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Abstract. We revisit security proofs for various cryptographic primi-
tives in the auxiliary-input random-oracle model (AI-ROM), in which an
attacker A can compute arbitrary S bits of leakage about the random
oracle O before attacking the system and then use additional T oracle
queries to O during the attack. This model has natural applications in
settings where traditional random-oracle proofs are not useful: (a) security
against non-uniform attackers; (b) security against preprocessing. We
obtain a number of new results about the AI-ROM:

– Unruh (CRYPTO ’07) introduced the pre-sampling technique, which
generically reduces security proofs in the AI-ROM to a much simpler
P -bit-fixing random-oracle model (BF-ROM), where the attacker
can arbitrarily fix the values of O on some P coordinates, but then
the remaining coordinates are chosen at random. Unruh’s security
loss for this transformation is

√
ST/P . We improve this loss to the

optimal value O(ST/P ), obtaining nearly tight bounds for a variety
of indistinguishability applications in the AI-ROM.

– While the basic pre-sampling technique cannot give tight bounds for
unpredictability applications, we introduce a novel “multiplicative
version” of pre-sampling, which allows to dramatically reduce the size
of P of the pre-sampled set to P = O(ST ) and yields nearly tight
security bounds for a variety of unpredictability applications in the AI-
ROM. Qualitatively, it validates Unruh’s “polynomial pre-sampling
conjecture”—disproved in general by Dodis et al. (EUROCRYPT
’17)—for the special case of unpredictability applications.

– Using our techniques, we reprove nearly all AI-ROM bounds obtained
by Dodis et al. (using a much more laborious compression technique),
but we also apply it to many settings where the compression technique
is either inapplicable (e.g., computational reductions) or appears
intractable (e.g., Merkle-Damg̊ard hashing).

– We show that for any salted Merkle-Damg̊ard hash function with
m-bit output there exists a collision-finding circuit of size Θ(2m/3)
(taking salt as the input), which is significantly below the 2m/2

birthday security conjectured against uniform attackers.

– We build two compilers to generically extend the security of applica-
tions proven in the traditional ROM to the AI-ROM. One compiler
simply prepends a public salt to the random oracle, showing that
salting generically provably defeats preprocessing.



Overall, our results make it much easier to get concrete security bounds
in the AI-ROM. These bounds in turn give concrete conjectures about the
security of these applications (in the standard model) against non-uniform
attackers.

1 Introduction

We start by addressing the two main themes of this work—non-uniformity
and random oracles—in isolation, before connecting them to explain the main
motivation for this work.

Non-uniformity. Modern cryptography (in the “standard model”) usually models
the attacker A as non-uniform, meaning that it is allowed to obtain some arbitrary
(but bounded) “advice” before attacking the system. The main rationale to this
modeling comes from the realization that a determined attacker will know the
security parameter n of the system in advance and might be able to invest a
significant amount of preprocessing to do something “special” for this fixed value
of n, especially if n is not too large (for reasons of efficiency), or the attacker
needs to break a lot of instances online (therefore amortizing the one-time offline
cost). Perhaps the best known example of such attacks comes from rainbow tables
([31,46]; see also [38, Section 5.4.3]) for inverting arbitrary functions; the idea
is to use one-time preprocessing to initialize a clever data structure in order to
dramatically speed up brute-force inversion attacks. Thus, restricting to uniform
attackers might not accurately model realistic preprocessing attacks one would
like to protect against. However, there are other, more technical, reasons why
this choice is convenient:

– Adleman [2] showed that non-uniform polynomial-time attackers can be
assumed to be deterministic (formally, BPP/poly = P/poly), which is handy
for some proofs.

– While many natural reductions in cryptography are uniform, there are several
important cases where the only known (or even possible!) reduction is non-
uniform. Perhaps the best known example are zero-knowledge proofs [28,27],
which are not closed under sequential composition unless one allows non-
uniform attackers (and simulators; intuitively, in order to use the simulator
for the second zero-knowledge proof, one must use the output of the first
proof’s simulator as an auxiliary input to the verifier).4 Of course, being
a special case of general protocol composition, this means that any work—
either using zero-knowledge as a subroutine or generally dealing with protocol
composition—must use security against non-uniform attackers in order for
the composition to work.

4 There are some workarounds (see [26]) that permit one to define zero-knowledge
under uniform attackers, but they are much harder to work with than assuming
non-uniformity, and, as a result, were not adopted by the community.
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– The non-uniform model of computation has many applications in com-
plexity theory, such as the famous “hardness-vs-randomness” connection
(see [45,34,35,33,36]), which roughly states that non-uniform hardness im-
plies non-trivial de-randomization. Thus, by defining cryptographic attackers
as non-uniform machines, any lower bounds for such cryptographic applica-
tions might yield exciting de-randomization results.

Of course, despite the pragmatic, definitional, and conceptual advantages
of non-uniformity, one must ensure that one does not make the attacker “too
powerful,” so that it can (unrealistically) solve problems which one might use in
cryptographic applications. Fortunately, although non-uniform attackers can solve
undecidable problems (by encoding the input in unary and outputting solutions
in the non-uniform advice), the common belief is that non-uniformity cannot
solve interesting “hard problems” in polynomial time. As one indirect piece of
evidence, the Karp-Lipton theorem [37] shows that if NP has polynomial-size
circuits, then the polynomial hierarchy collapses. And, of course, the entire field
of cryptography is successfully based on the assumption that many hard problems
cannot be solved even on average by polynomially sized circuits, and this belief
has not been seriously challenged so far.

Hence, by and large it is believed by the theoretical community that non-
uniformity is the right cryptographic modeling of attackers, despite being overly
conservative and including potentially unrealistic attackers.

The random-oracle model. Hash functions are ubiquitous in cryptography. They
are widely used to build one-way functions (OWFs), collision-resistant hash
functions (CRHFs), pseudorandom functions/generators (PRFs/PRGs), message
authentication codes (MACs), etc. Moreover, they are often used together with
other computational assumptions to show security of higher-level applications.
Popular examples include Fiat-Shamir heuristics [23,1] for signature schemes (e.g.,
Schnorr signatures [49]), full-domain-hash signatures [8], or trapdoor functions
(TDFs) [8] and OAEP [9] encryption, among many others.

For each such application Q, one can wonder how to assess its security ε when
instantiated with a concrete hash function H, such as SHA-3. Given our inability
to prove unconditional lower bounds, the traditional approach is the following:
Instead of proving an upper bound on ε for some specific H, one analyzes the
security of Q assuming H is a truly random (aka “ideal”) function O. Since
most Q are only secure against computationally bounded attackers, one gives the
attacker A oracle access to O and limits the number of oracle queries that A can
make by some parameter T . This now becomes the traditional random-oracle
model (ROM), popularized by the seminal paper of Bellare and Rogaway [8].

The appeal of the ROM stems from two aspects. First, it leads to very clean
and intuitive security proofs for many primitives that resisted standard-model
analysis under natural security assumptions (see some concrete examples below).
Second, this resulting ROM analysis is independent of the tedious specifics of H,
is done only once for a given hash-based application, and also provides (for
non-pathological Q’s) the best possible security one might hope to achieve with
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any concrete function H. In particular, we hope that a specific hash function H
we use is sufficiently “well-designed” that it (essentially) matches this idealized
bound. If it does, then our bound on ε was accurate anyway; and, if it does not,
this usually serves as strong evidence that we should not use this particular H,
rather than the indication that the idealized analysis was the wrong way to
guess the exact security of Q. Ironically, in theory we know that the optimistic
methodology above is false [12,11,44,29,5], and some applications secure in the
ROM will be insecure for any instantiation of H, let alone maintain the idealized
bound on ε. Fortunately, all counterexamples of this kind are rather artificial, and
do not shed much light on the security of concrete schemes used in practice, such
as the use of hash functions as OWFs, CRHFs, PRFs, PRGs, MACs, and also as
parts of natural signature and encryption schemes used in practice [23,49,9,8].
In other words, despite purely theoretical concerns, the following random-oracle
methodology appears to be a good way for practitioners to assess the best possible
security level of a given (natural) application Q.

Random-oracle methodology. For “natural” applications of hash
functions, the concrete security proven in the random-oracle model is
the right bound even in the standard model, assuming the “best possible”
concrete hash function H is chosen.

Random oracles and non-uniformity. The main motivation for this work is to
examine the soundness of the above methodology, while also being consistent
with the fact that attackers should be modeled as non-uniform. We stress that
we are not addressing the conceptual question of whether non-uniform security
is the “right” way to model attackers in cryptography, as this is the subject of a
rather heated on-going debate between theoreticians and practitioners; see [48,10]
for some discussion on the subject. Instead, assuming we want to model attackers
as non-uniform (for the reasons stated above and to be consistent with the
theoretical literature), and assuming we want to have a way of correctly assessing
the concrete, non-asymptotic security for important uses of hash functions in
applications, we ask: is the random oracle methodology a sound way to achieve
this goal? Unfortunately, with the traditional modeling of the random oracle, the
answer is a resounding “NO,” even for the most basic usages of hash functions,
as can be seen from the following examples.

(i) In the standard model, no single function H can be collision-resistant, as a
non-uniform attacker can trivially hardwire a collision. In contrast, a single
(non-salted) random oracle O is trivially collision-resistant in the ROM, with
excellent exact security O(T 2/M), where M is the range of O. This is why in
the standard model one considers a family of collision-resistant hash functions
whose public key, which we call salt, is chosen after A gets its non-uniform
advice. Interestingly, one of the results in this paper will show that the
large gap (finding collisions in time M1/2 vs. M1/3) between uniform and
non-uniform security exists for the popular Merkle-Damg̊ard construction
even if salting is allowed.
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(ii) In the standard model, no PRG candidate H(x) can have security better
than 2−n/2 even against linear-time (in n) attackers [3,20,10], where n is
the seed-length of x. In contrast, an expanding random oracle O(x) can
be trivially shown to be (T/2n)-secure PRG in the traditional ROM, easily
surpassing the 2−n/2 barrier in the standard model (even for huge T up to
2n/2, let alone polynomial T ).

(iii) The seminal paper of Hellman [31], translated to the language of non-uniform
attackers, shows that a random function H : [N ]→ [N ] can be inverted with
constant probability using a non-uniform attacker of size O

(
N2/3

)
, while Fiat

and Naor [22] extended this attack to show that every (even non-random)
function H can be inverted with constant probability by circuits of size at
most N3/4. In contrast, if one models H as a random oracle O, one can
trivially show that O is a OWF with security O (T/N) in the traditional
ROM. For example, setting T = N2/3 (or even T = N3/4), one would still get
negligible security N−1/3 (or N−1/4), contradicting the concrete non-uniform
attacks mentioned above.

To put it differently, once non-uniformity is allowed in the standard model, the
separations between the random-oracle model and the standard model are no
longer contrived and artificial but rather lead to impossibly good exact security of
widely deployed applications.

Auxiliary-input ROM. The above concern regarding the random-oracle method-
ology is not new and was extensively studied by Unruh [51] and Dodis et al. [18].
Fortunately, these works offered a simple solution, by extending the traditional
ROM to also allow for oracle-dependent auxiliary input. The resulting model,
called the auxiliary-input random-oracle model (AI-ROM), is parameterized by
two parameters S (“space”) and T (“time”) and works as follows: First, as in
the traditional random-oracle model, a function O is chosen uniformly from
the space of functions with some domain and range. Second, the attacker A
in the AI-ROM consists of two entities A1 and A2. The first-stage attacker A1

is computationally unbounded, gets full access to the random oracle O, and
computes some “non-uniform” advice z of size S. This advice is then passed to
the second-stage attacker A2, who may make up to T queries to oracle O (and,
unlike A1, might have additional application-specific restrictions, like bounded
running time, etc.). This naturally maps to the preprocessing model discussed
earlier and can also be used to analyze security against non-uniform circuits of
size C by setting S = T = C.5 Indeed, none of the concerns expressed in examples
(i)-(iii) remain valid in AI-ROM: (i) O itself is no longer collision-resistant since
A1 can precompute a collision; (ii)-(iii) the generic non-uniform PRG or OWF
attacks mentioned earlier can also be performed on O itself (by letting A1 treat
O as any other function H and computing the corresponding advice for A2). In
sum, the AI-ROM model allows us to restate the modified variant of the random
oracle methodology as follows:

5 But separating S and T can also model non-uniform RAM computation with memory
S and query complexity T .
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AI-Random-Oracle Methodology. For “natural” applications of hash
functions, the concrete security proven in the AI-ROM is the right bound
even in the standard model against non-uniform attackers, assuming the
“best possible” concrete hash function H is chosen.

Dealing with auxiliary information. The AI-ROM yields a clean and elegant
way towards obtaining meaningful non-uniform bounds for natural applications.
Unfortunately, obtaining such bounds is considerably more difficult than in the
traditional ROM. In retrospect, such difficulties are expected, since we already
saw several examples showing that non-uniform attackers are very powerful when
exact security matters, which means that the security bounds obtained in the
AI-ROM might often be noticeably weaker than in the traditional ROM. From a
technical point, the key difficulty is this: conditioned on the leaked value z, which
can depend on the entire function table of O in some non-trivial manner, many
of the individual values O(x) are no longer random to the attacker. And this
ruins many of the key techniques utilized in the traditional ROM, such as: (1)
lazy sampling, which allows the reduction to sample the not-yet-queried values
of O at random, as needed, without worrying that such lazy sampling will be
inconsistent with the past; (2) programmability, which allows the reduction to
dynamically define some value of O in a special (still random) way, as this might
be inconsistent with the leakage value z it has to produce before knowing how and
where to program O; (3) distinguishing-to-extraction argument, which states that
the attacker cannot distinguish the value of O from random without explicitly
querying it (which again is false given auxiliary input). For these reasons, new
techniques are required for dealing with the AI-ROM. Fortunately, two such
techniques are known:

– Pre-sampling technique. This beautiful technique was introduced in the orig-
inal, pioneering work of Unruh [51]. From our perspective, we will present
Unruh’s pre-sampling technique in a syntactially different (but technically
equivalent) way which will be more convenient for our presentation. Specifi-
cally, Unruh implicitly introduced an intermediate oracle model, which we
term the bit-fixing random-oracle model (BF-ROM),6 which can be arbitrarily
fixed on some P coordinates, but then the remaining coordinates are chosen
at random and independently of the fixed coordinates. Moreover, the non-
uniform S-bit advice of the attacker can only depend on the P fixed points,
but not on the remaining truly random points. Intuitively, dealing with the
BF-ROM—at least when P is small—appears to be much easier than with the
AI-ROM, as many of the traditional ROM proof techniques can be adapted
provided that one avoids the “pre-sampled” set. Quite remarkably, for any
value P , Unruh showed that any (S, T )-attack in the AI-ROM will have
similar advantage in (appropriately chosen) P -BF-ROM, up to an additive
loss of δ(S, T, P ), which Unruh upper bounded by

√
ST/P . This yields a

general recipe for dealing with the AI-ROM: (a) prove security ε(S, T, P ) of

6 This naming in inspired by the bit-fixing source [13] from complexity theory.
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the given application in the P -BF-ROM;7 (b) optimize for the right value of
P by balancing ε(S, T, P ) and δ(S, T, P ) (while also respecting the time and
other constraints of the attacker).

– Compression technique. Unfortunately, Dodis et al. [18] showed that the
concrete security loss δ(S, T, P ) =

√
ST/P proven by Unruh is not strong

enough to get tight bounds for any of the basic applications of hash functions,
such as building OWFs, PRGs, PRFs, (salted) CRHFs, and MACs. To remedy
the situation, Dodis et al. [18] showed a different, less general technique for
dealing with the AI-ROM, by adapting the compression paradigm, introduced
by Gennaro and Trevisan [25,24] in the context of black-box separations, to the
AI-ROM. The main idea is to argue that if some AI-ROM attacker succeeds
with high probability in breaking a given scheme, then that attacker can be
used to reversibly encode (i.e., compress) a random oracle beyond what is
possible from an information-theoretic point of view. Since we are considering
attackers who perform preprocessing, our encoding must include the S-bit
auxiliary information produced by the attacker. Thus, the main technical
challenge in applying this technique is to ensure that the constructed encoding
compress by (significantly) more than S bits. Dodis et al. [18] proceeded
by successfully applying this idea to show nearly tight (and always better
than what was possible by pre-sampling) bounds for a variety of natural
applications, including OWFs, PRGs, PRFs, (salted) CRHFs, and MACs.

Pre-sampling or compression? The pre-sampling and compression techniques
each have their pros and cons, as discussed below.

On a positive, pre-sampling is very general and seems to apply to most
applications, as analyzing the security of schemes in BF-ROM is not much harder
than in the traditional ROM. Moreover, as shown by Unruh, the pre-sampling
technique appears at least “partially friendly” to computational applications of
random oracles (specifically, Unruh applied it to OAEP encryption [9]). Indeed, if
the size P of the pre-sampled set is not too large, then it can be hardwired as part
of non-uniform advice to the (efficient) reduction to the computational assumption.
In fact, in the asymptotic domain Unruh even showed that the resulting security
remains “negligible in security parameter λ,” despite not being smaller than any
concrete negligible function (like the inverse Ackermann function).8

On a negative, the concrete security bounds which are currently obtainable
using this technique are vastly suboptimal, largely due to the big security loss

7 Observe that the parameter S is still meaningful here. A1 fixes O at P points but
only passes S bits of advice to A2. While none of information-theoretic proofs in this
paper really use this, for computational reductions S ”passes through” for the final
non-uniform attacker against the computational assumption, and it is necessary to
have S � P in this case.

8 Any AI-ROM attacker of size t = t(λ) getting inverse polynomial advantage δ = 1/p(λ)
for infinitely many λ’s has advantage δ −

√
ST/P in the BF-ROM, which can be

made to be δ/2 by suitably choosing P ≈ O(t2/δ2), which is polynomial and therefore
suited for a reduction to a computational hardness assumption.
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√
ST/P incurred by using Unruh’s bound [51]. Moreover, for computational

applications, the value of P cannot be made larger than the size of attacker for the
corresponding computational assumption. Hence, for fixed (“non-asymptotic”;
see Footnote 8) polynomial-size attackers, the loss

√
ST/P cannot be made

negligible. Motivated by this, Unruh conjectured that the security loss of pre-
sampling can be improved by a tighter proof. Dodis et al. [18] showed that the
best possible security loss is at most ST/P . For computational applications, this
asymptotically disproves Unruh’s conjecture, as ST/P is still non-negligible for
polynomial values of P (although we will explain shortly that the situation is
actually more nuanced).

Moving to the compression technique, we already mentioned that it led Dodis
et al. [18] to establishing nearly tight AI-ROM bounds for several information-
theoretic applications of random oracles. Unfortunately, each proof was noticeably
more involved than the original ROM proof, or than the proof in the BF-ROM
one would do if applying the more intuitive pre-sampling technique. Moreover,
each primitive required a completely different set of algorithmic insights to get
the required level of compression. And it is not entirely clear how far this can
go. For example, we do not see any way to apply the compression paradigm to
relatively basic applications of hash functions beyond using the hash function
by itself as a given primitive; e.g., to show AI-ROM security of the classical
Merkle-Damg̊ard paradigm [42,16] (whose tight AI-ROM security we will later
establish in this work). Moreover, unlike pre-sampling, the compression paradigm
cannot be applied at all to computational applications, as the compressor and
the decompressor are computationally unbounded.

1.1 Our Results

We obtain a number of results about dealing with the AI-ROM, which, at a
high-level, take the best features from pre-sampling (simplicity, generality) and
compression (tightness).

Improving Unruh. Recall, Unruh [51] showed that one can move from the AI-
ROM to the P -BF-ROM at the additive cost δ(S, T, P ) ≤

√
ST/P , and Dodis

et al. [18] showed that δ(S, T, P ) = Ω (ST/P ) in general. We show that the
true additive error bound is indeed δ(S, T, P ) = Θ(ST/P ), therefore improving
Unruh’s bound by a quadratic factor; see Theorem 1. Namely, the effect of S
bits of auxiliary information z = z(O) against an attacker making T adaptive
random-oracle queries can be simulated to within an additive error O(ST/P )
by fixing the value of the random oracle on P points (which depend on the
function z), and picking the other points at random and independently of the
auxiliary information.

While the quadratic improvement might appear “asymptotically small,” we
show that it already matches the near-tight bound for all indistinguishability
applications (specifically, PRGs and PRFs) proved by [18] using much more
laborious compression arguments. For example, to match the ε = O(

√
ST/N +

T/N) bound for PRGs with seed domain N , we show using a simple argument
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that the random oracle is ε′ = O(P/N + T/N)-secure in the P -BF-ROM, where
the first term corresponds to the seed being chosen from the pre-sampled set, and
the second term corresponds to the probability of querying the oracle on the seed
in the attack stage. Setting P = O(

√
STN) to balance the P/N and ST/P terms,

we immediately get our final bound, which matches that of [18]. For illustrative
purposes, we also apply our improved bound to argue the AI-ROM security of a
couple of indistinguishability applications not considered by [18]. First, we show
an improved—compared to its use as a (standard) PRF—bound for the random
oracle as a weak PRF, which is enough for chosen-plaintext secure symmetric-key
encryption. Our proof is a very simple adaptation of the PRF proof in the
BF-ROM, while we believe the corresponding compression proof, if possible at
all, would involve noticeable changes to the PRF proof of [18] (due to the need
for better compression to get the improved bound). Second, we also apply it to a
typical example of a computational application, namely, the (KEM-variant of the)
TDF-based public-key encryption scheme Encf (m;x) = (f(x),O(x)⊕m) from
the original Bellare-Rogaway paper [8], where f is a trapdoor permutation (part
of the public key, while the inverse is the secret key) and x is the randomness
used for encryption. Recall that the compression technique cannot be applied to
such applications.

To sum up, we conjecture that the improved security bound ST/P should
be sufficient to get good bounds for most natural indistinguishability applica-
tions; these bounds are either tight, or at least they match those attainable via
compression arguments (while being much simpler and more general).

Improved pre-sampling for unpredictability applications. Even with our improved
bound of ST/P for pre-sampling, we will not match the nearly tight compression
bounds obtained by Dodis et al. [18] for OWFs and MACs. In particular, finding
the optimal value of P will result in “square root terms” which are not matched
by any existing attacks. As our key insight, we notice that this is not due to the
limitations of pre-sampling (i.e., going through the BF-ROM), but rather to the
fact that achieving an additive error is unnecessarily restrictive for unpredictability
applications. Instead, we show that if one is happy with a multiplicative factor of
2 in the probability of breaking the system, then one can achieve this generically
by setting the pre-sampling set size P ≈ ST ; see Theorem 2.

This has a number of implications. First, with this multiplicative pre-sampling
technique, we can easily match the compression bounds for the OWF and MAC
unpredictability applications considered by Dodis et al. [18], but with much sim-
pler proofs. Second, we also apply it to a natural information-theoretic application
where we believe the compression technique will fail to get a good bound; namely,
building a (salted) CHRF family via the Merkle-Damg̊ard paradigm, where the
salt is the initialization vector for the construction (see Theorem 3). The salient
feature of this example is that the random oracle is applied in iteration, which
poses little difficulties to adapting the standard-ROM proof to the BF-ROM, but
seems to completely blow up the complexity of the compression arguments, as
there are too many possibilities for the attacker to cause a collision for different
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salts when the number of blocks is greater than 1.9 The resulting AI-ROM bound
O(ST 2/M) becomes vacuous for circuits of size roughly M1/3, where M is the
range of the compression function. This bound is well below the conjectured
M1/2 birthday security of CRHFs based on Merkle-Damg̊ard against uniform
attackers. Quite unexpectedly, we show that M1/3 security we prove is tight:
there exists a (non-uniform) collision-finding attack implementable by a circuit
of size O

(
M1/3

)
(see Theorem 4)! This example illustrates once again the the

surprising power of non-uniformity.

Implications to computational reductions. Recall that, unlike compression tech-
niques, pre-sampling can be applied to computational reductions, by “hardwiring”
the pre-sampling set of size P into the attacker breaking the computational
assumption. However, this means that P cannot be made larger than the maxi-
mum allowed running time t of such an attacker. Since standard pre-sampling
incurs additive cost Ω(ST/P ), one cannot achieve final security better that
ST/t, irrespective of the value of ε in the (t, ε)-security of the corresponding
computational assumption. For example, when t is polynomial (in the security
parameter) and ε� 1/t is exponentially small, we only get inverse polynomial
security (at most ST/t) when applying standard pre-sampling. In contrast, the
multiplicative variant of pre-sampling sets the list size to be roughly P ≈ ST ,
which is polynomial for polynomial S and T and can be made smaller than the
complexity t of the standard model attacker for the computational assumption we
use. Thus, when t is polynomial and ε is exponentially small, we will get negligible
security using multiplicative pre-sampling. For a concrete illustrative example,
see the bound in Theorem 5 when we apply our improved pre-sampling to the
natural computational unpredictability application of Schnorr signatures [49].10

To put it differently, while the work of Dodis et al. [18] showed that Unruh’s
“pre-sampling conjecture” is false in general—meaning that negligible security
is not possible with a polynomial list size P—we show that it is qualitatively
true for unpredictability applications, where the list size can be made polynomial
(roughly ST ).

Moreover, we show that in certain computational indistinguishability ap-
plications, we can still apply our improved pre-sampling technique inside the
reduction, and get final security higher than the ST/t barrier mentioned above.
We illustrate this phenomenon in our analysis of TDF encryption (cf. Theorem 6)
by separating the probability of the attacker’s success into 2 disjoint events: (1)
the attacker, given ciphertext f(x), managed to query the random oracle on the
TDP preimage x ; (2) the attacker succeeds in distinguishing the value O(x)
from random without querying O(x). Now, for the event (1), we can reduce to
the TDP security with polynomial list size using our improved multiplicative
pre-sampling (since is an unpredictability event), while for the event (2), we

9 The same difficulty of compression should also apply to indistinguishability applica-
tions of Merkle-Damg̊ard, such as building PRFs [6].

10 Interestingly, general Fiat-Shamir transform is not secure in AI-ROM, and thus our
proof used the specifics of Schnorr’s signatures.
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can prove information-theoretic security using standard additive pre-sampling,
without the limitation of having to upper bound P by the running time of the
TDP attacker. It is an interesting open question to classify precisely the type of
indistinguishability applications where such “hybrid” reduction technique can be
applied.

Going to the traditional ROM. So far, the general paradigm we used is to reduce
the hard-to-analyze security of any scheme in the AI-ROM to the much simpler
and proof-friendly security of the same scheme in the BF-ROM. However, an even
simpler approach, if possible, would be to reduce the security in the AI-ROM
all the way to the traditional ROM. Of course, we know that this is impossible
without any modifications to the scheme, as we have plenty of examples where
the AI-ROM security of the scheme is much weaker than its ROM security (or
even disappears completely). Still, when a simple modification is possible without
much inconvenience to the users, reducing to the ROM has a number of obvious
advantages over the BF-ROM:

– While much simpler than in the AI-ROM, one must still prove a security
bound in BF-ROM. It would be much easier if one could just utilize an
already proven result in ROM and seamlessly “move it” to the AI-ROM at a
small cost.

– Some natural schemes secure in the traditional ROM are insecure in the
BF-ROM (and also in the AI-ROM) without any modifications. Simple
example include the general Fiat-Shamir heuristic [23,1] or the FDH signature
scheme [8] (see the full version of this paper [15]). Thus, to extend such
schemes to the AI-ROM, we must modify them anyway, so we might as well
try to generically ensure that ROM security is already enough.

As our next set of results, we show two simple compilers which build a hash
function O′ to be used in AI-ROM application out of hash function O used in
the traditional ROM application. Both results are in the common-random-string
model. This means that they utilize a public random string (which we call salt
and denote a) chosen after the auxiliary information about O is computed by the
attacker. The honest parties are then assumed to have reliable access to this a
value. We note that in basic applications, such as encryption and authentication,
the salt can simply be chosen at key generation and be made part of the public
key/parameters, so this comes at a small price indeed.

The first transformation analyzed in Section 6.1 is simply salting; namely
O′a(x) = O(a, x), where a is a public random string chosen from the domain
of size K. This technique is widely used in practice (going back to password
hashing [43]), and was analyzed by Dodis et al. [18] in the context of AI-ROM,
by applying the compression argument to show that salting provably defeats
preprocessing for the few natural applications they consider (OWFs, PRGs, PRFs,
and MACs). What our work shows is that salting provably defeats pre-processing
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generically, as opposed to a few concrete applications analyzed by [18].11 Namely,
by making the salt domain K large enough, one gets almost the same security
in AI-ROM than in the traditional ROM. To put differently, when salting is
possible, one gets the best of both worlds: security against non-uniform attacks,
but with exact security matching that in the traditional ROM.

The basic salting technique sacrificed a relatively large factor of K from the
domain of the random oracle O in order to build O′ (for K large enough to bring
the “salting error” down). When the domain of O is an expensive resource, in
Section 6.2 we also design a more domain-efficient compiler, which only sacrifices
a small factor k ≥ 2 in the domain of O, at the cost that each evaluation of O′
takes k ≥ 2 evaluations of O (and the “salting error” decays exponentially in k).
This transformation is based on the adaptation of the technique of Maurer [41],
originally used in the context of key-agreement with randomizers. While the basic
transformation needs O(k logN) bits of public salt, we also show than one can
reduce the number of random bits to O(k+ logN). And since we do not envision
k to be larger than O(logN) for any practical need, the total length of the salt
is always O(logN).

Our main lemma. The key technical contribution of our work is Lemma 1, proved
in Section 2.1, which roughly shows that a random oracle with auxiliary input
is “close” to the convex combination of “P -bit-fixing sources” (see Definition 1).
Moreover, we give both additive and multiplicative versions of this “closeness,”
so that we can later use different parameters to derive our Theorem 1 (for indis-
tinguishability applications in the AI-ROM) and Theorem 2 (for unpredictability
applications in the AI-ROM) in Section 2.2.

1.2 Other Related Work

Most of the related work was already mentioned earlier. The realization that
multiplicative error is enough for unpredictability applications, and this can lead
to non-trivial savings, is related to the work of Dodis et al. [19] in the context
of improved entropy loss of key derivation schemes. Tessaro [50] generalized
Unruh’s presampling techniques to the random-permutation model, albeit without
improving the tightness of the bound.

De et al. [17] study the effect of salting for inverting a permutation O as
well as for a specific pseudorandom generator based on one-way permutations.
Chung et al. [14] study the effects of salting in the design of collision-resistant
hash functions, and used Unruh’s pre-sampling technique to argue that salting
defeats preprocessing in this important case. Using salting to obtain non-uniform

11 Of course, by performing a direct analysis of the salted scheme (e.g., using Theorems 1
or 2), we might get better exact security bounds than by using our general result;
namely, shorter salt would be enough to get the claimed amount of security. Still, for
settings where obtaining the smallest possible salt value is not critical, the simplicity
and generality of our compilers offer a convenient and seamless way to argue security
in AI-ROM without doing a direct analsyis.
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security was also advocated by Mahmoody and Mohammed [40], who used this
technique for obtaining non-uniform black-box separation results.

Finally, the extensive body of work on the bounded storage model [41,4,21,52]
is related to the special case of AI-ROM, where all T queries in the second stage
are done by the challenger to derive the key (so that one tries to minimize T
to ensure local computability), but the actual attacker is not allowed any such
queries after S-bit preprocessing.

2 Dealing with Auxiliary Information

Since an attacker with oracle-dependent auxiliary input may obtain the output
of arbitrary functions evaluated on a random oracle’s function table, it is not
obvious how the security of schemes in the auxiliary-input random-oracle model
(AI-ROM) can be analyzed. To remedy this situation, Unruh [51] introduced the
bit-fixing random-oracle model (BF-ROM), in which the oracle is fixed on a subset
of the coordinates and uniformly random and independent on the remaining ones,
and showed that such an oracle is indistinguishable from an AI-RO.

In Section 2.1, we improve the security bounds proved by Unruh [51] in the
following two ways: First, we show that a BF-RO is indistinguishable from an
AI-RO up to an additive term of roughly ST/P , where P is the size of the
fixed portion of the BF-RO; this improves greatly over Unruh’s bound, which
was in the order of

√
ST/P . Second, we prove that the probability that any

distinguisher outputs 1 in the AI-ROM is at most twice the probability that said
distinguisher outputs 1 in the BF-ROM—already when P is roughly equal to
ST .

Section 2.2 contains the formalizations of the AI and BF-ROMs, attackers
with oracle-dependent advice, and the notion of application. As a consequence
of the connections between the two models, the security of any application in
the BF-ROM translates to the AI-ROM at the cost of the ST/P term, and,
additionally, the security of unpredictability applications translates at the mere
cost of a multiplicative factor of 2 (as long as P ≥ ST ). The corresponding
theorems and their proofs can also be found in Section 2.2.

2.1 Replacing Auxiliary Information by Bit-Fixing

In this section, we show that any random oracle about which an attacker may
have a certain amount of auxiliary information can be replaced by a suitably
chosen convex combination of bit-fixing sources. This substitution comes at the
price of either an additive term to the distinguishing advantage or a multiplicative
one to the probability that a distinguisher outputs 1. To that end, consider the
following definition:

Definition 1. An (N,M)-source is a random variable X with range [M ]N . A
source is called
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– (1− δ)-dense if for every subset I ⊆ [N ],

H∞(XI) ≥ (1− δ) · |I| · logM = (1− δ) · logM |I|.

– (P, 1− δ)-dense if it is fixed on at most P coordinates and is (1− δ)-dense
on the rest,

– P -bit-fixing if it is fixed on at most P coordinates and uniform on the rest.

That is, the min-entropy of every subset of the function table of a δ-dense source
is at most a fraction of δ less than what it would be for a uniformly random one.

Lemma 1. Let X be distributed uniformly over [M ]N and Z := f(X), where
f : [M ]N → {0, 1}S is an arbitrary function. For any γ > 0 and P ∈ N, there
exists a family {Yz}z∈{0,1}S of convex combinations Yz of P -bit-fixing (N,M)-
sources such that for any distinguisher D taking an S-bit input and querying at
most T < P coordinates of its oracle,∣∣P[DX(f(X)) = 1

]
− P

[
DYf(X)(f(X)) = 1

]∣∣ ≤ (S + log 1/γ) · T
P

+ γ

and

P
[
DX(f(X)) = 1

]
≤ 2(S+log 1/γ)T/P · P

[
DYf(X)(f(X)) = 1

]
+ γ.

Lemma 1 is proved using a technique (cf. the first claim in the proof) put forth
by Göös et al. [30] in the area of communication complexity. The technique was
also adopted in a paper by Kothari et al. [39], who gave a simplified argument for
decomposing high-entropy sources into bit-fixing sources with constant density (cf.
Definition 1). For self-containment, the full version of this paper [15] contains a
proof of this decomposition technique. Furthermore, the proof uses the well-known
H-coefficient technique by Patarin [47], while following a recent re-formulation of
it due to Hoang and Tessaro [32].

Proof. Fix an arbitrary z ∈ {0, 1}S and let Xz be the distribution of X condi-
tioned on f(X) = z. Let Sz = N logM −H∞(Xz) be the min-entropy deficiency
of Xz. Let γ > 0 be arbitrary.

Claim. For every δ > 0, Xz is γ-close to a convex combination of finitely many
(P ′, 1− δ)-dense sources for

P ′ =
Sz + log 1/γ

δ · logM
.

The proof of the above claim can be found in the full version of this paper [15].
Let X ′z be the convex combination of (P ′, 1− δ)-dense sources that is γ-close

to Xz for a δ = δz to be determined later. For every (P ′, 1 − δ) source X ′ in
said convex combination, let Y ′ be the corresponding P ′-bit-fixing source Y ′, i.e.,
X ′ and Y ′ are fixed on the same coordinates to the same values. The following
claim bounds the distinguishing advantage between X ′ and Y ′ for any T -query
distinguisher.
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Claim. For any (P ′, 1− δ)-dense source X ′ and its corresponding P ′-bit-fixing
source Y ′, it holds that for any (adaptive) distinguisher D that queries at most
T coordinates of its oracle,∣∣∣P[DX′

= 1
]
− P

[
DY

′
= 1
]∣∣∣ ≤ Tδ · logM,

and
P
[
DX

′
= 1
]
≤ MTδ · P

[
DY

′
= 1
]
.

Proof. Assume without loss of generality that D is deterministic and does not
query any of the fixed positions. Let TX′ and TY ′ be the random variables
corresponding to the transcripts containing the query/answer pairs resulting from
D’s interaction with X ′ and Y ′, respectively. For a fixed transcript τ , denote
by pX′(τ) and pY ′(τ) the probabilities that X ′ and Y ′, respectively, produce
the answers in τ if the queries in τ are asked. Observe that these probabilities
depend only on X ′ resp. Y ′ and are independent of D.

Observe that for every transcript τ ,

pX′(τ) ≤ M−(1−δ)T and pY ′(τ) = M−T (1)

as X ′ is (1− δ)-dense and Y ′ is uniformly distributed.
Since D is deterministic, P[TX′ = τ ] ∈ {0, pX′(τ)}, and similarly, P[TY ′ = τ ] ∈

{0, pY ′(τ)}. Denote by TX the set of all transcripts τ for which P[TX′ = τ ] > 0.
For such τ , P[TX′ = τ ] = pX′(τ) and also P[TY ′ = τ ] = pY ′(τ). Towards proving
the first part of the lemma, observe that∣∣∣P[DX′

= 1
]
− P

[
DY

′
= 1
]∣∣∣ ≤ SD(TX′ , TY ′)

=
∑
τ

max {0,P[TX′ = τ ]− P[TY ′ = τ ]}

=
∑
τ∈TX

max {0, pX′(τ)− pY ′(τ)}

=
∑
τ∈TX

pX′(τ) ·max

{
0, 1− pY ′(τ)

pX′(τ)

}
≤ 1−M−Tδ ≤ Tδ · logM,

where the first sum is over all possible transcripts and where the last inequality
uses 2−x ≥ 1− x for x ≥ 0.

As for the second part of the lemma, observe that due to (1) and the support
of TX′ being a subset of TY ′ ,

P[TX′ = τ ] ≤ MTδ · P[TY ′ = τ ]

for any transcript τ . Let TD be the set of transcripts where D outputs 1. Then,

P[DX
′

= 1] =
∑
τ∈TD

P[TX′ = τ ] ≤ MTδ ·
∑
τ∈TD

P[TY ′ = τ ] = MTδ ·P[DY
′

= 1].

ut
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Let Y ′z be obtained by replacing every X ′ by the corresponding Y ′ in X ′z.
Setting δz = (Sz + log 1/γ)/(P logM), Claims 2.1 and 2.1 imply∣∣∣P[DXz (z) = 1

]
− P

[
DY

′
z (z) = 1

]∣∣∣ ≤ (Sz + log 1/γ) · T
P

+ γ , (2)

as well as

P
[
DXz (z) = 1

]
≤ 2(Sz+log 1/γ)T/P · P

[
DY

′
z (z) = 1

]
+ γ . (3)

Moreover, note that for the above choice of δz, P
′ = P , i.e., the sources Y ′ are

fixed on at most P coordinates, as desired.

Claim. Ez[Sz] ≤ S and Ez[2
SzT/P ] ≤ 2ST/P .

The proof of the above claim can be found in the full version of this paper [15].
The lemma now follows (using Yz := Y ′z ) by taking expectations over z of (2)
and (3) and applying the above claim. ut

2.2 From the BF-ROM to the AI-ROM

Capturing the models. Before Lemma 1 from the preceding section can be
used to show how security proofs in the BF-ROM can be transferred to the
AI-ROM, it is necessary to formally define the two models as well as attackers
with oracle-dependent advice and the notion of an application. The high-level idea
is to consider two-stage attackers A = (A1,A2) and (single-stage) challengers C
with access to an oracle O. Oracles have two interfaces pre and main, where pre
is accessible only to A1, which may pass auxiliary information to A2, and both
A2 and C may access main.

Oracles. An oracle O has two interfaces O.pre and O.main, where O.pre is
accessible only once before any calls to O.main are made. Oracles used in this
work are:

– Random oracle RO(N,M): Samples a random function table F ← FN,M ,
where FN,M is the set of all functions from [N ] to [M ]; offers no functionality
at O.pre; answers queries x ∈ [N ] at O.main by the corresponding value
F [x] ∈ [M ].

– Auxiliary-input random oracle AI-RO(N,M): Samples a random function
table F ← FN,M ; outputs F at O.pre; answers queries x ∈ [N ] at O.main by
the corresponding value F [x] ∈ [M ].

– Bit-Fixing random oracle BF-RO(P,N,M): Samples a random function table
F ← FN,M ; takes a list at O.pre of at most P query/answer pairs that
override F in the corresponding positions; answers queries x ∈ [N ] at O.main
by the corresponding value F [x] ∈ [M ].

– Standard model: Neither interface offers any functionality.

The parameters N , M are occasionally omitted in contexts where they are of
no relevance. Similarly, whenever evident from the context, explicitly specifying
which interface is queried is omitted.

16



Attackers with oracle-dependent advice. Attackers A = (A1,A2) consist of a
preprocessing procedure A1 and a main algorithm A2, which carries out the
actual attack using the output of A1. Correspondingly, in the presence of an
oracle O, A1 interacts with O.pre and A2 with O.main.

Definition 2. An (S, T )-attacker A = (A1,A2) in the O-model consists of two
procedures

– A1, which is computationally unbounded, interacts with O.pre, and outputs
an S-bit string, and

– A2, which takes an S-bit auxiliary input and makes at most T queries to
O.main.

In certain contexts, additional restrictions may be imposed on A2, captured by
some parameters p. A is referred to as (S, T, p)-attacker in such cases. Examples
of such parameters include time and space requirements of A2 or a limit on the
number of queries of a particular type that A2 makes to a challenger it interacts
with. Observe that the parameter S is meaningful also in the standard model,
where it measures the length of standard non-uniform advice to the attacker.
The parameter T , however, is not relevant as there is no random oracle to query
in the attack stage. Consequently, standard-model attackers with resources p are
referred to as (S, ∗, p)-attackers.

Applications. Let O be an arbitrary oracle. An application G in the O-model
is defined by specifying a challenger C, which is an oracle algorithm that has
access to O.main, interacts with the main stage A2 of an attacker A = (A1,A2),
and outputs a bit at the end of the interaction. The success of A on G in the
O-model is defined as

SuccG,O(A) := P
[
AO.main

2 (AO.pre1 )↔ CO.main = 1
]
,

where AO.main
2 (AO.pre1 )↔ CO.main denotes the bit output by C after its interaction

with the attacker. This work considers two types of applications, captured by
the next definition.

Definition 3. For an indistinguishability application G in the O-model, the
advantage of an attacker A is defined as

AdvG,O(A) := 2

∣∣∣∣SuccG,O(A)− 1

2

∣∣∣∣ .
For an unpredictability application G, the advantage is defined as

AdvG,O(A) := SuccG,O(A).

An application G is said to be ((S, T, p), ε)-secure in the O-model if for every
(S, T, p)-attacker A,

AdvG,O(A) ≤ ε.
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Combined query complexity. In order to enlist Lemma 1 for proving Theorems 1
and 2 below, the interaction of some attacker A = (A1,A2) with a challenger C in
the O-model must be “merged” into a single entity D = (D1,D2) that interacts

with oracle O. That is, D(·)
1 := A(·)

1 and D(·)
2 (z) := A(·)

2 (z)↔ C(·) for z ∈ {0, 1}S .
D is called the combination of A and C, and the number of queries it makes to
its oracle is referred to as the combined query complexity of A and C. For all
applications in this work there exists an upper bound T comb

G = T comb
G (S, T, p) on

the combined query complexity of any attacker and the challenger.

Additive error for arbitrary applications. Using the first part of Lemma 1,
one proves the following theorem, which states that the security of any application
translates from the BF-ROM to the AI-ROM at the cost of an additive term of
roughly ST/P , where P is the maximum number of coordinates an attacker A1

is allowed to fix in the BF-ROM.

Theorem 1. For any P ∈ N and every γ > 0, if an application G is ((S, T, p), ε′)-
secure in the BF-RO(P )-model, then it is ((S, T, p), ε)-secure in the AI-RO-model,
for

ε ≤ ε′ +
(S + log γ−1) · T comb

G

P
+ γ ,

where T comb
G is the combined query complexity corresponding to G.

Proof. Fix P as well as γ. Set BF-RO := BF-RO(P ) and let G be an arbitrary
application and C the corresponding challenger. Moreover, fix an (S, T )-attacker
A = (A1,A2), and let {Yz}z∈{0,1}S be the family of distributions guaranteed to
exist by Lemma 1, where the function f is defined by A1. Consider the following
(S, T )-attacker A′ = (A′1,A′2) (expecting to interact with BF-RO):

– A′1 internally simulates A1 to compute z ← AAI-RO.pre
1 . Then, it samples one

of the P -bit-fixing sources Y ′ making up Yz and presets BF-RO to match Y ′

on the at most P points where Y ′ is fixed. The output of A′1 is z.

– A′2 works exactly as A2.

Let D be the combination of A2 = A′2 and C. Hence, D is a distinguisher taking
an S-bit input and making at most T comb

G queries to its oracle. Therefore, by the
first part of Lemma 1,

SuccG,AI-RO(A) ≤ SuccG,BF-RO(A′) +
(S + log γ−1) · T comb

G

P
+ γ .

Since there is only an additive term between the two success probabilities, the
above inequality implies

AdvG,AI-RO(A) ≤ AdvG,BF-RO(A′) +
(S + log γ−1) · T comb

G

P
+ γ

for both indistinguishability and unpredictability applications. ut
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Multiplicative error for unpredictability applications. Using the second
part of Lemma 1, one proves the following theorem, which states that the security
of any unpredictability application translates from the BF-ROM to the AI-ROM
at the cost of a multiplicative factor of 2, provided that A1 is allowed to fix
roughly ST coordinates in the BF-ROM.

Theorem 2. For any P ∈ N and every γ > 0, if an unpredictability application
G is ((S, T, p), ε′)-secure in the BF-RO(P,N,M)-model for

P ≥ (S + log γ−1) · T comb
G ,

then it is ((S, T, p), ε)-secure in the AI-RO(N,M)-model for

ε ≤ 2ε′ + γ ,

where T comb
G is the combined query complexity corresponding to G.

Proof. Using the same attacker A′ as in the proof of Theorem 1 and applying
the second part of Lemma 1, one obtains, for any P ≥ (S + log γ−1) · T comb

G ,

SuccG,AI-RO(A) ≤ 2(S+log 1/γ)T comb
G /P · SuccG,BF-RO(A′) + γ

≤ 2 · SuccG,BF-RO(A′) + γ ,

which translates into

AdvG,AI-RO(A) ≤ 2 ·AdvG,BF-RO(A′) + γ

for unpredictability applications. ut

The security of applications in the AI-ROM. The connections between the
auxiliary-input random-oracle model (AI-ROM) and the bit-fixing random-oracle
model (BF-ROM) established above suggest the following approach to proving
the security of particular applications in the AI-ROM: first, deriving a security
bound in the easy-to-analyze BF-ROM, and then, depending on whether one
deals with an indistinguishability or an unpredictability application, generically
inferring the security of the schemes in the AI-ROM, using Theorems 1 or 2.

The three subsequent sections deal with various applications in the AI-ROM:
Section 3 is devoted to security analyses of basic primitives, where “basic” means
that the oracle is directly used as the primitive; Section 4 deals with the collision
resistance of hash functions built from a random compression function via the
Merkle-Damg̊ard construction (MDHFs); and, finally, Section 5 analyzes several
cryptographic schemes with computational security.

3 Basic Applications in the AI-ROM

This section treats the AI-ROM security of one-way functions (OWFs), pseudo-
random generators (PRGs), normal and weak pseudorandom functions (PRFs
and wPRFs), and message-authentication codes (MACs). More specifically, the
applications considered are:
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AI-ROM Security Bound in [18] Lower Bound

OWFs ST
N

+ T
N

same min
{

ST
N
,
(
S2T
N2

)1/3}
+ T

N

PRGs
(
ST
N

)1/2
+ T

N
same

(
S
N

)1/2
+ T

N

PRFs
(S(T+qprf )

N

)1/2
+ T

N
same

(
S
N

)1/2
+ T

N

wPRFs
(S(T+qprf )qprf

LN

)1/2
+ T

N
not analyzed not known

MACs
S(T+qsig)

N
+ T

N
+ 1

M

S(T+qsig)

N
+ T

N
+ T

M
min

{
ST
N
,
(
S2T
N2

)1/3}
+ T

N

Table 1. Asymptotic upper and lower bounds on the security of basic primitives against
(S, T )-attackers in the AI-ROM, where qprf and qsig denote PRF and signing queries,
respectively, and where (for simplicity) N = M for OWFs. Observe that attacks against
OWFs also work against PRGs and PRFs.

– One-way functions: For an oracle O : [N ] → [M ], given y = O(x) for a
uniformly random x ∈ [N ], find a preimage x′ with O(x′) = y.

– Pseudo-random generators: For an oracle O : [N ] → [M ] with M > N ,
distinguish y = O(x) for a uniformly random x ∈ [N ] from a uniformly
random element of [M ].

– Pseudo-random functions: For an oracle O : [N ] × [L] → [M ], distinguish
oracle access to O(s, ·) for a uniformly random s ∈ [N ] from oracle access to
a uniformly random function F : [L]→ [M ].

– Weak pseudo-random functions: Identical to PRFs, but the inputs to the
oracle are chosen uniformly at random and independently.

– Message-authentication codes: For an oracle O : [N ]× [L]→ [M ], given access
to an oracle O(s, ·) for a uniformly random s ∈ [N ], find a pair (x, y) such
that O(s, x) = y for an x on which O(s, ·) was not queried.

The asymptotic bounds for the applications in question are summarized in
Table 1. For OWFs, PRGs, PRFs, and MACs, the resulting bounds match the
corresponding bounds derived by Dodis et al. [18], who used (considerably) more
involved compression arguments; weak PRFs have not previously been analyzed.

The precise statements and the corresponding proofs can be found in the full
version of this paper [15]; the proofs all follow the paradigm outlined in Section 2.2
of first assessing the security of a particular application in the BF-ROM and then
generically inferring the final bound in the AI-ROM using Theorems 1 or 2.

4 Collision Resistance in the AI-ROM

A prominent application missing from Section 3 is that of collision resistance, i.e.,
for an oracle O : [N ]× [L]→M , given a uniformly random salt value a ∈ [N ],
finding two distinct x, x′ ∈ [L] such that O(a, x) = O(a, x′). The reason for this
omission is that in the BF-ROM, the best possible bound is easily seen to be in the
order of P/N+T 2/M . Even applying Theorem 2 for unpredictability applications
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with P ≈ ST results in a final AI-ROM bound of roughly ST/N + T 2/M , which
is inferior to the optimal bound of S/N +T 2/M proved by Dodis et al. [18] using
compression.

However, hash functions used in practice, most notably SHA-2, are based
on the Merkle-Damg̊ard mode of operation for a compression function O :
[M ] × [L] → [M ], modeled as a random oracle here. Specifically, a B-block
message y = (y1, . . . , yB) with yj ∈ [L] is hashed to OB(y), where

O1(y1) = O(a, y1) and Oj(y1, . . . , yj) = O(Oj−1(y1, . . . , yj−1), yj) for j > 1.

While—as pointed out above—Dodis et al. [18] provide a tight bound for
the one-block case, it is not obvious at all how their compression-based proof
can be extended to deal with even two-block messages. Fortunately, no such
difficulties appear when we apply our technique of going through the BF-ROM
model, allowing us to derive a bound in Theorem 3 below.

Formally, the collision resistance of Merkle-Damg̊ard hash functions (MDHFs)
in the O(ML,M)-model is captured by the application GMDHF,M,L, which is
defined via the following challenger CMDHF,M,L: It initially chooses a public
initialization vector (IV) a ∈ [M ] uniformly at random and sends it to the
attacker. The attacker wins if he submits y = (y1, . . . , yB) and y′ = (y′1, . . . , y

′
B′)

such that y 6= y′ and OB(y) = OB′
(y′).

For attackers A = (A1,A2) in the following theorem, we make the simplifying
assumption that T > max(B,B′). We prove the following bound on the security
of MDHFs in the AI-ROM:

Theorem 3. Application GMDHF,M,L is ((S, T,B), ε)-secure in the AI-RO(ML,
M)-model, where

ε = Õ

(
ST 2

M
+
T 2

M

)
.

The proof of Theorem 3 is provided in the full version of this paper [15]
Observe that if S and T are taken to be the circuit size, the bound in

Theorem 3 becomes vacuous for circuits of size M1/3, i.e., it provides security
only well below the birthday bound and may therefore seem extremely loose.
Quite surprisingly, however, it is tight:

Theorem 4. There exists an (S, T )-attacker A = (A1,A2) against application
G := GMDHF,M,L in the O := AI-RO(ML,M)-model with advantage at least

AdvG,O(A) = Ω̃

(
ST 2

M
+

1

M

)
,

assuming ST 2 ≤M/2 and L ≥M .

The attack is loosely based on rainbow tables [31] and captured by the following
(S, T )-attacker A = (A1,A2):

– A1: Obtain the function table F : [M ] × [L] → [M ] from O. For i =
1, . . . ,m := S/(3dlogLe), proceed as follows:
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1. Choose ai,0 ∈ [M ] uniformly at random.

2. Compute ai,`−1 ← F (`−1)(ai,0, 0), where ` := bT/2c.12

3. Find values xi 6= x′i such that ai,` := F (ai,`−1, xi) = F (ai,`−1, x
′
i); abort

if no such values exist.

Output the triples (ai,`−1, xi, x
′
i) for i = 1, . . . ,m.

– A2: Obtain the public initialization vector a from CMDHF,M,L and the m
triples output by A1. Proceed as follows:

1. If a = ai,`−1 for some i, return (xi, x
′
i).

2. Otherwise, set ã← a and for j = 1, . . . , T , proceed as follows:

(a) Query ã← O(ã, 0).

(b) If ã = ai,`−1 for some i, return (0j‖xi, 0j‖x′i); otherwise return (0, 1).

The analysis of the attack can be found in the full version of this paper [15]. It
should be noted that in practice hash functions use a fixed IV a, and, therefore—in
contrast to, e.g., function inversion, where usually the cost of a single preprocessing
stage can be amortized over many inversion challenges—the rather sizeable
amount of preprocessing required by the attack to just find a collision may
not be justified. However, in some cases, the hash function used in a particular
application (relying on collision-resistance) is salted by prepending a random salt
value to the input. Such salting essentially corresponds to the random-IV setting
considered here, and, therefore, the attack becomes relevant again as one might
be able to break many instances of the application using a single preprocessing
phase.

5 Computationally Secure Applications in the AI-ROM

This section illustrates the bit-fixing methodology on two typical computationally
secure applications: (1) Schnorr signatures [49], where Theorem 2 can be applied
since forging signatures is an unpredictability application, and (2) trapdoor-
function (TDF) key-encapsulation (KEM) [8], where an approach slightly more
involved than merely analyzing security in the BF-ROM and applying Theorem 1
is required in order to get a tighter security reduction; see below.

(Please refer to Section A of the appendix for the definitions of digital
signatures, KEMs, TDFs, and other standard concepts used in this section.)

Fiat-Shamir with Schnorr. Let G be a cyclic group of prime order |G| = N .
The Schnorr signature scheme Σ = (Gen,Sig,Vfy) in the O(N2, N)-model works
as follows:

– Key generation: Choose x ∈ ZN uniformly at random, compute y ← gx, and
output sk := x and vk := y.

12 F (k) stands for the k-fold application of F , and, for the sake of concreteness, let
[L] = {0, . . . , L− 1}.
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– Signing: To sign a message m ∈ [N ] with key sk = x, pick r ∈ ZN uniformly
at random, compute a← gr, query c← O(a,m), set z ← r + cx, and output
σ := (a, z).

– Verification: To verify a signature σ = (a, z) for a message m with key vk = y,

query c← O(a,m), and check whether gz
?
= ayc. If the check succeeds and

c 6= 0, accept the signature, and reject it otherwise.

For attackers A = (A1,A2) in Theorem 5, which assesses the security of Fiat-
Shamir with Schnorr in the AI-ROM, we make the running time t and space
complexity s of A2 explicit. Moreover, if A is an attacker against GDS,Σ , there
is an additional parameter qsig that restricts A2 to making at most qsig signing
queries. The proof of Theorem 5 is provided in the full version of this paper [15].

Theorem 5. Assume GDL,G for a prime |G| = N is ((S′, ∗, t′, s′), ε′)-secure,
and let Σ = (Gen,Sig,Vfy) be the Schnorr scheme. Then, for any T, qsig ∈ N,
GDS,Σ is ((S, T, t, s, qsig), ε)-secure in the AI-RO(N2, N)-model for

ε = Õ

(√
Tε′ +

Sqsig(qsig + T )

N

)
,

any S ≤ S′/Õ (T + qsig), t ≤ t′ − Õ (S(T + qsig)), and s ≤ s′ − Õ (S(T + qsig)).

For comparison, note that the security of Schnorr signatures in the standard

ROM is O
(√

Tε′ +
qsig(qsig+T )

N

)
, i.e., in the AI-ROM the second term worsens by

a factor of S.

TDF Key Encapsulation. Let F be a trapdoor family (TDF) generator. TDF
encryption is a key-encapsulation mechanism Π = (Gen,Enc,Dec) that works as
follows:

– Key generation: Run the TDF generator to obtain (f, f−1) ← F , where
f, f−1 : [N ]→ [N ]. Set the public key pk := f and the secret key sk := f−1.

– Encapsulation: To encapsulate a key with public key pk = f , choose x ∈ [N ],
query k ← O(x), compute y ← f(x), and output (c, k)← (y, k).

– Decapsulation: To decapsulate a ciphertext c = y with secret key sk = f−1,
output k ← O(f−1(y)).

Theorem 6 deals with the security of TDF key encapsulation in the AI-ROM.
Once again, for attackers A = (A1,A2), the running time t and space complexity
s of A2 is made explicit. The proof of Theorem 6 is provided in the full version
of this paper [15].

Theorem 6. Let Π be TDF encapsulation. If GTDF,F is ((S′, ∗, t′, s′), ε′)-secure,
then, for any T ∈ N, GKEM-CPA,Π is ((S, T, t, s), ε)-secure in the AI-RO(N,N)-
model, where

ε = Õ

(
ε′ +

√
ST

N

)
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and S = S′ − Õ (ST ), t = t′ − Õ (ttdf · T ), and s = s′ − Õ (ST ), where ttdf is the
time required to evaluate the TDF.

Moreover, GKEM-CCA,Π is ((S, T, t, s), ε)-secure with the same parameters,
except that t = t′ − Õ (ttdf · ST ).

Observe that the above security bound corresponds simply to the sum of the
security of the TDF and the security of O as a PRG (cf. Section 3); in the
standard random-oracle model, the security of TDF encryption is simply upper
bounded by O (ε′) (cf. Section A.2).

An important point about the proof of Theorem 6 is that it does not follow the
usual paradigm of deriving the security of TDF encryption in the BF-ROM and
thereafter applying Theorem 1 (for CPA/CCA security is an indistinguishability
application). Doing so—as Unruh does for RSA-OAEP [51] (but in an “asymptotic
sense,” as explained in Footnote 8)—would immediately incur an additive error
of ST/P ≤ ST/t′, since the size of the list P is upper bounded by the TDF
attacker size t′. So the naive application Theorem 1 would result in poor exact
security.

Instead, our tighter proof of Theorem 6 considers two hybrid experiments
(one of which is the original CPA/CCA security game in the AI-ROM). The
power of the BF-ROM is used twice—with different list sizes: (1) to argue the
indistinguishability of the two experiments and (2) to upper bound the advantage
of the attacker in the second hybrid. Crucially, a reduction to TDF security is
only required for (1), which has an unpredictability flavor and can therefore get
by with a list size of roughly P ≈ ST ; observe that this is polynomial for efficient
(S, T )-attackers. The list size for (2) is obtained via the usual balancing between
ST/P and the security bound in the BF-ROM.13

6 Salting Defeats Auxiliary Information

There exist schemes that are secure in the standard ROM but not so in the
AI-ROM. A simple example is if the random oracle itself is directly used as a
collision-resistant hash function O : [N ]→ [M ] for some N and M : in the ROM,
O is easily seen to be collision-resistant, while in the AI-ROM, the first phase A1

of an attacker A = (A1,A2) (cf. Section 2.2) can simply leak a collision to A2,
which then outputs it, thereby breaking the collision-resistance property.

The full version of this paper [15] briefly highlights two schemes with com-
putational security where the above phenomenon can be observed as well. The
first one is a generic transformation of an identification scheme into a signature
scheme using the so-called Fiat-Shamir transform, and the second one is the
well-known full-domain hash.14

13 A similar approach also works to improve the security bounds of [51] for RSA-OAEP
in the AI-ROM.

14 By virtue of Theorem 2, the existence of attacks in the AI-ROM against the above
schemes obviously implies that these schemes cannot be secure in the BF-ROM either.
It is also relatively straight-forward to devise direct attacks in the BF-ROM.
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To remedy the situation with schemes such as those mentioned above, in this
section we prove that the security of any standard ROM scheme can be carried
over to the BF-ROM by sacrificing part of the domain of the BF-RO for salting.
First, in Section 6.1, we analyze the standard way of salting a random oracle
by prefixing a randomly chosen (public) value to every oracle query. Second, in
Section 6.2, we also show how to adapt a technique by Maurer [41], originally
used in the context of key-agreement with randomizers, to obtain a more domain-
efficient salting technique, albeit with a longer salt value; the salt length can
be reduced by standard derandomization techniques based on random walks on
expander graphs.

6.1 Standard Salting

The standard way of salting a scheme is to simply prepend a public salt value to
every oracle query: Consider an arbitrary application G with the corresponding
challenger C. Let Csalt be the challenger that is identical to C except that it initially
chooses a uniformly random value a ∈ [K], outputs a to A2, and prepends a
to every oracle query. Denote the corresponding application by Gsalt. Observe
that the salt value a is chosen after the first stage A1 of the attack, and, hence,
as long as the first stage A1 of the attacker in the BF-ROM does not prefix a
position starting with a, it is as if the scheme were executed in the standard
ROM. Moreover, note that the time and space complexities s and t, respectively,
of A2 increase roughly by P due to the security reduction used in the proof.

Theorem 7. For any P ∈ N, if an application G is ((S′, T ′, t′, s′), ε′)-secure in
the RO(N,M)-model, then Gsalt is ((S, T, t, s), ε)-secure in the BF-RO(P,NK,M)-
model for

ε = ε′ +
P

K
,

S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ).

The proof of Theorem 7 is provided in the full version of this paper [15]. Combining
Theorem 7 with Theorems 1 and 2 from Section 2.2 yields the following corollaries:

Corollary 1. For any P ∈ N and every γ > 0, if an arbitrary application G
is ((S′, T ′, t′, s′), ε′)-secure in the RO(N,M)-model, then Gsalt is ((S, T, t, s), ε)-
secure in the AI-RO(NK,M)-model for

ε = ε′ +
P

K
+

(S + log γ−1) · T comb
Gsalt

P
+ γ

and any S = S′− Õ (P ), T = T ′, t = t′− Õ (P ), and s = s′− Õ (P ), where T comb
Gsalt

is the combined query complexity corresponding to Gsalt.

Corollary 2. For every γ > 0, if an unpredictability application G is ((S′, T ′, t′,
s′), ε′)-secure in the RO(N,M)-model, then Gsalt is ((S, T, t, s), ε)-secure in the
AI-RO(NK,M)-model for

ε = 2ε+
2(S + log γ−1) · T comb

Gsalt

K
+ γ
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and any S = S′/Õ(T comb
Gsalt

), T = T ′, t′ = t − Õ (P ), and s′ = s − Õ (P ), where

P = (S + log γ−1)T comb
Gsalt

and where T comb
Gsalt

is the combined query complexity
corresponding to Gsalt.

Applications. In the full version of this paper [15], we briefly discuss how salting
affects the security of the applications presented in Sections 3 to 5. We also
provide examples to illustrate that directly analyzing a salted scheme in the
BF-ROM can lead to much better bounds than combining a standard-ROM
security bound with one of the above corollaries.

6.2 Improved Salting

One way to think of salting is to view the function table of BF-RO(KN,M) as a
(K ×N)-matrix and let the challenger in the salted application randomly pick
and announce the row to be used for oracle queries. However, K has to be around
the same size as N to obtain meaningful bounds. In this section, based on a
technique by Maurer [41], we provide a more domain-efficient means of salting,
where the security will decay exponentially (as opposed to inverse linearly) with
the domain expansion factor K, at the cost that each evaluation of the derived
random oracle will cost K evaluations (as opposed to 1 evaluation) of the original
random oracle.

Consider an arbitrary application G with corresponding challenger C. Let
Csalt′ be the challenger works as follows: It initially chooses a uniformly random
value a = (a1, . . . , aK) ∈ [N ]K and outputs a to A2. Then, it internally runs
C, forwards all messages between the attacker and C, but answers the queries
x ∈ [N ] that C makes to the oracle by

K∑
i=1

BF-RO.main(i, x+ ai) ,

where addition is in ZN and ZM , respectively. In other words, the function table
of BF-RO is arranged as a K×N matrix, the ith row is shifted by ai, and queries
x are answered by computing the sum modulo M of all the values in the xth

column of the shifted matrix, denoted Fa. Denote the corresponding application
by Gsalt′ . The proof of the following theorem is provided in the full version of
this paper [15]. Moreover, we present a means of reducing the size of the public
salt value.

Theorem 8. For any P ∈ N, if an application G is ((S′, T ′, t′, s′), ε′)-secure in
the RO(N,M)-model, then Gsalt′ is ((S, T, t, s), ε)-secure in the BF-RO(P,NK,M)-
model for

ε′ = ε+N ·
(

P

KN

)K
,

S = S′ − Õ (P ), T = T ′, t = t′ − Õ (P ), and s = s′ − Õ (P ).
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In particular, assuming P ≤ KN/2, setting K = O(logN) will result in
additive error N(P/NK)K = o( 1

N ) and domain size O(N logN). But if P ≤
N1−Ω(1), setting K = O(1) will result in the same additive error o( 1

N ) in the
original domain of near-optimal size O(N). Hence, for most practical purposes,
the efficiency slowdown K (in both the domain size and the complexity of oracle
evaluation) is at most O(logN) and possibly constant.

Combining the above results with those in Section 2.2 yields the following
corollaries:

Corollary 3. For any P ∈ N and every γ > 0, if an application G is ((S′, T ′, t′,
s′), ε′)-secure in the RO(N,M)-model, then Gsalt′ is ((S, T, t, s), ε)-secure in the
AI-RO(NK,M)-model for

ε = ε′ +N ·
(

P

KN

)K
+

(S + log γ−1) · T comb
Gsalt′

P
+ γ

and any S = S′− Õ (P ), T = T ′, t = t′− Õ (P ), and s = s′− Õ (P ), where T comb
Gsalt′

is the combined query complexity corresponding to Gsalt′ .

Corollary 4. For every γ > 0, if an application G is ((S′, T ′, t′, s′), ε′)-secure in
the RO(N,M)-model, then Gsalt′ is ((S, T, t, s), ε)-secure in the AI-RO(NK,M)-
model for

ε = 2ε+ 2N ·

(
(S + log γ−1)T comb

Gsalt′

KN

)K
and any S = S′/Õ(T comb

Gsalt′
), T = T ′, t′ = t − Õ (P ), and s′ = s − Õ (P ), where

P = (S + log γ−1)T comb
Gsalt′

and where T comb
Gsalt′

is the combined query complexity
corresponding to Gsalt′ .
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A Standard-ROM Definitions and Security

A.1 Fiat-Shamir with Schnorr

Digital signature schemes. A digital signature scheme is a triple of algorithms
Σ = (Gen,Sig,Vfy), where Gen generates a signing key sk and a verification key
vk, Sig takes a signing key sk and a message m and outputs a signature σ, and Vfy
takes a verification key vk, a message m, and a signature σ and outputs a single
bit, indicating whether σ is valid. In the O-oracle model, all three algorithms
may make calls to O.main.

The application of digital signatures GDS,Σ is defined via the following chal-
lenger CDS,Σ , which captures the (standard) EUF-CMA security of a digital
signature scheme: Initially, CDS,Σ generates a key pair (sk, vk)← Gen and passes
vk to the attacker. Then, the attacker may repeatedly submit signature queries m
to the challenger, who answers them by the corresponding signature σ ← Sigσ(m).
In the end, the challenger outputs 1 if and only if the attacker submits a pair
(m∗, σ∗) with Vfyvk(m

∗, σ∗) = 1 and such that no signature query was asked
for m∗.

The discrete-logarithm problem. The discrete-logarithm problem in a group
G = 〈g〉 can be phrased as an application GDL,G, defined via the challenger
CDL,G that picks a uniformly random x ∈ Z|G|, passes y := gx to the attacker,

and outputs 1 if and only if the attacker finds x. Observe that GDL,G is a
standard-model application.

Schnorr signatures in the standard ROM. In the standard ROM, using the forking
lemma as stated by Bellare and Neven [7], one can show the following security
bound for Schnorr signatures.
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Theorem 9. Assume GDL,G for |G| = N is ((S, ∗, t′, s′), ε′)-secure, and let
Σ = (Gen,Sig,Vfy) be the Schnorr scheme. Then, GDS,Σ is ((S, T, t, s, qsig), ε)-
secure in the RO(N2, N)-model for

ε = O

(√
Tε′ +

qsig(qsig + T )

N

)
,

where t = Ω(t′) and s = Ω(s′).

A.2 TDF Encryption

Key-encapsulation mechanisms. A key-encapsulation mechanism (KEM) is a
triple of algorithms Π = (K,E,D), where K generates a public key pk and a
secret key sk, E takes a public key pk and outputs a ciphertext c and a key k, and
D takes a secret key sk and a ciphertext c and outputs a key k. In the O-oracle
model, all three algorithms may make calls to O.main.

The application corresponding to CPA security for KEMs GKEM-CPA,Π is
defined via the following challenger CKEM-CPA,Π , which captures the (standard)
CCA security of a KEM scheme: Initially, CKEM-CPA,Π generates a key pair
(pk, sk) ← K and passes pk to the attacker. Then, the challenger chooses a
random bit b as well as a random key k1, computes (c, k0)← Epk, and returns the
challenge (c, kb). In the end, the challenger outputs 1 if and only if the attacker
submits a bit b′ with b′ = b.

To capture CCA security, one consideres the application CKEM-CCA,Π defined by
the challenger CKEM-CCA,Π that proceeds as CKEM-CPA,Π , except that the attacker
gets to ask decryption queries c′, which the challenger answers with k′ ← Dsk(c

′),
provided c′ 6= c.

Trapdoor functions. The inversion problem for a trapdoor function generator
F can be phrased as an application GTDF,F , defined via the challenger CTDF,F

that generates (f, f−1)← F , picks a random x, passes y := f(x) to the attacker,
and outputs 1 if and only if the attacker finds x. Observe that GTDF,F is a
standard-model application.

The security of TDF key encapsulation in the standard ROM. In the standard
ROM, one can show the following security bound for TDF encryption.

Theorem 10. Let Π be TDF key encapsulation. If GTDF,F is ((S′, ∗, t′, s′), ε′)-
secure, then GKEM-CPA,Π is ((S, T, t, s), ε)-secure in the RO(N,N), where

ε = O (ε′)

and S = S′, t = Ω(t′), and s = Ω(s′).
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