
Sustained Space Complexity

Joël Alwen1,3, Jeremiah Blocki2, and Krzysztof Pietrzak1

1 IST Austria
2 Purdue University

3 Wickr Inc.

Abstract. Memory-hard functions (MHF) are functions whose eval-
uation cost is dominated by memory cost. MHFs are egalitarian, in
the sense that evaluating them on dedicated hardware (like FPGAs or
ASICs) is not much cheaper than on off-the-shelf hardware (like x86
CPUs). MHFs have interesting cryptographic applications, most notably
to password hashing and securing blockchains.
Alwen and Serbinenko [STOC’15] define the cumulative memory com-
plexity (cmc) of a function as the sum (over all time-steps) of the amount
of memory required to compute the function. They advocate that a good
MHF must have high cmc. Unlike previous notions, cmc takes into ac-
count that dedicated hardware might exploit amortization and paral-
lelism. Still, cmc has been critizised as insufficient, as it fails to capture
possible time-memory trade-offs; as memory cost doesn’t scale linearly,
functions with the same cmc could still have very different actual hard-
ware cost.
In this work we address this problem, and introduce the notion of sustained-
memory complexity, which requires that any algorithm evaluating the
function must use a large amount of memory for many steps. We con-
struct functions (in the parallel random oracle model) whose sustained-
memory complexity is almost optimal: our function can be evaluated
using n steps and O(n/ log(n)) memory, in each step making one query
to the (fixed-input length) random oracle, while any algorithm that can
make arbitrary many parallel queries to the random oracle, still needs
Ω(n/ log(n)) memory for Ω(n) steps.
As has been done for various notions (including cmc) before, we reduce
the task of constructing an MHFs with high sustained-memory com-
plexity to proving pebbling lower bounds on DAGs. Our main technical
contribution is the construction is a family of DAGs on n nodes with
constant indegree with high “sustained-space complexity”, meaning that
any parallel black-pebbling strategy requires Ω(n/ log(n)) pebbles for at
least Ω(n) steps.
Along the way we construct a family of maximally “depth-robust” DAGs
with maximum indegree O(logn), improving upon the construction of
Mahmoody et al. [ITCS’13] which had maximum indegreeO

(
log2 n · polylog(logn)

)
.

1 Introduction

In cryptographic settings we typically consider tasks which can be done efficiently
by honest parties, but are infeasible for potential adversaries. This requires an

asymmetry in the capabilities of honest and dishonest parties. An example are
trapdoor functions, where the honest party – who knows the secret trapdoor key
– can efficiently invert the function, whereas a potential adversary – who does
not have this key – cannot.

1.1 Moderately-Hard Functions

Moderately hard functions consider a setting where there’s no asymmetry, or
even worse, the adversary has more capabilities than the honest party. What
we want is that the honest party can evaluate the function with some reason-
able amount of resources, whereas the adversary should not be able to evaluate
the function at significantly lower cost. Moderately hard functions have several
interesting cryptographic applications, including securing blockchain protocols
and for password hashing.

An early proposal for password hashing is the “Password Based Key Deriva-
tion Function 2” (PBKDF2) [Kal00]. This function just iterates a cryptographic
hash function like SHA1 several times (1024 is a typical value). Unfortunately,
PBKDF2 doesn’t make for a good moderately hard function, as evaluating a cryp-
tographic hash function on dedicated hardware like ASCIs (Application Specific
Integrated Circuits) can be by several orders of magnitude cheaper in terms
of hardware and energy cost than evaluating it on a standard x86 CPU. An
economic analysis of Blocki et al. [BHZ18] suggests that an attacker will crack
almost all passwords protected by PBKDF2. There have been several suggestions
how to construct better, i.e., more “egalitarian”, moderately hard functions. We
discuss the most prominent suggestions below.

Memory-Bound Functions Abadi et al. [ABW03] observe that the time required
to evaluate a function is dominated by the number of cache-misses, and these
slow down the computation by about the same time over different architectures.
They propose memory-bound functions, which are functions that will incur many
expensive cache-misses (assuming the cache is not too big). They propose a
construction which is not very practical as it requires a fairly large (larger than
the cache size) incompressible string as input. Their function is then basically
pointer jumping on this string. In subsequent work [DGN03] it was shown that
this string can also be locally generated from a short seed.

Bandwidth-Hard Functions Recently Ren and Devadas [RD17] suggest the no-
tion of bandwidth-hard functions, which is a refinement of memory-bound func-
tions. A major difference being that in their model computation is not com-
pletely free, and this assumption – which of course is satisfied in practice –
allows for much more practical solutions. They also don’t argue about evalua-
tion time as [ABW03], but rather the more important energy cost; the energy
spend for evaluating a function consists of energy required for on chip compu-
tation and memory accesses, only the latter is similar on various platforms. In
a bandwidth-hard function the memory accesses dominate the energy cost on a
standard CPU, and thus the function cannot be evaluated at much lower energy
cost on an ASICs as on a standard CPU.

Memory-Hard Functions Whereas memory-bound and bandwidth-hard func-
tions aim at being egalitarian in terms of time and energy, memory-hard func-
tions (MHF), proposed by Percival [Per09], aim at being egalitarian in terms
of hardware cost. A memory-hard function, in his definition, is one where the
memory used by the algorithm, multiplied by the amount of time, is high, i.e., it
has high space-time (ST) complexity. Moreover, parallelism should not help to
evaluate this function at significantly lower cost by this measure. The rationale
here is that the hardware cost for evaluating an MHF is dominated by the mem-
ory cost, and as memory cost does not vary much over different architectures,
the hardware cost for evaluating MHFs is not much lower on ASICs than on
standard CPUs.

Cumulative Memory Complexity Alwen and Serbinenko [AS15] observe that ST
complexity misses a crucial point, amortization. A function might have high ST
complexity because at some point during the evaluation the space requirement
is high, but for most of the time a small memory is sufficient. As a consequence,
ST complexity is not multiplicative: a function can have ST complexity C, but
evaluating X instances of the function can be done with ST complexity much
less than X · C, so the amortized ST cost is much less than C. Alwen and
Blocki [AB16,AB17] later showed that prominent MHF candidates such as Ar-
gon2i [BDK16], winner of the Password Hashing Competition [PHC] do not have
high amortized ST complexity.

To address this issue, [AS15] put forward the notion of cumulative-memory
complexity (cmc). The cmc of a function is the sum – over all time steps –
of the memory required to compute the function by any algorithm. Unlike ST
complexity, cmc is multiplicative.

Sustained-Memory Complexity Although cmc takes into account amortization
and parallelism, it has been observed (e.g., [RD16,Cox16]) that it still is not suf-
ficient to guarantee egalitarian hardware cost. The reason is simple: if a function
has cmc C, this could mean that the algorithm minimizing cmc uses some T time
steps and C/T memory on average, but it could also mean it uses time 100 · T
and C/100 · T memory on average. In practice this can makes a huge difference
because memory cost doesn’t scale linearly. The length of the wiring required to
access memory of size M grows like

√
M (assuming a two dimensional layout of

the circuit). This means for one thing, that – as we increase M – the latency of
accessing the memory will grow as

√
M , and moreover the space for the wiring

required to access the memory will grow like M1.5.
The exact behaviour of the hardware cost as the memory grows is not crucial

here, just the point that it’s superlinear, and cmc does not take this into account.
In this work we introduce the notion of sustained-memory complexity, which
takes this into account. Ideally, we want a function which can be evaluated by
a “näıve” sequential algorithm (the one used by the honest parties) in time T
using a memory of size S where (1) S should be close to T and (2) any parallel
algorithm evaluating the function must use memory S′ for at least T ′ steps,
where T ′ and S′ should be not much smaller than T and S, respectively.

Property (1) is required so the memory cost dominates the evaluation cost
already for small values of T . Property (2) means that even a parallel algorithm
will not be able to evaluate the function at much lower cost; any parallel algo-
rithm must make almost as many steps as the näıve algorithm during which the
required memory is almost as large as the maximum memory S used by the näıve
algorithm. So, the cost of the best parallel algorithm is similar to the cost of the
näıve sequential one, even if we don’t charge the parallel algorithm anything for
all the steps where the memory is below S′.

Ren and Devadas [RD16] previously proposed the notion of “consistent mem-
ory hardness” which requires that any sequential evaluation algorithm must ei-
ther use space S′ for at least T ′ steps, or the algorithm must run for a long
time e.g., T � n2. Our notion of sustained-memory complexity strengthens this
notion in that we consider parallel evaluation algorithms, and our guarantees are
absolute e.g., even if a parallel attacker runs for a very long time he must still
use memory S′ for at least T ′ steps. scrypt [Per09] is a good example of a MHF
that has maximal cmc Ω

(
n2
)

[ACP+17] that does not have high sustained space
complexity. In particular, for any memory parameter M and any running time
parameter n we can evaluate scrypt [Per09] in time n2/M and with maximum
space M . As was argued in [RD16] an adversary may be able to fit M = n/100
space in an ASIC, which would allow the attacker to speed up computation by
a factor of more than 100 and may explain the availability of ASICs for scrypt
despite its maximal cmc.

In this work we show that functions with asymptotically optimal sustained-
memory complexity exist in the random oracle model. We note that we must
make some idealized assumption on our building block, like being a random
oracle, as with the current state of complexity theory, we cannot even prove
superlinear circuit lower-bounds for problems in NP. For a given time T , our
function uses maximal space S ∈ Ω(T) for the näıve algorithm,4 while any
parallel algorithm must have at least T ′ ∈ Ω(T) steps during which it uses
memory S′ ∈ Ω(T/ log(T)).

Graph Labelling The functions we construct are defined by directed acyclic
graphs (DAG). For a DAG Gn = (V,E), we order the vertices V = {v1, . . . , vn}
in some topological order (so if there’s a path from i to j then i < j), with v1
being the unique source, and vn the unique sink of the graph. The function is
now defined by Gn and the input specifies a random oracle H. The output is
the label `n of the sink, where the label of a node vi is recursively defined as
`i = H(i, `p1 , . . . , `pd) where vp1 , . . . , vpd are the parents of vi.

Pebbling Like many previous works, including [ABW03,RD17,AS15] discussed
above, we reduce the task of proving lower bounds – in our case, on sustained
memory complexity – for functions as just described, to proving lower bounds
on some complexity of a pebbling game played on the underlying graph.

4 Recall that the näıve algorithm is sequential, so S must be in O(T) as in time T the
algorithm cannot even touch more than O(T) memory.

For example, Ren and Devedas [RD17] define a cost function for the so called
reb-blue pebbling game, which then implies lower bounds on the bandwidth
hardness of the function defined over the corresponding DAG.

Most closely related to this work is [AS15], who show that a lower bound the
so called sequential (or parallel) cumulative (black) pebbling complexity (cpc) of
a DAG implies a lower bound on the sequential (or parallel) cumulative memory
complexity (cmc) of the labelling function defined over this graph. Alwen et
al. [ABP17] constructed a constant indegree family of DAGs with parallel cpc
Ω(n2/ log(n)), which is optimal [AB16], and thus gives functions with optimal
cmc. More recently, Alwen et al. [ABH17] extended these ideas to give the first
practical construction of an iMHF with parallel cmc Ω(n2/ log(n)).

The black pebbling game – as considered in cpc – goes back to [HP70,Coo73].
It is defined over a DAG G = (V,E) and goes in round as follows. Initially all
nodes are empty. In every round, the player can put a pebble on a node if all its
parents contain pebbles (arbitrary many pebbles per round in the parallel game,
just one in the sequential). Pebbles can be removed at any time. The game ends
when a pebble is put on the sink. The cpc of such a game is the sum, over
all time steps, of the pebbles placed on the graph. The sequential (or parallel)
cpc of G is the cpc of the sequential (or parallel) black pebbling strategy which
minimizes this cost.

It’s not hard to see that the sequential/parallel cpc of G directly implies the
same upper bound on the sequential/parallel cmc of the graph labelling function,
as to compute the function in the sequential/parallel random oracle model, one
simply mimics the pebbling game, where putting a pebble on vertex vi with
parents vp1 , . . . , vpd corresponds to the query `i ← H(i, `p1 , . . . , `pd). And where
one keeps a label `j in memory, as long as vj is pebbled. If the labels `i ∈ {0, 1}w
are w bits long, a cpc of p translates to cmc of p · w.

More interestingly, the same has been shown to hold for interesting notions
also for lower bounds. In particular, the ex-post facto argument [AS15] shows
that any adversary who computes the label `n with high probability (over the
choice of the random oracle H) with cmc of m, translates into a black pebbling
strategy of the underlying graph with cpc almost m/w.

In this work we define the sustained-space complexity (ssc) of a sequen-
tial/parallel black pebbling game, and show that lower bounds on ssc translate to
lower bounds on the sustained-memory complexity (smc) of the graph labelling
function in the sequential/parallel random oracle model.

Consider a sequential (or parallel) black pebbling strategy (i.e., a valid se-
quence pebbling configurations where the last configuration contains the sink)
for a DAG Gn = (V,E) on |V | = n vertices. For some space parameter s ≤ n,
the s-ssc of this strategy is the number of pebbling configurations of size at least
s. The sequential (or parallel) s-ssc of G is the strategy minimizing this value.
For example, if it’s possible to pebble G using s′ < s pebbles (using arbitrary
many steps), then its s-ssc is 0. Similarly as for csc vs cmc, an upper bound on
s-ssc implies the same upper bound for (w · s)-smc. In Section 5 we prove that
also lower bounds on ssc translate to lower bounds on smc.

Thus, to construct a function with high parallel smc, it suffices to construct
a family of DAGs with constant indegree and high parallel ssc. In Section 3 we
construct such a family {Gn}n∈N of DAGs where Gn has n vertices and has
indegree 2, where Ω(n/ log(n))-ssc is in Ω(n). This is basically the best we can
hope for, as our bound on ssc trivially implies a Ω(n2/ log(n)) bound on csc,
which is optimal for any constant indegree graph [AS15].

Data-Dependent vs Data-Independent MHFs There are two categories of Mem-
ory Hard Functions: data-Independent Memory Hard Functions (iMHFs) and
data-dependent Memory Hard Functions (dMHFs). As the name suggests, the
algorithm to compute an iMHFs must induce a memory access pattern that is
independent of the potentially sensitive input (e.g., a password), while dMHFs
have no such constraint. While dMHFs (e.g., scrypt [PJ12], Argon2d, Ar-
gon2id [BDK16]) are potentially easier to construct, iMHFs (e.g., Argon2i [BDK16],
DRSample [ABH17]) are resistant to side channel leakage attacks such as cache-
timing. For the cumulative memory complexity metric there is a clear gap be-
tween iMHFs and dMHFs. In particular, it is known that scrypt has cmc at

least Ω
(
n2w

)
[ACP+17], while any iMHF has cmc at most O

(
n2w log logn

logn

)
. In-

terestingly, the same gap does not hold for smc. In particular, any dMHF can be
computed with maximum space O (nw/ log n+ n log n) by recursively applying a
result of Hopcroft et al. [HPV77] — see more details in the full version [ABP18].

1.2 High Level Description of our Construction and Proof

Our construction of a family {Gn}n∈N of DAGs with optimal ssc involves three
building blocks:

The first building block is a construction of Paul et al. [PTC76] of a family
of DAGs {PTCn}n∈N with indeg(PTCn) = 2 and space complexity Ω(n/ log n).
More significantly for us they proved that for any sequential pebbling of Gn there
is a time interval [i, j] during which at least Ω(n/ log n) new pebbles are placed
on sources of Gn and at least Ω(n/ log n) are always on the DAG. We extend
the proof of Paul et al. [PTC76] to show that the same holds for any parallel
pebbling of PTCn; a pebbling game first introduced in [AS15] which natural
models parallel computation. We can argue that j − i = Ω(n/ log n) for any
sequential pebbling since it takes at least this many steps to place Ω(n/ log n)
new pebbles on Gn. However, we stress that this argument does not apply to
parallel pebblings so this does not directly imply anything about sustained space
complexity for parallel pebblings.

To address this issue we introduce our second building block: a family of
{Dε

n}n∈N of extremely depth robust DAGs with indeg(Dn) ∈ O (log n) — for
any constant ε > 0 the DAG Dε

n is (e, d)-depth robust for any e+ d ≤ (1− ε)n.
We remark that our result improves upon the construction of Mahmoody et
al. [MMV13] whose construction required indeg(Dn) ∈ O

(
log2 npolylog(log n)

)
and may be of independent interest (e.g., our construction immediately yields
a more efficient construction of proofs of sequential work [MMV13]). Our con-
struction of Dε

n is (essentially) the same as Erdos et al. [EGS75] albeit with much

tighter analysis. By overlaying an extremely depth-robust DAG Dε
n on top of

the sources of PTCn, the construction of Paul et al. [PTC76], we can ensure
that it takes Ω(n/ log n) steps to pebble Ω(n/ log n) sources of Gn. However,
the resulting graph would have indeg(Gn) ∈ O(log n) and would have sustained
space Ω(n/ log n) for at most O(n/ log n) steps. By contrast, we want a n-node
DAG G with indeg(G) = 2 which requires space Ω(n/ log n) for at least Ω(n)
steps5.

Our final tool is to apply the indegree reduction lemma of Alwen et al. [ABP17]
to {Dε

t}t∈N to obtain a family of DAGs {Jεt }t∈N such that Jεt has indeg (Jεt) = 2
and 2t · indeg (Dε

t) ∈ O(t log t) nodes. Each node in Dε
t is associated with a path

of length 2 · indeg(Dε
t) in Jεt and each path p in Dε

t corresponds to a path p′ of
length |p′| ≥ |p| · indeg(Gt) in Jεt . We can then overlay the DAG Jεt on top of the
sources in PTCn where t = Ω(n/ log n) is the number of sources in PTCn. The
final DAG has size O(n) and we can then show that any legal parallel pebbling
requires Ω(n) steps with at least Ω(n/ log n) pebbles on the DAG.

2 Preliminaries

In this section we introduce common notation, definitions and results from
other work which we will be using. In particular the following borrows heav-
ily from [ABP17,AT17].

2.1 Notation

We start with some common notation. Let N = {0, 1, 2, . . .}, N+ = {1, 2, . . .},
and N≥c = {c, c + 1, c + 2, . . .} for c ∈ N. Further, we write [c] := {1, 2, . . . , c}
and [b, c] = {b, b+ 1, . . . , c} where c ≥ b ∈ N. We denote the cardinality of a set
B by |B|.

2.2 Graphs

The central object of interest in this work are directed acyclic graphs (DAGs).
A DAG G = (V,E) has size n = |V |. The indegree of node v ∈ V is δ = indeg(v)
if there exist δ incoming edges δ = |(V × {v}) ∩E|. More generally, we say that
G has indegree δ = indeg(G) if the maximum indegree of any node of G is δ. If
indeg(v) = 0 then v is called a source node and if v has no outgoing edges it is
called a sink. We use parentsG(v) = {u ∈ V : (u, v) ∈ E} to denote the parents of

5 We typically want a DAG G with indeg(G) = 2 because the compression function H
which is used to label the graph typically maps 2w bit inputs to w bit outputs. In this
case the labeling function would only be valid for graphs with maximum indegree
two. If we used tricks such as Merkle-Damgard to build a new compression function G
mapping δw bit inputs to w bit outputs then each pebbling step actually corresponds
to (δ − 1) calls to the compression function H which means that each black pebbling
step actually takes time (δ − 1) on a sequential computer with a single-core. As a
consequence, by considering graphs of degree δ, we pay an additional factor (δ − 1)
in the gap between the naive and adversarial evaluation of the MHF.

a node v ∈ V . In general, we use ancestorsG(v) :=
⋃
i≥1 parents

i
G(v) to denote the

set of all ancestors of v — here, parents2G(v) := parentsG (parentsG(v)) denotes
the grandparents of v and parentsi+1

G (v) := parentsG
(
parentsiG(v)

)
. When G

is clear from context we will simply write parents (ancestors). We denote the
set of all sinks of G with sinks(G) = {v ∈ V : @(v, u) ∈ E} — note that
ancestors (sinks(G)) = V . The length of a directed path p = (v1, v2, . . . , vz) in G
is the number of nodes it traverses length(p) := z. The depth d = depth(G) of
DAG G is the length of the longest directed path in G. We often consider the set
of all DAGs of fixed size n Gn := {G = (V,E) : |V | = n} and the subset of those
DAGs at most some fixed indegree Gn,δ := {G ∈ Gn : indeg(G) ≤ δ}. Finally,
we denote the graph obtained from G = (V,E) by removing nodes S ⊆ V (and
incident edges) by G−S and we denote by G[S] = G−(V \S) the graph obtained
by removing nodes V \ S (and incident edges).

The following is an important combinatorial property of a DAG for this work.

Definition 1 (Depth-Robustness). For n ∈ N and e, d ∈ [n] a DAG G =
(V,E) is (e, d)-depth-robust if

∀S ⊂ V |S| ≤ e⇒ depth(G− S) ≥ d.

The following lemma due to Alwen et al. [ABP17] will be useful in our analy-
sis. Since our statement of the result is slightly different from [ABP17] we include
a proof in Appendix A for completeness.

Lemma 1. [ABP17, Lemma 1] (Indegree-Reduction) Let G = (V = [n], E)
be an (e, d)-depth robust DAG on n nodes and let δ = indeg(G). We can effi-
ciently construct a DAG G′ = (V ′ = [2nδ], E′) on 2nδ nodes with indeg(G′) = 2
such that for each path p = (x1, ..., xk) in G there exists a corresponding path

p′ of length ≥ kδ in G′
[⋃k

i=1[2(xi − 1)δ + 1, 2xiδ]
]

such that 2xiδ ∈ p′ for each

i ∈ [k]. In particular, G′ is (e, dδ)-depth robust.

2.3 Pebbling Models

The main computational models of interest in this work are the parallel (and
sequential) pebbling games played over a directed acyclic graph. Below we define
these models and associated notation and complexity measures. Much of the
notation is taken from [AS15,ABP17].

Definition 2 (Parallel/Sequential Graph Pebbling). Let G = (V,E) be a
DAG and let T ⊆ V be a target set of nodes to be pebbled. A pebbling config-
uration (of G) is a subset Pi ⊆ V . A legal parallel pebbling of T is a sequence
P = (P0, . . . , Pt) of pebbling configurations of G where P0 = ∅ and which sat-
isfies conditions 1 & 2 below. A sequential pebbling additionally must satisfy
condition 3.

1. At some step every target node is pebbled (though not necessarily simultane-
ously).

∀x ∈ T ∃z ≤ t : x ∈ Pz.

2. A pebble can be added only if all its parents were pebbled at the end of the
previous step.

∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x) ⊆ Pi−1.

3. At most one pebble is placed per step.

∀i ∈ [t] : |Pi \ Pi−1| ≤ 1 .

We denote with PG,T and P‖G,T the set of all legal sequential and parallel peb-

blings of G with target set T , respectively. Note that PG,T ⊆ P‖G,T . We will
mostly be interested in the case where T = sinks(G) in which case we write PG
and P‖G.

Definition 3 (Pebbling Complexity). The standard notions of time, space,
space-time and cumulative (pebbling) complexity (cc) of a pebbling P = {P0, . . . , Pt} ∈
P‖G are defined to be:

Πt(P) = t Πs(P) = max
i∈[t]
|Pi| Πst(P) = Πt(P)·Πs(P) Πcc(P) =

∑
i∈[t]

|Pi| .

For α ∈ {s, t, st, cc} and a target set T ⊆ V , the sequential and parallel pebbling
complexities of G are defined as

Πα(G,T) = min
P∈PG,T

Πα(P) and Π‖α(G,T) = min
P∈P‖G,T

Πα(P) .

When T = sinks(G) we simplify notation and write Πα(G) and Π
‖
α(G).

The following defines a sequential pebbling obtained naturally from a parallel
one by adding each new pebble on at a time.

Definition 4. Given a DAG G and P = (P0, . . . , Pt) ∈ P‖G the sequential trans-
form seq(P) = P ′ ∈ ΠG is defined as follows: Let difference Dj = Pi \ Pi−1 and
let ai = |Pi \ Pi−1| be the number of new pebbles placed on Gn at time i. Finally,

let Aj =
∑j
i=1 ai (A0 = 0) and let Dj [k] denote the kth element of Dj (accord-

ing to some fixed ordering of the nodes). We can construct P ′ =
(
P ′1, . . . , P

′
At

)
∈

P(Gn) as follows: (1) P ′Ai = Pi for all i ∈ [0, t], and (2) for k ∈ [1, ai+1] let
P ′Ai+k = P ′Ai+k−1 ∪Dj [k].

If easily follows from the definition that the parallel and sequential space com-
plexities differ by at most a multiplicative factor of 2.

Lemma 2. For any DAG G and P ∈ P‖G it holds that seq(P) ∈ PG and

Πs(seq(P)) ≤ 2 ∗Π‖s (P). In particular Πs(G)/2 ≤ Π‖s (G).

Proof. Let P ∈ P‖G and P ′ = seq(P). Suppose P ′ is not a legal pebbling because
v ∈ V was illegally pebbled in P ′Ai+k. If k = 0 then parentsG(v) 6⊆ P ′Ai−1+ai−1
which implies that parentsG(v) 6⊆ Pi−1 since Pi−1 ⊆ P ′Ai−1+ai−1. Moreover v ∈ Pi
so this would mean that also P illegally pebbles v at time i. If instead, k > 1 then
v ∈ Pi+1 but since parentsG(v) 6⊆ P ′Ai+k−1 it must be that parentsG(v) 6⊆ Pi so P
must have pebbled v illegally at time i+1. Either way we reach a contradiction so
P ′ must be a legal pebbling of G. To see that P ′ is complete note that P0 = P ′A0

.
Moreover for any sink u ∈ V of G there exists time i ∈ [0, t] with u ∈ Pi and so
u ∈ P ′Ai . Together this implies P ′ ∈ PG.

Finally, it follows by inspection that for all i ≥ 0 we have |P ′Ai | = |Pi|
and for all 0 < k < ai we have |P ′Ai+k| ≤ |Pi| + |Pi+1| which implies that

Πs(P
′) ≤ 2 ∗Π‖s (P).

New to this work is the following notion of sustained-space complexity.

Definition 5 (Sustained Space Complexity). For s ∈ N the s-sustained-

space (s-ss) complexity of a pebbling P = {P0, . . . , Pt} ∈ P‖G is:

Πss(P, s) = |{i ∈ [t] : |Pi| ≥ s}|.

More generally, the sequential and parallel s-sustained space complexities of G
are defined as

Πss(G,T, s) = min
P∈PG,T

Πss(P, s) and Π‖ss(G,T, s) = min
P∈P‖G,T

Πss(P, s) .

As before, when T = sinks(G) we simplify notation and write Πss(G, s) and

Π
‖
ss(G, s).

Remark 1. (On Amortization) An astute reader may observe that Π
‖
ss is not

amortizable. In particular, if we let G
⊗
m denotes the graph which consists of m

independent copies of G then we may have Π
‖
ss

(
G

⊗
m, s

)
� mΠ

‖
ss(G, s). How-

ever, we observe that the issue can be easily corrected by defining the amortized

s-sustained-space complexity of a pebbling P = {P0, . . . , Pt} ∈ P‖G:

Πam,ss(P, s) =

t∑
i=1

⌊
|Pi|
s

⌋
.

In this case we have Π
‖
am,ss

(
G

⊗
m, s

)
= mΠ

‖
am,ss(G, s) where Π

‖
am,ss(G, s)

.
=

min
P∈P‖

G,sinks(G)

Πam,ss(P, s). We remark that a lower bound on s-sustained-space

complexity is a strictly stronger guarantee than an equivalent lower bound for

amortized s-sustained-space since Π
‖
ss(G, s) ≤ Π‖am,ss(G, s). In particular, all of

our lower bounds for Π
‖
ss also hold with respect to Π

‖
am,ss.

The following shows that the indegree of any graph can be reduced down to 2
without loosing too much in the parallel sustained space complexity. The tech-
nique is similar the indegree reduction for cumulative complexity in [AS15]. The

proof is in Appendix A. While we include the lemma for completeness we stress
that, for our specific constructions, we will use more direct approach to lower

bound Π
‖
ss to avoid the δ factor reduction in space.

Lemma 3 (Indegree Reduction for Parallel Sustained Space).

∀G ∈ Gn,δ, ∃H ∈ Gn′,2 such that ∀s ≥ 0 Π‖ss(H, s/(δ−1)) = Π‖ss(G, s) where n′ ∈ [n, δn].

3 A Graph with Optimal Sustained Space Complexity

In this section we construct and analyse a graph with very high sustained space
complexity by modifying the graph of [PTC76] using the graph of [EGS75].
Theorem 1, our main theorem, states that there is a family of constant indegree
DAGs {Gn}∞n=1 with maximum possible sustained space Πss (Gn, Ω(n/ log n)) =
Ω(n).

Theorem 1. For some constants c4, c5 > 0 there is a family of DAGs {Gn}∞n=1

with indeg (Gn) = 2, O(n) nodes and Π
‖
ss (Gn, c4n/ log n) ≥ c5n.

Remark 2. We observe that Theorem 1 is essentially optimal in an asymptotic
sense. Hopcroft et al. [HPV77] showed that any DAG Gn with indeg(Gn) ∈ O(1)

can be pebbled with space at mostΠ
‖
s (Gn) ∈ O (n/ log n). Thus,Πss (Gn, sn = ω (n/ log n)) =

0 for any DAG Gn with indeg(Gn) ∈ O(1) since sn > Πs(Gn). 6

We now overview the key technical ingredients in the proof of Theorem 1.

Technical Ingredient 1: High Space Complexity DAGs The first key
building blocks is a construction of Paul et al. [PTC76] of a family of n node
DAGs {PTCn}∞n=1 with space complexityΠs(PTCn) ∈ Ω(n/ log n) and indeg(PTCn) =

2. Lemma 2 implies thatΠ
‖
s (PTCn) ∈ Ω(n/ log n) sinceΠs(PTCn)/2 ≤ Π‖s (PTCn).

However, we stress that this does not imply that the sustained space complexity
of PTCn is large. In fact, by inspection one can easily verify that depth(PTCn) ∈
O(n/ log n) so we have Πss(PTCn, s) ∈ O(n/ log n) for any space parameter
s > 0. Nevertheless, one of the core lemmas from [PTC76] will be very use-
ful in our proofs. In particular, PTCn contains O(n/ log n) source nodes (as
illustrated in Figure 1a) and [PTC76] proved that for any sequential pebbling
P = (P0, . . . , Pt) ∈ ΠPTCn we can find an interval [i, j] ⊆ [t] during which
Ω(n/ log n) sources are (re)pebbled and at least Ω(n/ log n) pebbles are always
on the graph.

6 Furthermore, even if we restrict our attention to pebblings which finish in time

O(n) we still have Πss (Gn, f(n)) ≤ g(n) whenever f(n)g(n) ∈ ω
(
n2 log logn

logn

)
and

indeg(Gn) ∈ O(1). In particular, Alwen and Blocki [AB16] showed that for any Gn

with indeg(Gn) ∈ O(1) then there is a pebbling P = (P0, . . . , Pn) ∈ Π
‖
Gn

with

Π
‖
cc(P) ∈ O

(
n2 log logn

logn

)
. By contrast, the generic pebbling [HPV77] of any DAG

with indeg ∈ O(1) in space O (n/ logn) can take exponentially long.

As Theorem 2 states that the same result holds for all parallel pebblings

P ∈ Π
‖
PTCn

. Since Paul et al. [PTC76] technically only considered sequential
black pebblings we include the straightforward proof of Theorem 2 in the full
version of this paper for completeness [ABP18]. Briefly, to prove Theorem 2 we
simply consider the sequential transform seq(P) = (Q0, . . . , Qt′) ∈ ΠPTCn of the
parallel pebbling P . Since seq(P) is sequential we can find an interval [i′, j′] ⊆ [t′]
during whichΩ(n/ log n) sources are (re)pebbled and at leastΩ(n/ log n) pebbles
are always on the graph Gn. We can then translate [i′, j′] to a corresponding
interval [i, j] ⊆ [t] during which the same properties hold for P .

Theorem 2. There is a family of DAGs {PTCn = (Vn = [n], En)}∞n=1 with
indeg (PTCn) = 2 with the property that for some positive constants c1, c2, c3 > 0
such that for each n ≥ 1 the set S = {v ∈ [n] : parents(v) = ∅} of sources of
PTCn has size |S| ≤ c1n/ log n and for any legal pebbling P = (P1, . . . , Pt) ∈
P‖PTCn there is an interval [i, j] ⊆ [t] such that (1)

∣∣∣S ∩⋃jk=i Pk \ Pi−1∣∣∣ ≥
c2n/ log n i.e., at least c2n/ log n nodes in S are (re)pebbled during this interval,
and (2) ∀k ∈ [i, j], |Pk| ≥ c3n/ log n i.e., at least c3n/ log n pebbles are always
on the graph.

One of the key remaining challenges to establishing high sustained space com-
plexity is that the interval [i, j] we obtain from Theorem 2 might be very short
for parallel black pebblings. For sequential pebblings it would take Ω(n/ log n)
steps to (re)pebble Ω(n/ log n) source nodes since we can add at most one new
pebble in each round. However, for parallel pebblings we cannot rule out the
possibility that all Ω(n/ log n) sources were pebbled in a single step!

A first attempt at a fix is to modify PTCn by overlaying a path of length
Ω(n) on top of these Ω(n/ log n) source nodes to ensure that the length of the
interval j − i + 1 is sufficiently large. The hope is that it will take now at least
Ω(n) steps to (rep)pebble any subset of Ω(n/ log n) of the original sources since
these nodes will be connected by a path of length Ω(n). However, we do not
know what the pebbling configuration looks like at time i − 1. In particular, if
Pi−1 contained just

√
n of the nodes on this path then the it would be possible

to (re)pebble all nodes on the path in at most O (
√
n) steps. This motivates our

second technical ingredient: extremely depth-robust graphs.

Technical Ingredient 2: Extremely Depth-Robust Graphs Our second
ingredient is a family {Dε

n}∞n=1 of highly depth-robust DAGs with n nodes and
indeg(Dn) ∈ O(log n). In particular, Dε

n is (e, d)-depth robust for any e + d ≤
n(1−ε). We show how to construct such a family {Dε

n}∞n=1 for any constant ε > 0
in Section 4. Assuming for now that such a family exists we can overlay Dm over
the m = mn ≤ c1n/ log n sources of PTCn. Since Dε

m is highly depth-robust it
will take at least c2n/ log n − εm ≥ c2n/ log n − εc1n/ log n ∈ Ω(n/ log n) steps
to pebble these c2n/ log n sources during the interval [i, j].

Overlaying Dε
m over the m ∈ O(n/ log(n)) sources of PTCn yields a DAG

G with O(n) nodes, indeg(G) ∈ O(log n) and Π
‖
ss (G, c4n/ log n) ≥ c5n/ log n

for some constants c4, c5 > 0. While this is progress it is still a weaker result
than Theorem 1 which promised a DAG G with O(n) nodes, indeg(G) = 2

and Π
‖
ss (G, c4n/ log n) ≥ c5n for some constants c4, c5 > 0. Thus, we need to

introduce a third technical ingredient: indegree reduction.

Technical Ingredient 3: Indegree Reduction To ensure indeg(Gn) = 2 we
instead apply indegree reduction algorithm from Lemma 1 to Dε

m to obtain a
graph Jεm with 2mδ ∈ O(n) nodes [2δm] and indeg(Jεm) = 2 before overlaying
— here δ = indeg(Dε

m). This process is illustrated in Figure 1b. We then obtain
our final construction Gn, illustrated in Figure 1, by associating the m sources
of PTCn with the nodes {2δv : v ∈ [m]} in Jεm, where ε > 0 is fixed to be some
suitably small constant.

It is straightforward to show that Jεm is (e, δd)-depth robust for any e+ d ≤
(1− ε)m. Thus, it would be tempting that it will take Ω(n) steps to (re)pebble
c2n/ log n sources during the interval [i, j] we obtain from Theorem 2. However,
we still run into the same problem: In particular, suppose that at some point in
time k we can find a set T ⊆ {2vδ : v ∈ [m]} \ Pk with |T | ≥ c2n/ log n (e.g., a
set of sources in PTCn) such that the longest path running through T in Jεm−Pk
has length less than c5n. If the interval [i, j] starts at time i = k + 1 then we
cannot ensure that it will take time ≥ c5n to (re)pebble these c2n/ log n source
nodes.

Claim 1 addresses this challenge directly. If such a problematic time k exists

then Claim 1 implies that we must have Π
‖
ss (P,Ω(n/ log n))) ∈ Ω(n). At a high

level the argument proceeds as follows: suppose that we find such a problem
time k along with a set T ⊆ {2vδ : v ∈ [m]} \ Pk with |T | ≥ c2n/ log n such
that depth (Jεm[T]) ≤ c5n. Then for any time r ∈ [k − c5n, k] we know that
the the length of the longest path running through T in Jεm − Pr is at most
depth (Jεm[T]− Pr) ≤ c5n + (k − r) ≤ 2c5n since the depth can decrease by at
most one each round. We can then use the extreme depth-robustness of Dε

m

and the construction of Jεm to argue that |Pr| = Ω(n/ log n) for each r ∈ [k −
c5n, k]. Finally, if no such problem time k exists then the interval [i, j] we obtain
from Theorem 2 must have length at least i − j ≥ c5n. In either case we have

Π
‖
ss (P,Ω(n/ log n))) ≥ Ω(n).

Proof of Theorem 1. We begin with the family of DAGs {PTCn}∞n=1 from The-
orem 2. Fixing PTCn = ([n], En) we let S = {v ∈ [n] : parents(v) = ∅} ⊆ V
denote the sources of this graph and we let c1, c2, c3 > 0 be the constants from
Theorem 2. Let ε ≤ c2/(4c1). By Theorem 3 we can find a depth-robust DAG
Dε
|S| on |S| nodes which is (a|S|, b|S|)-DR for any a + b ≤ 1 − ε with indegree

c′ log n ≤ δ = indeg(D) ≤ c′′ log(n) for some constants c′, c′′. We let Jε|S| denote

the indegree reduced version of Dε
|S| from Lemma 1 with 2|S|δ ∈ O(n) nodes and

indeg = 2. To obtain our DAG Gn from Jεn and PTCn we associate each of the
S nodes 2vδ in Jεn with one of the nodes in S. We observe that Gn has at most
2|S|δ+n ∈ O(n) nodes and that indeg(G) ≤ max {indeg(PTCn), indeg (Jεn)} = 2
since we do not increase the indegree of any node in Jεn when overlaying and

(a) PTCn: a superconcentrator [PTC76] with m = Ω(n/ logn) sources and

sinks and maximum space complexity Π
‖
s (PTCn) ∈ Ω

(
n

logn

)
.

(b) Indegree Recution transforms ε-extreme depth robust graph Dε
m with

m nodes and indeg (Dε
m) ∈ O(logn) into indegree reduced graph Jεm with

2indeg (Dε
m)×m ∈ O(n) nodes and indeg (Jεm) = 2.

(c) Final Construction Gn. Overlay m nodes Jεm with m sources in PTCn.

Fig. 1: Building Gn with Π
‖
ss

(
Gn,

cn
logn

)
∈ Ω(n) for some constant c > 0.

in Gn do not increase the indegree of any nodes other than the sources S from
PTCn (these overlayed nodes have indegree at most 2 in Jεn).

Let P = (P0, . . . , Pt) ∈ P‖G be given and observe that by restricting P ′i =

Pi ∩ V (PTCn) ⊆ Pi we have a legal pebbling P ′ = (P ′0, . . . , P
′
t) ∈ P

‖
PTCn

for
PTCn. Thus, by Theorem 2 we can find an interval [i, j] during which at least
c2n/ log n nodes in S are (re)pebbled and ∀k ∈ [i, j] we have |Pk| ≥ c3n/ log n.

We use T = S ∩
⋃j
x=i Px − Pi−1 to denote the source nodes of PTCn that are

(re)pebbled during the interval [i, j]. We now set c4 = c2/4 and c5 = c2c
′/4 and

consider two cases:

Case 1: We have depth (ancestorsGn−Pi(T)) ≥ |T |δ/4. In other words at
time i there is an unpebbled path of length ≥ |T |δ/4 to some node in T . In
this case, it will take at least j − i ≥ |T |δ/4 steps to pebble T so we will
have at least |T |δ/4 ∈ Ω(n) steps with at least c3n/ log n pebbles. Because
c5 = c2c

′/4 it follows that |T |δ/4 ≥ c2c
′n ≥ c5n. Finally, since c4 ≤ c2 we have

Πss (P, c4n/ log n) ≥ c5n.

Case 2: We have depth (ancestorsGn−Pi(T)) < |T |δ/4. In other words at
time i there is no unpebbled path of length ≥ |T |δ/4 to any node in T . Now
Claim 1 directly implies that Πss (P, |T | − ε|S| − |T |/2)) ≥ δ|T |/4. This in turn
implies that Πss (P, (c2/2)n/(log n)− ε|S|) ≥ δc2n/(2 log n). We observe that
δc2n/(2 log n) ≥ c5n since, we have c5 = c2c

′/4. We also observe that (c2/2)n/ log n−
ε|S| ≥ (c2/2 − εc1)n/ log n ≥ (c2/2 − c2/4)n/ log n ≥ c2n/(4 log n) = c4n since
|S| ≤ c1n/ log n, ε ≤ c2/(4c1) and c4 = c2/4. Thus, in this case we also have

Πss (P, c4n/ log n) ≥ c5n, which implies that Π
‖
ss (Gn, c4n/ log n) ≥ c5n. �

Claim 1 Let Dε
n be an DAG with nodes V (Dε

n) = [n], indegree δ = indeg (Dε
n)

that is (e, d)-depth robust for all e, d > 0 such that e + d ≤ (1 − ε)n, let
Jεn be the indegree reduced version of Dε

n from Lemma 1 with 2δ nodes and

indeg (Jεn) = 2, let T ⊆ [n] and let P = (P1, . . . , Pt) ∈ P‖Jεn,∅ be a (pos-

sibly incomplete) pebbling of Jεn. Suppose that during some round i we have
depth

(
ancestorsJεn−Pi

(⋃
v∈T {2δv}

))
≤ cδ|T | for some constant 0 < c < 1

2 . Then
Πss (P, |T | − εn− 2c|T |)) ≥ cδ|T |.

Proof of Claim 1. For each time step r we let Hr = ancestorsJεn−Pr
(⋃

v∈T {2δv}
)

and let k < i be the last pebbling step before i during which depth(Gk) ≥ 2c|T |δ.
Observe that k − i ≥ depth(Hk) − depth(Hi) ≥ cnδ since we can decrease the
length of any unpebbled path by at most one in each pebbling round. We also
observe that depth(Hk) = c|T |δ since depth(Hk)− 1 ≤ depth(Hk+1) < 2c|T |δ.

Let r ∈ [k, i] be given then, by definition of k, we have depth (Hr) ≤ 2c|T |δ.
Let P ′r = {v ∈ V (Dε

n) : Pr ∩ [2δ(v − 1) + 1, 2δv] 6= ∅} be the set of nodes
v ∈ [n] = V (Dε

n) such that the corresponding path 2δ(v − 1) + 1, . . . , 2δv in Jεn
contains at least one pebble at time r. By depth-robustness of Dε

n we have

depth (Dε
n[T]− P ′r) ≥ |T | − |P ′r| − εn . (1)

On the other hand, exploiting the properties of the indegree reduction from
Lemma 1, we have

depth (Dε
n[T]− P ′r) δ ≤ depth (Hr) ≤ 2c|T |δ . (2)

Combining Equation 1 and Equation 2 we have

|T | − |P ′r| − εn ≤ depth (Dε
n[T]− P ′r) ≤ 2c|T | .

It immediately follows that |Pr| ≥ |P ′r| ≥ |T | − 2c|T | − εn for each r ∈ [k, i] and,

therefore, Π
‖
ss (P, |T | − εn− 2c|T |) ≥ cδ|T |. �

Remark 3. (On the Explicitness of Our Construction) Our construction of a fam-
ily of DAGs with high sustained space complexity is explicit in the sense that
there is a probabilistic polynomial time algorithm which, except with very small
probability, outputs an n node DAG G that has high sustained space complexity.
In particular, Theorem 1 relies on an explicit construction of [PTC76], and the
extreme depth-robust DAGs from Theorem 3. The construction of [PTC76] in
turn uses an object called superconcentrators. Since we have explicit construc-
tions of superconcentrators [GG81] the construction of [PTC76] can be made
explicit. While the proof of the existence of a family of extremely depth-robust
DAGs is not explicit the proof uses a probabilistic argument and can be adapted
to obtain a probabilistic polynomial time which, except with very small prob-
ability, outputs an n node DAG G that is extremely depth-robust. In practice,
however it is also desirable to ensure that there is a local algorithm which, on
input v, computes the set parents(v) in time polylog(n). It is an open question
whether any DAG G with high sustained space complexity allows for highly
efficient computation of the set parents(v).

4 Better Depth-Robustness

In this section we improve on the original analysis of Erdos et al. [EGS75], who
constructed a family of DAGs {Gn}∞n=1 with indeg(Gn) ∈ O(log n) such that each
DAG Gn is (e = Ω(n), d = Ω(n))-depth robust. Such a DAG Gn is not sufficient
for us since we require that the subgraph Gn[T] is also highly depth robust for
any sufficiently large subset T ⊆ Vn of nodes e.g., for any T such that |T | ≥
n/1000. For any fixed constant ε > 0 [MMV13] constructs a family of DAGs
{Gεn}∞n=1 which is (αn, βn)-depth robust for any positive constants α, β such
that α+β ≤ 1−ε but their construction has indegree O

(
log2 n · polylog (log n)

)
.

By contrast, our results in the previous section assumed the the existence of such
a family of DAGs with indeg (Gεn) ∈ O(log n).

In fact our family of DAGs is essentially the same as [EGS75] with one minor
modification to make the construction for for all n > 0. Our contribution in this
section is an improved analysis which shows that the family of DAGs {Gεn}∞n=1

with indegree O (log n) is (αn, βn)-depth robust for any positive constants α, β
such that α+ β ≤ 1− ε.

We remark that if we allow our family of DAGs to have indeg (Gεn) ∈ O(log n log∗ n)
then we can eliminate the dependence on ε entirely. In particular, we can con-
struct a family of DAGs {Gn}∞n=1 with indeg(Gn) = O(log n log∗ n) such that
for any positive constants such that α + β < 1 the DAG Gn is (αn, βn)-depth
robust for all suitably large n.

Theorem 3. Fix ε > 0 then there exists a family of DAGs {Gεn}∞n=1 with
indeg (Gεn) = O(log n) that is (αn, βn)-depth robust for any constants α, β such
that α+ β < 1− ε.

The proof of Theorem 3 relies on Lemma 4, Lemma 5 and Lemma 6. We say
that G is a δ-local expander if for every node x ∈ [n] and every r ≤ x, n− x and
every pair A ⊆ Ir(x)

.
= {x− r − 1, . . . , x}, B ⊆ I∗r (x)

.
= {x+ 1, . . . , x+ r} with

size |A| , |B| ≥ δr we have A×B ∩E 6= ∅ i.e., there is a directed edge from some
node in A to some node in B. Lemma 4 says that for any constant δ > 0 we can
construct a family of DAGs {LEδn}∞n=1 with indeg = O(log n) such that each LEδn
is a δ-local expander. Lemma 4 essentially restates [EGS75, Claim 1] except that
we require that LEn is a δ-local expander for all n > 0 instead of for n sufficiently
large. Since we require a (very) minor modification to achieve δ-local expansion
for all n > 0 we include the proof of Lemma 4 in the full version [ABP18] for
completeness.

Lemma 4. [EGS75] Let δ > 0 be a fixed constant then there is a family of DAGs
{LEδn}∞n=1 with indeg ∈ O(log n) such that each LEδn is a δ-local expander.

While Lemma 4 essentially restates [EGS75, Claim 1], Lemma 5 and Lemma 6
improve upon the analysis of [EGS75]. We say that a node x ∈ [n] is γ-good
under a subset S ⊆ [n] if for all r > 0 we have |Ir(x)\S| ≥ γ |Ir(x)| and
|I∗r (x)\S| ≥ γ |I∗r (x)|. Lemma 5 is similar to [EGS75, Claim 3], which also states
that all γ-good nodes are connected by a directed path in LEn − S. However,
we stress that the argument of [EGS75, Claim 3] requires that γ ≥ 0.5 while
Lemma 5 has no such restriction. This is crucial to prove Theorem 3 where we
will select γ to be very small.

Lemma 5. Let G = (V = [n], E) be a δ-local expander and let x < y ∈ [n] both
be γ-good under S ⊆ [n] then if δ < min{γ/2, 1/4} then there is a directed path
from node x to node y in G− S.

Lemma 6 shows that almost all of the remaining nodes in LEδn − S will be
γ-good. It immediately follows that LEn − S contains a directed path running
through almost all of the nodes [n] \ S. While Lemma 6 may appear similar to
[EGS75, Claim 2] at first glance, we again stress one crucial difference. The proof
of [EGS75, Claim 2] is only sufficient to show that at least n − 2|S|/(1 − γ) ≥
n− 2|S| nodes are γ-good. At best this would allow us to conclude that LEδn is
(e, n−2e)-depth robust. Together Lemma 6 and Lemma 5 imply that if LEδn is a

δ-local expander (δ < min{γ/2, 1/4}) then LEδn is
(
e, n− e 1+γ1−γ

)
-depth robust.

Lemma 6. For any DAG G = ([n], E) and any subset S ⊆ [n] of nodes at least
n− |S| 1+γ1−γ of the remaining nodes in G are γ-good with respect to S.

Proof of Theorem 3. By Lemma 4, for any δ > 0, there is a family of DAGs

{LEδn}∞n=1 with indeg
(
LEδn

)
∈ O(log n) such that for each n ≥ 1 the DAG LEδn

is a δ-local expander. Given ε ∈ (0, 1] we will set Gεn = LEδn with δ = ε/10 < 1/4
so that Gεn is a (ε/10)-local expander. We also set γ = ε/4 > 2δ. Let S ⊆ Vn
of size |S| ≤ e be given. Then by Lemma 6 at least n − e 1+γ1−γ of the nodes are
γ-good and by Lemma 5 there is a path connecting all γ-good nodes in Gεn − S.

Thus, the DAG Gεn is
(
e, n− e 1+γ1−γ

)
-depth robust for any e ≤ n. In particular,

if α = e/n and β = 1 − α 1+γ
1−γ then the graph is (αn, βn)-depth robust. Finally

we verify that

n− αn− βn = −e+ eα
1 + γ

1− γ
= e

2γ

1− γ
≤ n ε

2− ε/2
≤ εn .

�
The proof of Lemma 5 follows by induction on the distance |y − x| between

γ-good nodes x and y. Our proof extends a similar argument from [EGS75] with
one important difference. [EGS75] argued inductively that for each good node
x and for each r > 0 over half of the nodes in I∗r (x) are reachable from x and
that x can be reached from over half of the nodes in Ir(x) — this implies that
y is reachable from x since there is at least one node z ∈ I∗|y−x|(x) = I|y−x|(y)
such that z can be reached from x and y can be reached from z in G − S.
Unfortunately, this argument inherently requires that γ ≥ 0.5 since otherwise
we may have at least |I∗r (x) ∩ S| ≥ (1 − γ)r nodes in the interval Ir(x) that
are not reachable from x. To get around this limitation we instead show, see
Claim 2, that more than half of the nodes in the set I∗r (x)\S are reachable from
x and that more than half of the nodes in the set Ir(x) \S are reachable from x
— this still suffices to show that x and y are connected since by the pigeonhole
principle there is at least one node z ∈ I∗|y−x|(x) \ S = I|y−x|(y) \ S such that z
can be reached from x and y can be reached from z in G− S.

Claim 2 Let G = (V = [n], E) be a δ-local expander, let x ∈ [n] be a γ-good
node under S ⊆ [n] and let r > 0 be given. If δ < γ/2 then all but 2δr of the
nodes in I∗r (x)\S are reachable from x in G − S. Similarly, x can be reached
from all but 2δr of the nodes in Ir(x)\S. In particular, if δ < 1/4 then more
than half of the nodes in I∗r (x)\S (resp. in Ir(x)\S) are reachable from x (resp.
x is reachable from) in G− S.

Proof. Claim 2 We prove by induction that (1) if r = 2kδ−1 for some integer
k then all but δr of the nodes in I∗r (x)\S are reachable from x and, (2) if
2k−1 < r < 2kδ−1 then then all but 2δr of the nodes in I∗r (x)\S are reachable
from x. For the base cases we observe that if r ≤ δ−1 then, by definition of a
δ-local expander, x is directly connected to all nodes in I∗r (x) so all nodes in
Ir(x)\S are reachable.

Now suppose that claims (1) and (2) holds for each r′ ≤ r = 2kδ−1. Then
we show that the claim holds for each r < r′ ≤ 2r = 2k+1δ−1. In particular,
let A ⊆ I∗r (x)\S denote the set of nodes in I∗r (x)\S that are reachable from x
via a directed path in G− S and let B ⊆ I∗r′−r(x+ r)\S be the set of all nodes
in I∗r′−r(x + r)\S that are not reachable from x in G− S. Clearly, there are no
directed edges from A to B in G and by induction we have |A| ≥ |I∗r (x)\S|−δr ≥
r(γ − δ) > δr. Thus, by δ-local expansion |B| ≤ rδ. Since, |I∗r (x)\(S ∪A)| ≤ δr
at most |I∗r′(x)\(S ∪A)| ≤ |B| + δr ≤ 2δr ≤ 2δr′ nodes in I∗2r(x)\S are not
reachable from x in G− S. Since, r′ > r the number of unreachable nodes is at
most 2δr ≤ 2δr′, and if r′ = 2r then the number of unreachable nodes is at most
2δr = δr′.

A similar argument shows that x can be reached from all but 2δr of the nodes
in Ir(x)\S in the graph G− S. �

Proof of Lemma 5. By Claim 2 for each r we can reach |I∗r (x)\S| − δr =

|I∗r (x)\S|
(

1− δ |I
∗
r (x)|

|I∗r (x)\S|

)
≥ |I∗r (x)\S|

(
1− δ

γ

)
> 1

2 |I
∗
r (x)\S| of the nodes in

I∗r (x)\S from the node x in G − S. Similarly, we can reach y from more than
1
2 |Ir(x)\S| of the nodes in Ir(y)\S. Thus, by the pigeonhole principle we can
find at least one node z ∈ I∗|y−x|(x)\S = I|y−x|(y)\S such that z can be reached
from x and y can be reached from z in G− S. �

Lemma 6 shows that almost all of the nodes in G− S are γ-good. The proof
is again similar in spirit to an argument of [EGS75]. In particular, [EGS75]
constructed a superset T of the set of all γ-bad nodes and then bound the
size of this superset T . However, they only prove that BAD ⊂ T ⊆ F ∪ B
where |F |, |B| ≤ |S|/(1 − γ). Thus, we have |BAD| ≤ |T | ≤ 2|S|/(1 − γ).
Unfortunately, this bound is not sufficient for our purposes. In particular, if
|S| = n/2 then this bound does not rule out the possibility that |BAD| = n so
that none of the remaining nodes are good. Instead of bounding the size of the
superset T directly we instead bound the size of the set T \ S observing that

|BAD| ≤ |T | ≤ |S|+ |T \S|. In particular, we can show that |T \S| ≤ 2γ|S|
1−γ . We

then have |GOOD| ≥ n− |T | = n− |S| − |T\S| ≥ n− |S| − 2γ|S|
1−γ .

Proof of Lemma 6. We say that a γ-bad node x has a forward (resp. backwards)
witness r if |I∗r (x)\S| > γr. Let x∗1, r

∗
1 be the lexicographically first γ-bad node

with a forward witness. Once x∗1, r
∗
1 , . . . , x

∗
k, r
∗
k have been define let x∗k+1 be the

lexicographically least γ-bad node such that x∗k+1 > x∗k + r∗k and x∗k+1 has a
forward witness r∗k+1 (if such a node exists). Let x∗1, r

∗
1 , . . . , x

∗
k, r
∗
k∗ denote the

complete sequence, and similarly define a maximal sequence x1, r1, . . . , xk, rk of
γ-bad nodes with backwards witnesses such that xi − ri > xi+1 for each i.

Let

F =

k∗⋃
i=1

I∗r∗i (x∗i) , and B =

k⋃
i=1

Iri (xi)

Note that for each i ≤ k∗ we have
∣∣∣I∗r∗i (x∗i) \S

∣∣∣ ≤ γr. Similarly, for each i ≤ k we

have |Iri (xi) \S| ≤ γr. Because the sets I∗r∗i (x∗i) are all disjoint (by construction)

we have

|F\S| ≤ γ
k∗∑
i=1

r∗i = γ|F | .

Similarly, |B\S| ≤ γ|B|. We also note that at least (1−γ)|F | of the nodes in |F |
are in |S|. Thus, |F |(1 − γ) ≤ |S| and similarly |B|(1 − γ) ≤ |S|. We conclude

that |F\S| ≤ γ|S|
1−γ and that |B\S| ≤ γ|S|

1−γ .

To finish the proof let T = F∪B = S∪(F\S)∪(B\S). Clearly, T is a superset

of all γ-bad nodes. Thus, at least n − |T | ≥ n − |S|
(

1 + 2γ
1−γ

)
= n − |S| 1+γ1−γ

nodes are good.
We also remark that Lemma 4 can be modified to yield a family of DAGs

{LEn}∞n=1 with indeg(LEn) ∈ O (log n log∗ n) such that each LEn is a δn local
expander for some sequence {δn}∞n=1 converging to 0. We can define a sequence
{γn}∞n=1 such that 1+γn

1−γn converges to 1 and 2γn > δn for each n. Lemma 4 and

Lemma 6 then imply that each Gn is
(
e, n− e 1+γn1−γn

)
-depth robust for any e ≤ n.

4.1 Additional Applications of Extremely Depth Robust Graphs

We now discuss additional applications of Theorem 3.

Application 1: Improved Proofs of Sequential Work As we previously
noted Mahmoody et al. [MMV13] used extremely depth-robust graphs to con-
struct efficient Proofs-Of-Sequential Work. In a proof of sequential work a prover
wants to convince a verifier that he computed a hash chain of length n involving
the input value x without requiring the verifier to recompute the entire hash
chain. Mahmoody et al. [MMV13] accomplish this by requiring the prover com-
putes labels L1, . . . , Ln by “pebbling” an extremely depth-robust DAG Gn e.g.,
Li+1 = H (x‖Lv1‖ . . . ‖Lvδ) where {v1, . . . , vδ} = parents(i + 1) and H is a ran-
dom oracle. The prover then commits to the labels L1, . . . , Ln using a Merkle
Tree and sends the root of the tree to the verifier who can audit randomly chosen
labels e.g., the verifier audits label Li+1 by asking the prover to reveal the values
Li+1 and Lv for each v ∈ parents(i + 1). If the DAG is extremely-depth robust
then either a (possibly cheating) prover make at least (1− ε)n sequential queries
to the random oracle, or the the prover will fail to convince the verifier with high
probability [MMV13].

We note that the parameter δ = indeg(Gn) is crucial to the efficiency of
the Proofs-Of-Sequential Work protocol since each audit challenge requires the
prover to reveal δ + 1 labels in the Merkle tree. The DAG Gn from [MMV13]
has indeg(Gn) ∈ O

(
log2 n · polylog (log n)

)
while our DAG Gn from Theorem 3

has maximum indegree indeg(Gn) ∈ O (log n). Thus, we can improve the com-
munication complexity of their Proofs-Of-Sequential Work protocol by a factor
of Ω(log n · polylog log n). However, Cohen and Pietrzak [CP18] found an alter-
nate construction of a Proofs-Of-Sequential Work protocol that does not involve
depth-robust graphs and which would almost certainly be more efficient than
either of the above constructions in practice.

Application 2: Graphs with Maximum Cumulative Cost We now show
that our family of extreme depth-robust DAGs has the highest possible cumu-
lative pebbling cost even in terms of the constant factors. In particular, for any
constant η > 0 and ε < η2/100 the family {Gεn}∞n=1 of DAGs from Theorem 3 has

Π
‖
cc (Gεn) ≥ n2(1−η)

2 and indeg(Gn) ∈ O(log n). By comparison, Π
‖
cc(Gn) ≤ n2+n

2
for any DAG G ∈ Gn — even if G is the complete DAG.

Previously, Alwen et al. [ABP17] showed that any (e, d)-depth robust DAG G

has Π
‖
cc(G) > ed which implies that there is a family of DAG Gn with Π

‖
cc(Gn) ∈

Ω
(
n2
)

[EGS75]. We stress that we need new techniques to prove Theorem 4.
Even if a DAG G ∈ Gn were (e, n − e)-depth robust for every e ≥ 0 (the only
DAG actually satisfying this property is the compete DAG Kn) [ABP17] only

implies that Π
‖
cc(G) ≥ maxe≥0 e(n− e) = n2/4. Our basic insight is that at time

ti, the first time a pebble is placed on node i in Gεn, the node i + γi is γ-good
and is therefore reachable via an undirected path from all of the other γ-good
nodes in [i]. If we have |Pti | < (1− η/2) i then we can show that at least Ω(ηi)
of the nodes in [i] are γ-good. We can also show that these γ-good nodes form a
depth robust subset and will cost Ω

(
(η − ε)2i2

)
to repebble them by [ABP17].

Since, we would need to pay this cost by time ti+γi it is less expensive to simply
ensure that |Pti | > (1− η/2) i. We refer an interested reader to Appendix A for
a complete proof.

Theorem 4. Let 0 < η < 1 be a positive constant and let ε = η2/100 then
the family {Gεn}∞n=1 of DAGs from Theorem 3 has indeg (Gεn) ∈ O (log n) and

Π
‖
cc (Gηn) ≥ n2(1−η)

2 .

Application 3: Cumulative Space in Parallel-Black Sequential-White
Pebblings The black-white pebble game [CS76] was introduced to model nonde-
terministic computations. White pebbles correspond to nondeterministic guesses
and can be placed on any vertex at any time. However, these pebbles can only
be removed from a node when all parents of the node contain a pebble (i.e.,
when we can verify the correctness of this guess). Formally, black white-pebbling
configuration Pi =

(
PWi , PBi

)
of a DAG G = ([n], E) consists of two subsets

PWi , PBi ⊆ [n] where PBi (resp. PWi) denotes the set of nodes in G with black
(resp. white) pebbles on them at time i. For a legal parallel-black sequential-
white pebbling P = (P0, . . . , Pt) ∈ PBWG we require that we start with no peb-
bles on the graph i.e., P0 = (∅, ∅) and that all white pebbles are removed by
the end i.e., PWt = ∅ so that we verify the correctness of every nondeterministic
guess before terminating. If we place a black pebble on a node v during round
i+ 1 then we require that all of v’s parents have a pebble (either black or white)
on them during round i i.e., parents

(
PBi+1 \ PBi

)
⊆ PBi ∪ PWi . In the Parallel-

Black Sequential-White model we require that at most one new white pebble is
placed on the DAG in every round i.e.,

∣∣PWi \ PWi−1∣∣ ≤ 1 while no such restrict
applies for black pebbles.

We can use our construction of a family of extremely depth-robust DAG
{Gεn}∞n=1 to establish new upper and lower bounds for bounds for parallel-black
sequential white pebblings.

Alwen et al. [AdRNV17] previously showed that in the parallel-black sequen-
tial white pebbling model an (e, d)-depth-robust DAG G requires cumulative

space at least ΠBW
cc (G)

.
= minP∈PBWG

∑t
i=1

∣∣PBi ∪ PWi ∣∣ ∈ Ω (e√d) or at least

≥ ed in the sequential black-white pebbling game. In this section we show that
any (e, d)-reducible DAG admits a parallel-black sequential white pebbling with
cumulative space at most O(e2 +dn) which implies that any DAG with constant
indegree admits a parallel-black sequential white pebbling with cumulative space

at most O(n
2 log2 logn
log2 n

) since any DAG is (n log log n/ log n, n/ log2 n)-reducible.

We also show that this bound is essentially tight (up to log log n factors) using
our construction of extremely depth-robust DAGs. In particular, by applying in-
degree reduction to the family {Gεn}∞n=1, we can find a family of DAGs {Jεn}∞n=1

with indeg (Jεn) = 2 such that any parallel-black sequential white pebbling has

cumulative space at least Ω(n2

log2 n
). To show this we start by showing that any

parallel-black sequential white pebbling of an extremely depth-robust DAG Gεn,
with indeg(G) ∈ O(log n), has cumulative space at least Ω(n2). We use Lemma 1
to reduce the indegree of the DAG and obtain a DAG Jεn with n′ ∈ O(n log n)
nodes and indeg(G) = 2, such that any parallel-black sequential white pebbling

of Jεn has cumulative space at least Ω(n2

log2 n
).

To the best of our knowledge no general upper bound on cumulative space
complexity for parallel-black sequential-white pebblings was known prior to our
work other than the parallel black-pebbling attacks of Alwen and Blocki [AB16].
This attack, which doesn’t even use the white pebbles, yields an upper bound
of O(ne+n

√
nd) for (e, d)-reducible DAGs and O(n2 log log n/ log n) in general.

One could also consider a “parallel-white parallel-black” pebbling model in which
we are allowed to place as many white pebbles as he would like in each round.
However, this model admits a trivial pebbling. In particular, we could place white
pebbles on every node during the first round and remove all of these pebbles in
the next round e.g., P1 = (∅, V) and P2 = (∅, ∅). Thus, any DAG has cumulative
space complexity θ(n) in the “parallel-white parallel-black” pebbling model.

Theorem 5 shows that (e, d)-reducible DAG admits a parallel-black sequen-
tial white pebbling with cumulative space at most O(e2 + dn). The basic peb-
bling strategy is reminiscent of the parallel black-pebbling attacks of Alwen and
Blocki [AB16]. Given an appropriate depth-reducing set S we use the first e = |S|
steps to place white pebbles on all nodes in S. Since G − S has depth at most
d we can place black pebbles on the remaining nodes during the next d steps.
Finally, once we place pebbles on every node we can legally remove the white
pebbles. A formal proof of Theorem 5 can be found in the full version of this
paper [ABP18].

Theorem 5. Let G = (V,E) be (e, d)-reducible then ΠBW
cc (G) ≤ e(e+1)

2 + dn.
In particular, for any DAG G with indeg(G) ∈ O(1) we have ΠBW

cc (G) ∈

O

((
n log logn

logn

)2)
.

Theorem 6 shows that our upper bound is essentially tight. In a nut-shell
their lower bound was based on the observation that for any integers i, d the
DAG G −

⋃
j Pi+jd has depth at most d since any remaining path must have

been pebbled completely in time d— if G is (e, d)-depth robust this implies that∣∣∣⋃j Pi+jd∣∣∣ ≥ e. The key difficulty in adapting this argument to the parallel-black

sequential white pebbling model is that it is actually possible to pebble a path of
length d in O(

√
d) steps by placing white pebbles on every interval of length

√
d.

This is precisely why Alwen et al. [AdRNV17] were only able to establish the
lower bound Ω(e

√
d) for the cumulative space complexity of (e, d)-depth robust

DAGs — observe that we always have e
√
d ≤ n1.5 since e+ d ≤ n for any DAG

G. We overcome this key challenge by using extremely depth-robust DAGs.
In particular, we exploit the fact that extremely depth-robust DAGs are

“recursively” depth-robust. For example, if a DAG G is (e, d)-depth robust for
any e+d ≤ (1−ε)n then the DAG G−S is (e, d)-depth robust for any e+d ≤ (n−
|S|)− εn. Since G−S is still sufficiently depth-robust we can then show that for
some node x ∈ V (G−S) any (possibly incomplete) pebbling P = (P0, P1, . . . , Pt)
of G − S with P0 = Pt = (∅, ∅) either (1) requires t ∈ Ω(n) steps, or (2)
fails to place a pebble on x i.e. x /∈

⋃t
r=0

(
PW0 ∪ PBr

)
. By Theorem 3 it then

follows that there is a family of DAGs {Gεn}∞n=1 with indeg (Gεn) ∈ O (log n) and
ΠBW
cc (G) ∈ Ω(n2). If apply indegree reduction Lemma 1 to the family {Gεn}∞n=1

we obtain the family {Jεn}∞n=1 with indeg(Jεn) = 2 and O(n) nodes. A similar
argument shows that ΠBW

cc (Jεn) ∈ Ω(n2/ log2 n). A formal proof of Theorem 6
can be found in the full version of this paper [ABP18].

Theorem 6. Let G = (V = [n], E ⊃ {(i, i + 1) : i < n}) be (e, d)-depth-
robust for any e + d ≤ (1− ε)n then ΠBW

cc (G) ≥ (1/16− ε/2)n2. Furthermore,
if G′ = ([2nδ], E′) is the indegree reduced version of G from Lemma 1 then
ΠBW
cc (G′) ≥ (1/16− ε/2)n2. In particular, there is a family of DAGs {Gn}∞n=1

with indeg(Gn) ∈ O (log n) and ΠBW
cc (G) ∈ Ω(n2), and a separate family of

DAGs {Hn}∞n=1 with indeg(Hn) = 2 and ΠBW
cc (Hn) ∈ Ω

(
n2

log2 n

)
.

5 A Pebbling Reduction for Sustained Space Complexity

As an application of the pebbling results on sustained space in this section we
construct a new type of moderately hard function (MoHF) in the parallel ran-
dom oracle model pROM. In slightly more detail, we first fix the computational
model and define a particular notion of moderately hard function called sustained
memory-hard functions (SMHF). We do this using the framework of [AT17] so,
beyond the applications to password based cryptography, the results in [AT17]
for building provably secure cryptographic applications on top of any MoHF

can be immediately applied to SMHFs. In particular this results in a proof-of-
work and non-interactive proof-of-work where “work” intuitively means having
performed some computation entailing sufficient sustained memory. Finally we
prove a “pebbling reduction” for SMHFs; that is we show how to bound the
parameters describing the sustained memory complexity of a family of SMHFs
in terms of the sustained space of their underlying graphs.7

We note that the pebbling reduction below caries over almost unchanged
to the framework of [AS15]. That is by defining sustained space in the compu-
tational model of [AS15] similarly to the definition below a very similar proof
to that of Theorem 7 results the analogous theorem but for the [AT17] frame-
work. Never-the-less we believe the [AT17] framework to result in a more useful
definition as exemplified by the applications inherited from that work.

5.1 Defining Sustained Memory Hard Functions

We very briefly sketch the most important parts of the MoHF framework of [AT17]
which is, in turn, a generalization of the indifferentiability framework of [MRH04].

We begin with the following definition which describes a family of functions
that depend on a (random) oracle.

Definition 6 (Oracle functions). For (implicit) oracle set H, an oracle func-
tion f (·) (with domain D and range R), denoted f (·) : D → R, is a set of
functions indexed by oracles h ∈ H where each fh maps D → R.

Put simply, an MoHF is a pair consisting of an oracle family f (·) and an
honest algorithm N for evaluating functions in the family using access to a
random oracle. Such a pair is secure relative to some computational model M if
no adversary A with a computational device adhering to M (denoted A ∈ M)
can produce output which couldn’t be produced simply by called f (h) a limited
number of times (where h is a uniform choice of oracle from H). It is asumed that
algorithmN is computable by devices in some (possibly different) computational
model M̄ when given sufficent computational resources. Usually M is strictly
more powerful than M̄ reflecting the assumption that an adversary could have
a more powerful class of device than the honest party. For example, in this work
we will let model M̄ contain only sequential devices (say Turing machines which
make one call to the random oracle at a time) while M will also include parallel
devices.

In this work, both the computational models M and M̄ are parametrized by
the same space P. For each model, the choice of parameters fixes upperbounds
on the power of devices captured by that model; that is on the computational
resources available to the permitted devices. For example Ma could be all Turing
machines making at most a queries to the random oracle. The security of a given
moderatly hard function is parameterized by two functions α and β mapping the
parameter space for M to positive integers. Intuitively these functions are used
to provide the following two properties.

7 Effectively this does for SMHFs what [AT17] did for MHFs.

Completeness: To ensure the construction is even useable we require that N is
(computable by a device) in model Ma and that N can evaluate f (h) (when
given access to h) on at least α(a) distinct inputs.

Security: To capture how bounds on the resources of an adversary A limit
the ability of A to evalute the MoHF we require that the output of A when
running on a device in model Mb (and having access to the random oracle)
can be reproduced by some simulator σ using at most β(b) oracle calls to
f (h) (for uniform randomly sampled h←H.

To help build provably secure applications on top of MoHFs the framework
makes use of a destinguisher D (similar to the environment in the Universal
Composability[Can01] family of models or, more accurately, to the destinguisher
in the indifferentiability framework). The job of D is to (try to) tell a real world
interaction with N and the adversary A apart from an ideal world interaction
with f (h) (in place of N) and a simulator (in place of the adversary). Intuitivelly,
D’s access to N captures whatever D could hope to learn by interacting with
an arbitrary application making use of the MoHF. The definition then ensures
that even leveraging such information the adversary A can not produce anything
that could not be simulated (by simulator σ) to D using nothing more than a
few calls to f (h).

As in the above description we have ommited several details of the framework
we will also use a somewhat simplified notation. We denote the above described
real world execution with the pair (N ,A) and an ideal world execution where
D is permited c ∈ N calls to f (·) and simulator σ is permited d ∈ N calls to
f (h) with the pair (f (·), σ)c,d. To denote the statement that no D can tell an
interaction with (N ,A) apart one with (f (·), σ)c,d with more than probability ε
we write (N ,A) ≈ε (f (·), σ)c,d.

Finally, to accomadate honest parties with varying amounts of resources we
equip the MoHF with a hardness parameter n ∈ N. The following is the formal
security definition of a MoHF. Particular types of MoHF (such as the one we
define bellow for sustained memory complexity) differ in the precise notion of
computational model they consider. For further intution, a much more detailed
exposition of the framework and how the following definition can be used to
prove security for applications we refer to [AT17].

Definition 7 (MoHF security). Let M and M̄ be computational models with

bounded resources parametrized by P. For each n ∈ N, let f
(·)
n be an oracle

function and N (n, ·) be an algorithm (computable by some device in M̄) for

evaluating f
(·)
n . Let α, β : P × N → N, and let ε : P × P × N → R≥0. Then,

(f
(·)
n ,Nn)n∈N is a (α, β, ε)-secure moderately hard function family (for model

M) if

∀n ∈ N, r ∈ P,A ∈Mr ∃σ ∀l ∈ P : (N (n, ·),A) ≈ε(l,r,n) (f (·)n , σ)α(l,n),β(r,n) ,
(3)

The function family is asymptotically secure if ε(l, r, ·) is a negligible function
in the third parameter for all values of r, l ∈ P.

Sustained Space Constrained Computation. Next we define the honest and ad-
versarial computational models for which we prove the pebbling reduction. In
particular we first recall (a simplified version of) the pROM of [AT17]. Next
we define a notion of sustained memory in that model naturally mirroring the
notion of sustained space for pebbling. Thus we can parametrize the pROM by
memory threshold s and time t to capture all devices in the pROM with no more
sustained memory complexity then given by the choice of those parameters.

In more detail, we consider a resource-bounded computational device S . Let
w ∈ N. Upon startup, Sw-prom samples a fresh random oracle h←$ Hw with
range {0, 1}w. Now Sw-prom accepts as input a pROM algorithm A which is an
oracle algorithm with the following behavior.

A state is a pair (τ, s) where data τ is a string and s is a tuple of strings.
The output of step i of algorithm A is an output state σ̄i = (τi,qi) where qi =
[q1i , . . . , q

zi
i] is a tuple of queries to h. As input to step i+1, algorithm A is given

the corresponding input state σi = (τi, h(qi)), where h(qi) = [h(q1i), . . . , h(qzii)]
is the tuple of responses from h to the queries qi. In particular, for a given h and
random coins of A, the input state σi+1 is a function of the input state σi. The
initial state σ0 is empty and the input xin to the computation is given a special
input in step 1.

For a given execution of a pROM, we are interested in the following new
complexity measure parametrized by an integer s ≥ 0. We call an element of
{0, 1}s a block. Moreover, we denote the bit-length of a string r by |r|. The
length of a state σ = (τ, s) with s = (s1, s2, . . . , sy) is |σ| = |τ |+

∑
i∈[y] |si|. For a

given state σ let b(σ) = b|σ|/sc be the number of “blocks in σ”. Intuitively, the s-
sustained memory complexity (s-SMC) of an execution is the sum of the number
of blocks in each state. More precisely, consider an execution of algorithm A on
input xin using coins $ with oracle h resulting in z ∈ Z≥0 input states σ1, . . . , σz,
where σi = (τi, si) and si = (s1i , s

2
i , . . . , s

yj
i). Then the for integer s ≥ 0 the

s-sustained memory complexity (s-SMC) of the execution is

s-smc(Ah(xin; $)) =
∑
i∈[z]

b(σi) ,

while the total number of RO calls is
∑
i∈[z] yj . More generally, the s-SMC (and

total number of RO calls) of several executions is the sum of the s-sMC (and
total RO calls) of the individual executions.

We can now describe the resource constraints imposed by Sw-prom on the
pROM algorithms it executes. To quantify the constraints, Sw-prom is parametrized
by element from Pprom = N3 which describe the limites on an execution of algo-
rithm A. In particular, for parameters (q, s, t) ∈ Pprom, algorithm A is allowed
to make a total of q RO calls and have s-SMC at most t (summed across all
invocations of A in any given experiment).

As usual for moderately hard functions, to ensure that the honest algorithm
can be run on realistic devices, we restrict the honest algorithm N for evaluating
the SMHF to be a sequential algorithms. That is, N can make only a single call
to h per step. Technically, in any execution, for any step j it must be that yj ≤ 1.

No such restriction is placed on the adversarial algorithm reflecting the power
(potentially) available to such a highly parallel device as an ASIC. In symbols we
denote the sequential version of the pROM, which we refer to as the sequential
ROM (sROM) by Sw-srom.

We can now (somewhat) formally define of a sustained memory-hard function
for the pROM. The definition is a particular instance of and moderately hard
function (c.f. Definition 7).

Definition 8 (Sustained Memory-Hard Function). For each n ∈ N, let

f
(·)
n be an oracle function and Nn be an sROM algorithm for computing f (·).

Consider the function families:

α = {αw : Pprom × N→ N}w∈N , β = {βw : Pprom × N→ N}w∈N ,

ε = {εw : Pprom × Pprom × N→ N}w∈N .

Then F = (f
(·)
n ,Nn)n∈N is called an (α, β, ε)-sustained memory-hard function

(SMHF) if ∀w ∈ N F is an (αw, βw, εw)-secure moderately hard function family
for Sw-prom.

5.2 The Construction

In this work f (·) will be a graph function [AS15] (also sometimes called “hash
graph”). The following definition is taken from [AT17]. A graph function depends
on an oracle h ∈ Hw mapping bit strings to bit strings. We also assume the
existance of an implicit prefix-free encoding such that h is evaluated on unique
strings. Inputs to h are given as distinct tuples of strings (or even tuples of tuples
of strings). For example, we assume that h(0, 00), h(00, 0), and h((0, 0), 0) all
denote distinct inputs to h.

Definition 9 (Graph function). Let function h : {0, 1}∗ → {0, 1}w ∈ Hw and
DAG G = (V,E) have source nodes {vin1 , . . . , vina } and sink nodes (vout1 , . . . , voutz).
Then, for inputs x = (x1, . . . , xa) ∈ ({0, 1}∗)×a, the (h,x)-labeling of G is a
mapping lab : V → {0, 1}w defined recursively to be:

∀v ∈ V lab(v) :=

{
h (x, v, xj) : v = vinj
h (x, v, lab(v1), . . . , lab(vd)) : else

where {v1, . . . , vd} are the parents of v arranged in lexicographic order.
The graph function (of G and Hw) is the oracle function

fG : ({0, 1}∗)×a → ({0, 1}w)×z ,

which maps x 7→ (lab(vout1), . . . , lab(voutz)) where lab is the (h,x)-labeling of G.

Given a graph function we need an honest (sequential) algorithm for com-
puting it in the pROM. For this we use the same algorithm as already used
in [AT17]. The honest oracle algorithm NG for graph function fG computes one

label of G at a time in topological order appending the result to its state. If G
has |V | = n nodes then NG will terminate in n steps making at most 1 call to h
per step, for a total of n calls, and will never store more than n ∗ w bits in the
data portion of its state. In particular for all inputs x, oracles h (and coins $)
we have that for any s ∈ [n] if the range of h is in {0, 1}w then algorithm N has
sw-SMC of n− s.

Recall that we would like to set αw : Pprom → N such that for any parameters
(q, s, t) constraining the honest algorithms resources we are still guaranteed at
least αw(q, s, t) evaluations of fG by NG. Given the above honest algorithm we
can thus set:

∀(q, s, t) ∈ Pprom αw(q, s, t) :=

{
0 : q < n

min(bq/nc, bt/(n− bs/wcc) : else

It remains to determine how to set βw and εw, which is the focus of the remainder
of this section.

5.3 The Pebbling Reduction

We state the main theorem of this section which relates the parameters of an
SMHF based on a graph function to the sustained (pebbling) space complexity
of the underlying graph.

Theorem 7. [Pebbling reduction] Let Gn = (Vn, En) be a DAG of size |Vn| = n.
Let F = (fG,n,NG,n)n∈N be the graph functions for Gn and their näıve oracle al-
gorithms. Then, for any λ ≥ 0, F is an (α, β, ε)-sustained memory-hard function
where

α = {αw(q, s, t)}w∈N ,

β =

{
βw(q, s, t) =

Π
‖
ss(G, s)(w − log q)

1 + λ

}
w∈N

, ε =
{
εw(q,m) ≤ q

2w
+ 2−λ

}
w∈N

.

The technical core of the proof follows that of [AT17] closely. The proof can
be found in the full version of this paper [ABP18].

6 Open Questions

We conclude with several open questions for future research. The primary chal-
lenge is to provide a practical construction of a DAG G with high sustained
space complexity. While we provide a DAG G with asymptotically optimal sus-
tained space complexity, we do not optimize for constant factors. We remark that
for practical applications to iMHFs it should be trivial to evaluate the function
parentsG(v) without storing the DAG G in memory explicitly. Toward this end it
would be useful to either prove or refute the conjecture that any depth-robustness
is sufficient for high sustained space complexity e.g., what is the sustained space

complexity of the depth-robust DAGs from [EGS75] or [PTC76]? Another in-
teresting direction would be to relax the notion of sustained space complexity
and instead require that for any pebbling P ∈ P‖(G) either (1) P has large cu-
mulative complexity e.g., n3, or (2) P has high sustained space complexity. Is it
possible to design a dMHF with the property for any evaluation algorithm either
has (1) sustained space complexity Ω(n) for Ω(n) rounds, or (2) has cumulative
memory complexity ω(n2)?

Acknowledgments
This work was supported by the European Research Council under ERC consol-
idator grant (682815 - TOCNeT) and by the National Science Foundation under
NSF Award #1704587. The opinions expressed in this paper are those of the
authors and do not necessarily reflect those of the European Research Council
or the National Science Foundation.

References

AB16. Joël Alwen and Jeremiah Blocki. Efficiently Computing Data-Independent
Memory-Hard Functions. In Advances in Cryptology CRYPTO’16, pages
241–271. Springer, 2016.

AB17. Joël Alwen and Jeremiah Blocki. Towards Practical Attacks on Argon2i
and Balloon Hashing. In Proceedings of the 2nd IEEE European Sym-
posium on Security and Privacy (EuroS&P 2017), pages 142–157. IEEE,
2017. http://eprint.iacr.org/2016/759.

ABH17. Joël Alwen, Jeremiah Blocki, and Ben Harsha. Practical graphs for optimal
side-channel resistant memory-hard functions. In ACM CCS 17, pages
1001–1017. ACM Press, 2017.

ABP17. Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs
and their cumulative memory complexity. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017
- 36th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceed-
ings, Part III, volume 10212 of Lecture Notes in Computer Science, pages
3–32, 2017. https://eprint.iacr.org/2016/875.

ABP18. Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space
complexity. Cryptology ePrint Archive, Report 2018/147, 2018. https:

//eprint.iacr.org/2018/147.
ABW03. Mart́ın Abadi, Michael Burrows, and Ted Wobber. Moderately hard,

memory-bound functions. In Proceedings of the Network and Distributed
System Security Symposium, NDSS 2003, San Diego, California, USA,
2003.

ACP+17. Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano
Tessaro. Scrypt is maximally memory-hard. LNCS, pages 33–62. Springer,
Heidelberg, 2017.

AdRNV17. Joël Alwen, Susanna F de Rezende, Jakob Nordström, and Marc Vinyals.
Cumulative space in black-white pebbling and resolution. In 8th Innova-
tions in Theoretical Computer Science (ITCS) conference, Berkeley, Jan-
uary 9-11, 2017, 2017.

http://eprint.iacr.org/2016/759
https://eprint.iacr.org/2016/875
https://eprint.iacr.org/2018/147
https://eprint.iacr.org/2018/147

AS15. Joël Alwen and Vladimir Serbinenko. High Parallel Complexity Graphs
and Memory-Hard Functions. In Proceedings of the Eleventh Annual ACM
Symposium on Theory of Computing, STOC ’15, 2015. http://eprint.

iacr.org/2014/238.
AT17. Joël Alwen and Björn Tackmann. Moderately hard functions: Definition,

instantiations, and applications. In TCC 2017, Part I, LNCS, pages 493–
526. Springer, Heidelberg, March 2017.

BDK16. Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: new gen-
eration of memory-hard functions for password hashing and other appli-
cations. In Security and Privacy (EuroS&P), 2016 IEEE European Sym-
posium on, pages 292–302. IEEE, 2016.

BHZ18. Jeremiah Blocki, Ben Harsha, and Samson Zhou. On the economics of
offline password cracking. IEEE Security and Privacy, page to appear,
2018.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd Annual Symposium on Foundations of Com-
puter Science, pages 136–145, Las Vegas, Nevada, October 2001. IEEE.

Coo73. Stephen A. Cook. An observation on time-storage trade off. In Proceedings
of the Fifth Annual ACM Symposium on Theory of Computing, STOC ’73,
pages 29–33, New York, NY, USA, 1973. ACM.

Cox16. Bill Cox. Re: [Cfrg] Balloon-Hashing or Argon2i. CFRG Mailinglist,
August 2016. https://www.ietf.org/mail-archive/web/cfrg/current/
msg08426.html.

CP18. Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In
Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
page to appear, 2018.

CS76. Stephen Cook and Ravi Sethi. Storage requirements for deterministic poly-
nomialtime recognizable languages. Journal of Computer and System Sci-
ences, 13(1):25–37, 1976.

DGN03. Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-bound
functions for fighting spam. In Advances in Cryptology - CRYPTO
2003, volume 2729 of Lecture Notes in Computer Science, pages 426–444.
Springer, 2003.

EGS75. Paul Erdös, Ronald L. Graham, and Endre Szemerédi. On sparse graphs
with dense long paths. Technical report, Stanford, CA, USA, 1975.

GG81. Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized super-
concentrators. Journal of Computer and System Sciences, 22(3):407–420,
1981.

HP70. Carl E. Hewitt and Michael S. Paterson. Record of the Project MAC
Conference on Concurrent Systems and Parallel Computation. chapter
Comparative Schematology, pages 119–127. ACM, New York, NY, USA,
1970.

HPV77. John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space.
J. ACM, 24(2):332–337, April 1977.

Kal00. Burt Kaliski. Pkcs# 5: Password-based cryptography specification version
2.0. 2000.

MMV13. Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifi-
able proofs of sequential work. In Robert D. Kleinberg, editor, Innovations
in Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, January
9-12, 2013, pages 373–388. ACM, 2013.

http://eprint.iacr.org/2014/238
http://eprint.iacr.org/2014/238
https://www.ietf.org/mail-archive/web/cfrg/current/msg08426.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg08426.html

MRH04. Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
impossibility results on reductions, and applications to the random oracle
methodology. In TCC, volume 2951 of LNCS, pages 21–39, 2004.

Per09. C. Percival. Stronger key derivation via sequential memory-hard functions.
In BSDCan 2009, 2009.

PHC. Password hashing competition. https://password-hashing.net/.
PJ12. Colin Percival and Simon Josefsson. The scrypt password-based key deriva-

tion function. 2012.
PTC76. Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space

bounds for a game on graphs. In Proceedings of the Eighth Annual ACM
Symposium on Theory of Computing, STOC ’76, pages 149–160, New York,
NY, USA, 1976. ACM.

RD16. Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In
TCC 2016-B, Part I, LNCS, pages 262–285. Springer, Heidelberg, Novem-
ber 2016.

RD17. Ling Ren and Srinivas Devadas. Bandwidth hard functions for ASIC resis-
tance. In TCC 2017, Part I, LNCS, pages 466–492. Springer, Heidelberg,
March 2017.

A Missing Proofs

Reminder of Theorem 4. Let 0 < η < 1 be a positive constant and let
ε = η2/100 then the family {Gεn}∞n=1 of DAGs from Theorem 3 has indeg (Gεn) ∈
O (log n) and Π

‖
cc (Gηn) ≥ n2(1−η)

2 .
Proof of Theorem 4. We set ε = η2/100 and consider the DAG Gεn from the
proof of Theorem 3. In particular, Gεn is a δ = ε/10-local expander. We also set
γ = ε/4 when we consider γ-good nodes.

Consider a legal pebbling P ∈ P‖Gεn and let ti denote the first time that node

i is pebbled (i ∈ Pti , but i /∈
⋃
j<ti

Pj). We consider two cases:

Case 1 |Pti | ≥ (1− η/2) i. Observe that if this held for all i then we immediately

have
∑t
j=1 |Pi| ≥

∑n
j=1 |Pti | ≥ (1− η/2)

∑n
i=1 i ≥

n2(1−ε/2)
2 .

Case 2 Pti < (1− η/2) i. Let GOODi denote the set of γ-good nodes in [i]. We
observe that at least i− (1− η/2)i 1−γ1+γ ≥ iη/4 of the nodes in [i] are γ-good

by Lemma 6. Furthermore, we note that the subgraph Hi = Gεn[GOODi] is
(a |Goodi| , (1− a) |Goodi| − εi)-depth robust for any constants a > 0. 8

Thus, a result of Alwen et al. [ABP17] gives us Π
‖
cc (Hi) ≥ i2η2/100 since the

DAG Hi is at least (iη/10, iη/10)-depth robust. To see this set a = 1/2 and

8 To see this observe that if Gεn is a δ-local expander then Gεn[{1, . . . , i}] is also a
δ-local expander. Therefore, Lemma 5 and Lemma 6 imply that Gεn[{1, . . . , i}] is
(ai, bi)-depth robust for any a+ b ≤ 1− ε. Since, Hi is a subgraph of Gεn[{1, . . . , i}]
it must be that Hi is (a |Goodi| , (1− a) |Goodi| − εi)-depth robust. Otherwise, we
have a set S ⊆ V (Hi) of size a |Goodi| such that depth(Hi−S) < (1− a) |Goodi|− εi
which implies that depth(Gεn[{1, . . . , i}] − S) ≤ i − |Goodi| + depth(Goodi − S) <
i− a|Goodi| − εi contradicting the depth-robustness of Gεn[{1, . . . , i}].

https://password-hashing.net/

observe that a|Goodi| ≥ iη/8 and that (1− a) |Goodi|−εi ≥ iη/8−ηi/100 ≥
iη/10. Similarly, we note that at time ti the node i + γi is γ-good. Thus,
by Lemma 5 we will have to completely repebble Hi by time ti+γi. This

means that
∑ti+γi
j=ti

|Pj | ≥ Π
‖
cc (Hi) ≥ i2η2/100 and, since γ = η2/400 we

have i2η2/100 > 2γi2 >
∑i+γi
j=i j(1− η/2) .

Let x1 denote the first node 1 ≤ x1 ≤ n − γn for which
∣∣Ptx1 ∣∣ < (1− η/2) i

and, once x1, . . . , xk have been defined let xk+1 denote the first node such that

n − γn > xk+1 > γxk + xk and
∣∣∣Ptxk+1

∣∣∣ < (1− η/2) i. Let x1, . . . , xk∗ denote a

maximal such sequence and let F =
⋃k∗
j=1[xj , xj +γxj]. Let R = [n−γn]\F . We

have
∑
j∈R |Pj | ≥

∑
j∈R j(1− η/2) and we have

∑
j∈F |Pj | ≥

∑
j∈R j(1− η/2).

Thus,

t∑
j=1

|Pi| ≥
∑
j∈R
|Pj |+

∑
j∈F
|Pj | ≥

n−γn∑
j=1

n2 (1− η/2)

2
≥ n2 (1− η/2)

2
−γn2 ≥ n2 (1− η)

2
.

�

	Sustained Space Complexity

