
Synchronized Aggregate Signatures from the
RSA Assumption

Susan Hohenberger1,? and Brent Waters2,??

1 Johns Hopkins University, susan@cs.jhu.edu
2 University of Texas at Austin, bwaters@cs.utexas.edu

Abstract. In this work we construct efficient aggregate signatures from
the RSA assumption in the synchronized setting. In this setting, the
signing algorithm takes as input a (time) period t as well the secret key
and message. A signer should sign at most once for each t. A set of
signatures can be aggregated so long as they were all created for the
same period t. Synchronized aggregate signatures are useful in systems
where there is a natural reporting period such as log and sensor data, or
for signatures embedded in a blockchain protocol.
We design a synchronized aggregate signature scheme that works for a
bounded number of periods T that is given as a parameter to a global
system setup. The big technical question is whether we can create solu-
tions that will perform well with the large T values that we might use
in practice. For instance, if one wanted signing keys to last up to ten
years and be able to issue signatures every second, then we would need
to support a period bound of upwards of 228.
We build our solution in stages where we start with an initial solution
that establishes feasibility, but has an impractically large signing time
where the number of exponentiations and prime searches grows linearly
with T . We prove this scheme secure in the standard model under the
RSA assumption with respect to honestly-generated keys. We then pro-
vide a tradeoff method where one can tradeoff the time to create sig-
natures with the space required to store private keys. One point in the
tradeoff is where each scales with

√
T .

Finally, we reach our main innovation which is a scheme where both the
signing time and storage scale with lg T which allows for us to keep both
computation and storage costs modest even for large values of T . Conve-
niently, our final scheme uses the same verification algorithm, and has the
same distribution of public keys and signatures as the first scheme. Thus
we are able to recycle the existing security proof for the new scheme.
We also extend our results to the identity-based setting in the random
oracle model, which can further reduce the overall cryptographic over-
head. We conclude with a detailed evaluation of the signing time and
storage requirements for various settings of the system parameters.
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1 Introduction

Aggregate signatures, as introduced by Boneh, Gentry, Lynn and Shacham [13],
allow a third party to compress an arbitrary group of signatures (σ1, . . . , σn)
that verify with respect to a corresponding collection of public key and mes-
sage pairs ((pk1,m1), . . ., (pkn,mn)) and produce a short aggregated signature
that verifies the same collection. There are many applications where reducing
the cryptographic overhead is desirable including BGP routing [13, 13, 29, 11],
bundling software updates [1], sensor data [1] and block chain protocols [2].

When exploring a primitive such as aggregate signatures, it is desirable to
have multiple realizations under different cryptographic assumptions or con-
structs. This provides redundancy in the case that one of the assumptions proves
to be false. Also different approaches often yield a menu of performance tradeoffs
that one can select from in an application-dependent manner.

To date, the design of aggregate signature schemes has mostly been dom-
inated by bilinear (or multilinear) map-based proposals [13, 14, 10, 19, 29, 7, 11,
31, 36, 1, 18, 23, 22]. Most proposals to aggregate outside of the bilinear setting
have required signers to interact either by signing in a sequential chain [30,
33, 17, 28, 27, 15, 4] or otherwise cooperate interactively on signature creation or
verification [8, 3]. Here we seek a solution that does not require bilinear maps
or signer interaction. We are aware of two prior attempts [37, 20] to aggregate
RSA-based signatures (without interaction), but to the best of our understand-
ing, both schemes appear to lack basic correctness (that is, each user creates and
signs with his own unique modulus, but then the signatures are aggregated and
verified with respect to the same modulus).

In this work we construct efficient aggregate signatures from the RSA as-
sumption in the synchronized setting of Gentry and Ramzan [19]. In the syn-
chronized setting the signing algorithm will take as input a (time) period t as
well the secret key and message. A signer should sign at most once for each t.
A set of signatures can be aggregated so long as they were all created for the
same period t. Synchronized aggregate signatures are useful in systems where
there is a natural reporting period such as log or sensor data. Another example
is for use in signatures embedded in a blockchain protocol where the creation of
an additional block is a natural synchronization event. For instance, consider a
blockchain protocol that records several signed transactions in each new block
creation. These signed transactions could use a synchronized aggregate signature
scheme with the block iteration as the period number. This would reduce the
signature overhead from one per transaction to only one synchronized signature
per block iteration.

Ahn, Green and Hohenberger [1] gave a synchronized aggregate signature
scheme in bilinear groups from the (standard model) computational Diffie-Hellman
assumption by adapting the Hohenberger-Waters [24] short signature scheme.
Since Hohenberger and Waters in the same work also provided a similar scheme
from the RSA assumption it is natural to wonder why that one could not be
adapted as well. Unfortunately, this approach will not work as the HW RSA-
based signature scheme requires the signer to have knowledge of φ(N) and thus



the factorization of N . This trapdoor information cannot be securely dispensed
among all signers that might work in Z∗N .

In this work we design a synchronized aggregate signature scheme that works
for a bounded number of periods T that is given as a parameter to a global
system setup. We believe that such a bound is acceptable in the synchronized
setting where a reasonable estimate of it can be derived by first determining
a fixed lifetime of keys in the system (e.g., 10 years) and dividing it by the
expected frequency that periods will occur (e.g., every minute). The big question
is whether we can create solutions that will perform well with the larger T values
that we might use in practice. For instance, suppose that we wanted signing keys
to last up to ten years and wanted to have the capability of signing on periods
as short as a second. In this case we would need to be able to support a period
bound of upwards of 228.

We will build our solution in stages where we start with an initial solution
that establishes feasibility of synchronized aggregation in the RSA setting, but
has an impractically large signing time where the number of exponentiations
and prime searches grows linearly with T . We prove this scheme secure in the
standard model under the RSA assumption. We then provide a basic tradeoff
that allows one to tradeoff the time to create signatures with the space required
to store private keys. One point in the tradeoff is where each scales with

√
T .

We reach our main innovation which is a scheme where both the signing time
and storage scale with lg(T ) which allows for us to keep both computation and
storage costs modest even for large values of T . Conveniently, our final scheme
uses the same verification algorithm, and has the same distribution of public
keys and signatures as the first scheme. Thus we are able to recycle the existing
security proof for the new scheme.

We continue our exploration of using RSA in the synchronized aggregate
setting by demonstrating how to extend our results to be identity-based. Since
identity strings are typically much shorter than public keys, this setting can
help achieve better overall reduction of cryptographic overhead. Our solution is
secure under the standard RSA assumption in the random oracle model.

Finally, we provide a detailed performance evaluation of the various schemes
from both a signing time and private key storage perspective, concluding that
the lg(T ) construction is relatively practical for realistic settings of the system
parameters and far exceeds the performance of the others for most settings.

Overview of the Schemes. In our schemes, messages will be of length L bits
which will be broken up into k chunks of ` bits each. In our initial scheme a
global system setup will first choose an RSA modulus N = p · q where we let g
be a generator of the quadratic residues of Z∗N . Next it picks a key K that is used
to define a hash function HK(t) = et that maps a period t ∈ [1, T ] to a prime
value et. We will defer the details of how this function works to the main body.
Finally, the setup computes E =

∏T
j=1 ej mod φ(N) and Y = gE mod N and

publishes the public parameters as pp = (T,N, g, Y,K).
Key generation is performed by choosing random u0, u1, . . . , uk in [1, N ]

and setting the secret key as sk = (u0, u1, . . . , uk) and the public key pk =



(U0, U1, . . . , Uk) where Uj = Y uj = guj
∏
i∈T ei , for j = 0 to k. To sign a mes-

sage first compute all the primes ei ← HK(i) for i 6= t and then output

σ =
(
gu0

∏k
j=1 g

uj ·mj
)∏

i∈T\{t} ei =
(
U0

∏k
j=1 U

mj
j

)1/et
(mod N). Verification is

performed by testing if σet
?
= U0

∏k
i=1 U

mi
i . Aggregation is done by simply mul-

tiplying individual signatures together (mod N) and testing against the product
of the individual verification tests. We remark that our group hash function falls
into a more general group hash framework proposed by Hofheinz, Jager and
Kiltz [21]. In Section 4, we discuss potential future improvements by incorporat-
ing their framework.

We give a proof of security under the RSA assumption. Our proof is standard
model with respect to honestly-generated keys and uses techniques from [24] for
embedding an RSA challenge into the function HK . The choice of k provides a
tradeoff between the secret key storage size which grows linearly with k to the
tightness in the reduction which has a loss factor of 2` = 2L/k.

Taking a step back, our signature scheme involves reconstructing et-th roots
of a public key and then manipulating these according to the message. Here the
secret key simply holds a group element that is root of all the ei values. The
underlying structure is reminiscent of earlier RSA-based accumulator schemes
(e.g., [9, 6]). The problem, however, is that building up this root from the secret
key is quite costly and requires T − 1 exponentiations and calls to HK(·) which
are roughly equivalent to prime searches. Returning to our example of T = 228,
our measured cost of signing one message was more than one day on a common
processor. Clearly, we must do better.

We next show how to obtain a basic tradeoff between the time to sign and the
size of the private key storage. Very roughly the time to sign will scale linearly
with a parameter a and the storage with a parameter b with the constraint that
a · b = T . Thus we can explore tradeoffs such as setting a = T, b = 1 which
corresponds to the scheme above, go the opposite direction and set a = 1, b = T
to achieve fast signing at the expense of large storage, or try to balance these
by choosing a = b =

√
T .

The main technical idea is for the key generation algorithm to organize T
into b “windows” each of size a. (We will assume a divides T evenly for ease
of exposition.) Each window will be connected with a group element that has g
raised to the exponents associated with every period except for a window of a
of them. Thus to sign we need to do a − 1 exponentiations and prime searches
and our private keys roughly grow as b group elements.

While this simple tradeoff technique provides more flexibility, there is still
a significant gap from the performance numbers we would like to achieve. Let’s
return again to our T = 228 example. In setting a = 1, we would get very fast
signing (a few tens of milliseconds), but with very huge keys of 64GB. On the
other hand, if we aimed for the

√
T tradeoff we would end up with 4MB private

keys and roughly 9 seconds per signature. This achieves greater balance, but is
still impractical.

This finally moves us to our last solution. Here we wish to find a more intricate
way of handling the key storage that allows us to sign efficiently, but without



a significant storage penalty. To do this we design a key storage mechanism
that has about 2 lg(T ) group elements and requires lg(T ) exponentiations per
signing. Returning to our example of T = 228, we can now achieve the much
more practical 16KB private key storage with 58 milliseconds per signature.

To achieve this, we leverage the fact that the synchronized signatures are
performed in sequence over the total number of periods. The goal is to maintain
a data structure which (1) is small, (2) is ready to quickly produce a signature
for the next period and (3) can perform a small amount of work to update
it for future periods. To this end we organize a data structure according to a
levels parameter where T = 2levels+1 − 2. In addition, a current index value
is associated with the structure that indicates how many periods have passed
so far. At level i at any time there will be one or two tuples which include a
group element which is g raised to all exponents corresponding to periods except
those with indices anywhere from 2i to 2i−1. During each signature the signing
algorithm will grab an element from level 1 and use it to sign as well as perform a
little bit of work on each level to close the window of exponents further. We defer
the details of how this is achieved to Section 6. We remark that this approach is
conceptually similar to the pebbling optimization used by Itkis and Reyzin [26]
to realize efficient forward-secure signatures.

Organization and Summary of the Results. In Section 2, we provide the specifica-
tions and security definitions. Section 3 covers the algebraic setting, assumptions
and related lemmas. Section 4 gives the base construction as well as its proof of
security in the standard model under the RSA assumption. Section 5 describes
changes to the key generation and signing algorithms that can achieve a tradeoff
in private key size versus signing time; one point achieves a balance of

√
T for

both. Section 6 provides a deeper innovation on how change key generation and
signing to scale with lg(T ). Recall that the distribution of the public keys and
signatures in all of these schemes are the same as are the verification algorithms
and thus the security proof in Section 4 suffices for all. We then show how to
extend these results to the identity-based setting in Section 7. Finally, we con-
clude with a detailed time and space performance analysis of these constructions
in Section 8 showing that the lg(T ) constructions can be practical even for very
large bounds on T .

2 Scheme Specifications and Definitions of Security

In a basic aggregate signature scheme [13], anyone given n signatures on n mes-
sages from n users can aggregate all these signatures into a single short signature.
This aggregate signature (together with the n public keys and n messages) can
be publicly verified to convince anyone that user i authenticated message i for
i = 1 to n. This is also true for synchronized aggregate signatures except that
we assume all signers have a synchronized period identifier (such as a clock) and
the following restrictions apply:



1. A signer can issue at most one signature per period and keeps state to ensure
this.

2. Only signatures created during the same period can be aggregated.

Gentry and Ramzan [19] were the first to consider this “synchronized” set-
ting in the context of aggregate signatures. In their model, they assumed that
signatures were issued using a special tag (which could not be re-used) and
only signatures with the same tag could be aggregated. Ahn, Green and Hohen-
berger [1] formalized this synchronization as a time period, assuming all signers
have access to the same clock. 3 Here, we include a bound T on the periods.

Definition 1 (Synchronized Aggregate Signatures [19, 1]). A synchro-
nized aggregate signature scheme for a bounded number of periods and mes-
sage space M(·) is a tuple of algorithms (Setup,KeyGen,Sign,Verify,Aggregate,
AggVerify) such that

Setup(1λ, 1T ) : On input the security parameter λ and the period bound T , the
setup algorithm outputs public parameters pp.

KeyGen(pp) : On input the public parameters pp, the key generation algorithm
outputs a keypair (pk , sk).

Sign(pp, sk ,M, t) : On input the public parameters pp, the signing algorithm
takes in a secret key sk, a message M ∈ M(λ), the current period t ≤ T ,
and produces a signature σ.

Verify(pp, pk ,M, t, σ) : On input the public parameters pp, the verification al-
gorithm takes in a public key pk, a message M , a period t and a purported
signature σ, and returns 1 if and only if the signature is valid and t ≤ T ,
and 0 otherwise.

Aggregate(pp, t, (pk1,M1, σ1), . . . , (pkn,Mn, σn)) : On input the public param-
eters pp, a period t, a sequence of public keys (pk1, . . . , pkn), messages (M1,
. . . ,Mn), and purported signatures (σ1, . . . , σn) for period t ≤ T , it outputs
an aggregate signature σagg or error message ⊥.

AggVerify(pp, t, (pk1, . . . , pkn), (M1, . . . ,Mn), σagg) : On input the public pa-
rameters pp, a period t, a sequence of public keys (pk1, . . . , pkn) and mes-
sages (M1, . . . ,Mn), and a purported aggregate signature σagg, the aggregate-
verification algorithm outputs 1 if and only if σagg is a valid aggregate sig-
nature and t ≤ T , and 0 otherwise.

Efficiency. We require that the setup algorithm run in time polynomial in its
inputs and all other algorithms run in time polynomial in λ, T .

3 In this work, as in the case of [1], if the signers’ clocks become out of sync with
each other, this will lead to inefficiencies in the system, as it will not be possible
to aggregate some signatures, but this will not open up security issues. As in [19,
1], there is a security issue if a tag or period value is reused by the signer, so an
adversary’s ability to move a user’s clock backward could lead to forgeries for that
signer.



Correctness. Let poly(x) denote the set of polynomials in x. In addition to the
standard correctness properties of the basic signature scheme, for a synchronized
aggregation scheme, the correctness requirements on Aggregate and AggVerify
stipulate that for all λ ∈ N, T ∈ poly(λ), n ∈ poly(λ), pp ∈ Setup(1λ, 1T ),
(pk1, sk1), . . . , (pkn, skn) ∈ KeyGen(pp), 1 ≤ t ≤ T , Mi ∈ M(λ), σi ∈ Sign(pp,
sk i,Mi, t) and σagg ∈ Aggregate(pp, t, (pk1,M1, σ1), . . . , (pkn,Mn, σn)), it holds
that

AggVerify(pp, t, (pk1, . . . , pkn), (M1, . . . ,Mn), σagg) = 1.

Unforgeability. The definition uses the following game between a challenger and
an adversary A for a given scheme Π = (Setup,KeyGen,Sign,Verify,Aggregate,
AggVerify), security parameter λ, and message space M(λ):

Setup: The adversary sends 1T , 1n to the challenger, who runs Setup(1λ, 1T )
to obtain the public parameters pp.4 Then the challenger runs KeyGen(pp)
a total of n times to obtain the key pairs (pk1, sk1), . . . , (pkn, skn). The
adversary is sent (pp, pk1, (pk2, sk2), . . . , (pkn, skn)).

Queries: For each period t starting with 1 and incrementing up to T , the
adversary can request one signature on a message of its choice in M
under sk1, or it can choose to skip that period. The challenger responds
to a query for Mi during period ti ∈ [1, T ] as Sign(pp, sk1,Mi, ti).

Output: Let γ be a function mapping integers to [1, n]. Eventually, the ad-
versary outputs a tuple (t, (pkγ(1), . . . , pkγ(k)), (M

′
1, . . . ,M

′
k), σagg) and

wins the game if:
1. 1 ≤ t ≤ T ; and
2. there exists an z∗ ∈ [1, k] such that γ(z∗) = 1; and
3. all M ′i ∈M; and
4. M ′z∗ is not in the set of messages A queried during the Queries

phase5; and
5. AggVerify(pp, t, (pkγ(1), . . . , pkγ(k)), (M

′
1, . . . ,M

′
k), σagg) = 1, where

1 ≤ k ≤ n.

We define SigAdvA,Π,M(λ) to be the probability that the adversary A wins
in the above game with scheme Π for message spaceM and security parameter
λ taken over the coin tosses made by A and the challenger.

Definition 2 (Unforgeability). A synchronized aggregate signature scheme
Π for message space M is existentially unforgeable under an adaptive chosen
message attack if for all sufficiently large λ ∈ N and all probabilistic polynomial-
time in λ adversaries A, there exists a negligible function negl, such that

SigAdvA,Π,M(λ) ≤ negl(λ).
4 For any adversary A that runs in time polynomial in λ will be restricted (by its own

running time) to giving T values out that are polynomial in λ.
5 As observed by [1], one can relax this unforgeability condition to allow the forgery

message, M ′
z∗ , to have been previously queried to the signing oracle provided that it

was not done during the same period used in the forgery. This “stronger” notion can
be achieved by any scheme satisfying the above unforgeability definition by having
the signer incorporate the period into each message.



Discussion Above, we require that the Setup algorithm is honestly executed,
so in practice this could be run by a trusted party or realized via a specialized
multiparty protocol (see Section 4 for more). We also require that the non-
challenge public keys be chosen honestly instead of adversarially. Our later proof
requires that the challenger has knowledge of the secret keys corresponding to
the non-challenge public keys. This can be realized by working in the Registered
Key Model [5] or adding an appropriate NIZK to the user’s public key.

3 Number Theoretic Assumptions and Related Lemmas

There are many variants of the RSA assumption [35]. Here we use a variant
involving safe primes. A safe prime is a prime number of the form 2p+ 1, where
p is also a prime.

Assumption 1 (RSA) Let λ be the security parameter. Let integer N be the
product of two λ-bit, distinct safe primes primes p, q where p = 2p′ + 1 and
q = 2q′ + 1. Let e be a randomly chosen prime between 2λ and 2λ+1 − 1. Let
QRN be the group of quadratic residues in Z∗N of order p′q′. Given (N, e) and a
random h ∈ QRN , it is hard to compute x such that xe ≡ h mod N .

We note that a randomly chosen element in Z∗N would be a quadratic residue
1/4-th of the time, so the restriction to h ∈ QRN is for convenience and could
be relaxed.

In our schemes, we will refer to and require a primality test. For our purposes,
it will be sufficient to use the efficient Miller-Rabin test [32, 34]. We will also make
use of the following lemmas:

Lemma 1 (Cramer-Shoup [16]). Given x, y ∈ Zn together with a, b ∈ Z such
that xa = yb and gcd(a, b) = 1, there is an efficient algorithm for computing
z ∈ Zn such that za = y.

Theorem 2 (Prime Number Theorem). Define π(x) as the number of primes
≤ x. For x > 1,

7

8
· x

ln x
< π(x) <

9

8
· x

ln x
.

4 A Base Scheme for Aggregation from RSA

We begin with a base scheme that assumes a trusted global setup and works
in the registered key model, where every signer needs to show their key pair to
an authority that certifies their public key. The global setup of our scheme will
take as input a security parameter λ and the maximum number of periods T .
The message space M will be {0, 1}L where L is some polynomial function of
λ. (One can handle messages of arbitrary length by first applying a collision-
resistant hash.)



In addition, associated with the scheme will be a “message chunking alpha-
bet” where we break each L-bit message into k chunks each of ` bits where
k · ` = L with the restriction that ` ≤ λ and thus 2` ≤ 2λ. As we will see the
choice of ` will effect both the tightness of the security reduction as well as the
size of the signatures.6 We make use of a variant of the hash function in [24] to
map integers to primes of an appropriate size.

Setup(1λ, 1T ) The setup algorithm chooses an integer N = pq as the product of
two safe primes where p− 1 = 2p′ and q− 1 = 2q′, such that 2λ < φ(N) < 2λ+1.
Let QRN denote the group of quadratic residues of order p′q′ with generator g.

Next, it sets up a hash function H : [1, T ]→ {0, 1}λ+1 where H will take as
input a period t ∈ [1, T ] and output a prime between 2λ and 2λ+1 − 1. It begins
by randomly choosing a K ′ for the PRF function F : [1, T ] × [1, λ2] → {0, 1}λ,
a random c ∈ {0, 1}λ as well as an arbitrary prime edefault between between 2λ

and 2λ+1 − 1. We let K = (K ′, c, edefault).

We define how to compute HK(t). For each i = 1 to λ · (λ2 + λ), let yi =
c⊕FK(t, i). If 2λ + yi is prime return it. Else increment i and repeat. If no such
i ≤ λ · (λ2 + λ) exists, return edefault.

7 We note that this computation returns
the smallest i such that 2λ + yi is a prime. Notationally, for t ∈ [1, T ] we will let
et = HK(t).

The algorithm concludes by computing E =
∏T
j=1 ej mod φ(N) and Y = gE

mod N .

It publishes the public parameters as pp = (T,N, g, Y,K).

KeyGen(pp) The algorithm retrieves Y from the pp. It chooses random integers
u0, u1, . . . , uk in [1, N ]. It sets the secret key as sk = (u0, u1, . . . , uk) and the
public key pk = (U0, U1, . . . , Uk) where

Uj = Y uj = guj
∏
i∈T ei , for j = 0 to k.

Sign(pp, sk ,M, t) The signing algorithm takes as input a time period 1 ≤ t ≤ T
and an L = (`k)-bit message M = m1|m2| . . . |mk, where each mi contains `-
bits and these are concatenated together to form M . It computes the primes
(e1, . . . , et−1, et+1, . . . , eT ) from pp and then outputs

σ =
(
gu0

k∏
j=1

guj ·mj
)∏

i∈T\{t} ei =
(
U0

k∏
j=1

U
mj
j

)1/et
(mod N).

6 In practice, one might use a collision-resistant hash function to map arbitrarily long
messages into L = 256 bits and then set ` = 32 and k = 8. We discuss the efficiency
implications of these choices in Section 8.

7 We expect this default case to be exercised only with negligible probability, but define
it so that the function HK(t) is guaranteed to terminate in a bounded amount of
time.



Verify(pp, pk ,M, t, σ) Let M = m1|m2| . . . |mk. The algorithm computes the
prime et from pp. Output 1 if 1 ≤ t ≤ T and

σet
?
= U0

k∏
i=1

Umii (mod N)

or 0 otherwise.

Aggregate(pp, t, (pk1,M1, σ1), . . . , (pkn,Mn, σn)) An aggregate signature on sig-
natures from the same time period 1 ≤ t ≤ T is computed as σagg =

∏n
j=1 σj

(mod N).

AggVerify(pp, t, (pk1, . . . , pkn), (M1, . . . ,Mn), σagg) Let pk j = (Uj,0, Uj,1, . . . ,
Uj,k) and Mj = mj,1|mj,2| . . . |mj,k. The algorithm computes the prime et from
pp. Output 1 if 1 ≤ t ≤ T , each public key is unique (i.e., ∀i 6= j ∈ [1, n],
pk i 6= pk j) and

σetagg
?
=

n∏
j=1

(Uj,0

k∏
i=1

U
mj,i
j,i ) (mod N)

or 0 otherwise.

Discussion Observe that the above group hash function we employ falls into a
more general group hash framework proposed by Hofheinz, Jager and Kiltz [21]
that uses programmable hash functions. One might use their general framework
to explore further concrete efficiency tradeoffs, such as letting the group hash
function be more complex and letting the hash function output the product
of multiple smaller primes. Our concrete analysis, however, will focus on the
core scheme above along with tradeoffs in key storage and signing time that we
explore later. We leave open the interesting question of what other tradeoffs can
be realized via [21], keeping in mind that some of those instantiations add per
signer randomness, which makes aggregation challenging.

Recall from Section 2 that Setup must be executed honestly. It seems pos-
sible that, for this scheme, this might be realized efficiently using a specialized
multiparty computation protocol, such as an adaptation of one due to Boneh
and Franklin [12] for efficiently allowing a group of parties to generate an RSA
modulus, where each party learns N , but no party learns the factorization of N .

4.1 Proof of Security

Theorem 3. If the RSA assumption (Assumption 1) holds and F is a secure
pseudorandom function, then the above synchronized aggregate signature con-
struction is existentially unforgeable under an adaptive chosen message attack.

Proof. The reduction algorithm receives an RSA challenge (N, e∗, h) and needs
to use the attacker to compute h1/e

∗
mod N . Define a “conforming” attacker

as one that will always make a signing query on the period t∗ that it forges on.



We can assume our attacker is conforming without loss of generality because if
there exists an attacker that breaks the scheme, there exits one that breaks it
and queries for a signature on period t∗ by simply adding a signature query on
a random message at that period. Our proof will assume a conforming attacker.

Next, we define a sequence of games.

Game 1: (Security Game) This game is defined to be the same as the security
game of the scheme.

Game 2: (Guessing the forgery period and part of its queried message) The
same as Game 1, except the game guesses the period the attacker will forge on
and a part of the message queried for a signature during the period that will
be different from the forgery message, and the adversary only wins if these
guesses were correct. Formally, the game chooses random t′ ∈ [1, T ], α ∈ [1, k]
and β ∈ {0, 1}`. An adversary wins this game iff: (1) it would have won in
Game 1 with a forgery on period t∗ for some message M∗ = m∗1|m∗2| . . . |m∗k
with some message M = m1|m2| . . . |mk queried to the signing oracle on
period t∗, (2) t′ = t∗, (3) β = mα and (4) mα 6= m∗α.

Game 3: (HK does not default) The attacker wins only if it meets all the
conditions to win in Game 2 and HK(t∗) 6= edefault (that is, the default
condition of the hash is not triggered on the forgery message or otherwise
equal to the default prime.)

Game 4: (HK does not collide) The attacker wins only if it meets all the con-
ditions to win in Game 3 and HK(t∗) 6= HK(t) for all t ∈ [1, T ] where t 6= t∗.

Game 5: (Guess resolving i∗ for HK) The game chooses a random i∗ ∈ [1, λ3 +
λ2]. Attacker wins only if it meets all the conditions of Game 4 and i∗ was
the “resolving” index in HK(t∗); that is, i∗ was the smallest i such that
yi = FK′(t

∗, i)⊕ c and (2λ + yi) was a prime.
Game 6: (Programming HK with random value) The same as Game 5, except

that it chooses a random y′ ∈ {0, 1}λ and set c = y′ ⊕ FK′(t∗, i∗).
Game 7: (Programming HK with e∗) The same as Game 6, except choose e∗ as

a random prime in the range [2λ, 2λ+1−1] and let y′ be the λ least significant
bits of e∗; that is, drop the leading 1. As before, set c = y′ ⊕ FK′(t∗, i∗).

We now establish a series of claims that show that if an adversary is successful
against the real security game (Game 1) then it will be successful against in Game
7 as well. We will then shortly describe a simulator that can use any adversary
successful in Game 7 to solve the RSA challenge.

Define AdvA[Game x] as the advantage of an adversary A in Game x.

Claim 4

AdvA[Game 2] ≥ AdvA[Game 1]

T · k · 2`
.

Proof. Since there is no change to the adversary’s view of the game, the prob-
ability of the adversary winning in Game 2 is the same as Game 1 times the
probability of the game’s guesses being correct. There is a 1/T probability of
guessing the forging period, at least a 1/k probability of guessing a message



chunk in the signing query that will be different in the forgery (there may be
more than one), and a 2` probability of guessing that chunk’s value in the queried
message. We note that this gives a polynomial-time reduction for whenever ` is
polylogarithmic in λ. Recall that any adversary that is polynomial time in λ
must give out a 1T that is polynomially bounded in λ.

Claim 5 If F is a secure pseudorandom function and λ ≥ 4, then

AdvA[Game 3] = AdvA[Game 2]− negl(λ).

Proof. We here need to understand the probability that HK(t∗) = edefault. Using
the Prime Number Theorem, we can bound the number of primes in the range
[2λ, 2λ+1 − 1] as follows. Plugging into the formula in Lemma 2, we have that

the number of primes less than 2λ+1 − 1 is at least 7
8 ·

2λ+1

(λ+1) (the value 2λ+1 is

not prime, since it is a power of two, for any λ ≥ 1) and the number of primes

less than 2λ is at most 9
8 ·

2λ

λ . Thus, the total number of primes in our range of
interest is at least

7

8
· 2λ+1

(λ+ 1)
− 9

8
· 2λ

λ
=

7 · λ · 2λ+1 − 9 · (λ+ 1) · 2λ

8(λ+ 1)λ
(1)

=
14 · λ · 2λ − 9 · (λ+ 1) · 2λ

8(λ+ 1)λ
=

5 · λ · 2λ − 9 · 2λ

8(λ+ 1)λ
(2)

=
(5λ− 9) · 2λ

8(λ2 + λ)
>

2λ

λ2 + λ
, for all λ ≥ 4. (3)

Let R be a random function that outputs a value in the range [2λ, 2λ+1].
Then the probability that R outputs a prime is at least:

2λ/(λ2 + λ)

2λ+1 − 2λ
=

2λ

2λ(λ2 + 1)
=

1

λ2 + λ
(4)

The probability that R fails to output a prime after λ(λ2 + λ) tries is as
follows. We again use the fact that 2λ+1 is not a prime. Recall Chernoff’s

bound for any ε ≥ 0, we have Pr[X ≤ (1 − ε)µ] ≤ e−
ε2µ
2 . Here when X

is the number of primes output by R in λ(λ2 + λ) trials, ε = 1 and µ =∑λ(λ2+λ)
Pr[R fails to output a prime on one trial], we have that

Pr[R fails to output a prime in λ3 + λ2 trials] = Pr[X ≤ 0] ≤ e−
µ
2 (5)

≤ e−
λ(λ2+λ)· 1

λ2+λ
2 = e−λ/2 (6)

The PRF we employ to sample from this range cannot non-negligibly differ from
R in its probability of selecting primes or this provides for a distinguishing attack
on the PRF. Thus, the probability that HK(t∗) = edefault is the probability that
the PRF chose the same prime as the setup algorithm, which is negligible at 1
in the number of primes in that range (> 2λ/(λ2 +λ)), plus the probability that
HK triggers the default condition by failing to output a prime, which we also
argued was negligibly close to the negligible probability of R doing the same.



Claim 6 If F is a secure pseudorandom function and T ∈ poly(λ), then

AdvA[Game 4] = AdvA[Game 3]− negl(λ).

Proof. These games differ only in the event that HK(t∗) = HK(t) for some
t ∈ [1, T ] where t 6= t∗. Let R be a random function that outputs a value in the
range [2λ, 2λ+1]. Suppose HK uses R instead of the PRF. Then the probability
of a collision for a single t is one in the number of primes in [2λ, 2λ+1] or at most

1/ 2λ

λ2+λ = λ2+λ
2λ

, which is negligible. So the probability of a collision for any

t ∈ [1, T ] (recall that T is polynomial in λ) is T · λ
2+λ
2λ

= poly(λ)(λ2+λ)
2λ

= poly(λ)
2λ

=
negl(λ). When we replace R with the PRF, the probability of a collision cannot
non-negligibly differ or this provides a distinguishing attack on the PRF.

Claim 7

AdvA[Game 5] =
AdvA[Game 4]

λ3 + λ2
.

Proof. The attacker’s view in these games is identical. The only difference is
whether the game correctly guesses the resolving index i∗ for HK(t∗). Since
i∗ ∈ [1, λ3 + λ2], the game has a 1/(λ3 + λ2) chance of guessing this correctly.

Claim 8
AdvA[Game 6] = AdvA[Game 5].

Proof. In Game 5, c is chosen randomly in {0, 1}λ. In Game 6, c is set by
randomly selecting y′ ∈ {0, 1}λ and setting c = y′ ⊕ FK′(t∗, i∗), where t∗ is the
period on which the attacker will attack and i∗ is the resolving index for this
value. Since y′ is chosen randomly and independently of FK′(t

∗, i∗), the resulting
c will be from the same distribution as Game 5.

Claim 9
AdvA[Game 7] = AdvA[Game 6].

Proof. An adversary’s advantage in these games is the same. In Game 6, the
attacker could only win if 2λ + y′ was a prime, and thus the distributions are
the same.

Main Reduction We now show that if there exists a polynomial-time (in λ)
attacker that has advantage ε = ε(λ) in Game 7, then there exists a polynomial-
time (in λ) attacker for the RSA problem in Assumption 1 with advantage ε.

On input an RSA challenge (N, e∗, h), the reduction algorithm proceeds as
follows:

Setup.

1. Obtain 1T , 1n from the aggregate signature adversary A.
2. Make random guesses of t∗ ∈ [1, T ], α ∈ [1, k], β ∈ {0, 1}`, i∗ ∈ [1, λ3 + λ2].



3. Choose a random PRF key K ′. Let y′ be the λ least significant bits of
the RSA input e∗ (note that this is a prime randomly chosen from the
appropriate range by the RSA challenger) and set c = y′⊕FK′(t∗, i∗). Choose
a random prime edefault ∈ [2λ, 2λ+1−1]. Set K = (K ′, c, edefault). Thus, note
that by construction when i∗ is the resolving index for t∗,

et∗ = HK(t∗) = 2λ + (c⊕ FK′(t∗, i∗)) = 2λ + y′ = e∗.

4. Choose a random g ∈ QRN . Compute Y as before.
5. Set the pp = (T,N, g, Y,K).
6. Set up the “target” user’s public key pk1 as:

(a) Choose random u0, u1, . . . , uk ∈ [1, N ].

(b) Set U0 = (h−β)
∏T
i6=t∗ ei · Y u0 . We note that the reduction algorithm can

take the et root of U0 so long as t 6= t∗.

(c) For j = 1 to k such that j 6= α, compute Uj = Y uj .

(d) Set Uα = h
∏T
i6=t∗ ei · Y uα .

7. Set pk1 = (U0, U1, . . . , Uk). For j = 2 to n, (pk j , sk j) = KeyGen(pp).
8. Send to A the tuple (pp, pk1, (pk2, sk2), . . . , (pkn, skn)).

Queries. For each period t = 1 to T , the adversary can request one signature on
a message of its choice in the message space under sk1 or skip that period. Recall
that the adversary must be conforming and thus will request some signature on
the forgery period t∗. In our construction, signing during period t requires taking
the et-th root of each Uj value. By construction, the reduction algorithm can do
this so long as: (1) t 6= t∗ or (2) for t∗, when the α-th `-bits of the message are
the string β. If the reduction is ever asked a query it cannot answer, then it will
abort. We note that this only occurs when the guesses of t∗, α, β are incorrect,
which is consistent with the attacker not winning in Game 7 anyway. Formally,
when asked to sign M = m1|m2| . . . |mk for period t 6= t∗, the reduction outputs:

σ = (h−β · hmα)
∏T
i6=t∗,i 6=t ei ·

(
gu0

k∏
j=1

gujmj
)∏

i∈T\{t} ei (7)

= (h−β
∏T
i6=t∗ ei · Y u0)1/et · (

k∏
j=1,j 6=α

U
mj
j )1/et · (h

∏T
i6=t∗ ei · Y uα)mα/et (8)

= (U0

k∏
j=1

U
mj
j )1/et mod N. (9)



and when t = t∗ and mα = β, it outputs the signature:

σ =
(
gu0

k∏
j=1

gujmj
)∏

i∈T\{t} ei (10)

= (1)
∏T
i6=t∗,i 6=t ei ·

(
gu0

k∏
j=1

gujmj
)∏

i∈T\{t} ei (11)

= (h−β · hmα)
∏T
i6=t∗,i 6=t ei ·

(
gu0

k∏
j=1

gujmj
)∏

i∈T\{t} ei (12)

= (h−β
∏T
i6=t∗ ei · Y u0)1/et · (

k∏
j=1,j 6=α

U
mj
j )1/et · (h

∏T
i6=t∗ ei · Y uα)mα/et (13)

= (U0

k∏
j=1

U
mj
j )1/et mod N. (14)

Output. EventuallyA outputs a tuple (tf , (pkγ(1), . . . , pkγ(z)), (M1, . . . ,Mz), σagg).

Since aggregation order does not matter here8, we can w.l.o.g. assume that
γ(1) = 1 (corresponding to the target key pk1); we also drop γ from the sub-
script below. If the aggregate signature does not verify or if any of the reduction’s
guesses of t∗, i∗, α, β were incorrect, then abort. These abort conditions are all
consistent with the adversary not winning Game 7. Let E′ =

∏
i∈T\{t∗} ei. Oth-

erwise we have that:

σe
∗

agg =

n∏
j=1

(Uj,0

k∏
i=1

U
mj,i
j,i ) (15)

= (U1,0

k∏
i=1

U
m1,i

1,i ) ·
n∏
j=2

(Uj,0

k∏
i=1

U
mj,i
j,i ) (16)

= (hE
′(β−mα) · Y u0

k∏
j=1

Y ujmj ) ·
n∏
j=2

(Uj,0

k∏
i=1

U
mj,i
j,i ) (17)

Since the reduction can compute the e∗-th root of all values not in the h term,
it can divide them out as:(

σagg∏n
j=1(guj,0

∏k
i=1 g

uj,imj,i)E′

)e∗
(18)

=
(hE

′(β−mα) · Y u0
∏k
j=1 Y

ujmj ) ·
∏n
j=2(Uj,0

∏k
i=1 U

mj,i
j,i )∏n

j=1(guj,0
∏k
i=1 g

uj,imj,i)e∗·E′
(19)

= hE
′(β−mα). (20)

8 Our scheme has the property that any σagg that verifies on period t for pk1, . . . , pkz

and M1, . . . ,Mz also verifies on any permutation applied to both sequences.



Now, we have an equation of the form xa = yb, for x =
σagg∏n

j=1(g
uj,0

∏k
i=1 g

uj,imj,i )E′
,

a = e∗, y = h and b = E′(β −mα). Recall that the game would have already
aborted if e∗ was output for any period other than t∗ and thus, gcd(e∗, E′) = 1.
The game would also have aborted if β = mα. Finally since the |β| = |mα| =
` < λ and e∗ > 2λ, we can conclude that gcd(a, b) = 1. This allows the reduction

to apply Lemma 1 to efficiently compute ĥ ∈ ZN such that ĥe
∗

= h mod N .
The reduction outputs this value as the RSA solution.

Analysis. We argue that the above reduction will succeed in outputting the RSA
solution whenever the adversary wins in Game 7. The adversary’s view in these
scenarios differs only in the way that public key elements U0 and Uα are chosen.
We will first argue that the way they are chosen in Game 7 (and the actual
scheme) is statistically close to choosing a random element in QRN . Next, we
argue that the (different) way they are chosen in the reduction above is also
statistically close to choosing a random element in QRN . It follows then that
the public key in both Game 7 and the reduction are statistically close and thus
cannot be distinguished by our polynomial-time adversary. Moreover, while the
signatures are computed via a different method in Game 7 and the reduction,
the signature the adversary sees is identical (and unique) given the public in-
formation known to the adversary, so there is no information the adversary can
use to distinguish. For any given U ∈ QRN , prime e ∈ [1, N ], and m < 2λ, the
values Uem and U1/e are unique since each ei is relatively prime to φ(N). It
remains to support the arguments listed above.

First, recall how U0, Uα are chosen in Game 7 (and the actual scheme). Here
u0, uα are randomly chosen from [1, N ] and the public key elements are set as:

U0 = Y u0 = gu0
∏T
i=1 ei , Uα = Y uα = guα

∏
i∈T ei .

Observe that the group of QRN has order p′q′. Thus Y = g
∏T
i=1 ei is also a

generator since all the ei values are relatively prime to p′q′. Since Y is a generator,
if we take Y r for a random r ∈ [1, φ(N)] that has the same distribution as
choosing a random element in QRN . Now, the process of raising Y r for a random
r ∈ [1, N ] is statistically close to the process of raising it to a random r ∈
[1, φ(N)]. The reason is that N = φ(N)+p+q−1 where the difference (p+q−1)
is negligible. Thus, we achieve our first argument.

Second, recall how U0, Uα are chosen in the reduction. Here u0, uα are ran-
domly chosen from [1, N ] and the public key elements are set as:

U ′0 = (h−β)
∏T
i6=t∗ ei · Y u0 = h−β

∏T
i6=t∗ ei · gu0

∏T
i=1 ei , U ′α = h

∏T
i6=t∗ ei · Y uα .

We previously argued that the Y u0 and Y uα components are distributed statis-
tically close to a random element in QRN . We assume that h ∈ QRN ; this will
be true for a random element in Z∗N with 1/4 probability. Each value has an h
term that is in QRN but not necessarily distributed randomly. However, once we
multiply this value in the group by a (statistically close to) random element of



the group, we have a product that is distributed statistically close to a random
element in QRN . Thus, we achieve our second argument.

Since the adversary cannot distinguish either distribution of public keys from
a random distribution, then it cannot distinguish them from each other as well.
Thus, whenever the adversary succeeds in Game 7, we can conclude it will also
succeed in helping the reduction solve RSA.

5 Trading off Signing Time with Storage

In this section we show a basic tradeoff between the time to sign and the size of
the private key storage. Very roughly the time to sign will scale linearly with a
parameter a and the storage with a parameter b with the constraint that a·b = T .
Thus we can explore tradeoffs such as setting a = T, b = 1 as we saw in the last
section or go the opposite direction and set a = 1, b = T to achieve fast signing
at the expense of large storage, or try to balance these by choosing a = b =

√
T .

Our system will use the same setup, verification and aggregation algorithms
as in Section 4 and just replace the KeyGen and Sign algorithms. Moreover,
the public keys output by the KeyGen algorithm and corresponding signatures
output by the Sign algorithm will have an identical distribution to the original
Section 4 scheme and thus not require a new security proof.

Let the public parameters output from Setup be pp = (T,N, g, Y,K) as
before. Our KeyGeneration algorithm will organize T into b “windows” each of
size a. (We assume a divides T evenly for ease of exposition.) Then the private
key will be setup to contain a sequence of values Rw which is g raised to all ei
except those in a sliding window of periods. To sign faster during time period
t, select these partially computed values where t is in the window and complete
its computation for signing by raising to all ei in that window except et.

The new key generation and signing algorithms follow.

KeyGen′(pp, a) It obtains the primes (e1, . . . , eT ) and sets b = T/a (we as-
sume it divides evenly for ease of exposition). Next it chooses random inte-
gers u0, u1, . . . , uk in [1, N ] and computes pk = (U0, U1, . . . , Uk). For w = 1
to b, define Σw as the set of integers in [1, T ] other than those in the set
{a(w − 1) + 1, a(w − 1) + 2, . . . , a(w − 1) + a}.

For w = 1 to b, it then computes:

Rw = g
∏
i∈Σw ei

where the ei values are computed using K from pp. It sets the secret key as
sk = ({Rw}1≤w≤b, {ui}0≤i≤k). The public key pk = (U0, U1, . . . , Uk) is computed
as Uj = Y uj = guj

∏
i∈T ei , for j = 0 to k as in Section 4.

Sign′(pp, sk ,M, t) It computes the necessary subset of primes in (e1, . . . , eT )
using K in pp and then for period t, selects the window w = dt/ae. Let Σ′w denote



the set of periods in the window {a(w−1)+1, a(w−1)+2, . . . , a(w−1)+a}1≤w≤b.
It outputs

σ =
(
Ru0
w

k∏
j=1

Ruj ·mjw

)∏
i∈Σ′w\{t}

ei
=
(
U0

k∏
j=1

U
mj
j

)1/et
(mod N).

Analysis. Observe that the public keys and signatures are of the same form
and distribution as those of the base system in Section 4, as are the verification
equations, and thus the security of this tradeoff system follows. We analyze the
performance of this system in Section 8.

6 Obtaining O(lg(T )) Signing Time and Private Key Size

The previous section showed a basic tradeoff between signing time and private
key size. However, it was limited in that the most “balanced” version required
both time and storage to grow with the square root of the number of periods.

In this section we show how a more intricate key storage technique can give
us much better results with a scheme where the number of exponentiations
and prime searches is ≈ lg(T ) per signing operation and where we store ≈
lg(T ) elements of Z∗N in the private key. Unlike the previous schemes where
the private key remained static, our method here will require us to update the
private key on each signing period. As a consequence a signer will be required to
sign using each period in sequence.9 Again, our new scheme will produce public
keys and signatures with exactly the same distribution as the base scheme of
Section 4. Therefore we will only need to describe and analyze the new method
of key generation and storage and are not required to produce a new security
proof. As mentioned earlier, this approach has conceptual roots in the pebbling
optimization used by Itkis and Reyzin [26] to realize efficient forward-secure
signatures.

We present our method by introducing new two algorithms. The first al-
gorithm StorageInit(pp, v) takes in the public parameters and an element
v ∈ Z∗N and outputs the initial key storage state store. The second algorithm
StorageUpdate(store) takes in the storage store and outputs an updated stor-
age value store as well as a group element s ∈ Z∗N .

6.1 Storage Algorithms

We assume that there exists an integer ‘levels’ such that T = 2levels+1 − 2.
(One could always pad T out to match this.) The key storage will be structured
as a sequence of sets S1, . . . , Slevels where elements of set Si are of the form

w ∈ Z∗N , open ∈ [1, T ], closing ∈ [1, T ], count ∈ [1, T ].

9 We expect this to be the normal mode of operation in a synchronized scheme, how-
ever, the previous schemes have the ability to sign for periods in an arbitrary order.



Let R be the set of integers [open, open+2i−1−1]∪ [closing+count, closing+

2i−1−1]. Then w = v
∏
j∈T\R ej . Intuitively, w is v raised to all of the e exponents

except the sequence of 2i−1 values starting at open and a second sequence of
length 2i−1 − count starting at closing + count. When the StorageUpdate

algorithm runs for each i, it will find an element of the set Si and help “move it
forward” by incrementing its counter count and updating w accordingly. When
count reaches 2i the update storage algorithm removes the tuple from the set
Si at level i and then splits it into two parts and puts these in set Si−1. We now
describe the algorithms.

StorageInit(pp, v) Initially, sets S1, . . . , Slevels are empty. Then for i = 1 to
levels perform the following:

– Let R = [2i − 1, 2i+1 − 2].

– Compute w = v
∏
j∈T\R ej .

– Put in Si (w, 2i − 1, (2i − 1) + 2i−1, 0).

– Put in Si (w, (2i − 1) + 2i−1, 2i − 1, 0).

The storage value store =
(
(S1, . . . , Slevels), index = 0

)
is output.

StorageUpdate(pp, store) For i = 1 to levels perform the following:

– Find a tuple (if any exist) in Si of (w, open, closing, count) with the small-
est open value.10

– Replace it with a new tuple (w′ = weclosing+count , open′ = open, closing′ =
closing, count′ = count + 1) where (w′, open′, closing′, count′) is the
newly added tuple .

Then for i = levels down to 2

– Find a tuple (if any) of the form (w, open, closing, count = 2i−1) in Si.

– Remove this tuple from the set Si.

– To the set Si−1 add the tuple (w′ = w, open′ = open, closing′ = open +
2i−2, count′ = 0) where (w′, open′, closing′, count′) is the newly added
tuple.

– Also add to the set Si−1 the tuple (w′ = w, open′ = open+2i−2, closing′ =
open, count′ = 0).

Finally, from S1 find the tuple (w, open = index + 1, closing, 1). Remove

this from S1 and output s = w which gives s = v
∏
j∈T\{(index+1)} ej as needed.

Finally, the storage value store = ((S1, . . . , Slevels), index = index + 1) is
output.

10 In a particular Si there might be zero, one or two tuples. If there are two, the one
with the larger open value is ignored. Ties will not occur, as we will see from the
case analysis in Section 6.2.



6.2 Analysis

We need to show that the storage primitives give the desired correctness and
performance properties. To analyze correctness and storage size we consider
what the key storage state will look like for each value of index between 0
and T . Recall that in a stored key, index represents the number of signatures
generated so far. We describe what each Si set contains for a particular index

value — breaking things into three cases. We will refer to this as our “state
description” given below.

Case 1: T − index ≤ 2i − 2. In this case the set Si will be empty.
Case 2: Not Case 1 and index = k · 2i + r for 0 ≤ r < 2i−1. Si will contain

two elements. The first is a tuple

(w = v
∏
j∈T\R ej , open = (k + 1) · 2i − 1, closing = (k + 1) · 2i − 1 + 2i−1,

count = r).

Where we let R = [open, open + 2i−1 − 1] ∪ [closing + count, closing +
2i−1 − 1].
The second is a tuple

(w = v
∏
j∈T\R ej , open = (k + 1) · 2i − 1 + 2i−1, closing = (k + 1) · 2i − 1,

count = 0).

Where R = [open, open+ 2i−1− 1]∪ [closing+ count, closing+ 2i−1− 1].
(Here count = 0.)

Case 3: Not Case 1 and index = k · 2i + r for 2i−1 ≤ r < 2i. Si has a single
element. A tuple

(w = v
∏
j∈T\R ej , open = (k + 1) · 2i − 1 + 2i−1, closing = (k + 1) · 2i − 1,

count = r − 2i−1).

Where R = [open, open + 2i−1] ∪ [closing + count, closing + 2i−1].

Proof of State Description Accuracy.

Theorem 10. The above state description for variable index accurately de-
scribes the key storage state after an initial call to StorageInit(pp, v) and index

subsequent calls to StorageUpdate(pp, store).

Proof. We begin by establishing two claims about when the “pass down” oper-
ation can and cannot happen which will be used later on in the proof.

Claim 11 Suppose that our state description is accurate for period index. Con-
sider an update operation where the period moves from index to index+1. This
will result in an tuple being “passed down” from Si to Si−1 only if index + 1 is
a multiple of 2i−1, if anything is passed down at all.



Proof. If (index, i) were in Case 1, then Si is empty and there is nothing that
could be passed down. If in Case 2, then one tuple has a count = r which is
the remainder of index mod 2i. It will trigger a pass down operation only when
count increments to count = 2i−1. Similarly, in Case 3 there is a tuple with
count = r − 2i−1. A push down operation is only triggered when it increments
to 2i which means index + 1 is a multiple of 2i−1.

Claim 12 Suppose that our state description is accurate for period index and
all smaller values. Further suppose that index + 1 = 0 mod 2i for some i and
that set Si+1 is in Case 1 at index. (I.e. T − index ≤ 2i+1− 2.) Then it will be
that at period index+ 1 we have T − index ≤ 2i − 2 and set Si is designated as
Case 1 by our description.

Proof. Let z be the value where T − z = 2i+1 − 2 since T = 2levels+1 − 2 it
follows that z = y · 2i+1 for some y. Also note that z must be the smallest value
of index where T − index ≤ 2i+1 − 2. It then follows that z + 2i − 1 is the
smallest value of index where T − index ≤ 2i+1 − 2 AND index mod 2i. Now
let’s consider the next value of of index + 1 which is equal to z + 2i and use it
to prove that at index + 1 the set Si is assigned to be in Case 1. Then

T − (index + 1) = T − (z + 2i) = (T − z)− 2i = 2i+1 − 2− 2i = 2i − 2.

Then we have that at index+ 1 the set Si is categorized at Case 1 (and empty)
by our description.

We now show that for each index if the state description was valid at index
then it is valid at index + 1. We break this into three separate claims showing
that if a set Si is in Case 1,2 and 3 respectively at index that in index + 1 it
will match the state description.

Claim 13 Suppose at period index the state description is accurate and for a
set Si we are in Case 1 where T − index ≤ 2i− 2 and the set Si is empty. Then
at period index + 1 the state description is accurate for set Si.

Proof. For period index + 1 we have that T − (index + 1) is also ≤ 2i − 2 and
therefore it should also be Case 1 and Si should remain empty. The only way
for it not to remain empty would be if the StorageUpdate algorithm “passed
down” a new tuple from Si+1. However, if Si was in Case 1 for period index

then Si+1 must also be and also be empty. Since Si+1 is empty there is nothing
to pass down.

Claim 14 Suppose at period index the state description is accurate and for a
set Si we are in Case 2 where index = k ·2i+r for 0 ≤ r < 2i−1. Then at period
index + 1 the state description is accurate for set Si.

Proof. First consider the subcase where r 6= 2i−1−1 which should keep Si in Case
2 on period index+1. We will verify this. Since at period index we are in Case 2
there are two tuples in Si where the one with the smaller open value is of the form



(w = v
∏
j∈T\R ej , open = (k+1)·2i−1, closing = (k+1)·2i−1+2i−1, count = r).

The update algorithm will increment count to r + 1 and update w to w =
weclosing+count which gives the needed form to remain in Case 2. The second tuple
will is of the form (w = v

∏
j∈T\R ej , open = (k + 1) · 2i − 1 + 2i−1, closing =

(k+ 1) · 2i− 1, count = 0). The update algorithm will not modify it as the other
tuple had the smaller open value. Thus it remains the same which matches the
behavior for Si remaining in Case 2. Finally, we need to check that no new tuples
are passed down from Si+1. This follows from the fact (Claim 11) that index

mod 2i = r 6= 2i−1 and that a pushdown would only happen as index transfers
to being a multiple of 2i.

We now consider the subcase where r = 2i−1 − 1 at index and thus at
index+1 we should be moving into Case 3. In this subcase the set Si begins with
two tuples with one of the form (w = v

∏
j∈T\R ej , open = (k+1)·2i−1, closing =

(k + 1) · 2i − 1 + 2i−1, count = r = 2i−1 − 1). The update operation will first
modify the tuple to a new count value of count = 2i−1. This will trigger the
pushdown operation to move the tuple out of Si. It then leaves it with one tuple
of the needed form which transitions Si to Case 3 as needed. Again no new
elements are pushed onto Si from Si+1 due to Claim 11.

Claim 15 Suppose at period index the state description is accurate and for a
set Si we are in Case 3 where index = k · 2i + r for 2i−1 ≤ r < 2i for some k.
Then at period index + 1 the state description is accurate for set Si.

Proof. We first focus on the subcase where r 6= 2i − 1 and thus at index + 1
we want to verify that we stay in Case 3. Initially there is one tuple of the form
(w = v

∏
j∈T\R ej , open = (k+1) ·2i−1+2i−1, closing = (k+1) ·2i−1, count =

r− 2i−1). The update algorithm will increment count to r+ 1 and update w to
w = weclosing+count which gives the needed form to remain in Case 3. As before no
new tuples will be added since index + 1 mod 2i 6= 0.

We end by considering the subcase where r = 2i − 1. In this subcase there
is initially a single tuple with a count value of count = 2i−1 − 1. The update
algorithm will increment this count which triggers its removal from the set.
What remains to be seen is whether a new element is added or if it becomes
empty.

We now consider two possibilities. If T − (index + 1) ≤ 2i − 2, then our
description states that set Si should enter Case 1 on index+ 1. It is easy to see
that if this is true that the set Si+1 was already Case 1 and empty on index

and nothing new will be added so the set Si is empty as needed.

The somewhat trickier case is when T −(index+1) > 2i−2. Here we need to
verify that the set Si ends up in Case 2 with the appropriate tuple at index+ 1.
First, since index + 1 mod 2i = 0 we can apply Claim 12. It states that if
set Si+1 were in Case 1 (empty) at index then set Si would be in Case 1 for
index+ 1. Since this is not the case, we have that Si+1 must be non empty and
in Case 2 or 3.



If Si+1 started in Case 2 at index, it initially has a tuple of the form:

(w = v
∏
j∈T\R ej , open = (k̃ + 1) · 2i+1 − 1, closing = (k̃ + 1) · 2i+1 − 1 + 2i,

count = 2i − 1).

Where we let R = [open, open+2i−1]∪[closing+count, closing+2i−1]. Note
by the description index = 2i+1k̃ + 2i − 1. After the update algorithm has its
first pass, count is incremented to 2i and an exponentiation is done that updates
w where it is now for R = [open, open + 2i − 1] as the second half of the range
falls off with the new count value. The update algorithm then removes this tuple
from Si+1 and creates two new tuples from it. One with an open′ = open and
closing′ = open+ 2i; the second with open′ = open+ 2i and closing′ = open.

To verify correctness recall that index = 2ik + 2i − 1 and index = 2i+1k̃ +
2i − 1. It follows that k = 2 · k̃. Second, index + 1 = 2i · k′ where k′ = k+ 1. To
match the description for index + 1 we must have that the first tuple created
has an open′ value of open′ = (k′ + 1)2i − 1. Plugging in terms:

(k′ + 1)2i − 1 = (k + 1 + 1)2i − 1 = (2k̃ + 2)2i − 1 = (k̃ + 1)2i+1 − 1.

However, this is exactly the value it inherited from open as needed.
The argument that the right tuple is inherited when set Si+1 is in Case 3

proceeds in almost the same way as above.

The proof of our theorem now comes via induction. The accuracy of the
state description for index = 0 can be verified by inspection. We can prove
the rest by induction on index. For any index the accuracy of the description
index+ 1 follows from its accuracy on period index. In particular, our previous
three claims show that for any i if the state Si is accurate in period index then
after the update algorithm executes, Si will be accurate in period index+1 too.

Computational and Storage Efficiency. Analyzing the running time for these
storage operations is straightforward. We have that levels = blg T c. In each
storage update operation there is at each level at most one prime search operation
and at most one exponentiation. This comes from the fact that for each i the
algorithm updates a single set element — the one with the smallest open value
(if any). Therefore the number of prime searches and exponentiations is bounded
by lg(T ) as desired.

The above state description immediately gives us the storage efficiency we
desire. There are at most lg(T ) sets i which have at most two tuples. Each tuple
has a single group element. As written, a tuple also has three (small) integers
(of value at most T ), although a program could drop these because they can be
inferred from index, so we will not count them in our Section 8 analysis.

Sample Snapshot of Storage. To help the reader better understand these storage
algorithms, we provide an example of the storage states for levels = 3 and
T = 2levels+1 − 2 = 24 − 2 = 14 in Appendix A.



6.3 Using the Storage Primitives and Optimizations

We can use the storage primitive above to modify our signing algorithm and key
storage of Section 4. We describe two slightly different methods to do this.

Method 1. The Setup algorithm will run as before and output the core public
parameters as pp = (T,N, g, Y,K). However, it will also run StorageInit(pp, g)
which outputs a value store which is appended to the public parameters.

The secret key algorithm will choose random integers u0, u1, . . . , uk in [1, N ].
It sets the secret key as sk = (u0, u1, . . . , uk) and the public key pk = (U0, U1, . . . ,
Uk) where Uj = Y uj = guj

∏
i∈T ei , for j = 0 to k. Note all of this is identical to

the Section 4 scheme. However, it additionally appends store from the public
parameters to its secret key. The store is the part of the secret key that will be
modified at each signing.

During each the t-th signing step, it will call StorageUpdate(pp, storet−1)
and as output get a new storage value storet that is uses to replace the previous
one as well as J = Y 1/et . It uses this to sign by computing:

σ = Ju0

k∏
j=1

Juj ·mj =
(
U0

k∏
j=1

U
mj
j

)1/et
(mod N).

Method 2. This will be similar to Method 1 except that instead of raising to the
u0, . . . , uk values at the end of signing the algorithm will keep k+1 parallel copies
of storage that already have each respective ui exponent raised. The description
below will need to slightly “break into” the abstraction that we gave earlier.

Setup will run as before and output the core public parameters as pp =
(T,N, g, Y,K). However, it will also run StorageInit(pp, g) which outputs a
value store which is appended to the public parameters.

The secret key algorithm will choose random integers u0, u1, . . . , uk in [1, N ].
It sets the public key pk = (U0, U1, . . . , Uk) where Uj = Y uj = guj

∏
i∈T ei , for

j = 0 to k (as in the Section 4 scheme). For j = 0 to k it computes store(j)

by taking each of the group elements in store and raising it to uj . This process
effectively changes store from being a storage of v = g to being a storage
of vj = guj for the respective uj . Note that each conversion takes 2 · levels
exponentiations since there are 2 · levels group elements per storage.

During each t-th signing step, for each j ∈ [0, k] it will call StorageUpdate(pp,

store
(j)
t−1) and as output get a new storage value store

(j)
t that is uses to replace

the previous one as well as Jj = U
1/et
j . It uses these to sign by computing:

σ = J0

k∏
j=1

J
mj
j =

(
U0

k∏
j=1

U
mj
j

)1/et
(mod N).

Efficiency note: in the scheme above, the update operation will perform
levels prime searches for each of the k + 1 stores. (By prime search we mean
computing the relevant ei values needed in update.) This gives (k + 1) · levels



total prime searches. However, each of these stores will be computing the same
e values. Thus if we slightly break into the abstraction then one can do only
levels total prime searches by sharing that part of the computation across all
k + 1 storage updates.

7 Identity-Based Aggregation from RSA

In the full version [25], we provide the definition for synchronized identity-based
aggregate signatures. We now give a construction based on the RSA assumption.

Setup(1λ, 1T ) The setup algorithm chooses an integer N = pq as the product of
two safe primes where p− 1 = 2p′ and q− 1 = 2q′, such that 2λ < φ(N) < 2λ+1.
The scheme assumes a hash function (modeled as a random oracle) G : I →
Z∗(k+1)
N . It also uses the hash function H : [1, T ] → {0, 1}λ+1 with key K as

specified in Section 4. It computes:

D =

T∏
i=1

HK(i)−1 mod φ(N).

It publishes the public parameters as pp = (T,N,K) and we assume all parties
have access to G. The master secret key includes the factorization of N and the
value D.

Extract(msk , ID) The algorithm computes (U0, . . . , Uk) ← G(ID). For i = 1 to
k, it computes di = UDi mod N . It returns the secret key as sk = (d0, d1, . . . , dk).

Sign(pp, sk ID ,M, t) The signing algorithm takes as input a time period 1 ≤ t ≤
T and an L = (`k)-bit message M = m1|m2| . . . |mk, where each mi contains
`-bits and these are concatenated together to form M . It computes the primes
(e1, . . . , eT ) from pp and then outputs

σ =
(
d0

k∏
j=1

d
mj
j

)∏
i∈T\{t} ei =

(
U0

k∏
j=1

U
mj
j

)1/et
(mod N).

Verify(pp, ID ,M, t, σ) Let M = m1|m2| . . . |mk and G(ID) = (U0, . . . , Uk) The

algorithm computes the prime et from pp. Output 1 if 1 ≤ t ≤ T and σet
?
=

U0

∏k
i=1 U

mi
i or 0 otherwise.

Aggregate(pp, t, (ID1,M1, σ1), . . . , (IDn,Mn, σn)) As before, σagg =
∏n
j=1 σj

(mod N).

AggVerify(pp, t, (ID1, . . . , IDn), (M1, . . . ,Mn), σagg) As before, output 1 if and

only if all inputs are in the correct range, each identity is unique and σetagg
?
=∏n

j=1(Uj,0
∏k
i=1 U

mj,i
j,i ) where here G(ID i) = (Ui,0, . . . , Ui,k).



Scheme
Signing Operations

P EN E|e| E` M
Section 4 T − 1 k + 1 T − 1 k k

Section 5 (a =
√
T )
√
T − 1 k + 1

√
T − 1 k k

Section 5 (a = 1) 0 k + 1 0 k k

Section 6 Method 1 lg(T ) k + 1 lg(T ) k k

Section 6 Method 2 lg(T ) 0 (k + 1) lg(T ) k k

Fig. 1. Signing Operations Evaluation. Let the modulus be N . Let P be the time
for function HK to output a prime of |e| bits, Ej be the time to perform a j-bit
modular exponentiation, and M be the time to perform a modular multiplication. For
the Section 6, we round up and treat lg T ≈ levels. For that scheme via Method 2,
the results of the prime search from the first store are shared with all other stores.

Remarks. We remark that the same performance enhancements explored in Sec-
tions 5 and 6 apply here. For simplicity, we present the identity-based version
only for the scheme in Section 4.

Theorem 16. If the RSA assumption (as stated in Assumption 1) holds, F is
a secure pseudorandom function and G is modeled as a random oracle, then
the above identity-based synchronized aggregate signature construction is exis-
tentially unforgeable under an adaptive chosen message attack.

Proof of this theorem appears in the full version [25] of this work.

8 Performance Evaluation

Operation P257 P80 E2048 E257 E256 E80 E32 M
Time (ms) 0.975 0.311 4.604 0.670 0.629 0.235 0.094 0.00091

Fig. 2. Time recorded in milliseconds for the above operations are averaged over 1,000
iterations for a 2048-bit modulus using NTL v10.5.0 on a modern laptop. Let Px denote
an x-bit prime search, Ex be an x-bit modular exponentiation, and M be a modular
multiplication.

We now analyze the performance of the various RSA-based aggregate signa-
ture schemes in this work. In particular we consider: our core signature scheme
of Section 4, our scheme with ≈

√
(T ) storage and signing time of Section 5,

our “big storage for fast signing” scheme also of Section 5 and our scheme of
≈ lg(T ) storage and signing of Section 6 via two different methods of implement-
ing signing (which may out perform each other based on the selection of various
implementation parameters). The scheme of Section 4 has similar performance
to that of Section 5 when a = T and therefore we do not separately analyze it.



Scheme
Parameters Time when T =
k ` |e| 212 216 220 224 228 232

Section 4
1 256 257 6.7s 1.8m 28.7m 7.7h 5.1d 81.7d
8 32 80 2.3s 35.8s 9.5m 2.5h 1.7d 27.1d

256 1 80 3.4s 37.0s 9.6m 2.5h 1.7d 27.1d

Section 5 (a =
√
T )

1 256 257 113.4ms 0.4s 1.7s 6.7s 27.0s 1.8m
8 32 80 76.6ms 0.2s 0.6s 2.3s 9.0s 35.8s

256 1 80 1.2s 1.3s 1.7s 3.4s 10.1s 36.8s

Section 5 (a = 1)
1 256 257 9.8ms 9.8ms 9.8ms 9.8ms 9.8ms 9.8ms
8 32 80 42.2ms 42.2ms 42.2ms 42.2ms 42.2ms 42.2ms

256 1 80 1.2s 1.2s 1.2s 1.2s 1.2s 1.2s

Section 6 Method 1
1 256 257 29.6ms 36.1ms 42.7ms 49.3ms 55.9ms 62.5ms
8 32 80 48.8ms 50.9ms 53.1ms 55.3ms 57.5ms 59.7ms

256 1 80 1.2s 1.2s 1.2s 1.2s 1.2s 1.2s

Section 6 Method 2
1 256 257 28.4ms 37.7ms 47.0ms 56.2ms 65.4ms 74.7ms
8 32 80 29.9ms 39.6ms 49.3ms 59.1ms 68.8ms 78.5ms

256 1 80 0.7s 1.0s 1.2s 1.5s 1.7s 1.9s

Fig. 3. Signing Time Evaluations for 90 different performance points; here N is 2048
bits. Times are calculated by taking the average time for an operation (see Figure 2)
and summing up the total times of each operation (see Figure 1). Let ms denote
milliseconds, s denote seconds, m denote minutes, h denote hours, and d denote days.

For each scheme, we first evaluate its run-time performance with a signing
algorithm operations count in Figure 1. We then proceed to inspect its practical
performance using a 2048-bit RSA modulus and a 256-bit message (the latter
corresponding to an output of SHA-256). In Figure 3, we evaluate each scheme
with each of the following parameters: 1 message chunk size of 256 bits, 8 message
chunks of 32 bits and 256 messages chunks of 1 bit. When message chunks are
256 bits, we use 257-bit prime e values and for chunks of size 32 bits or 1 bit we
consider 80-bit e values. Here we make sure that the size of the RSA primes are
at least as big as the message chunks, but let them fall no further than 80 bits to
avoid collisions.11 These evaluations will be considered for a maximum number
of periods of T ∈ {212, 216, 220, 224, 228, 232}. Technically, for the log scheme the
numbers of time periods is T = 2levels+1 − 2, however for the sake of these
comparisons we will ignore the small constants.

To perform the timing evaluations in Figure 3, we utilized the high-performance
NTL number theory library in C++ v10.5.0 by Victor Shoup [38]. Averaged over

11 We remark that the parameters given for this evaluation do not have a total corre-
spondence to the scheme description. For example, using 80-bit e values will techni-
cally require a variant of the RSA assumption with smaller exponents. And we do
not attempt to set the modulus size to match the security loss of our reduction. (It
is unknown whether this loss can actually be utilized by an attacker or not.) Our
focus here is to give the reader a sense of the relative performance of the scheme
variants for parameters that might be used in practice.



Scheme
SK Elements Param. Size when T =

ZN k 212 216 220 224 228 232

S4 k + 1
1 0.5K 0.5K 0.5K 0.5K 0.5K 0.5K
8 2.3K 2.3K 2.3K 2.3K 2.3K 2.3K

256 64.3K 64.3K 64.3K 64.3K 64.3K 64.3K

S5 (a =
√
T ) (k + 1) +

√
T

1 16.5K 64.5K 256.5K 1.0M 4.0M 16.0M
8 18.3K 66.3K 258.3K 1.0M 4.0M 16.0M

256 80.3K 128.3K 320.3K 1.1M 4.1M 16.1M

S5 (a = 1) (k + 1) + T
1 1.0M 16.0M 256.0M 4.0G 64.0G 1.0Tb
8 1.0M 16.0M 256.0M 4.0G 64.0G 1.0Tb

256 1.1M 16.1M 256.1M 4.0G 64.0G 1.0Tb

S6 Method 1 (k + 1) + 2 lg T
1 6.5K 8.5K 10.5K 12.5K 14.5K 16.5K
8 8.3K 10.3K 12.3K 14.3K 16.3K 18.3K

256 70.3K 72.3K 74.3K 76.3K 78.3K 80.3K

S6 Method 2 2(k + 1) lg T
1 12.0K 16.0K 20.0K 24.0K 28.0K 32.0K
8 54.0K 72.0K 90.0K 108K 106K 144K

256 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M

Fig. 4. Private Key Size Evaluation. Here the modulus N is 2048 bits. The above
numbers are rounded to show one decimal point. Let K denote a kilobyte (210 bytes),
M a megabyte (220 bytes), G a gigabyte (230 bytes), and Tb a terabyte (240 bytes). Any
of the schemes that compute primes during Signing (all but Section 5 when a = 1),
could instead choose to speed up signing by additionally storing those values at an
additional storage cost of T elements of Z|e|. All but the last scheme include k + 1
elements that are the randomization factors u0, . . . , uk ∈ [1, N ]; this space could be
shrunk by re-computing these from a PRF.

1000 iterations, we measured the cost of a prime search of the relevant size as
well as the time to compute modular multiplications and modular exponentia-
tions for the relevant exponent sizes using a 2048-bit RSA modulus. We took all
time measurements on an early 2015 MacBook Air with a 1.6 GHz Intel Core i5
processor and 8 GB 1600 MHz DDR3 memory. These timing results are recorded
in Figure 2.

We next report on the signer’s storage space requirements in Figure 4 for all
of these combinations. And in Figure 5, we show how to view T in practical terms
for how often one can issue signatures according to the synchronized restrictions
over the lifespan of a private key.

Some Conclusions. As expected the initial core scheme of Section 4 is much too
costly for signing. Even for T = 220 (where one signature is permitted every 5
minutes for 10 years), it takes roughly 10 minutes to sign a single message, so the
processor we took these measurements on could not “break even” by keeping up
with the modest pace of one signature every 5 minutes using the base scheme.
At larger time periods, the signing time moves into days. One noticeable aspect
is that the k = 1 (where k is the number of message chunks) time measurements
are about a factor of three greater than when k ∈ {8, 256} for this scheme and



Setting of T Frequency of Signatures

212 76,992 sec (≈ one per day)

216 4,812 sec (≈ one every 1.5 hours)

220 300 sec (≈ one every 5 minutes)

224 19 sec

228 1.2 sec

232 0.07 sec (≈ ten per second)

Fig. 5. Approximate view of how to select T based on how often an application needs
the ability to issue signatures during a key’s 10-year lifespan. (One can approximate a
20-year key lifespan by cutting the above frequencies in half.)

the square root one. This is due to the cost difference of searching for and raising
to 257-bit primes versus 80-bit primes which dominate these schemes.

The square root tradeoff certainly does better, but cannot break even (on the
processor measured) once we hit T = 228. Additionally, the keys are somewhat
large on the order of a few megabytes. This could be an issue if we would want
to store several keys or a single key on a low memory device.

On the other end of the spectrum when setting a = 1, we get relatively fast
signatures. Here things flip where it is significantly more expensive to sign for
k = 256 than k ∈ {1, 8}. The reason is that at this point the cost of raising to
the ui values now dominates the computation — whereas in the earlier schemes
it was dominated by raising to the ei values. The main downside of this setting
is that the key sizes are huge — breaking into the terabyte range for T = 232.

We finally move to our log scheme of Section 6 where we start with Method
1. It scales well with the number of time periods where even for T = 232 it is
only about 60ms for k ∈ {1, 8}. For k = 256 the time is again dominated by
the raising to the ui values at the end. Also, the private keys can be kept in the
range of ten to twenty kilobytes for lower k values. (We note that for k = 256
one possibility is that the ui values could be generated from a pseudo random
function which could lower the key storage cost.) The second method of using
the log storage is more costly in terms of key storage cost. Its performance in
signing time is slightly better for smaller values of T , but for values higher than
220 turns worse. For this reason the first method seems to perform better overall
than the second.

Altogether, the log storage solution (of Section 6 using Method 1) offers
practical time/space costs and appears to provide the best overall practical per-
formance of all schemes analyzed.
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A Sample Snapshot of Storage for Section 6 Scheme

To aid the reader, we provide an example of the storage states for levels = 3 and
T = 2levels+1−2 = 24−2 = 14 in Figure 6. This example shows the states after
updates; it does not show any intermediate states during an update operation.
The example gives just the open, closing and count values. The prior section
describes how the corresponding group element w is computed based on these
values (see the description of R as the range of indices of ei values excluded from
the product in the exponent.) Initially, we have sets S1, . . . , Slevels=3 that are
empty. The values at index = 0 show the states after running StorageInit.
The values at index > 0 show the state after a call to StorageUpdate.

index
Set S1 Set S2 Set S3

open closing count open closing count open closing count

0
1 2 0 3 5 0 7 11 0
2 1 0 5 3 0 11 7 0

1
2 1 0 3 5 1 7 11 1

5 3 0 11 7 0

2
3 4 0 5 3 0 7 11 2
4 3 0 11 7 0

3
4 3 0 5 3 1 7 11 3

11 7 0

4
5 6 0 7 9 0 11 7 0
6 5 0 9 7 0

5
6 5 0 7 9 1 11 7 1

9 7 0

6
7 8 0 9 7 0 11 7 2
8 7 0

7 8 7 0 9 7 1 11 7 3

8
9 10 0 11 13 0
10 9 0 13 11 0

9
10 9 0 11 13 1

13 11 0

10
11 12 0 12 11 0
13 11 0

11 12 11 0 13 11 1

12
13 14 0
14 13 0

13 14 13 0

14

Fig. 6. Storage State Example for levels = 3, T = 14. See above description.


