrapping, we used a linear transform which has the
following property: the input is an encryption of

∑
mix

i, and the output is a

18

batch encryption of (m0,md, . . . ,md(k−1)). A straightforward implementation
of this functionality requires n slot permutations and n scalar multiplications.
However, in the case when n is a power of 2, we can break down the linear
transform into two parts, which we call coefficient selection and sparse linear
transform. This reduces the number of slot permutations to log(d) + k and the
number of scalar multiplications to k.

A.1 Coefficient selection

The first part of the optimized linear transform functionality can be viewed as a
coefficient selection. This process gets input Enc(m(x)) and outputs Enc(m′(x))

with m′(x) =
∑n/d−1
i=0 mid ·xid. In other words, it selects the coefficients of m(x)

where the exponents of x are divisible by d. The following algorithm is specified
to the case when n is a power of two . Using the property that xn = −1 in the
ring R, we can construct an automorphism φi of R such that

φi : X2i → Xn+2i = −X2i .

For example, φ0(·) negates all odd coefficients, because φ0 maps X to −X. This
means that 1

2 (φ0(m(x)) +m(x)) will remove all odd terms and double the even
terms. Using this property, we construct a recursive algorithm which return

m′(x) =
∑n/d−1
i=0 mid · xid for power of two d.

– For given m(x), First compute m0(x) = m(x) + φ0(m(x)).

– Recursively compute mi(x) = φi(mi−1(x)) +mi−1(x) for 1 ≤ i ≤ log2 d.

– Return m′(x) = d−1 ·mlog2 d mod t for plain modulus t.

The function φi : X → X
n+2i

2i can be evaluated homomorphically by using the
same technique used in slot permutation. Another operation is just multiplying
by d−1 mod t. Hence we can obtain Enc(m′(x)). This process needs log d slot
permutations and additions.

A.2 Sparse Linear Transform

The desired functionality of the sparse linear transform is: take as input an
encryption c of

∑
mix

id and output a batch encryption of (m0,m1 . . . ,mk−1).

We claim that this functionality can be expressed as
∑k−1
i=0 λiσsi(c), where λi

are pre-computed polynomials in Rt and the si form a set of representatives
of Z∗m/〈p〉. This is because the input plaintext only has k nonzero coefficients
m0, . . . ,mk−1. Hence for each i it is possible to write mi as a linear combination
of the evaluations of the input at k different roots of unity. Therefore, this step
only requires k slot permutations and k plaintext multiplications. We can also
adapt the babystep-giantstep method to reduce the number of slot permutations
to O(

√
k), and we omit further details.

19

B Memory usage

In our implementation of the bootstrapping procedure in SEAL, we pre-compute
some data which are used in the linear transforms. The major part of the memory
consumption consists of slot-permutation keys and plaintext polynomials. More
precisely, each plaintext polynomial has size n log t bits, and the size of one
slot-permutation key in SEAL is (2n log q) · b log q62 e.

Here we report the number of such keys and plaintext polynomials used in
our bootstrapping. In the full mode, we need 2

√
n slot-permutation keys, and

2
√
n+ d+ k plaintext polynomials.

On the other hand, the slim mode of bootstrapping in SEAL requires con-
siderably less memory. Both inverse linear transform and the linear transform
can be implemented via the babystep-giantstep technique, each using only 2

√
k

slot-permutation keys and k plaintext polynomials.

C Proofs

C.1 Proof of Lemma ??

Lemma 1 Suppose c0+c1s = ∆m+v+aq is a ciphertext in FV with |v| < ∆/4.
if q′ > 4t(1 + ||s||1), and (c′0, c

′
1) is the ciphertext after switching the modulus to

q′, then (c′0, c
′
1) also decrypts to m.

Proof. We define the invariant noise to be the term vinv such that

t

q
(c0 + c1s) = m+ vinv + rt.

Decryption is correct as long as ||vinv|| < 1
2 . Now introducing the new modulus

q′, we have

t

q′

(
q′

q
c0 +

q′

q
c1s

)
= m+ vinv + rt.

Taking nearest integers of the coefficients on the left hand side, we arrive at

t

q′

(
bq
′

q
c0e+ bq

′

q
c1es

)
= m+ vinv + rt+ δ,

with the rounding error ||δ|| ≤ t/q′(1 + ||s||1). Thus the new invariant noise is

vinv′ = vinv + δ

We need ||δ|| < 1/4 for correct decryption. Hence the lower bound on q′ is

q′ > 4t(1 + ||s||1).

20

C.2 Proof of Theorem ??

Proof. Correctness of Algorithm 1 is easy to show. In fact, the only place we
deviate from the algorithm in [?] for digit extraction is that we used the digits
Ri to replace xi,j in certain places. Since Ri has lowest digit xi followed by
(e− i− 1) zeros, we can actually use it to replace xi,j for any j ≤ e− i− 1 and
still maintain the correctness.

To analyze the depth, note that we used polynomials of degree pi to compute
zi,i for 0 ≤ i ≤ v − 1. Then, to compute zi,e−1−i, a polynomial of degree (e −
1− i)(p− 1) + 1 is used. Since the final result is a sum of the terms zi,e−1−i for
0 ≤ i < v, the degree of the entire algorithm is given by

max
0≤i<v

pi((e− 1− i)(p− 1) + 1)

Since each individual term above is bounded by epv, the degree is at most epv.
Hence the depth of the algorithm is bounded by log(e) + v log(p).

We now estimate the amount of work of our algorithm in terms of non-
constant multiplications. The work consists of two parts: evaluating lift poly-
nomials and lowest digit removal polynomials. Let W (n) denote the number of
non-constant multiplications to evaluate a polynomial of degree n. Then the
total work is

v∑
i=1

W ((e− i)(p− 1) + 1) + `vW (p)

where ` = blogp((e − 1)(p − 1) + 1)c is the optimization parameter used in
Algorithm ??. Since we used the Paterson-Stockmeyer algorithm for polynomial
evaluation, we have W (n) ∼

√
2n. Substituting this estimate into the above

formula, we obtain

v∑
i=1

√
2((e− i)(p− 1) + 1) + `v

√
2p

∼
√

2p

v∑
i=1

√
e− i+

√
2p(1 + logp(e))v

∼
√

2pv(
√
e+ logp(e))

∼
√

2pev.

This completes the proof.

21

