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Abstract. We propose a framework for constructing efficient designated-
verifier non-interactive zero-knowledge proofs (DVNIZK) for a wide class
of algebraic languages over abelian groups, under standard assumptions.
The proofs obtained via our framework are proofs of knowledge, enjoy
statistical, and unbounded soundness (the soundness holds even when the
prover receives arbitrary feedbacks on previous proofs). Previously, no effi-
cient DVNIZK system satisfying any of those three properties was known.
Our framework allows proving arbitrary relations between cryptographic
primitives such as Pedersen commitments, ElGamal encryptions, or Pail-
lier encryptions, in an efficient way. For the latter, we further exhibit
the first non-interactive zero-knowledge proof system in the standard
model that is more efficient than proofs obtained via the Fiat-Shamir
transform, with still-meaningful security guarantees and under standard
assumptions. Our framework has numerous applications, in particular for
the design of efficient privacy-preserving non-interactive authentication.
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1 Introduction

Zero-knowledge proof systems allow a prover to convince someone of the
truth of a statement, without revealing anything beyond the fact that the
statement is true. After their introduction in the seminal work of Gold-
wasser, Micali, and Rackoff [34], they have proven to be a fundamental
primitive in cryptography. Among them, non-interactive zero-knowledge
proofs (NIZK proofs), where the proof consists of a single flow from the
prover to the verifier, are of particular interest, in part due to their tremen-
dous number of applications in cryptographic primitives and protocols, and
in part due to the theoretical and technical challenges that they represent.

For almost two decades after their introduction in [10], NIZKs coexisted
in two types: inefficient NIZKs secure under standard assumptions (such
as doubly enhanced trapdoor permutations [30]) in the common reference
string model, and practically efficient NIZKs built from the Fiat-Shamir
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heuristic [31,47], which are secure in the random oracle model [6] (hence
only heuristically secure in the standard model). This state of affairs
changed with the arrival of pairing-based cryptography, from which a
fruitful line of work (starting with the work of Groth, Ostrovsky, and
Sahai [37,38]) introduced increasingly more efficient NIZK proof systems in
the standard model. That line of work culminated with the framework of
Groth-Sahai proofs [39], which provided an efficient framework of pairing-
based NIZKs for a large class of useful languages. Yet, one decade later,
pairing-based NIZKs from the Groth-Sahai framework remain the only
known efficient NIZK proof system in the standard model. Building efficient
NIZKs in the standard model, without pairing-based assumptions, is a
major open problem, and research in this direction has proven elusive.

1.1 Designated-Verifier Non-Interactive Zero-Knowledge

Parallel to the research on NIZKs, an alternative promising line of research
has focused on designated-verifier non-interactive zero-knowledge proof
systems (DVNIZKs). A DVNIZK retains most of the security properties
of a NIZK, but is not publicly verifiable: only the owner of some secret
information (the designated verifier) can check the proof. Nevertheless,
DVNIZKs can replace publicly verifiable NIZKs in a variety of applications.
In addition, unlike their publicly-verifiable counterpart, it is known that
efficient DVNIZKs secure in the standard model for rich classes of languages
can be constructed without pairing-based assumptions [17, 23, 43, 49].
However, to date, research in DVNIZKs has attracted less attention than
NIZKs, the previously listed papers being (to our knowledge) the only
existing works on this topic, and several important questions have been
left open. We list the main open questions below.

Proofs Versus Arguments. A non-interactive zero-knowledge argument
system is a NIZK in which the soundness property is only required to hold
against computationally bounded adversaries. In a NIZK proof system,
however, soundness is required to hold even against unbounded adversaries.

Currently, while several DVNIZK argument systems have been designed
in the standard model without pairing-based assumptions, efficient DVNIZK
proof systems without pairings remain an open question. In fact, to our
knowledge, the only known constructions of (possibly inefficient) DVNIZK
proofs rely on publicly-verifiable NIZK proofs.

Soundness Versus Knowledge Extraction. A non-interactive zero-
knowledge proof (or argument) system is a NIZK of knowledge if it guar-
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antees that, when the prover succeeds in convincing the verifier, he must
know a witness for the truth of the statement. This is in constrast with
the standard soundness notion, which only guarantees that the statement
is true. Formally, this is ensured by requiring the existence of an efficient
simulator that can extract a witness from the proof.

Non-interactive zero-knowledge proofs of knowledge are more powerful
than standard NIZKs, and the knowledge-extractability property is crucial
in many applications. In particular, they are necessary for the very common
task of proving relations between values committed with a perfectly hiding
commitment scheme, and they are a core component in privacy-preserving
authentication mechanisms [4]. Currently, all known DVNIZK argument
systems are not arguments of knowledge. Designing efficient DVNIZKs of
knowledge without pairing-based assumptions remains an open question.

Bounded Soundness Versus Unbounded Soundness. The classical
soundness security notion for non-interactive zero-knowledge proof systems
states that if the statement is not true, no malicious prover can possibly
convince the verifier of the truth of the statement with non-negligible
probability. While this security notion is sufficient for publicly-verifiable
NIZKs, it turns out to be insufficient when considering designated-verifier
NIZKs, and corresponds only to a passive type of security notion. Indeed,
the verification of a DVNIZK involves a secret value, known to the verifier.
The fact that a DVNIZK satisfies the standard soundness notion does not
preclude the possibility for a malicious prover to learn this secret value, e.g.
by submitting a large number of proofs and receiving feedback on whether
the proof was accepted or not. Intuitively, this is the same type of issue as
for encryption schemes indistinguishable against chosen-plaintext attacks,
which can be broken if the adversary is given access to a decryption oracle,
or for signature schemes secure against key-only or known-message attacks,
which can be broken if the adversary is given access to a signing oracle.
Here, an adversary could possibly break the soundness of a DVNIZK if it
is given access to a verification oracle.

In practice, this means that as soon as a proof system with bounded
soundness is used for more than a logarithmic number of proofs, the
soundness property is no longer guaranteed to hold. This calls for a stronger
notion of soundness, unbounded soundness, which guarantees security even
against adversaries that are given arbitrary access to a verification oracle.

Designing a DVNIZK with unbounded soundness has proven to be
highly non-trivial. In fact, apart from publicly-verifiable NIZKs (which can
be seen as particular types of DVNIZKs where the secret key of the verifier
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is the empty string), the only known construction of DVNIZK claiming to
satisfy unbounded soundness is the construction of [23], where the claim is
supported by a proof of security in an idealized model. However, we found
this claim to be flawed: there is an explicit attack against the unbounded
soundness of any protocol obtained using the compiler of [23], which
operates by using slightly malformed proofs to extract the verification key.
In the full version of this work [16], we describe our attack, and identify
the flaw in the proof of Theorem 5 in [23, Appendix A]. We have notified
the authors of our finding and will update future versions of this work with
their reply. To our knowledge, in all current constructions, the common
reference string and the public key must be refreshed after a logarithmic
number of proofs.

1.2 Our Contribution

In this work, we first introduce a framework for designated-verifier NIZKs
on group-dependent languages, in the spirit of the Groth-Sahai framework
for NIZKs on languages related to pairing-friendly elliptic curves. Our
framework only requires that the underlying abelian group on which
it is instantiated has order M , where ZM is the plaintext-space of an
homomorphic cryptosystem with specific properties, and allows to prove a
wide variety statements formulated in terms of the operation associated to
this abelian group. In particular, we do not need to rely on pairings. The
DVNIZKs obtained with our framework are efficient, as they only require
a few group elements and ciphertexts. The zero-knowledge property of
our schemes reduces to the IND-CPA security of the underlying encryption
scheme. Additionally, our DVNIZKs enjoy the following properties: they are
(adaptively) knowledge-extractable; their knowledge-extractability holds
statistically ; their knowledge-extractability is unbounded. We stress that
previously, no efficient construction of DVNIZK in the standard model
satisfying any of the above properties was known. The third property,
unbounded soundness, was only claimed to hold for the construction of [23],
and this claim was formalized with a proof in an idealized model, but as
previously mentioned, we found this claim to be flawed. We also point out
that in the Groth-Sahai framework, witness extraction is limited either
to statements about group elements, or to statements about exponents
committed in a bit-by-bit fashion (making the proof highly inefficient). In
contrast, our proof system allows to efficiently extract large exponents,
without harming the efficiency of the proof. In addition to the above
properties, our DVNIZKs satisfy some other useful properties: they are
multi-theorem [30], randomizable [3], and same-string zero-knowledge [27]
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(i.e., the common reference string used by the prover and the simulator
are the same).

Second, our framework comes with a dual variant, where the role of the
encryption scheme and the abelian group are reversed, to prove statements,
not about elements of the abelian group, but about the underlying homo-
morphic encryption scheme. This dual variant leads to DVNIZKs satisfying
adaptive statistical unbounded soundness, but not knowledge-extractability
(i.e. the dual variant does not give proofs of knowledge).

Third, we show that if one is willing to give up unbounded soundness
for efficiency, our techniques can be used to construct extremely efficient
DVNIZKs with bounded-soundness. The DVNIZKs that we obtain this
way are more efficient than any previously known construction of non-
interactive zero-knowledge proofs, even when considering NIZKs in the
random oracle model using the Fiat-Shamir transform: the proofs we obtain
are shorter than the proofs obtained via the Fiat-Shamir transform by
almost a factor two. To our knowledge, this is the first example of a NIZK
construction in the standard model which (conditionally) improves on the
Fiat-Shamir paradigm.

Instantiating the Encryption Scheme. Informally, the security prop-
erties we require from the underlying scheme are the following: it must be
additively homomorphic, with plaintext space ZM , random source ZR, and
gcd(M,R) = 1, and it must be decodable, which means that a plaintext
m can be efficiently recovered from an encryption of m with random coin
0. A natural candidate for the above scheme is the Paillier encryption
scheme [45] (and its variants, such as Damgård-Jurik [26]). This gives rise
to efficient DVNIZK proofs of knowledge over abelian groups of composite
order (e.g. subgroups of F∗p, with order a prime p = k · n+ 1 for a small
k and an RSA modulus n, or composite-order elliptic curves), as well as
efficient DVNIZKs for proving relations between Paillier ciphertexts (using
the dual variant of our framework). Alternatively, the scheme can also
be instantiated with the more recent Castagnos-Laguillaumie encryption
scheme [15] to get DVNIZKs over prime-order abelian groups.

Our framework captures many useful zero-knowledge proofs of knowl-
edge that are commonly used in cryptography. This includes DVNIZK proofs
of knowledge of a discrete logarithm, of correctness of a Diffie-Hellman
tuple, of multiplicative relationships between Pedersen commitments or
ElGamal ciphertexts (or variants thereof), among many others. Our results
show that, in the settings where a designated-verifier is sufficient, one can
build efficient non-interactive zero-knowledge proofs of knowledge for most
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statements of interest, under well-known assumptions and with strong
security properties, without having to rely on pairing-friendly groups.

1.3 Our Method

It is known that linear relations (i.e., membership in linear subspaces)
can be non-interactively verified, using the homomorphic properties of
cryptographic primitives over abelian groups. Indeed, DVNIZK proofs for
linear languages can be constructed, e.g., from hash proof systems [33,41].
In [39], pairings provide exactly the additional structure needed to evaluate
degree-two relations, which can be easily generalized to arbitrary relations.

An alternative road was taken in [23] and subsequent works, to obtain
non-interactive zero-knowledge proofs for a wide variety of relations, in the
designated-verifier setting. To illustrate, let us consider a prover interacting
with a verifier, with a common input (g1, g2, h1, h2) ∈ G4 in some group G
of order p, where p is a λ-bit prime. The prover wants to show that (h1, h2)
have the same discrete logarithm in the basis (g1, g2), i.e., there exists
x such that (h1, h2) = (gx1 , g

x
2 ). The standard interactive zero-knowledge

proof for this statement proceeds as follows:1

1. The prover picks r $← {0, 1}3λ, and sends (a1, a2)← (gr1, g
r
2).

2. The verifier picks and sends a uniformly random challenge e $← Zp.
3. The prover computes and sends d← e · x+ r. The verifier accepts the

proof if and only if (gd1 , g
d
2) = (he1a1, h

e
2a2).

The idea of [23] is to squash this interactive protocol into a (designated-
verifier) non-interactive proof, by giving the challenge to the prover in
advance. As knowing the challenge before sending the first flow gives
the prover the ability to cheat, the challenge is encrypted with an ad-
ditively homomorphic encryption scheme. That way, the prover cannot
see the challenge; yet, he can still compute an encryption of the value d
homomorphically, using the encryption of e. The verifier, who is given the
secret verification key, can decrypt the last flow and perform the above
check. Thus, the proof is a tuple (a1, a2, cd), where cd is an encryption of
d computed from (x, r) and an encryption ce of the challenge e.

Although natural, this intuitive approach has proven quite tough to
analyze. In [23], the authors had to rely on a new complexity-leveraging-
type assumption tailored to their scheme, which (informally) states that the
simulator cannot break the security of the encryption scheme, even if he is
1 More formally, this proof only satisfies zero-knowledge against honest verifiers, but
this property is sufficient for the construction of [23].
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powerful enough to break the problem underlying the protocol (in the above
example, the discrete logarithm problem over G). Even in the bounded
setting, analyzing the soundness guarantees of the protocols obtained by
this compilation technique (and its variants) is non-trivial, and it has been
the subject of several subsequent works [17, 43, 49]. Additionally, in the
unbounded setting, where we must give an efficient simulator that can
successfully answer to the proofs submitted by any malicious prover, this
compilation technique breaks down. Furthermore, for DVNIZKs constructed
with this method, soundness holds only computationally, and security does
not guarantee that the simulator can extract a witness for the statement.

Our core idea to overcome all of the above issues is to implement
the same strategy in a slightly different way: rather than encrypting the
challenge e as the plaintext of an homomorphic encryption scheme, we
encrypt it as the random coin of an encryption scheme which is also
homomorphic over the coins. To understand how this allows us to improve
over all previous constructions, suppose that we have an encryption scheme
Enc which is homomorphic over both the plaintext and the random coins,
with plaintext space ZM and random source ZR, and that M is coprime to
R. Consider the previously described protocol for proving equality of two
discrete logarithms. Given an encryption Enc(0; e) of 0, where the challenge
is the random coin, a prover holding (x, r) can compute and send Enc(x; ρ)
and Enc(r;−eρ), for some random ρ. This allows the verifier, who knows e,
to compute Enc(x ·e+r; 0), from which she can extract d = x ·e+r mod M
(note that the verifier only needs to know e; unlike in previous work, she
does not need to know the decryption key of Enc). Observe that the
extracted value depends only on e modulo M . At the same time, however,
the ciphertext E(0; e) only leaks e modulo R, even to an unbounded
adversary. By picking e to be sufficiently large (e > MR), as M is coprime
to R, the verifier can ensure that this leaks no information (statistically)
about e mod M . Therefore, we can use a statistical argument to show that
the prover cannot cheat when the verification using d succeeds. To allow for
efficient simulation of the verifier, we simply give to the simulator the secret
key of the scheme, which will allow him to extract all encrypted values,
and to check the validity of the equations, without knowing e mod M . As
the simulator is able to extract the values encrypted with Enc, the scheme
can be proven to be (statistically) knowledge-extractable. Contrary to
previous constructions, the verification key is a random coin rather than
the secret key of an encryption scheme. The secret key is only used to
extract information in the simulated game.
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Example: DVNIZK Proof of Knowledge of a Discrete Logarithm.
We illustrate our method with the classical example of proving knowledge
of a discrete logarithm. For concreteness, we describe an explicit protocol
using the Paillier encryption scheme; therefore, this section assumes some
basic knowledge of the Paillier encryption scheme. All necessary prelim-
inaries can be found in Section 2. Let G be a group of order n, where
n = p · q is an RSA modulus (i.e., a product of two strong primes). Let g
be a generator of G, and let T be a group element. A prover P wishes to
prove to a verifier V that he knows a value t ∈ Zn such that gt = T .

Let h← un mod n2, where u denotes an arbitrary generator of Jn, the
subgroup of elements of Z∗n with Jacobi symbol 1. The Paillier encryption
of a message m ∈ Zn with randomness r ∈ Zϕ(n)/2 is Enc(m; r) = (1 +
n)mhr mod n2. The public key of the DVNIZK is E = he ∈ Z∗n2 , for a
random e� n · ϕ(n)/2; observe that this is exactly Enc(0; e). The secret
key is e. The DVNIZK proceeds as follows:

The prover P picks x $← Zn and a Paillier random coin r, and computes
X ← gx, T ′ ← (1 + n)thr mod n2, and X ′ ← (1 + n)xE−r mod n2. The
verifier V computes D ← T eX mod n2 and D′ ← (T ′)eX ′ mod n2. Then,
she checks that D′ is of the form (1 + n)d mod n2. If so, V computes
d mod n from D′, and checks that D = gd. V accepts iff both checks
succeeded.

Let us provide an intuition of the security of this scheme. Correctness
follows easily by inspection. Zero-knowledge comes from the fact that T ′

hides t, under the IND-CPA security of Paillier. For statistical knowledge
extractability, note E only reveals e mod ϕ(n) to an unbounded adversary,
which leaks (statistically) no information on e mod n as ϕ(n) is coprime to
n. This ensures the value t′ encrypted in T ′ must be equal to t, otherwise the
verification equations would uniquely define e mod n, which is statistically
unknown to the prover. The simulator knows ϕ(n) (but not e mod n) and
gets t by decrypting T ′.

1.4 Applications

A natural application of non-interactive zero-knowledge proofs of knowledge
is the design of privacy-preserving non-interactive authentication schemes.
This includes classical authentication protocols, but also P-signatures [4]
and their many applications, such as anonymous credentials [4], group
signatures [20], electronic cash [19], or anonymous authentication [48]. Our
framework can lead to a variety of efficient new constructions of designated-
verifier variants for the above applications without pairings, whereas all
previous constructions either had to rely on the random oracle model,
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or use pairing-based cryptography.2 In many scenarios of non-interactive
authentication, the designated-verifier property is not an issue.

In addition, the aforementioned applications build upon the Groth-
Sahai framework for NIZKs. However, Groth-Sahai NIZKs only satisfy a
restricted notion of extractability, called f -extractability in [4]. As a result,
constructions of privacy-preserving authentication mechanisms from Groth-
Sahai NIZKs require a careful security analysis. Our framework leads to
fully extractable zero-knowledge proofs, which could potentially simplify
this. We note that our DVNIZKs are additionally randomizable, which has
applications for delegatable anonymous credential schemes [3].

Other potential applications of our framework include round-efficient
two-party computation protocols secure against malicious adversaries,
electronic voting (see e.g. [17]), as well as designated-verifier variants of
standard cryptographic primitives, such as verifiable encryption [13], or
verifiable pseudorandom-functions [5]. Potential applications to the con-
struction of adaptive oblivious transfers can also be envisioned: in [35],
the authors mention that an adaptive oblivious transfer protocol can be
designed by replacing the interactive zero-knowledge proofs of the protocol
of [14] by non-interactive one. They raise two issues to this approach,
namely, that Groth-Sahai proofs are only witness-indistinguishable for the
required class of statements, and that they only satisfy a weak form of ex-
tractability. None of these restrictions apply to our DVNIZK constructions.

1.5 Related Work

Non-interactive zero-knowledge proofs were first introduced in [10]. Efficient
publicly-verifiable non-interactive zero-knowledge proofs can be constructed
in the random oracle model [31, 32, 47], or in the non-programmable
random oracle model [42] (using a common reference string in addition).
The latter construction was improved in [21]. In the standard model, the
main construction of efficient publicly-verifiable NIZKs is the Groth-Sahai
framework [39].

Designated-verifier non-interactive zero-knowledge arguments where
first introduced in [46], where it was shown that the existence of semanti-
cally secure encryption implies the existence of DVNIZK arguments with
bounded soundness; however, the construction is highly inefficient and
2 These applications typically require a proof-friendly signature scheme, but designated-
verifier variants of such scheme can easily be constructed (without pairings) from
algebraic MACs [18,40], by committing to the secret key of the MAC and proving
knowledge of the committed value with a DVNIZK; such statements are naturally
handled by our framework.
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therefore only of theoretical interest. Furthermore, even putting aside effi-
ciency consideration, the construction is inherently limited to arguments
(as opposed to proofs) with bounded soundness (as opposed to unbounded
soundness).

Designated-verifier NIZKs for linear languages can be constructed from
hash proof systems [22,33,41]. Such NIZKs are perfectly zero-knowledge
and statistically adaptively sound, but are not proofs of knowledge and
are restricted to very specific statements, captured by linear equations.

Efficient designated-verifier NIZKs for more general statements were
first described in [23]. The authors describe a general compiler that con-
verts any three-round (honest-verifier) zero-knowledge protocol satisfying
some (mild) requirements into a DVNIZK. However, the construction
has several drawbacks: the soundness only holds under a very specific
complexity-leveraging assumption, and only against adversaries making
at most O(log λ) proofs (as already mentioned, the paper claims that the
construction enjoy unbounded soundness as well, but this claim is flawed,
see the full version [16]). In addition, the proofs obtained with this compiler
are not proofs of knowledge.

In subsequent works [17,49], variations of the compilation technique
of [23] are described, where the complexity-leveraging assumption was re-
placed by more standard assumptions (although achieving a more restricted
type of soundness) by relying on encryption schemes with additional prop-
erties. Eventually, [43] removes some of the constraints of the constructions
of [17], and provides new protocols that can be compiled using the trans-
formation. However, all the constructions obtained in these papers are
only computationally sound, do not enjoy unbounded soundness, and are
not proofs of knowledge; this strongly limits their scope, and in particular,
prevents them from being used in the previously discussed applications.

1.6 Organization

In Section 2, we introduce our notation, and necessary primitives. We refer
the reader to the full version of this work [16] for classical preliminaries on
commitments and cryptosystems. Section 2 also describes the notion of a
DVNIZK-friendly encryption scheme, which is central to our framework. In
Section 3, we introduce our framework for building DVNIZKs of knowledge
over an abelian group, illustrate it with practical examples, and prove its
security. In Section 4, we describe the dual variant of our framework for
proving statements over plaintexts of a DVNIZK-friendly encryption scheme.
In the full version of this work [16], we additionally describe optimizations



Efficient DVNIZK Proofs of Knowledge 11

on the efficiency of DVNIZKs for relations between plaintexts of a DVNIZK-
friendly scheme, by eschewing unbounded soundness, as well as our attack
on the unbounded soundness of [23].

2 Preliminaries

Throughout this paper, λ denotes the security parameter. A probabilistic
polynomial time algorithm (PPT, also denoted efficient algorithm) runs in
time polynomial in the (implicit) security parameter λ. A positive function
f is negligible if for any polynomial p there exists a bound B > 0 such that,
for any integer k ≥ B, f(k) ≤ 1/|p(k)|. An event depending on λ occurs
with overwhelming probability when its probability is at least 1− negl(λ)

for a negligible function negl. Given a finite set S, the notation x $← S
means a uniformly random assignment of an element of S to the variable
x. We represent adversaries as interactive probabilistic Turing machines;
the notation A O indicates that the machine A is given oracle access to O.
Adversaries will sometime output an arbitrary state st to capture stateful
interactions.

Abelian Groups and Modules. We use additive notation for groups
for convenience, and write (G, ) for an abelian group of order k. When
it is clear from the context, we denote 0 its neutral element (otherwise,
we denote it 0G). We denote by • the scalar-multiplication algorithm
(i.e. for any (x,G) ∈ Zk × G, x • G = G G . . . G, where the sum
contains x terms). Observe that we can naturally view G as a Zk-module
(G, , •), for the ring (Zk,+, ·). For simplicity, we write G for (−1) •G.
We use lower case to denote elements of Zk, upper case to denote elements
of G, and bold notations to denote vectors. We extend the notations
( , ) to vectors and matrices in the natural way, and write x • G to
denote the scalar product x1 •G1 . . . xt •Gt (where x,G are vectors
of the same length t). For a vector v, we denote by vᵀ its transpose.
By GGen(1λ), we denote a probabilistic efficient algorithm that, given
the security parameter λ, generates an abelian group G such that the
best known algorithm for solving discrete logs in G takes time 2λ. In
the following, we write (G, k)

$← GGen(1λ). Additionally, we denote by
GGen(1λ, k) a group generation algorithm that allows us to select the order
k beforehand.

RSA Groups. A strong prime is a prime p = 2p′ + 1 such that p′ is also
a prime. We call RSA modulus a product n = pq of two strong primes. We
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denote by ϕ Euler’s totient function; it holds that ϕ(n) = (p− 1)(q − 1).
We denote by Jn the cyclic subgroup of Z∗n of elements with Jacobi symbol
1 (the order of this group is ϕ(n)/2), and by QRn the cyclic subroup
of squares of Z∗n (which is also a subgroup of Jn and has order ϕ(n)/4).
By Gen(1λ), we denote a probabilistic efficient algorithm that, given the
security parameter λ, generates a strong RSA modulus n and secret
parameters (p, q) where n = pq, such that the best known algorithm for
factoring n takes time 2λ. In the following, we write (n, (p, q))

$← Gen(1λ).

2.1 Encryption Schemes

The formal definition of an IND-CPA-secure public-key encryption scheme
is recalled in the full version [16], but in short, a public-key encryption
scheme S is a triple of PPT algorithms (S.KeyGen, S.Enc, S.Dec), where
S.KeyGen generates a pair (ek, dk) with an encryption key and a decryp-
tion key, decryption (with dk, deterministically) is the reverse operation
of encryption (with ek, randomized), and no adversary can distinguish
encryptions of one of two messages of its choice (IND-CPA security).

In this work, we will focus on additively homomorphic encryption
schemes, which are homomorphic for both the message and the random
coin. More formally, we require that the message spaceM and the random
sourceR are integer sets (ZM ,ZR) for some integers (M,R), and that there
exists an efficient operation ⊕ such that for any (ek, sk)

$← KeyGen(1λ), any
(m1,m2) ∈ Z2

M and (r1, r2) ∈ Z2
R, denoting (Ci)i≤2 ← (S.Encek(mi; ri))i≤2,

it holds that C1 ⊕ C2 = S.Encek(m1 + m2 mod M ; r1 + r2 mod R). We
say an encryption scheme is strongly additive if it satisfies these require-
ments. Note that the existence of ⊕ implies (via a standard square-
and-multiply method) the existence of an algorithm that, on input a
ciphertext C = S.Encek(m; r) and an integer ρ ∈ Z, outputs a ciphertext
C ′ = S.Encek(ρm mod M ; ρr mod R). We denote by ρ � C the external
multiplication of a ciphertext C by an integer ρ, and by 	 the operation
C ⊕ (−1) � C ′ for two ciphertexts (C,C ′). We will sometimes slightly
abuse these notations, and write C ⊕m (resp. C 	m) for a plaintext m
to denote C ⊕ S.Encek(m; 0) (resp. C 	 S.Encek(m; 0)).

A simple observation on strongly additively homomorphic encryption
schemes is that IND-CPA security implies that R must either be equal to 0
mod M , or unknown given ek. Otherwise, an IND-CPA adversary would set
(m0,m1) = (0, 1) and check if R� C equals S.Encek(0; 0) or S.Encek(R; 0).

The Paillier Encryption Scheme. The Paillier encryption scheme [45]
is a well-known additively homomorphic encryption scheme over Zn for an
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RSA modulus n. We describe here a standard variant [25,43], where the
random coin is an exponent over Jn rather than a group element. Note
that the exponent space of Jn is Zϕ(n)/2, which is a group of unknown
order; however, it suffices to draw exponents at random from Zn/2 to get
a distribution statistically close from uniform over Zϕ(n)/2.

– KeyGen(1λ): run (n, (p, q))
$← Gen(1λ), pick g $← Jn, set h ← gn mod

n2, and compute δ ← n−1 mod ϕ(n) (n and ϕ(n) are relatively prime).
Return ek = (n, h) and dk = δ;

– Enc(ek,m; r): given m ∈ Zn, for a random r
$← Zn/2, compute and

output c← (1 + n)m · hr mod n2;
– Dec(dk, c): compute x← cdk mod n and c0 ← [c ·x−n mod n2]. Return
m← (c0 − 1)/n.

Note that knowing dk is equivalent to knowing the factorization of n.
The IND-CPA security of the Paillier encryption scheme reduces to the
decisional composite residuosity (DCR) assumption, which states that it
is computationally infeasible to distinguish random n’th powers over Z∗n2

from random elements of Z∗n2 .3 It is also strongly additive, where the
homomorphic addition of ciphertexts is the multiplication over Z∗n2 .

The ElGamal Encryption Scheme. We recall the additive variant of
the famous ElGamal cryptosystem [28], over an abelian group (G, ) of
order k.

– KeyGen(1λ): pick G $← G, pick s $← Zk, set G ← s • G, and return
ek = (G,H) and dk = s;

– Enc(ek,m; r): given m ∈ Zk, for a random r
$← Zk, output C ←

(r •G, (m •G) (r •H));
– Dec(dk,C): parse C as (C0, C1), and compute M ← C1 (dk • C0).

Compute the discrete logarithm m of M in base G, and return m.

The IND-CPA security of the ElGamal encryption scheme reduces to
the decisional Diffie-Hellman (DDH) assumption over G, which states
that it is computationally infeasible to distinguish tuples of the form
(G,H, x •G, x •H) for random x from uniformly random 4-tuples over G.
It is also strongly additive (and the homomorphic operation is the vector
addition over G). However, the decryption procedure is not efficient in
3 In the variant we consider here, we must restrict our attention to elements of Z∗n2

which have Jacobi symbol 1 when reduced modulo n as g ∈ Jn, but this can be
checked in polynomial time anyway.
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general, as it requires to compute a discrete logarithm. For the decryption
process to be efficient, the message m must be restricted to come from a
subset of Zk of polynomial size.

DVNIZK-Friendly Encryption Scheme. We say that a strongly addi-
tive encryption scheme is DVNIZK-friendly, when it satisfies the following
additional properties:

– Coprimality Property: we require that the sizeM of the plaintext space
and the size R of the random source are coprime4, i.e., gcd(M,R) = 1;

– Decodable: for any (ek, sk)
$← KeyGen(1λ), the function fek : m 7→

Encek(m; 0) must be efficiently invertible (i.e., there is a PPT algorithm,
which is given ek, computing f−1

ek on any value from the image of fek).

One can observe that the Paillier cryptosystem is DVNIZK-friendly
(gcd(n, ϕ(n)) = 1, and any message m can be efficiently recovered from
Encek(m; 0) = (1 + n)m mod n2), while the ElGamal cryptosystem is
not (it satisfies none of the above properties). Other DVNIZK-friendly
cryptosystems include variants of the Paillier cryptosystem [12, 22, 24–
26], and the more recent Castagnos-Laguillaumie cryptosystem [15], with
prime-order plaintext space. For simplicity, we will also assume that all
prime factors of the size M of the plaintext space of a DVNIZK-friendly
cryptosystem are of superpolynomial size; our results can be extended to
cryptosystems with a small plaintext space (or a plaintext space with small
prime factors), but at a cost in efficiency. Note that by the homomorphic
property, the decodability property implies that a plaintext can always be
recovered from a ciphertext if the random coin is known.

2.2 Non-Interactive Zero-Knowledge Proof Systems

In the definitions below, we focus on proof systems for NP-languages that
admit an efficient (polynomial-time) prover. For an NP-language L , we
denote RL its associated relation, i.e., a polynomial-time algorithm which
satisfies L = {x | ∃w, |w|= poly(|x|) ∧ RL (x,w) = 1}. It is well known
that non-interactive proof systems cannot exist for non-trivial languages
in the plain model [44]; our constructions will be described in the common
reference string model. For conciseness, the common reference string is
always implictly given as input to all algorithms. We note that all of our

4 In view of our previous observation on IND-CPA security for strongly additive
cryptosystems, this implies that R is secret.
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constructions can be readily adapted to work in the registered public-
key model as well, a relaxation of the common reference string model
introduced by Barak et al in [2].

While languages are naturally associated to statements of membership,
the constructions of this paper will mainly consider statements of knowledge.
We write St(x) = K{w : R(x,w) = 1} to denote the statement “I know a
witness w such that R(x,w) = 1” for a word x and a polytime relation R.
Similarly, we write St(x) = ∃{w : R(x,w) = 1} to denote the existential
statement “there exists a witness w such that R(x,w) = 1”.

Definition 1. (Non-Interactive Zero-Knowledge Proof System) A non-
interactive zero-knowledge (NIZK) proof system Π between for a family of
languages L = {Lcrs}crs is a quadruple of probabilistic polynomial-time
algorithms (Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) such that

– Π.Setup(1λ), outputs a common reference string crs (which specifies
the language Lcrs),

– Π.KeyGen(1λ), outputs a public key pk and a verification key vk,
– Π.Prove(pk, x, w), on input the public key pk, a word x ∈ Lcrs, and a
witness w, outputs a proof π,

– Π.Verify(pk, vk, x, π), on input the public key pk, the verification key
vk, a word x, and a proof π, outputs b ∈ {0, 1},

which satisfies the completeness, zero-knowledge, and soundness properties
defined below.

We assume for simplicity that once it is generated, the common ref-
erence string crs is implicitly passed as an argument to the algorithms
(Π.KeyGen,Π.Prove,Π.Verify). In the above definition of NIZK proof sys-
tems, we let the key generation algorithm generate a verification key vk
which is used by the verifier to check the proofs. We call publicly verifiable
non-interactive zero-knowledge proof system a NIZK proof system in which
vk is set to the empty string (or, equivalently, in which vk is made part of
the public key). Otherwise, we call it a designated-verifier non-interactive
zero-knowledge proof system.

Definition 2. (Completeness) A NIZK proof system Π = (Π.Setup,Π.KeyGen,
Π.Prove,Π.Verify) for a family of languages L = {Lcrs}crs with rela-
tions Rcrs satisfies the (perfect,statistical) completeness property if for
crs

$← Π.Setup(1λ), for every x ∈ Lcrs and every witness w such that
Rcrs(x,w) = 1,

Pr

[
(pk, vk)

$← Π.KeyGen(1λ),
π ← Π.Prove(pk, x, w)

: Π.Verify(pk, vk, x, π) = 1

]
= 1− µ(λ)
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where µ(λ) = 0 for perfect completeness, and µ(λ) = negl(λ) for statistical
completeness.

We now define the zero-knowledge property.

Definition 3. (Composable Zero-Knowledge) A NIZK proof system Π =
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L =
{Lcrs}crs with relations Rcrs satisfies the (perfect, statistical) composable
zero-knowledge property if for any crs

$← Π.Setup(1λ), there exists a proba-
bilistic polynomial-time simulator Sim such that for any stateful adversary
A ,∣∣∣∣∣∣Pr

 (pk, vk)
$← Π.KeyGen(1λ),

(x,w)← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Π.Prove(pk, x, w)

−
Pr

 (pk, vk)
$← Π.KeyGen(1λ),

(x,w)← A (pk, vk), : (Rcrs(x,w) = 1) ∧ (A (π) = 1)
π ← Sim(pk, vk, x)

∣∣∣∣∣∣ ≤ µ(λ)

where µ(λ) = 0 for perfect composable zero-knowledge, and µ(λ) = negl(λ)
for statistical composable zero-knowledge. If the composable zero-knowledge
property holds against efficient (PPT) verifiers, the proof system satisfies
computational composable zero-knowledge.

The composable zero-knowledge property was first introduced in [36].
It strenghtens the standard zero-knowledge definition, in that it explicitly
states that the trapdoor of the simulator is exactly the verification key
vk of the verifier. This strong security property guarantees that the same
common reference string can be used for many different proofs, as the same
trapdoor is used for simulating all proofs, which enhances the proof system
with composability properties. We note that [36] additionally required
indistinguishability between real and simulated common reference string;
in our constructions, this will be trivially satisfied, as the simulated crs
will be exactly the real one. We define below the notion of (bounded)
adaptive soundness, which allows the input to be adversarially picked after
the public key is fixed.

Definition 4. (Bounded Adaptive Soundness) A NIZK proof system Π =
(Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L =
{Lcrs}crs with relations Rcrs satisfies the bounded adaptive soundness prop-
erty if for crs

$← Setup(1λ), for every adversary A ,

Pr

[
(pk, vk)

$← Π.KeyGen(1λ),
(π, x)← A (pk)

: x /∈ Lcrs ∧Π.Verify(pk, vk, x, π)

]
= negl(λ).
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Definition 4 is formulated with respect to arbitrary adversaries A ,
which leads to a statistical notion of soundness. A natural relaxation of
this requirement is to consider only efficient (PPT) adversarial provers.
We denote by computational soundness this relaxed notion of soundness.
Computationally sound proof systems are called argument systems.

Unbounded Soundness. Definition 4 corresponds to a bounded notion
of soundness, in the sense that soundness is only guaranteed to hold when
the prover tries to forge a single proof of a wrong statement, right after
the setup phase. However, if the prover is allowed to interact polynomially
many times with the verifier before trying to forge a proof, sending proofs
and receiving feedback on whether the proof was accepted, the previous
definition provides no security guarantees.

Intuitively, in this situation, the distinction between bounded and
unbounded soundness is comparable to the distinction between security
against chosen plaintext attacks and security against chosen ciphertext
attacks for cryptosystems. We define unbounded soundness in a similar
fashion, by giving the prover access to a verification oracle Ovk[pk] (with
crs implicitly given as parameter) which, on input (x, π), returns b ←
Verify(pk, vk, x, π).

Definition 5. (Q-bounded Adaptive Soundness) A NIZK proof system
Π = (Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages L =
{Lcrs}crs with relations Rcrs satisfies the Q-bounded adaptive soundness
property if for crs

$← Π.Setup(1λ), and every adversary A making at most
Q queries to Ovk[pk], it holds that

Pr

[
(pk, vk)

$← Π.KeyGen(1λ),

(π, x)← A Ovk[pk](pk)
: x /∈ Lcrs ∧Π.Verify(pk, vk, x, π)

]
= negl(λ).

Alternatively, the above definition can be formulated with respect to
polynomial-time adversarial provers, leading to computational Q-bounded
adaptive soundness. Note that the answers of the oracle are bits; therefore,
if a NIZK proof system satisfies the bounded adaptive soundness property
of Definition 4, it also satisfies the above Q-bounded adaptive soundness
property for any Q = O(log λ). Indeed, if Q is logarithmic, one can always
guess in advance the answers of the verification oracle with non-negligible
(inverse polynomial) probability. We say that a NIZK proof system which
is Q-bounded adaptively sound for any Q = poly(λ) satisfies unbounded
adaptive soundness.
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Eventually, we define (unbounded) knowledge-extractability, a strenght-
ening of the soundness property which guarantees that if the prover pro-
duces an accepting proof, then the simulator can actually extract a witness
for the statement. To this aim, we extend the syntax of the Setup algo-
rithm to also output a trapdoor τ , used by the extractor. The knowledge-
extractibility guarantee is stronger than soundness, in that the proof
guarantees not only that there exists a witness, but also that the prover
must know that witness. A NIZK satisfying knowledge-extractability is
called a NIZK proof of knowledge.

Definition 6. (Q-bounded Knowledge-Extractability) A NIZK proof sys-
tem Π = (Π.Setup,Π.KeyGen,Π.Prove,Π.Verify) for a family of languages
L = {Lcrs}crs with relations Rcrs satisfies the Q-bounded knowledge-
extractability property if for (crs, τ)

$← Π.Setup(1λ), and every adversary
A making at most Q queries to Ovk[pk], there is an efficient extractor Ext
such that

Pr

(pk, vk)
$← Π.KeyGen(1λ),

(π, x)← A Ovk[pk](pk),
w ← Ext(π, x, τ),

: Rcrs(x,w) iff Π.Verify(pk, vk, x, π)

 ≈ 1.

3 A Framework for Designated-Verifier Non-Interactive
Zero-Knowledge Proofs of Knowledge

In this section, we let k be an integer, (G, ) be an abelian group of order
k, and (α, β, γ) be three integers. We will describe a framework for proving
statements of knowledge over a wide variety of algebraic relations over G,
in the spirit of the Groth-Sahai framework for NIZK proofs over bilinear
groups. To describe the relations handled by our framework, we describe
languages of algebraic relations via linear maps. While this system was
previously used to describe membership statements [7–9], we adapt it
to statements of knowledge. As previously observed in [7], this system
encompasses a wider class of languages than the Groth-Sahai framework.

3.1 Statements Defined by a Linear Map over G

Let G ∈ Gα denote a vector of public parameters, and let C ∈ Gβ denote
a public word. We will consider statements StΓ(G,C) defined by a linear
map Γ : (Gα,Gβ) 7→ Gγ×β as follows:

StΓ(G,C) = K{x ∈ Zγk | x • Γ(G,C) = C}
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That is, the prover knows a witness-vector x ∈ Zγk such that the equation
x • Γ(G,C) = C holds. This abstraction captures a wide class of state-
ments. Below, we describe two examples of statements that can be handled
by our framework. They aim at clarifying the way the framework can be
used, illustrating its power, as well as providing useful concrete instan-
tiations. The examples focus on the most standard primitives (Pedersen
commitments, ElGamal ciphertexts), but the reader will easily recognize
they can be naturaly generalized to all standard variants of these primitives
(e.g., variants of ElGamal secure under t-linear assumptions [11], or under
assumptions from the matrix Diffie-Hellman family of assumptions [29]).

Example 1: Knowledge of Opening to a Pedersen Commitment.
We consider statements of knowledge of an opening (m, r) to a Pedersen
commitment C.

– Public Parameters: (G,H) ∈ G2;
– Word: C ∈ G;
– Witness: a pair (m, r) ∈ Z2

k such that C = m •G r •H;
– Linear Map: ΓPed : (G,H,C) 7→ (G,H)ᵀ;
– Statement: StΓPed

(G,H,C) = K{(m, r) ∈ Z2
k | (m, r) • (G,H)ᵀ = C}.

Example 2: Multiplicative Relationship Between ElGamal Ci-
phertexts. This type of statement is of particular interest, as it can be
generalized to arbitrary (polynomial) relationships between plaintexts.

– Public Parameters: (G,H) ∈ G2;
– Word: C = ((Ui, Vi)0≤i≤2) ∈ G6;
– Witness: a 5-tuple x = (m0, r0,m1, r1, r2) ∈ Z5

k such that Ui = ri •G
and Vi = mi • G r • H for i = 0, 1, and U2 = m1 • U0 r2 • G,
V2 = m1 • V0 r2 •H;

– Linear Map:

ΓEM : (G,H,C) 7→


0 G 0 0 0 0
G H 0 0 0 0
0 0 0 G U0 V0

0 0 G H 0 0
0 0 0 0 G H

 ;

– Statement: StΓEM
(G,H,C) = K{x ∈ Z5

k | x • ΓEM(G,H,C) = C}.
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Conjunction of Statements. The above framework naturally handles
conjuctions. Consider two statements (StΓ0(G0,C0), StΓ1(G1,C1)), de-
fined by linear maps (Γ0,Γ1), with public parameters (G1,G1), words
(C0,C1), and witnesses (x0,x1). Let G← (G1,G1), C ← (C0,C1), and
x← (x0,x1). We construct the linear map Γ associated to StΓ(G,C) as
Γ ← ((Γ0, 0)ᵀ, (0,Γ1)ᵀ). One can immediatly observe that StΓ(G,C) =
StΓ0(G0,C0)∧ StΓ1(G1,C1). The framework handles disjunction of state-
ments as well, as observed in [1]; we omit the details.

3.2 A Framework for DVNIZK Proofs of Knowledge

We now introduce our framework for constructing designated-verifier non-
interactive zero-knowledge proofs of knowledge for statements defined
by a linear map over G. Let S = (S.KeyGen, S.Enc, S.Dec) denote a
DVNIZK-friendly encryption scheme with plaintext space Zk. We con-
struct a DVNIZK of knowledge ΠK = (ΠK.Setup,ΠK.KeyGen,ΠK.Prove,
ΠK.Verify) for a statement StΓ(G,C) over a word C ∈ Gβ, with public
parameters G ∈ Gα, defined by a linear map Γ : (Gα,Gβ) 7→ Gγ×β. Our
construction proceeds as follows:

– ΠK.Setup(1λ) : compute (ek, dk)
$← S.KeyGen(1λ). Output crs ← ek.

Note that ek defines a plaintext space Zk and a random source ZR.
As the IND-CPA and strong additive properties of S require R to be
unknown, we assume that a bound B on R is publicly available. We
denote `← 2λkB.

– ΠK.KeyGen(1λ): pick e← Z`, set pk← S.Encek(0; e) and vk← e.
– ΠK.Prove(pk,C,x): on a word C ∈ Zβk , with witness x for the state-

ment StΓ(G,C), pick x′ $← Zγk , r
$← Zγ

2λB
, compute

X ← S.Encek(x, r), X′ ← S.Encek(x
′, 0)	 (r � pk), C′ ← x′ • Γ(G,C),

and output π ← (X,X′,C′).
– ΠK.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that e�X⊕X′

is decodable, and decode it to a vector d ∈ Zγk . Check that

d • Γ(G,C) = e •C C′.

If all checks succeeded, accept. Otherwise, reject.

The proof π consists of 2γ ciphertexts of S, and β elements of G. Below,
we illustrate our construction of DVNIZK on the examples of statements
given in the previous section. For the sake of concreteness, we instantiate the
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DVNIZK-friendly encryption scheme S with Paillier (hence the operation
is instantiated as the multiplication modulo n2), so that the message

space is Zn and the randomizer space is Zϕ(n)/2 for an RSA modulus n.
In the examples, we use a bound B = n and draw Paillier random coins
from Z2λB , following our generic framework. However, observe that in the
case of Paillier, we can also draw the coins from Zn/2 to get a distribution
statistically close to uniform over Zϕ(n)/2, which is more efficient.

Example 1: Knowledge of Opening to a Pedersen Commitment.

– ΠPed.Setup(1λ) : Compute ((n, h), δ) = (ek, dk)
$← S.KeyGen(1λ). Out-

put crs← ek. Let `← 2λn2. Let G $← GGen(1λ, n), (G,H)
$← G2.

– ΠPed.KeyGen(1λ): pick e $← Z`, set pk← he mod n2 and vk← e.
– ΠPed.Prove(pk, C,x): on a word C ∈ G, with witness x = (m, r) ∈ Z2

n

for the statement StΓPed
(G,C), pick x′ $← Z2

n, ρ
$← Z2

2λB
, compute

X ← (1 + n)xhρ mod n2,X′ ← (1 + n)x
′
pk−ρ mod n2,C′ ← x′ •

(G,H)ᵀ, and output π ← (X,X′,C′).
– ΠPed.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that XeX′

is of the form (1 + n)d, and recover the vector d ∈ Z2
n. Check that

d • (G,H)ᵀ = e •C C′.

Example 2: Multiplicative Relationship Between ElGamal Ci-
phertexts.

– ΠEM.Setup(1λ) as ΠPed.Setup(1λ).
– ΠEM.KeyGen(1λ) as ΠPed.KeyGen(1λ).
– ΠEM.Prove(pk,C,x): on a word C ∈ G6, with witness x = (m0, r0,m1,

r1, r2) ∈ Z5
n for the statement StΓEM

(G,C), pick x′ $← Z5
n, ρ

$← Z5
2λB

,
compute X ← (1 + n)xhρ mod n2,X′ ← (1 + n)xpk−ρ mod n2,C′ ←
x′ • ΓEM(G,C), and output π ← (X,X′,C′).

– ΠEM.Verify(pk, vk,C,π): parse π as (X,X′,C′). Check that XeX′

is of the form (1 + n)d, and recover the vector d ∈ Z5
n. Check that

d • ΓEM(G,C) = e •C C′.

3.3 Security Proof

We now prove the generic DVNIZK construction from Section 3.2 is secure.
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Perfect Completeness. It follows from straighforward calculations: e�
X ⊕ X′ = S.Encek(e · x + x′; e · r − e · r) = S.Encek(e · x + x′; 0) is
decodable and decodes to d = e · x + x′ mod k. Then, d • Γ(G,C) =
e • (x • Γ(G,C)) x′ • Γ(G,C) = e • C C′ by the correctness of the
statement (x • Γ(G,C) = C) and by construction of C′.

Composable Zero-Knowledge. We prove the following theorem:

Theorem 7 (Zero-Knowledge of ΠK). If the encryption scheme S is
IND-CPA secure, the DVNIZK scheme ΠK is composable zero-knowledge.

We describe a simulator Sim(C, pk, vk) producing proofs computa-
tionally indistinguishable from those produced by an honest prover on
true statements. The simulator operates as follows: let d $← Zγk, and
C′ ← d •Γ(G,C) e •C. Sample x $← Zγk , r

$← Zγ
2λB

, and compute X ←
S.Encek(x, r),X′ ← S.Encek(d− e · x,−e · r). Output πs = (X,X′,C′).

Let A be an adversary that can distinguish Sim from Prove. We will
build a reduction against the IND-CPA security of S. The reduction obtains
C,x from A , samples x̃← Zγk , sends (x, x̃) to the IND-CPA game and sets
X to be the challenge from the IND-CPA game. Now, the reduction samples
d← Zγk and sets X′ := S.Encek(d; 0)	X � e. Finally, the reduction sets
C′ := d • Γ(G,C) e •C. Send π∗ = (X,X′,C) to A .

Direct calculation shows that if the IND-CPA game outputs an en-
cryption of X̃, then X,X′,C are distributed as those produced by Sim,
whereas when it outputs an encryption ofX then π∗ is distributed identical
to a real proof. Thus, whatever advantage A has in distinguishing Sim
from Prove is also achieved by the reduction against IND-CPA. Note that
for simplicity, our proof assume that the IND-CPA game is directly played
over vectors, but standard methods allow to reduce this to the classical
IND-CPA game with a single challenge ciphertext.

Adaptive Unbounded Knowledge-Extractability. We start by show-
ing that ΠK satisfies statistical adaptive unbounded knowledge-extractability.
More precisely, we prove the following theorem:

Theorem 8 (Soundness of ΠK). There is an efficient simulator Sim
such that for any (possibly unbounded) adversary A that outputs an ac-
cepting proof π with probability ε on an arbitrary word C after making at
most Q queries to the oracle Ovk[pk], Sim extracts a valid witness for the
statement StΓ(G,C) with probability at least ε− (Q+ 1)β/pk, where pk is
the smallest prime factor of k.
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The proof describes an efficient simulator Sim that correctly emulates
the verifier, without knowing vk mod k. The simulation is done as follows:

– Sim.Setup(1λ) : compute (ek, dk)
$← S.KeyGen(1λ). Output crs ← ek.

The encryption key ek defines a plaintext space Zk and a random
source ZR with bound B. Let `← 2λkB.

– Sim.KeyGen(1λ): compute (pk, vk)
$← ΠK.KeyGen(1λ), output pk, store

eR ← vk mod R, and erase vk.
– Sim.Verify(pk, dk, eR,C,π): parse π as (X,X′,C′). Using the secret

key dk of S, decrypt X to a vector x, and X′ to a vector x′. Check
that (−eR)� (X 	 x) = X′ 	 x′. Check that x • Γ(G,C) = C, and
that x′ • Γ(G,C) = C′. If all checks succeeded, accept. Otherwise,
reject.

The simulator Sim first calls Sim.Setup(1λ) to generate the common
reference string (note that our simulator generates the common reference
string honestly, hence the simulation of Setup cannot be distinguished
from an honest run of Setup), and stores dk. Each time the adversary A
sends a query (C,π) to the oracle Ovk[pk], Sim simulates Ovk[pk] (without
knowing vk mod k) by running Sim.Verify(pk, dk, eR,C,π), and accepts or
rejects accordingly. When A outputs a final answer (C,π), Sim computes
a witness x for StΓ(G,C) by decrypting C with dk.

Observe that the distribution {(pk, vk)
$← ΠK.KeyGen(1λ), ek ← vk mod

k : (pk, ek)} is statistically indistinguishable from the distribution {(pk, vk)
$←

ΠK.KeyGen(1λ), ek
$← Zk : (pk, ek)}. Put otherwise, the distribution of

vk mod k is statistically indistinguishable from random, even given pk. In-
deed, as S is a DVNIZK-friendly encryption scheme, it holds by definition
that gcd(k,R) = 1. As ` = 2λBk ≥ 2λRk, the distribution {e $← Z`, ek ←
e mod k, eR ← e mod R : (ek, eR)} is statistically indistinguishable from
the uniform distribution over Zk × ZR, and the value pk only leaks eR,
even to an unbounded adversary (as S.Encek(0; e) = S.Encek(0; e mod R)).
We now prove the following claim:

Claim. For any public parameters G and word C, it holds that

Pr

 (pk, vk)
$← ΠK.KeyGen(1λ),

b← Sim.Verify(pk, dk,C,π), : b′ = b
b′ ← ΠK.Verify(pk, vk,C,π)

 ≥ 1− β/pk,

where pk is one of the prime factors of k.

Proof. First, we show that if b = 1, then b′ = 1. Indeed, let us denote
(x,x′) the plaintexts associated to (X,X′). Let (r, r′) be the random
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coins of the ciphertexts (X,X′). Observe that, by the homomorphic
properties of S, the equation (−eR)� (X 	 x) = X′ 	 x′ is equivalent to
S.Encek(0;−eR · r) = S.Encek(0; r′), which is equivalent to e�X ⊕X′ =
S.Enc(e · x + x′ mod k; e · r + r′ mod R) = S.Enc(e · x + x′ mod k; 0)
as e = eR mod R. Therefore, the verifier’s check that e � X ⊕ X′ is
decodable succeeds if and only if Sim’s first check succeeds, and the
decoded value d ∈ Zγk satisfies d = e · x + x′ mod k. Moreover, if the
equations x • Γ(G,C) = C and x′ • Γ(G,C) = C′ are both satisfied (i.e.
Sim’s other checks succeed), then it necessarily holds that d • Γ(G,C) =
(e · x + x′) • Γ(G,C) = e • (x • Γ(G,C)) x′ • Γ(G,C) = e • C C′.
This concludes the proof that, conditioned on Sim’s checks succeeding, the
verifier’s checks necessarily succeed.

Now, assume for the sake of contradiction that the converse is not
true: suppose that Sim rejected the proof, while the verifier accepted. We
already showed that the equation (−eR)� (X	x) = X′	x′ is equivalent
to the equation e �X ⊕X′ = S.Enc(e · x + x′ mod k; 0); therefore, if
e �X ⊕X′ is decodable (it has random coin 0), then Sim’s check that
(−eR)� (X 	x) = X′ 	x′ succeeds. As we assumed that Sim rejects the
proof, this means that at least one of Sim’s last checks must fail: either
x • Γ(G,C) 6= C, or x′ • Γ(G,C) 6= C′. By the first check of the verifier,
it holds that e �X ⊕X′ is decodable; denoting (x,x′) the plaintexts
associated to (X,X′), it therefore decodes to d = e ·x+x′ mod k. By the
second check of the verifier, it holds that d • Γ(G,C) = e •C C′, which
implies e • (x • Γ(G,C)) x′ • Γ(G,C) = e •C C′. This last equation
rewrites to

e • (x • Γ(G,C) C) = C′ x′ • Γ(G,C) (1)

Now, recall that by assumption, either x•Γ(G,C) 6= C, or x′ •Γ(G,C) 6=
C′. Observe that Equation 1 further implies, as e 6= 0 (with overwhelming
probability), that x′ • Γ(G,C) C′ 6= 0 if and only if x • Γ(G,C) C 6= 0.
Therefore, conditioned on Sim rejecting the proof, it necessarily holds
that x • Γ(G,C) C 6= 0 and x′ • Γ(G,C) C′ 6= 0. Let (µi, νi) be two
non-zero entries of the vectors (x • Γ(G,C) C,C′ x′ • Γ(G,C)) at the
same position i ≤ β; by Equation 1, it holds that e = νi · µ−1

i mod p for at
least one of the prime factors p of k. However, recall that the value e mod k
is statistically hidden to the prover (and therefore, so is the value e mod p),
hence the probability of this event happening can be upper-bounded by
β/p ≤ β/pk. This concludes the proof of the claim. ut

Now, consider an adversary A that outputs an accepting proof (C,π)
with probability at least ε after a polynomial number Q of interactions
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with the oracle Ovk[pk]. By the above claim and a union bound, it neces-
sarily holds that A outputs an accepting proof (C,π) with probability at
least ε−Qβ/pk after interacting Q times with Sim.Verify(pk, dk, eR, ·, ·);
moreover, with probability at least 1 − βpk, this proof is also accepted
by Sim’s verification algorithm. Overall, Sim obtains a proof accepted by
his verification algorithm with probability at least ε − (Q + 1)β/pk. In
particular, this implies that the vector x extracted by Sim from π satisfies
x • Γ(G,C) = C with probability at least ε − (Q + 1)β/pk. Therefore,
Sim extracts a valid witness for the knowledge statement StΓ(G,C) with
probability at least ε− (Q+ 1)β/pk. As the size k of a DVNIZK-friendly
cryptosystem has only superpolynomially large prime-factors, it holds that
pk is superpolynomially large. As (Q + 1)β is polynomial, we conclude
that if A outputs an accepting proof with non-negligible probability, then
Sim extracts a valid witness with non-negligible probability.

4 Dual Variant of the Framework

In the previous section, we described a framework for constructing efficient
DVNIZKs of knowledge for relations between words defined over an abelian
group (G, ), using a cryptosystem with specific properties as the underly-
ing commitment scheme for the proof system. In this section, we show that
the framework can also be used in a dual way, by considering languages
of relations between the plaintexts of the underlying encryption scheme
– we call this variant ‘dual variant’ of the framework, as the roles of the
underlying encryption scheme (which is used as a commitment scheme for
the proof) and of the abelian group (which contains the words on which
the proof is made) are partially exchanged. This allows for example to han-
dle languages of relations between Paillier ciphertexts. To instantiate the
framework, it suffices to have any perfectly binding commitment scheme
defined over G. This dual variant leads to efficient DVNIZK proofs for
relations between, e.g., Paillier ciphertexts, whose zero-knowledge property
reduces to the binding property of the commitment scheme over G (e.g.
the DDH assumption, or its variants), and with statistical (unbounded,
adaptive) soundness.

4.1 Perfectly Binding Commitment over G

Suppose that we are given a perfectly binding homomorphic commitment
C = (C.Setup, C.Com, C.Verify), where C.Com : Zk × Zk 7→ G∗. Assume
further that C.Setup generates a public vector of parameters G ∈ G∗, and
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that there is a linear map ΓC associated to this commitment such that
for all (m, r) ∈ Z2

k, C.Com(m, r) = (m, r) • ΓC(G). Note this implies the
commitment scheme is homomorphic over G. ElGamal (Sect. 2.1), can be
used as a commitment scheme satisfying these properties, is hiding under
the DDH assumption and perfectly binding. We do so by using KeyGen(1λ)
in place of Setup(1λ) to generate group elements (G,H) (the public key
of the encryption scheme), and commit (i.e encrypt) via ΓC(G,H) =
((0, G)ᵀ, (G,H)ᵀ). We generalize this to commitments to length-t vectors
as follow: we let ΓC,t denote the extended matrix such that C.Com(m, r) =
(m, r) • ΓC,t(G), where (m, r) are vectors of length t (ΓC,t is simply the
block-diagonal matrix whose t blocks are all equal to ΓC). Consider now
the following statement, where the word is a vector C of commitments:

StΓC,t(G,C) = K{(m, r) | (m, r) • ΓC,t(G) = C}
= K{(m, r) | C.Com(m, r) = C}.

One can immediatly observe that this statement (which is a proof of
knowledge of openings to a vector of commitments with C) is handled by
the framework of Section 3.

4.2 Equality of Plaintexts between C and S

In this section, we describe a simple method to convert a DVNIZK on the
statement StΓC,t(G,C) = K{(m, r) | C.Com(m, r) = C} into a DVNIZK
on the statement St′(G,C,Xm) = ∃{(m,ρm, r) | Xm = S.Encek(m,ρm)∧
C = C.Com(m, r)} for a length-t vector C of commitments with a com-
mitment scheme over G satisfying the requirements defined in the previous
section, and a length-t vector of DVNIZK-friendly ciphertexts Xm. Instan-
tiating the framework of Section 3 for the statement StΓC,t(G,C), we get
the following DVNIZK Π:

– Π.Setup(1λ) : compute (ek, dk)
$← S.KeyGen(1λ). Output crs ← ek.

Note that ek defines the plaintext space Zk and the random source ZR
with bound B. We denote `← 2λkB.

– Π.KeyGen(1λ): pick e← Z`, set pk← S.Encek(0; e) and vk← e.
– Π.Prove(pk,C, (m, r)): on a word C ∈ Ztk, with witness (m, r) for

the statement StΓC,t(G,C) (where G $← C.Setup(1λ)), pick random
(m′, r′), random coins (ρm,ρr) for S, and compute

Xm ← S.Encek(m,ρm), Xr ← S.Encek(r,ρr),

X′
m ← S.Encek(m

′, 0)	 (ρm � pk), X′
r ← S.Encek(r

′, 0)	 (ρr � pk),

C′ ← (m′, r′) • ΓC,t(G,C),
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and output π ← (Xm,X
′
m,Xr,X

′
r,C

′).
– ΠK.Verify(pk, vk,C,π): parse π as (Xm,X

′
m,Xr,X

′
r,C

′). Check that
e �Xm ⊕X′

m and e �Xr ⊕X′
r are decodable, and decode them

to vectors (dm,dr) ∈ (Ztk)2. Check that (dm,dr) • ΓC,t(G,C) =
e •C C′.

By the result of Section 3, this is an unbounded statistical adaptive
knowledge-extractable DVNIZK of knowledge of an opening for C. Suppose
now that we modify the above scheme as follow: we let Xm be part of
the word on which the proof is executed, rather than being computed as
part of the proof by the algorithm Π.Prove. That is, we consider words
of the form (C,Xm) with witness (m, r,ρm) such that (C,Xm) =
(C.Com(m; r), S.Encek(m,ρm)). Let Π′ denote the modified proof, in
which Xm is part of the word and (X′

m,Xr,X
′
r,C

′) are computed as in
Π. Observe that the proof of security of our framework immediatly implies
that Π′ is a secure DVNIZK for plaintext equality between commitments
with C and encryptions with S: our statistical argument shows that a
(possibly unbounded) adversary has negligible probability of outputting
a word C together with an accepting proof π = (Xm,X

′
m,Xr,X

′
r,C

′)
where the plaintext extracted by the simulator from Xm is not also the
plaintext of C. Hence, it is trivial that the probability of outputting a
word (C,Xm) and an accepting proof π′ = (X′

m,Xr,X
′
r,C

′) where the
plaintext extracted by the simulator from Xm is not also the plaintext of
C is also negligible. Thus, we get:

Theorem 9. The proof system Π′ is an adaptive unbounded statistically
sound proof for equality between plaintexts of C and plaintexts of S, whose
composable zero-knowledge property reduces to the IND-CPA security of S.

Note that the proof Π′ is no longer a proof of knowledge: while the
simulator can extract (m, r) from the prover, he cannot necessarily extract
the random coins ρm ofXm, which are now part of the witness. Therefore,
for the protocol to make sense, it is important that C is perfectly binding .

4.3 A Framework for Relations between Plaintexts of S

The observations of the above section suggest a very natural way for design-
ing DVNIZKs for relations between plaintexts m ∈ Z∗k of the encryption
scheme S, which intuitively operates in two steps: first, we create commit-
ments to the plaintexts m over G using C and prove them consistent with
the encrypted values using the method described in the previous section.
Then, we are able to use the framework of Section 3 to demonstrate the
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desired relation holds between the commited values (this is a statement
naturally captured by the framework). More formally, on input a vector of
ciphertexts Xm encrypting plaintexts m with random coins ρm,

– Pick r and compute C ← C.Com(m, r).
– Construct a DVNIZK for the statement St′(G,C,Xm) with witness

(m,ρm, r), using the method described in Section 4.2.
– Construct a DVNIZK for the statement StΓ(G,C) with witness (m, r),

using the framework of Section 3.

The correctness of this approach is immediate: the second DVNIZK
guarantees that the appropriate relation is satisfied between the plaintexts
of the commitments, while the first one guarantees that the ciphertexts
indeed encrypt the committed values. This leads to a DVNIZK proof of
relation between plaintexts of S, with unbounded adaptive statistical
soundness. Regarding zero-knowledge, as the proof starts by committing
to m with C, we must in addition assume that the commitment scheme is
hiding (the security analysis is straightforward).

Theorem 10. The above system is an adaptive unbounded statistically
sound proof for relations of plaintexts of S, whose composable zero-knowledge
reduces to the IND-CPA security of S and the hiding property of C.

We note that we can also obtain a variant of Theorem 10, where zero-
knowledge only relies on the IND-CPA of S, and hiding of C implies the
soundness property, using commitment schemes a la Groth-Sahai where
the crs can be generated in two indistinguishable ways, one leading to a
perfectly hiding scheme, and one leading to a perfectly binding scheme
(such commitments are known, e.g., from the DDH assumption).

Example: Multiplicative Relationship Between Paillier Cipher-
texts. We focus now on the useful case of multiplicative relationship
between plaintexts of Paillier ciphertexts. We instantiate S with the Pail-
lier encryption scheme over an RSA group Zn, with a public key (n, h)
(h = gn mod n2 for a generator g of Jn), and the commitment scheme
C with the ElGamal encryption scheme over a group G of order n, with
public key (G,H). Let (P0, P1, P2) ∈ (Z∗n2)3 be three Paillier ciphertexts,
and let (m0,m1,m2, ρ0, ρ1, ρ2) be such that m2 = m0m1 mod n, and P0 =
(1+n)m0hρ0 mod n2, P1 = (1+n)m1hρ1 mod n2, P2 = (1+n)m2hρ2 mod n2.
Let E = he mod n2 denote the public key of the verifier. The designated-
verifier NIZK for proving that P2 encrypts m0m1 proceeds as follows:
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– Committing over G: pick (r0, r1, r2) and send (Ui, Vi)0≤i≤2 ← (ri •
G, ri • H mi • G)0≤i≤2 (which are commitments with ElGamal to
(m0,m1,m2) over G).

– Proof of Plaintext Equality: pick (m′i, r
′
i, ρ
′
i)0≤i≤2

$← (Zn × Zn ×
Zn/2)3, and send for i = 0 to 2, Xi ← (1 + n)rihρ

′
i mod n2, X ′i ←

(1 + n)r
′
iE−ρ

′
i mod n2, P ′i ← (1 + n)m

′
iE−ρi mod n2, and (U ′i , V

′
i ) ←

(r′i •G, r′i •H m′i •G).
– Proof of Multiplicative Relationship Between the Committed
Values: apply the proof system of Example 2 from Section 3 to the
word (Ui, Vi)0≤i≤2, with public parameters (G,H), and the witness
x = (m0, r0,m1, r1, r2 − r0m1) which satisfies (U0, V0) = (r0 •G, r0 •
H m0 •G), (U1, V1) = (r1 •G, r1 •H m1 •G), and (U2, V2) = ((r2 −
r0m1) •G m1 • U0, (r2 − r0m1) •H m1 • V0).

– Proof Verification: upon receving (Ui, Vi, Xi, X
′
i, P

′
i , U

′
i , V

′
i )0≤i≤2 to-

gether with the proof of multiplicative relationship between the values
committed with (Ui, Vi)i, the verifier with verification key vk = e checks
that e� Pi ⊕ P ′i and e�Xi ⊕X ′i successfully decode (respectively) to
values pi, xi, and that e•Ui U ′i = xi •G and e•Vi V ′i = xi •H pi •G,
for i = 0 to 2. The verifier additionally checks the multiplicative proof,
as in Example 4 from Section 3. She accepts iff all checks succeed.

The proof for the multiplicative statement involves 10 Paillier ciphertexts
and 3 ElGamal ciphertexts. Overall, the total proof involves 20 Paillier
ciphertexts, and 9 ElGamal ciphertexts. However, this size is obtained
by applying the framework naively; in this situation, it introduces a lot
of redudancy. For instance, instead of computing Paillier encryptions
of (m0, r0,m1, r1) in the third phase, one can simply reuse the word
(P0, P1) and the ciphertexts (X0, X1), as well as reusing (P ′i , X

′
i)i for the

corresponding masks (m′i, r
′
i)i, saving 8 Paillier ciphertexts; similar savings

can be obtained for the ElGamal ciphertexts, leading to a proof of total
size 12 Paillier ciphertexts + 7 ElGamal ciphertexts.

Furthermore, if we eschew unbounded soundness and accept bounds
on mi we are able to produce a much shorter proof, comprising only two
Paillier ciphertexts, outperforming even Fiat-Shamir. We detail this in the
full version [16].
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