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Abstract. This paper studies discrete-log algorithms that use prepro-
cessing. In our model, an adversary may use a very large amount of
precomputation to produce an “advice” string about a specific group (e.g.,
NIST P-256). In a subsequent online phase, the adversary’s task is to
use the preprocessed advice to quickly compute discrete logarithms in
the group. Motivated by surprising recent preprocessing attacks on the
discrete-log problem, we study the power and limits of such algorithms.

In particular, we focus on generic algorithms— these are algorithms
that operate in every cyclic group. We show that any generic discrete-log
algorithm with preprocessing that uses an S-bit advice string, runs in
online time T , and succeeds with probability ε, in a group of prime order
N , must satisfy ST 2 = Ω̃(εN). Our lower bound, which is tight up to
logarithmic factors, uses a synthesis of incompressibility techniques and
classic methods for generic-group lower bounds. We apply our techniques
to prove related lower bounds for the CDH, DDH, and multiple-discrete-
log problems.

Finally, we demonstrate two new generic preprocessing attacks: one
for the multiple-discrete-log problem and one for certain decisional-type
problems in groups. This latter result demonstrates that, for generic algo-
rithms with preprocessing, distinguishing tuples of the form (g, gx, g(x2))
from random is much easier than the discrete-log problem.

1 Introduction

The problem of computing discrete logarithms in groups is fundamental to
cryptography: it underpins the security of widespread cryptographic protocols for
key exchange [31], public-key encryption [26,34], and digital signatures [46,53,68].

In the absence of an unconditional proof that computing discrete logarithms
is hard, one fruitful research direction has focused on understanding the hardness
of these problems against certain restricted classes of algorithms [6, 61, 71]. In
particular, Shoup considered discrete-log algorithms that are generic, in the sense
that they only use the group operation as a black box [71]. Generic algorithms
are useful in practice since they apply to every group. In addition, lower bounds
against generic algorithms are meaningful because, in popular elliptic-curve
groups, generic attacks are the best known [38,51].

The traditional notion of generic algorithms models online-only attacks, in
which the adversary simultaneously receives the description of a cyclic group



G = 〈g〉 and a problem instance gx ∈ G. In this model, when the attack algorithm
begins executing, the attacker has essentially no information about the group G.
Shoup [71] showed that, in this online-only setting, every generic discrete-log
algorithm that succeeds with good probability in a group of prime order N must
run in time at least N1/2.

In practice, however, an adversary may have access to the description of the
group G long before it has to solve a discrete-log problem instance. In particular,
the vast majority of real-world cryptosystems use one of a handful of groups,
such as NIST P-256, Curve25519 [12], or the DSA groups. In this setting, a
real-world adversary could potentially perform a preprocessing attack [28, 32, 45]
relative to a popular group: In an offline phase, the adversary would compute
and store a data structure (“advice string”) that depends on the group G. In
a subsequent online phase, the adversary could use its precomputed advice to
solve the discrete-log problem in the group G much more quickly than would be
possible in an online-only attack.

In recent work, Mihalcik [59] and Bernstein and Lange [13] demonstrated the
surprising power of preprocessing attacks against the discrete-log problem. In
particular, they construct a generic algorithm with preprocessing that computes
discrete logarithms in every group of order N using N1/3 bits of group-specific
advice and roughly N1/3 online time. Since their algorithm is generic, it applies to
every group, including popular elliptic-curve groups. In contrast, Shoup’s result
shows that, without preprocessing, every generic discrete-log algorithm requires
at least N1/2 time. The careful use of a large amount of preprocessing—roughly
N2/3 operations—is what allows the attack of Mihalcik, Bernstein, and Lange to
circumvent this lower bound.

As of now, there is no reason to believe that the attack of Mihalcik, Bernstein,
and Lange is the best possible. For example, we know of no results ruling out a
generic attack that uses N1/2 precomputation to build an advice string of size
N1/8, which can be used to compute discrete logs in online time N1/8.

The existence of such an attack would—at the very least—shake our confidence
in 256-bit elliptic-curve groups. An attacker who wanted to break NIST P-256,
for example, could perform a one-time 2128 precomputation to compute a 232-bit
advice string. Given this advice string, an attacker could compute discrete
logarithms on the P-256 curve in online time 232. The precomputed advice
string would essentially be a “trapdoor” that would allow its holder to compute
discrete-logs on the curve in seconds.

The possibility of such devastating discrete-log preprocessing attacks, and the
lack of lower-bounds for such algorithms, leads us to ask:

How helpful can preprocessing be to generic discrete-log algorithms?

In this paper, we extend the classic model of generic algorithms to capture
preprocessing attacks. To do so, we introduce the notion of generic algorithms
with preprocessing for computational problems in cryptographic groups. These
algorithms make only black-box use of the group operation, but may perform a
large number of group operations during a preprocessing phase. Following prior
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work on preprocessing attacks [28, 32, 35, 45], we measure the complexity of such
algorithms by (a) the size of the advice string that the algorithm produces in the
preprocessing phase, and (b) the running time of the algorithm’s online phase.

These two standard cost metrics do not consider the preprocessing time
required to compute the advice string. Ignoring the preprocessing cost only
strengthens the resulting lower bounds, but it leaves open the question of how
much preprocessing is really necessary to compute a useful advice string. Towards
the end of this paper, we take up this question as well by extending our model
to account for preprocessing time.

1.1 Our Results

We prove new lower bounds on generic algorithms with preprocessing that relate
the time, advice, and preprocessing complexity of generic discrete-log algorithms,
and algorithms for related problems. We also introduce new generic preprocess-
ing attacks for the multiple-discrete-log problem and for certain distinguishing
problems in groups.
Lower Bounds for Discrete Log and CDH. We prove in Theorem 2 that
every generic algorithm that uses S bits of group-specific precomputed advice
and that computes discrete logarithms in online time T with success probability
ε must satisfy ST 2 = Ω̃(εN), where the Ω̃(·) notation hides logarithmic factors
in N . When S = T the bound shows that, for constant ε, the best possible
generic attack must use roughly N1/3 bits of advice and runs in online time
roughly N1/3.

Our lower bound is tight, up to logarithmic factors, for the full range of
parameters S, T , and ε, since the attack of Mihalcik [59] and Bernstein and
Lange [13], which we summarize in Sect. 7.1, gives a matching upper bound.
(These attacks sidestep Shoup’s N1/2-time lower bound for generic discrete-log
algorithms [71] by using more than N1/2 time in their preprocessing phase.) As
a consequence, beating the preprocessing algorithm of Mihalcik, Bernstein, and
Lange on the NIST P-256 curve, for example, would require developing a new
non-generic attack.

Our lower bound extends naturally to the computational Diffie-Hellman
problem, for which we also prove an ST 2 = Ω̃(εN) lower bound (Theorem 6),
and theM -instance multiple-discrete-log problem, for which we prove an ST 2/M+

T 2 = Ω̃(ε1/MMN) lower bound (Theorem 8). The attacks of Sect. 7 show that
these lower bounds are tight.
Lower Bound for DDH with Preprocessing. We also look at the more
subtle case of distinguishing attacks. We show in Theorem 9, that every generic
distinguisher with preprocessing that achieves advantage ε against the decisional
Diffie-Hellman problem (DDH) must satisfy ST 2 = Ω̃(ε2N). The quadratic
dependence on the error probability makes this bound weaker than the previous
ones. We know of no DDH distinguisher that matches this lower bound for all
parameter ranges (e.g., for ε = N−1/4), and we leave the question of whether
such a distinguisher exists as an open problem.
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Lower Bound on Preprocessing Time. In addition, we prove lower bounds
on the amount of computation required to produce the advice string in the
preprocessing phase of a generic discrete-log algorithm. We show in Theorem 10
that any such algorithm that uses preprocessing time P , online time T , and
achieves success probability ε must satisfy: PT + T 2 = Ω(εN). Our lower bound
matches the preprocessing time used by the discrete-log preprocessing attack
of Mihalcik, Bernstein, and Lange, and essentially rules out the existence of
very fast generic algorithms that also use modest amounts of preprocessing. For
example, any generic algorithm that runs in online time T = N1/8 must use close
to N7/8 preprocessing time to succeed with good probability—no matter how
large of an advice string it uses.
New Preprocessing Attacks. Finally, in Theorem 11, we introduce a new
preprocessing algorithm for the multiple-discrete-log problem that shows that our
lower bound is tight for constant ε. In addition, for the problem of distinguishing
tuples of the form (g, gx, g(x2)) from random, Theorem 13 gives a new algorithm
that satisfies ST 2 = Õ(ε2N). The existence of such an algorithm is especially
surprising because solving the (g, gx, g(x2)) distinguishing problem is as hard
as computing discrete logarithms for online-only algorithms. In contrast, our
algorithm shows that this problem is substantially easier than computing discrete
logarithms for preprocessing algorithms: computing discrete logarithms requires
S = T = 1/ε = N1/4 while our new distinguishing attack requires S = T = 1/ε =
N1/5.

1.2 Our Techniques

The starting point of our lower bounds is an incompressibility argument, which
is also at the heart of classic lower bounds against preprocessing algorithms (also
known as “non-uniform algorithms”) for inverting one-way permutations [42,76,77]
and random functions [32]. At a high level, our approach is to show that if there
exists a generic discrete-log algorithm A that (a) uses few bits of preprocessed
advice and (b) uses few online group operations, then we can use such an algorithm
A to compress a random permutation.

Incompressibility. The first technical challenge is that a straightforward application
of incompressibility techniques does not suffice in the setting of generic groups.
To explain the difficulty, let us sketch the argument that a random permutation
oracle π is one-way, even against preprocessing adversaries [28,42,76,77]. The
argument builds a compression scheme by invoking A(x) on some point x in the
image of π and answering A’s queries to π. The key observation is that when A
produces its output y = π−1(x), we have learned some extra information about
π beyond the information that the query responses contain. In this way, each
invocation of A yields some “profit,” in terms of our knowledge of π. We can use
this profit to compress π.

To apply this argument to generic groups, we could replace the random
permutation oracle π by an oracle that implements the group operation for a
random group. (We define the model precisely in Sect. 2.) The challenge is that
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a group-operation oracle has extra structure that a random permutation oracle
does not. This extra structure fouls up the standard incompressibility argument,
since the query responses that the compression routine must feed to A might
themselves contain enough information to recover the discrete log that A will
later output. If this happens, the compression scheme will not “profit” at all from
invoking A, and we will not be able to use A to compress the oracle.

To handle this case, we notice that this sort of compression failure only occurs
when two distinct queries to the group oracle return the same string. By using a
slightly more sophisticated compression routine, which notices and compensates
for these “collision” events, we achieve compression even where the traditional
incompressibility argument would have failed. (Dodis et al. [33] use a similar
observation in their analysis of the RSA-FDH signature scheme.)

To keep track of when these collision events occur, we adopt an idea from
Shoup’s generic-group lower-bound proof [71], which does not use incompressibility
at all. Shoup’s idea is to keep a careful accounting of the information that the
adversary’s queries have revealed about the generic-group oracle at any point
during the execution. Our compression scheme exploits a similar accounting
strategy, which allows it to halt the adversary A as soon as the compressor
notices that continuing to run A would be “unprofitable.”

Handling Randomized Algorithms. The second technical challenge we face is
in handling algorithms that succeed with arbitrarily small probability ε. The
standard incompressibility methods invoke the algorithm A on many inputs,
and the compression routine succeeds only if all of these executions succeed. If
the algorithm A fails often, then we will fail to construct a useful compression
scheme.

The naïve way around this problem would be to amplifyA’s success probability
by having the compression scheme run the algorithm A many times on each input.
The problem is that amplifying the success probability in this way decreases the
“profit” that we gain from A, since the compression scheme has to answer many
more group-oracle queries in the amplified algorithm than in the unamplified
algorithm. As a result, this naïve amplification strategy yields an ST 2 = Ω̃(ε2N)
lower bound that is loose in its dependence on the success probability ε.

Our approach is to leverage the observation, applied fruitfully to the random-
permutation model by De et al. [28], that it is without loss of generality to assume
that the compression and decompression algorithms share a common string of
independent random bits. Rather than amplifying the success probability of A by
iteration, the compression scheme simply finds a set of random bits in the shared
random string that cause A to produce the correct output. The compression
scheme then writes this pointer out as part of the compressed representation of
the group oracle. This optimization yields the tight ST 2 = Ω̃(εN) lower bound.

Along the way, we exploit the random self-reducibility of the discrete-log
problem to transform an average-case discrete-log algorithm, which succeeds on a
random instance with probability ε, to a worst-case algorithm, which succeeds on
every instance with probability ε. Using the random self-reduction substantially
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simplifies the incompressibility argument, since it allows the compression routine
to invoke the algorithm A on arbitrary inputs.

Generalizing to Decisional Problems. The final technical challenge is to extend
our core incompressibility argument to give lower bounds for the decisional
Diffie-Hellman Problem (DDH). The difficulty with using a DDH algorithm to
build a compression scheme is that each execution of the DDH distinguisher only
produces a single bit of information. Furthermore, if the distinguishing advantage
ε is small, the distinguisher produces only a fraction of a bit of information. The
straightforward amplification would again work but would yield a very loose
ST 2 = Ω̃(ε4N) bound.

To get around this issue, we execute the distinguisher on large batches of input
instances. We judiciously choose the batch size to balance the profit from each
batch with the probability that all runs in a batch succeed. Handling collision
events in this case requires extra care. Putting these ingredients together, we
achieve an ST 2 = Ω̃(ε2N) lower bound for the DDH problem.

1.3 Related Work

This paper builds upon two major lines of prior work: one on preprocessing lower
bounds for symmetric-key problems, and the other on online lower bounds for
generic algorithms in groups. We prove preprocessing lower bounds for generic
algorithms and, indeed, our proofs use a combination of techniques from both
prior settings.
Incompressibility Methods. One prominent related area of research puts lower
bounds on the efficiency of preprocessing algorithms for inverting random functions
and random permutations. An early motivation was Hellman’s preprocessing algo-
rithm (“Hellman tables”) for inverting random functions [45]. Fiat and Naor [35]
later extended the technique to allow inverting general functions and Oechslin [63]
proposed practical improvements to Hellman’s construction.

Yao [77] used an incompressibility argument to show the optimality of Hell-
man’s method for inverting random permutations. Gennaro and Trevisan [42]
and Wee [76] proved related lower bounds, also using incompressibility methods.
Barkan et al. [9] showed that, in a restricted model of computation, Hellman’s
method is optimal for inverting random functions (not just permutations).

De et al. [28] demonstrated how to use randomized encodings, essentially an
incompressibility argument augmented with random oracles, to give alternative
proofs of preprocessing lower bounds on the complexity of inverting random
permutations and breaking general pseduo-random generators. We adopt the
powerful randomized encoding technique of De et al. in our proofs. Dodis et
al. [32] applied this technique to show that salting [60] defeats preprocessing
attacks against certain computational tasks (e.g., collision finding) in the random-
oracle model [10]. Abusalah et al. [2] used the technique to construct proofs of
space from random functions.

Unruh [74] gave an elegant framework for proving the hardness of computa-
tional problems in the random-oracle model against preprocessing adversaries
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(or against algorithms with “auxiliary input,” in his terminology). He proves
that if a computational problem is hard when a certain number of points of
the random oracle are fixed (“presampled”), then the problem is hard in the
random-oracle model against preprocessing adversaries using a certain amount
of oracle-dependent advice. This presampling technique gives an often simpler
alternative to incompressibility-based lower bounds. Coretti et al. [24] recently
introduced new variants of Unruh’s presampling technique that give tighter lower
bounds against preprocessing adversaries for a broad set of problems.
Generic-Group Lower Bounds. All of the aforementioned work studies precom-
putation attacks on one-way permutations and one-way functions, which are
essentially symmetric-key primitives. In the setting of public-key cryptography, a
parallel— and quite distinct—line of work studies lower bounds on algorithms
for the discrete-log problem and related problems in generic groups. All of these
lower bounds study online-only algorithms (i.e., that do not use preprocessing).

In particular, Shoup [71] introduced the modern generic-group model to
capture algorithms that make black-box use of a group operation. In Shoup’s
model, which draws on earlier treatments of black-box algorithms for groups [6,61],
the discrete-logarithm problem in a group of prime order N requires time Ω(N1/2)
to solve. Shoup’s model captures many popular discrete-log algorithms, including
Shanks’ Baby-Step Giant-Step algorithm [70], Pollard’s Rho and Kangaroo
algorithms [67], and the Pohlig-Hellman algorithm [66]. For computing discrete
logarithms on popular elliptic curves, variants of these algorithms are the best
known [11,39,75,80].

Subsequent works used Shoup’s model to prove lower bounds against generic
algorithms for RSA-type problems [27], knowledge assumptions [30], the multiple-
discrete-log problem [79], assumptions in groups with pairings [15], and for
algorithms with access to additional oracles [57]. A number of works also prove
the security of specific cryptosystems in the generic-group model [20,21,29,36,49,
69,72]. Other work studies computational problems in generic rings, to analyze
generic algorithms for RSA-type problems [4, 55].

Preprocessing Attacks in Generic Groups. The works most relevant to our new
algorithms with preprocessing are Mihalcik’s master’s thesis [59], which surveys
preprocessing attacks on the discrete-logarithm problem, and the paper of Bern-
stein and Lange [13], which demonstrated preprocessing attacks—both generic
and non-generic— on a wide range of symmetric- and public-key primitives. We
design new preprocessing attacks against the multiple-discrete-logarithm problem
and against a large class of distinguishing problems in groups.

Non-generic discrete-log algorithms. In certain groups there are non-generic
discrete-log attacks that dramatically outperform the generic ones. The landscape
of non-generic discrete-log algorithms is vast, so we refer the reader to the 2000
survey of Odlyzko [62] and the 2014 survey of Joux et al. [47] for details. To
give a taste of these results: when computing discrete logarithms in finite fields
Fpn , the running time of the best discrete logarithms depend on the relative
size of p and n. When p � n, a recent algorithm of Barbulescu et al. [8]
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computes discrete logarithms in quasi-polynomial time. When p� n, the best
methods are based on “index calculus” techniques and run in sub-exponential time
eO((log p)1/3(log log p)2/3) [44, 56]. The analysis of these algorithms is heuristic, in
that it relies on some unproved (but reasonable) number-theoretic assumptions.

In certain classes of elliptic-curve groups, there are non-generic algorithms for
the discrete-log problem that outperform the generic algorithms [41]; some such
algorithms run in sub-exponential time [58], or even in polynomial time [73]. In the
standard elliptic-curve groups used for key exchange (e.g., NIST P-256) however,
the generic preprocessing attacks discussed in this paper are still essentially the
best known.

Non-generic discrete-log algorithms also benefit from preprocessing. Copper-
smith demonstrated a sub-exponential-time preprocessing attack on the integer
factorization problem [23] that also yields a non-generic sub-exponential-time
preprocessing attack on the finite-field discrete-log problem [7, 13]. Adrian et
al. [3] show how to use such an attack compute discrete logs modulo a 512-bit
prime in less than a minute of online time.
Organization of This Paper. In Sect. 2, we introduce notation, our model of
computation, and a key lemma. In Sect. 3, we prove a lower bound on generic
algorithms with preprocessing for the discrete-logarithm and CDH problems. In
Sects. 4 and 5, we extend these bounds to the multiple-discrete-logarithm and
DDH problems. In Sect. 6, we investigate the amount of precomputation such
generic preprocessing algorithms require. In Sect. 7, we introduce new generic
preprocessing attacks. In Sect. 8, we conclude with open questions.

2 Background

In this section, we recall the standard model of computation in generic groups,
we introduce our model of generic algorithms with preprocessing, and we recall
an incompressibility lemma that will be essential to our proofs.
Notation. We use ZN to denote the ring of integers modulo N , [N ] indicates
the set {1, . . . , N}, and Z+ indicates the set of positive integers. Throughout this
paper, we take N to be prime, so ZN is also a field. We use the notation x← 5
to indicate the assignment of a value to a variable and, when S is a finite set, the
notation x←R S indicates that x is a sample from the uniform distribution over
S. For a probability distribution D, d ∼ D indicates that d is a random variable
distributed according to D. The statement f(x) =def x2 − x indicates the definition
of a function f . All logarithms are base two, unless otherwise noted.

We use the standard Landau notation O(·), Θ(·), Ω(·), and o(·) to indicate the
asymptotics of a function. For example f(N) = O(g(N)) if there exists a constant
c > 0 such that for all large enough N , |f(N)| ≤ c · g(N). When there are many
variables inside the big-O, as in f(N) = O(N/ST ), all variables other than N are
implicit functions of N . The tilde notation Õ(·) and Ω̃(·) hides polylogarithmic
factors in N . So, we can say for example that S log2N = Õ(S).
Generic Algorithms. Following Shoup [71], we model a generic group using a
random injective function σ that maps the integers in ZN (representing the set of
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discrete logarithms) to a set of labels L (representing the set of group elements).
We then write the elements of an order-N group as {σ(1), σ(2), . . . , σ(N)}, instead
of the usual {g, g2, · · · , gN}. We often say that i ∈ ZN is the “discrete log” of its
label σ(i) ∈ L.

The generic group oracle Oσ(·, ·) for a labeling function σ takes as input two
strings si, sj ∈ L and responds as follows:

– If the arguments to the oracle are in the image of σ, then we can write
si = σ(i) and sj = σ(j). The oracle responds with σ(i + j), where the
addition is modulo the group order N .

– If either of the arguments to the oracle falls outside of the image of σ, the
oracle returns ⊥.

Given such an oracle and a label σ(x), it is possible to compute σ(αx) for any
constant α ∈ ZN using O(logN) oracle queries, by repeated squaring.

Some authors define the group oracle Oσ with a second functionality that
maps labels σ(x) to their inverses σ(−x) in a single query. Our oracle can simulate
this inversion oracle in at most O(logN) queries. To do so: given an element
σ(x), compute the element σ((N − 1)x) = σ(−x). Since providing an inversion
oracle can decrease a generic algorithm’s running time by at most a logarithmic
factor, we omit it for simplicity.

A generic algorithm for ZN on L is a probabilistic algorithm that takes as
input a list of labels (σ(x1), . . . , σ(xL)) and has oracle access to Oσ. We measure
the time complexity of a generic algorithm by counting the number of queries it
makes to the generic group oracle.

Although the generic algorithms we consider may be probabilistic, we require
that for every choice of σ, inputs, and random tapes, every algorithm halts after
a finite number of steps. In this way, for every group order N ∈ Z+, we can
compute an upper bound on the number of random bits the algorithm uses by
iterating over all possible labelings, inputs, and random tapes. For this reason,
we need only consider finite probability spaces in our discussion.

Generic Algorithms with Preprocessing. A generic algorithm with prepro-
cessing is a pair of generic algorithms (A0,A1) for ZN on L such that:

– Algorithm A0 takes the label σ(1) as input, makes some number of queries
to the oracle Oσ (“preprocessing queries”), and outputs an advice string stσ.

– Algorithm A1 takes as input the advice string stσ and a list of labels
(σ(x1), . . . , σ(xL)), makes some number of queries to the oracle Oσ (“on-
line queries”), and produces some output.

We typically measure the complexity of the algorithm (A0,A1) by (a) the size of
the advice string stσ that A0 outputs, and (b) the number of oracle queries that
algorithm A1 makes.

In Sect. 6, we consider generic algorithms with preprocessing for which the
running time of A0 (i.e., the preprocessing time) is also bounded. In all other
sections, we put no running time bound on A0, so without loss of generality, we
may assume in these sections that A0 is deterministic.
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Incompressibility Arguments. We use the following proposition of De et
al. [28], which formalizes the notion that it is impossible to compress every
element in a set X to a string less than log |X | bits long, even relative to a
random string.

Proposition 1 (De, Trevisan, and Tulsiani [28]). Let E : X × {0, 1}ρ →
{0, 1}m and D : {0, 1}m × {0, 1}ρ → X be randomized encoding and decoding
procedures such that, for every x ∈ X , Prr←{0,1}ρ

[
D(E(x, r), r) = x

]
≥ δ. Then

m ≥ log |X | − log 1/δ.

Notice that the encoding and decoding algorithms of Proposition 1 take the
same random string r as input. Additionally, that bound on the string length m
is independent of the number of random bits that these routines take as input.
As a consequence, Proposition 1 holds even when the algorithms E and D have
access to a common random oracle.

3 Lower Bound for Discrete Logarithms

In this section we prove that every generic algorithm that uses S bits of group-
specific precomputed advice and that computes discrete logs in online time T
with probability ε must satisfy ST 2 = Ω̃(εN).

Theorem 2. Let N be a prime. Let (A0,A1) be a pair of generic algorithms
for ZN on L, such that A0 outputs an S-bit state, A1 makes at most T oracle
queries, and

Pr
σ,x,A1

[
AOσ1

(
AOσ0 (σ(1)), σ(x)

)
= x

]
≥ ε,

where the probability is taken over the uniformly random choice of the labeling σ,
the instance x ∈ ZN , and the coins of A1. Then ST 2 = Ω̃(εN).

Remark. The statement of Theorem 2 models the case in which the group
generator σ(1) is fixed, and the online algorithm must compute the discrete-log
of the instance σ(x) with respect to the fixed generator. Using a fixed generator
is essentially without loss of generality, since an algorithm that computes discrete
logarithms with respect to one generator can also be used to compute discrete
logarithms with respect to any generator by increasing its running time by a
factor of two. Because of this, we treat the generator as fixed throughout this
paper.

Remark. Theorem 2 treats only prime-order groups. In the more general case of
composite-order groups a similar result holds, except that the bound is ST 2 =
Ω̃(εp), where p is the largest prime factor of the group order. Since the techniques
needed to arrive at this more general result are essentially the same as in the
proof of Theorem 2, we focus on the prime-order case for simplicity.

We first give the idea behind the proof of Theorem 2 and then present a
detailed proof.
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Proof Idea for Theorem 2. Our proof uses an incompressibility argument. The
basic idea is to compress the random labeling function σ using a discrete-log
algorithm with preprocessing (A0,A1). To do so, we write A0’s S-bit advice about
σ into the compressed string. We then run A1 on many discrete-log instances
σ(x) and we write the T responses to A1’s queries into the compressed string. For
each execution of A1, we only need to write T values of σ into the compressed
string, but we get T + 1 values of σ back, since the output of A1(σ(x)) gives
us the value of x “for free.” If S and T are simultaneously small, then we can
compress σ using this method, which yields a contradiction.

However, this naïve technique might never yield any compression at all. The
problem is that the T responses to A1’s queries might contain “collision events,”
in which the response to one of A1’s queries is equal to a previously seen query
response. For example, say that A1 makes a query of the form Oσ(σ(x), σ(3))
and the oracle’s response is a string σ(7) that also appeared in response to a
previous query. In this case, just seeing the queries of A1 and their responses is
enough to conclude that x+ 3 = 7 mod N , which immediately yields the discrete
log x = 4. This is problematic because even if A1 eventually halts and outputs
x = 4, we have not received any “profit” from A1 since the T query responses
themselves already contain all of the information we need to conclude that x = 4.

To profit in spite of these collisions, our compression scheme halts the execution
of A1 as soon as it finds such a collision, since every collision event yields the
discrete log being sought. The profit comes from the fact that, as long as the list
of previous query responses is not too long, encoding a pointer to the collision-
causing response requires many fewer bits than encoding an arbitrary element in
the range of σ.

Our lower bound needs to handle randomized algorithms A = (A0,A1)
that succeed with arbitrarily small probability ε. Yet to use A to compress σ,
the algorithm A1 must succeed with very high probability. That is because the
compression routine may invoke A1 as many as N times, and each execution must
succeed for the compression scheme to succeed. The random self-reducibility of the
discrete-log problem allows us to convert an average-case algorithm that succeeds
on an ε fraction of instances (for a given labeling σ) to a worst-case algorithm
that succeeds with probability ε on every instance (for a given labeling σ).

We still need to handle the fact that ε may be quite small. The straightforward
way to amplify the success probability of A1 would be to construct an algorithm
A′1 that runs R independent executions of A1 and that succeeds with probability
at least 1−εR. We could then use the amplified algorithm (A0,A′1) to compress σ.

The problem in our setting is that this simple amplification strategy yields
a loose lower bound: if we run A1 for R iterations, and each iteration makes T
queries, our compression scheme ends up “paying” for RT queries instead of T
queries for each bit of “profit” it gets (i.e., for each output of A′1). Carrying this
argument through yields an ST 2 = Ω̃(ε2N) bound, which is worse than our goal
of Ω̃(εN).

Our idea is to leverage the correlated randomness between the compressor and
decompressor to our advantage. In our compression scheme, the compressor runs
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A1 using R sets of independent random coins, sampled from the random string
shared with the decompressor. The compressor then writes into the compressed
representation a logR-bit pointer to a set of random coins (if one exists) that
caused A1 to succeed. Using this strategy, instead of paying for RT queries per
execution of A1, the compression scheme only pays for T queries, plus a small
pointer. We can then choose R large enough to ensure that at least one of the R
executions succeeds with extremely high probability.

We now turn to the proof.
We say that a discrete-log algorithm succeeds in the worst case if it succeeds

on every problem instance σ(x) for x ∈ ZN . We say that a discrete-log algorithm
succeeds in the average case if it succeeds on a random problem instance σ(x)
for x←R ZN .

We first use the random self-reducibility of the discrete-log problem to show
that an average-case discrete-log algorithm implies a worst-case discrete-log
algorithm. A lower bound on worst-case algorithms is therefore enough to prove
Theorem 2. This is formalized in the next lemma.

Lemma 3 (Adapted from Abadi, Feigenbaum, and Kilian [1]). Let N
be a prime. Let (A0,A1) be a pair of generic algorithms for ZN on L such that
A0 outputs an S-bit advice string and A1 makes at most T oracle queries. Then,
there exists a generic algorithm A′1 that makes at most T + O(logN) oracle
queries and, for every σ : ZN → L, if Prx,A1

[
AOσ1 (AOσ0 (σ(1)), σ(x)) = x

]
≥ ε,

then for every x ∈ ZN , PrA′
1

[
A′Oσ1 (AOσ0 (σ(1)), σ(x)) = x

]
≥ ε.

Proof. On input (stσ, σ(x)), algorithm A′1 executes the following steps: First,
it samples a random r ←R ZN and computes σ(x + r), using O(logN) group
operations. Then, it runs A1(stσ, σ(x+ r)). Finally, when A1 outputs a discrete
log x′, algorithm A′1 outputs x = x′ − r mod N .

Notice that A′1 invokes A1 on σ(x + r), which is the image of a uniformly
random point in ZN . Since A1 succeeds with probability at least ε over the
random choice of x ←R ZN and its coins, A′1 succeeds with probability ε, only
over the choice of its coins.

To prove Theorem 2, we will use the generic algorithms (A0,A1) to construct
a randomized encoding scheme that compresses a good fraction of the labeling
functions σ. The following lemma gives us such a scheme.
Lemma 4. Let N be a prime. Let G = {σ1, σ2, . . . } be a subset of the labeling
functions from ZN to L. Let (A0,A1) be a pair of generic algorithms for ZN
on L such that for every σ ∈ G and every x ∈ ZN , A0 outputs an S-bit advice
string, A1 makes at most T oracle queries, and (A0,A1) satisfy

Pr
A1

[
AOσ1

(
AOσ0 (σ(1)), σ(x)

)
= x

]
≥ ε .

Then, there exists a randomized encoding scheme that compresses elements of G
to bitstrings of length at most

log
|L|!

(|L| −N)!
+ S + 1− εN

6T (T + 1)(logN + 1)
,
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and succeeds with probability at least 1/2.

We prove Lemma 4 in Sect. 3.1. Given the above two lemmas, we can prove
Theorem 2.

Proof of Theorem 2. We say that a labeling σ is “good” if (A0,A1) computes
discrete logs with probability at least ε/2 on σ. More precisely, a labeling σ is
“good” if:

Pr
x,A1

[
AOσ1

(
AOσ0 (σ(1)), σ(x)

)
= x

]
≥ ε/2 ,

where the probability is taken over the choice of x ∈ ZN as well as over the
random tape of A1. Let G be the set of good labelings. A standard averaging
argument [5, Lemma A.12] guarantees that an ε/2 fraction of injective mappings
from ZN to L are good. Then |G| ≥ ε/2 · |L|!/(|L| −N)!, where we’ve used the
fact that the number of injective functions from ZN to L is |L|!/(|L| −N)!.

Lemma 3 then implies that there exists a pair of generic algorithms (A0,A′1)
such that for every σ ∈ G and every x ∈ ZN , A′Oσ1 (AOσ0 (σ(1)), σ(x)) makes at
most T ′ = T + O(logN) queries, and outputs x with probability at least ε/2.
Lemma 4 then implies that we can use (A0,A′1) to compress any labeling σ ∈ G
to a string of bitlength at most

log
|L|!

(|L| −N)!
+ S + 1− (ε/2)N

6T ′(T ′ + 1)(logN + 1)
, (1)

where the encoding scheme works with probability at least 1/2. By Proposition 1,
this length must be at least log |G| − log 2. Thus, it must hold that

log
|L|

(|L| −N)!
+ S + 1− εN

12T ′(T ′ + 1)(logN + 1)
≥ log

|L|!
(|L| −N)!

− log
4

ε
.

Rearranging, we obtain

S ≥ εN

O(T 2) · polylog(N)
− log

8

ε
.

We may assume without loss of generality that ε ≥ 1/N , since an algorithm that
just guesses the discrete log achieves this advantage. Therefore, log 8

ε = O(logN),
and we get

(S +O(logN))T 2 = Ω̃(εN) ,

which implies that ST 2 = Ω̃(εN).

3.1 Proof of Lemma 4

Recall that a randomized encoding scheme consists of an encoding and a decoding
routine, such that both routines take the same string r of random bits as input.
The encoding scheme we construct for the purposes of Lemma 4 operates on
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labelings σ. That is, the encoding routine takes a labeling σ ∈ G and the random
bits r, and constructs a compressed representation of σ. Correspondingly, the
decoding routine takes this compressed representation and the same random bits
r, and reconstructs σ.

While the encoding routine runs, it builds up a table of pairs (f, σ(i)) ∈
(ZN [X] × L). The decoder constructs a similar table during its execution. At
any point during the encoding process, the table contains a representation of the
information about σ that the encoder has communicated to the decoder up to
the current point in the encoding process. The indeterminate X that appears
in this table represents a discrete log value x ∈ ZN , which the decoder does
not know. Once the decoder has enough information to determine x, each of
the routines replaces every non-constant polynomial f(X) in the table with its
evaluation f(x) at the point x. Subsequently, both routines can introduce a new
variable X into the table, which represents a different unknown discrete logarithm
in ZN . Therefore, at any point during the execution, there is at most a single
indeterminate X in the table. Finally, when each of the routines completes, the
table contains only constant polynomials, and the table fully determines σ.

We stress that the table is not part of the compressed representation of σ,
but is part of the internal state of both routines.

Simulating A1’s Random Tape. Since the algorithm A1 is randomized, each
time the encoder (or decoder) runs the algorithm A1, it must provide A1 with
a fresh random tape. Both routines take as input a common random bitstring,
and the encoder can reserve a substring of it to feed to each invocation of A1

as that algorithm’s random tape. Since A1 always terminates, the encoder can
determine an upper bound on the number of random bits that A1 will need for a
given group size N and can partition the common random string accordingly.

The decoder follows the same process, and the fact that the encoder and
decoder take the same random string r as input ensures thatA1 behaves identically
during the encoding and decoding processes.

Encoding Routine. The encoding routine, on input σ, uses two parameters
d,R ∈ Z+, which we will set later, and proceeds as follows:

1. Compute stσ ← A0(σ(1)). The encoder can respond to all of the algorithm’s
oracle queries since the encoder knows all of σ. Write the S-bit output stσ
into the encoding.

2. Encode the image of σ as a subset of L using log
(|L|
N

)
bits, and append it to

the encoding.
3. Initialize the table of pairs to an empty list.
4. Repeat d times:

(a) Choose the first string in the lexicographical order of the image of σ that
does not yet appear in the table. Call this string σ(x) and add the pair
(X,σ(x)) to the table.

(b) Run A1(stσ, σ(x)) up to R times using independent randomness from
the encoder’s random string in each run. The encoder answers all of A1’s
oracle queries using its knowledge of σ. If A1 fails on all R executions,
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abort the entire encoding routine. Otherwise, write into the encoding the
index r∗ ∈ [R] of the successful execution (using logR bits).

(c) Write a placeholder of log T zeros into the encoding. (The routine over-
writes these zeros with a meaningful value once this execution of A1

terminates.)
(d) Rerun A1(stσ, σ(x)) using the r∗-th random tape. While A1 is running,

it makes a number of queries and then outputs its guess of the discrete
log x. The encoding routine processes each of A1’s queries (σ(i), σ(j)) as
follows:
i. If either of the query arguments is outside of the range of σ, reply ⊥

and continue to the next query.
ii. If either (or both) of the arguments is missing from the table, then

this is an “unexpected” query input. Add each such input, together
with its discrete log, to the table, and append the discrete-log value i
to the encoding, using log(N − |Table|) bits.

iii. Otherwise, look up the linear polynomials fi, fj representing σ(i), σ(j)
in the table, and compute the linear polynomial fi + fj representing
the response σ(i+ j). We then distinguish between three cases:
A. If (fi + fj , σ(i + j)) is already in the table, simply reply with

σ(i+ j).
B. If σ(i+ j) does not appear in the table, then add σ(i+ j) to the

encoding, using log(N − |Table|) bits, and reply with σ(i+ j).
C. If σ(i+ j) appears in the table but its discrete log in the table is

a polynomial fk such that fk 6= fi + fj , encode the reply to this
query as a (log |Table|)-bit pointer to the table entry (fk, σ(i+ j))
and add this pointer the encoding. Stop this execution of A1, and
indicate this “early stop” by writing the actual number of queries
t ≤ T into its placeholder above.

(e) When the execution A1(stσ, σ(x)) outputs x, evaluate all of the polyno-
mials in the table at the point x.

5. Append the remaining values that do not yet appear in the table to the
encoding in lexicographic order.

Decoding Routine. The decoder proceeds analogously to the encoder. A key
property of our randomized encoding scheme is that each position in the encoded
string corresponds to the same state of the table in both the encoding and the
decoding routines. In other words, when the decoding routine reads a certain
position in the encoded string, its internal table is identical to the internal table
the encoding routine had when it wrote to that position in the encoded string. The
table allows the decoder to correctly classify each query to the correct category.

Note that in the case of a collision query (case C above), the decoder can use
the collision to recover the value x of the indeterminate X. Specifically, for a
query (u, v) where u, v ∈ L, the decoder reads the reply w ∈ L from the encoding
string, looks up the polynomials fu, fv, and fw in the table, and solves for X the
equation fw = fu + fv mod N . This equation always has a unique solution, since
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N is a prime and fu, fv and fw are linear polynomials in X such that fu + fv is
not identical to fw.

The full description of the decoder appears in the full version of this paper [25].
Encoding Length. The encoding contains:
– the advice to the algorithm about the labeling σ (S bits),
– the encoding of the image of σ (log

(|L|
N

)
bits),

– for each of the d invocations of A1, the index r∗ of the random tape on which
it succeeded (d · logR bits in total),

– for the i-th entry added to the table (0 ≤ i < N), if the entry was added

• as the result of resolving a collision within the table, log i bits,
• from the output of A1, 0 bits,
• otherwise, log(N − i) bits,

– a counter indicating the number of queries for which to run each execution
(d · log T bits in total).

Observe that each of the d executions of A1 saves log(N − |Table|) bits compared
to the straightforward encoding (either due to A1 successfully computing the
discrete log of its input, or finding a collision), but incurs an additional cost
of at most logR + log T + log |Table| bits. Since each execution of A1 adds at
most 3T + 1 rows to the table (T replies plus 2T unexpected inputs and either
one collision or one output of A1) we have that |Table| ≤ d · (3T + 1). Setting
d = bN/((2RT + 1)(3T + 1))c guarantees that each of the d executions results
in a net profit of

log
N − |Table|
RT |Table|

≥ log
N − d(3T + 1)

RdT (3T + 1)
≥ log

1− 1
2RT+1
RT

2RT+1

= log 2 = 1

bit. In this case, the total bitlength of the encoding is at most

S + log

(
|L|
N

)
+

N−1∑
i=0

log(N − i)− d = log
|L|!

(|L| −N)!
+ S − d

≤ log
|L|!

(|L| −N)!
+ S − N

(2RT + 1)(3T + 1)
+ 1

≤ log
|L|!

(|L| −N)!
+ S − N

6RT (T + 1)
+ 1 .

We need to choose R large enough to ensure that the encoding routine
fails with probability at most 1/2. If we choose R = (1 + logN)/ε, then the
probability that R invocations of A1 all fail is, by a union bound, at most
(1− ε)R ≤ e−εR ≤ 2−εR ≤ 2−1−logN ≤ 1/(2N). The encoding scheme invokes A1

on at most N different inputs, so by a union bound, the probability that any
invocation fails is at most 1/2. Overall, the encoding length is at most:

log
|L|!

(|L| −N)!
+ S + 1− εN

6T (T + 1)(logN + 1)
bits,

which completes the proof of Lemma 4.
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3.2 Discrete Logarithms in Short Intervals

When working in groups of large order N , it is common to rely on the hardness
of the short-exponent discrete-log problem, rather than the standard discrete-log
problem [43, 52, 64, 65]. In the usual discrete-log problem, a problem instance
is a pair of the form (g, gx) ∈ G2 for x ←R ZN . The short-exponent problem
is identical, except that x is sampled at random from {1, . . . ,W} ⊂ ZN , for
some interval width parameter W < N . Using short exponents speeds up the
Diffie-Hellman key-agreement protocol when it is feasible to set the interval
width W to be much smaller than the group order N [64]. A variant of Pollard’s
“Lambda Method” [40,67] solves the short-exponent discrete-log problem in every
group in time O(W 1/2), so W cannot be too small.

The following corollary of Theorem 2 shows that the short-exponent problem
is no easier for generic algorithms with preprocessing than computing a discrete-
logarithm in an order-W group.

Corollary 5 (Informal). Let A be a generic algorithm with preprocessing that
solves the short-exponent discrete-log problem in an interval of width W . If A
uses S bits of group-specific advice, runs in online time T , and succeeds with
probability ε, then ST 2 = Ω̃(εW ).

Proof. We claim that the algorithm A of the corollary solves the standard discrete-
log problem with probability ε′ = ε · (W/N). The reason is that a standard
discrete-log instance gx for x ←R ZN has a short exponent (i.e., x ∈ [W ]) with
probability W/N . Algorithm A solves these short instances with probability ε.
By Theorem 2, ST 2 = Ω̃(ε′N) = Ω̃(εW ).

As an application: decryption in the Boneh-Goh-Nissim cryptosystem [18]
requires solving a short-exponent discrete-log problem in an interval of width W ,
for a polynomially large width W . The designers of that system suggest using a
size-W table of precomputed discrete logs (i.e., S = Õ(W )) to enable decryption
in constant time. Corollary 5 shows that the best generic decryption algorithm
that uses a size-S table requires roughly

√
W/S time.

3.3 The Computational Diffie-Hellman Problem

A generic algorithm for the computational Diffie-Hellman problem takes as input
a triple of labels (σ(1), σ(x), σ(y)) and must output the label σ(xy). The following
theorem demonstrates that in generic groups—even allowing for preprocessing—
the computational Diffie-Hellman problem is as hard as computing discrete
logarithms.

Theorem 6 (Informal). Let A = (A0,A1) be a generic algorithm with pre-
processing for the computational Diffie-Hellman problem in a group of prime
order N . If A uses S bits of group-specific advice, runs in online time T , and
succeeds with probability ε, then ST 2 = Ω̃(εN).
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We present only the proof idea, since the structure of the proof is very similar
to that of Theorem 2.

Proof Idea. The primary difference from the proof of Theorem 2, is that, we run
A1 on pairs of labels (σ(x), σ(y)), and a successful run of A1 produces the CDH
value σ(xy). Since we run A1 on two labels at once, the encoder’s table now has
two formal variables: X and Y .

In this case, whenever the encoder encounters a collision, it gets a single
linear relation on X and Y modulo the group order N . Since there are at most
N solutions (x0, y0) to a linear relation in X and Y over ZN , the encoder can
describe the solution to the decoder using log(N −|Table|) bits. The encoder gets
some profit, in terms of encoding length, since it will get two discrete logs for the
cost of one discrete log and one pointer into the table (of length log |Table| bits).

The rest of the proof is as in Theorem 2.

3.4 Lower Bounds for Families of Groups

The lower bound of Theorem 2 suggests that one way to mitigate the risk of
generic preprocessing attacks is to increase the group size. Doubling the size of
group elements from logN to 2 logN recovers the same level of security as if
the attacker could not do any preprocessing. The downside of this mitigation
strategy is that increasing the group size also increases the cost of each group
operation and requires using larger cryptographic keys (e.g., when using the
group for Diffie-Hellman key exchange [31]).

One might ask whether it would be possible to defend against preprocessing
attacks without having to pay the price of using longer keys. One now-standard
method to defend against preprocessing attacks when using a common crypto-
graphic hash function H is to use “salts” [60]. When using salts, each user u of
the hash function H chooses a random salt value su from a large space of possible
salts. User u then uses the salted function Hu(x) =def H(su, x) as her hash function,
and the salt value u can be made public. Chung et al. [22] showed that this
approach can result in obtaining collision-resistant hashing against preprocessing
attacks, and Dodis et al. [32] demonstrated the effectiveness of this approach for
a variety of cryptographic primitives.

The analogue to salting in generic groups would be to have a large family of
groups (e.g., of elliptic-curve groups) {Gk}Kk=1 indexed by a key k. Rather than
having all users share a single group—as is the case today with NIST P-256—
different users and systems could use different groups Gk sampled from this large
family. In particular, pairs of users executing the Diffie-Hellman key-exchange
protocol could first jointly sample a group Gk from this large family and then
perform their key exchange in Gk.

We show that using group families in this way effectively defends against
generic preprocessing attacks, as long as the family contains a large enough
number of groups.

To model group families, we replace the labeling function σ : ZN → L with
a keyed family of labeling functions σkey : [K] × ZN → L. The keyed generic-
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group oracle Oσkey(·, ·, ·) then takes a key k and two labels σ1, σ2 ∈ L and
returns σkey(k, x + y) if there exist x, y ∈ ZN such that σkey(k, x) = σ1 and
σkey(k, y) = σ2. The oracle returns ⊥ otherwise. In addition, when fed the pair
(k, ?), for a key k ∈ [K] and a special symbol ?, the oracle returns the identity
element in the kth group: σ(k, 1).

The following theorem demonstrates that using a large keyed family of groups
effectively defends against generic preprocessing attacks:

Theorem 7. Let N be a prime. Let (A0,A1) be a pair of generic algorithms for
[K]× ZN on L, such that A0 outputs an S-bit state, A1 makes at most T oracle
queries, and

Pr
σ,k,x,A1

[
A
Oσkey
1

(
A
Oσkey
0 (), k, σ(k, x)

)
= x

]
≥ ε ,

where the probability is taken over the uniformly random choice of the labeling σkey,
the key k ∈ [K], the instance x ∈ ZN , and the coins of A1. Then ST 2 = Ω̃(εKN).

The proof of Theorem 7 appears in the full version of this paper [25]. The
structure of the proof follows that of Theorem 2, except that we need some extra
care to handle the fact that an adversary may query the oracle at many different
values of k in a single execution.

4 Lower Bound for Computing Many Discrete
Logarithms

A natural extension of the standard discrete-log problem is the multiple-discrete-
log problem [37, 48, 54, 78, 79], in which the adversary’s task is to solve M
discrete-log problems at once. This problem arises in the setting of multiple-
instance security of discrete-log-based cryptosystems. If an adversary has a list
of M public keys (gx1 , . . . , gxM ) in some group G = 〈g〉 of prime order N , we
would like to understand the cost to the adversary of recovering all M secret
keys x1, . . . , xM ∈ ZN .

Solving the multiple-discrete-log problem cannot be harder than solving M
instances of the standard discrete-log problem independently using Õ(M

√
N)

time overall. One can however do better: generic algorithms due to Kuhn and
Struik [54] and Fouque, Joux, and Mavromati [37] solve it in time Õ(

√
MN).

These algorithms achieve a speed-up over solving M discrete-log instances in
sequence by reusing some of the work between instances. Yun [79] showed that in
the generic-group model, these algorithms are optimal up to logarithmic factors
by proving an Ω(

√
NM)-time lower bound for online-only algorithms, subject to

the natural restriction that M = o(N).
Our methods give the more general ST 2 = Ω̃(ε1/MNM) generic lower bound

for the M -instance multiple-discrete-log problem with preprocessing. For the
special case of algorithms without preprocessing, our bound gives T = Ω̃(

√
NM),

which matches the above upper and lower bounds. An additional benefit of our
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analysis it that it handles arbitrarily small success probabilities ε, whereas Yun’s
bound applies only to the ε = Ω(1) case.

Let x̄ = (x1, . . . , xM ) ∈ ZMN and, for a labeling σ : ZN → L, define the vector
σ(x̄) = (σ(x1), . . . , σ(xM )) ∈ LM . We restrict ourselves to the case of M ≤ T , as
otherwise the algorithm cannot even afford to perform a group operation on each
of its inputs.

Theorem 8. Let N be a prime. Let (A0,A1) be a pair of generic algorithms for
ZN on L such that A0 outputs an S-bit advice string, A1 makes at most T oracle
queries,

Pr
σ,x̄,A1

[
AOσ1

(
AOσ0 (σ(1)), σ(x̄)

)
= x̄

]
≥ ε,

where the probability is taken over the random choice of the labeling σ, a random
input vector x̄ ∈ ZMN (for M ≤ T ), and the coins of A1. Then

ST 2/M + T 2 = Ω̃(ε1/MNM).

We prove this theorem in the full version of this paper [25].
The proof follows the proof of Theorem 2, except the encoder now runs A1

on M labels at a time. The encoder and decoder keep a table in M formal
variables (X1, . . . , XM ), representing the M discrete logs being sought. With
every “collision event,” we show that the number of formal variables in the table
can decrease by one until either (a) A1 outputs the M discrete logs, or (b) the
table has no more formal variables and the encoder halts A1.

5 The Decisional Diffie-Hellman Problem

The decisional Diffie-Hellman problem [14] (DDH) is to distinguish tuples of the
form (g, gx, gy, gxy) from tuples of the form (g, gx, gy, gz), for random x, y, z ∈ ZN .
In this section, we show that every generic distinguisher with preprocessing for
the decisional Diffie-Hellman problem that achieves advantage ε must satisfy
ST 2 = Ω̃(ε2N). More formally:

Theorem 9. Let N be a prime. Let (A0,A1) be a pair of generic algorithms
for ZN on L, such that A0 outputs an S-bit state, A1 makes at most T oracle
queries, and ∣∣∣Pr

[
AOσ1

(
AOσ0 (σ(1)), σ(x), σ(y), σ(xy)

)
= 1
]

−Pr
[
AOσ1

(
AOσ0 (σ(1)), σ(x), σ(y), σ(z)

)
= 1
]∣∣∣ ≥ ε ,

where the probabilities are over the choice of the label σ, the values x, y, z ∈ ZN ,
and the randomness of A1. Then ST 2 = Ω̃(ε2N).

The proof of Theorem 9 appears in the full version of this paper [25].
While the proof uses an incompressibility argument, extending the technique of

Theorem 2 to give lower bounds for decisional-type problems requires overcoming
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additional technical challenges. Consider a DDH distinguisher with preprocessing
(A0,A1) that achieves advantage ε. The difficulty with using such an algorithm
to build a scheme for compressing σ is that each execution of A1 only produces
a single bit of output. When ε < 1, each execution of A1 produces even less— a
fraction of a bit of useful information.

To explain why getting only a single bit of output from A1 is challenging: the
encoder of Theorem 2 derandomized A1 by writing a pointer r∗ ∈ [R] to a “good”
set of random coins for A1 into the encoding, thus turning a faulty randomized
algorithm into a correct deterministic algorithm at the cost of slightly increasing
the encoding length. This derandomization technique does not apply immediately
here, since the logR-bit value required to point to the “good” set of random coins
eliminates any profit in encoding length that we would have gained from the
fraction of a bit that A1 produces as output.

A straightforward amplification strategy—building an algorithm A′1 that calls
A1 many times and takes the majority output—would circumvent this problem,
but would yield an ST 2 = Ω̃(ε4N) lower bound that is loose in ε.

To achieve a tighter ST 2 = Ω̃(ε2N) bound, our strategy is to use A1 to
construct an algorithm A×B1 that executes A1 on a batch of B independent DDH
problem instances (one at a time), for some batch size parameter B ∈ Z+. The
algorithm A×B1 now produces B bits of output and succeeds with probability
εB. If we now choose R such that logR < B, we can now apply our prior
derandomization technique, since each execution of A×B1 will yield some profit in
our compression scheme.

Handling collisions in this case involves additional technicalities, since there
might (or might not) be a collision in each of the B sub-executions of A×B1 and
we need to be able to identify which execution encountered a collision without
squandering the small profit that A×B1 yields.

Putting everything together, we achieve an ST 2 = Ω̃(ε2N) lower bound for
the DDH problem.

6 Lower Bounds with Limited Preprocessing

Up to this point, we have measured the cost of a discrete-log algorithm with
preprocessing by (a) number of bits of preprocessed advice it requires and (b) its
online running time. In this section, we explore the preprocessing cost—the time
required to compute the advice string— and we prove tight lower bounds on the
preprocessing cost of generic discrete-log algorithms.

Let (A0,A1) be a generic discrete-log algorithm with preprocessing, as defined
in Sect. 2. For this section, we allow A0 to be randomized. We say that (A0,A1)
uses P preprocessing queries and T online queries if A0 makes P oracle queries
and A1 makes T oracle queries. In this section, we do not put any restriction on
the size of the state that A0 outputs—we are only interested in understanding
the relationship between the preprocessing time P and the online time T .

Remark. When P = Θ(N), there is a trivial discrete-log algorithm with pre-
processing (A0,A1) that uses T = 0 online queries and succeeds with constant
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probability. In the preprocessing step, A0 computes a table of Θ(N) distinct pairs
of the form (i, σ(i)) ∈ ZN × L. On receiving a discrete-log instance σ(x), the
online algorithm A1 looks to see if σ(x) is already stored in its precomputed table
and outputs the discrete log x if so. This algorithm succeeds with probability
ε = P/N = Ω(1).

Remark. When P = o(
√
N), we can rule out algorithms that run in online time

T = o(
√
N) and succeed with constant probability. To do so, we observe that

every generic discrete-log algorithm that uses P preprocessing queries and T
online queries can be converted into an algorithm that uses no preprocessing
queries and T ′ = (P + T ) online queries, such that both algorithms achieve the
same success probability.

Shoup’s lower bound [71] states that every generic discrete-log algorithm
without preprocessing that runs in time T ′ succeeds with probability at most
ε = O(T ′2/N). This implies that any algorithm with preprocessing P and online
time T succeeds with probability at most ε = O((T + P )2/N).

Put another way: Shoup’s result implies a lower bound of (T + P )2 = Ω(εN).
So any algorithm that makes only P = o(

√
N) preprocessing queries must use T =

Ω(
√
N) online queries to succeed with constant probability. Thus, an algorithm

that uses o(
√
N) preprocessing queries cannot asymptotically outperform an

online algorithm.

Given these two remarks, the remaining parameter regime of interest is when√
N < P < N . We prove:

Theorem 10. Let (A0,A1) be a generic discrete-log algorithm with preprocessing
for ZN on L that makes at most P preprocessing queries and T online queries.
If x ∈ ZN and a labeling function σ are chosen at random, then A succeeds with
probability ε = O((PT + T 2)/N).

As a corollary, we find that every algorithm that succeeds with probability ε
must satisfy PT+T 2 = Ω(εN). For example, an algorithm that uses P = O(N2/3)
preprocessing queries must use online time at least T = Ω(N1/3) to succeed with
constant probability.

The full proof appears in the full version of this paper [25], and we sketch the
proof idea here.

Proof Idea for Theorem 10. We prove the theorem using a pair of probabilistic
experiments, following the general strategy of Shoup’s now-classic proof tech-
nique [71].

In both experiments, the adversary interacts with a challenger, who plays the
role of the generic group oracle Oσ. The challenger defines the labeling function
σ(·) lazily in response to the adversary’s queries. Both experiments follow similar
steps:

1. The challenger sends a label s1 ∈ L, representing σ(1), to the adversary.
2. The adversary makes P preprocessing group-oracle queries to the challenger.
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G

h = gx

Fig. 1. The discrete-log algorithm with preprocessing of Sect. 7.1 uses a random
function F to define a walk on the elements of G. The preprocessed advice consists
of the discrete logs of S points that lie at the end of length-Θ(T ) disjoint paths on
the walk. In the online phase, the algorithm walks from the input point until hitting a
stored endpoint, which occurs with good probability.

3. The challenger sends the discrete-log instance sx ∈ L, representing σ(x), to
the adversary.

4. The adversary makes T online queries and outputs a guess x′ of x.

The difference between the two experiments is in how the challenger defines the
discrete log of the instance sx ∈ L.

In Experiment 0, the challenger chooses the discrete log x ∈ ZN of sx before
the adversary makes any online queries. The challenger in Experiment 0 is thus
a faithful (or honest) oracle.

In Experiment 1, the challenger chooses the discrete log x of σx after the
adversary has made all of its online queries. In this latter case, the challenger is
essentially “cheating” the adversary, since all of the challenger’s query responses
are independent of x and the adversary cannot recover x with probability better
than random guessing. To complete the argument, we show that unless the
adversary makes many queries, it can only rarely distinguish between the two
experiments.

A detailed description of the experiments and their analysis appears in the
full version of this paper [25].

The Lower Bound is Tight. From Theorem 2, we know that a discrete-log
algorithm that succeeds with constant probability must use advice S and online
time T such that ST 2 = Ω̃(N). From Theorem 10, we know that any such
algorithm must also use preprocessing P such that PT + T 2 = Ω(N). The best
tradeoff we could hope for, ignoring the constants and logarithmic factors, is
PT +T 2 = ST 2, or P = ST . Indeed, the known upper bound with preprocessing
(see Sect. 7.1) matches this lower bound, disregarding low-order terms.

7 Preprocessing Attacks on Discrete-Log Problems

In this section, we recall the known generic discrete-log algorithm with prepro-
cessing and we introduce two new generic attacks with preprocessing. Specifically,
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we show an attack on the multiple-discrete-log problem that matches the lower
bound of Theorem 8, and we show an attack on certain decisional problems in
groups that matches the lower bound of Theorem 9.

These attacks are all generic, so they apply to every group, including popular
elliptic-curve groups. Our preprocessing attacks are not polynomial-time attacks—
indeed our lower bounds rule out such attacks—but they yield better-than-known
exponential-time attacks on these problems.

The analysis of the algorithms in these sections rely on the attacker having
access to a random function (i.e., a random oracle [10]), which the attacker
could instantiate with a standard cryptographic hash function, such as SHA-256.
Removing the attacks’ reliance on a truly random function remains a useful task
for future work.

7.1 The Existing Discrete-Log Algorithm with Preprocessing

For the reader’s reference, we describe a variation of the discrete-log algorithm
with preprocessing, introduced by Mihalcik [59] and Bernstein and Lange [13],
with a slightly more detailed analysis. This discrete-log algorithm shows that the
lower bound of Theorem 2 is tight. Our algorithms for the multiple-discrete-log
problem (Sect. 7.2) and for distinguishing pseudo-random generators (Sect. 7.3)
use ideas from this algorithm.

The algorithm computes discrete logs in a group G of prime order N with
generator g. The algorithm takes as input parameters S, T ∈ Z+ such that
ST 2 ≤ N . The algorithm uses Õ(S) bits of precomputed advice about the group
G, uses Õ(T ) group operations in the online phase, and succeeds with probability
ε = Ω(ST 2/N).

Let F : G→ ZN be a random function, which we can instantiate in practice
using a standard hash function. We use the function F to define a walk on the
elements of G. Given a point h ∈ G, the walk computes α← F (h) and moves to
the point gαh ∈ G.

Given these preliminaries, the algorithm works as follows:
– Preprocessing phase. Repeat S times: pick r ←R ZN and, starting at gr ∈ G,

take the walk defined by F for T/2 steps. Store the endpoint of the walk gr′

and its discrete log r′ in a table: (r′, gr′).
At the end of the preprocessing phase, the algorithm stores this table of S
group elements along with their discrete logs, using O(S logN) bits.

– Online phase. Given a discrete-log instance h = gx, the algorithm takes T
steps along the random walk defined by F , starting from the point h (see
Fig. 1). If the walk hits one of the S points stored in the precomputed table,
this collision yields a linear relation on x in the exponent: gr′ = gx+α1+···+αk ∈
G. Solving this linear relation for x ∈ ZN reveals the desired discrete log.
The algorithm uses Õ(S) bits of group-specific advice and runs in online time

Õ(T ). The remaining task is to analyze its success probability.
We first claim that, with good probability, the S walks in the preprocessing

phase touch at least ST/4 distinct points. To this end, observe that for every
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walk in the preprocessing phase, the probability that it touches T/2 new points
is at least (1− ST/(2N))T/2 ≥ 1− ST 2/(4N), by Bernoulli’s inequality. Since
ST 2 ≤ N , we have that 1− ST 2/(4N) ≥ 1−1/4 = 3/4. Therefore, in expectation,
each walk touches at least 3T/8 new points and by linearity of expectation, the
overall expected number of touched points is at least 3ST/8. The number of
touched points is at most ST/2 and is at least 3ST/8, in expectation. We can
apply Markov’s inequality to an auxiliary random variable to conclude that the
number of touched points is greater than ST/4 with probability at least 1/2.

Next, observe that if at any of its first T/2 steps, the online walk hits any of
the points touched by one of the preprocessed walks, in the remaining T/2 steps
it will hit the stored endpoint of that preprocessed walk. It will then successfully
compute the discrete log. Moreover, as long as the online walk does not hit any of
these points, its steps are independent random points in G. If the number points
touched during preprocessing is at least ST/4, then the online walk succeeds with
probability at least 1−(1−(ST/(4N))T/2 ≥ 1−exp(−ST 2/(8N)) ≥ ST 2/(16N).
Overall, the probability of success ε is at least 1/2 · ST 2/(16N) = Ω(ST 2/N).

7.2 Multiple Discrete Logarithms with Preprocessing

We now demonstrate that a similar technique allows solving the multiple-discrete-
log problem more quickly using preprocessing. The algorithm is a modification
to the attack of Fouque et al. [37] to allow for precomputation, in the spirit of
the algorithm of Sect. 7.1.

This upper bound matches the lower bound of Theorem 8 for a constant ε, up
to logarithmic factors, which shows that the lower bound is tight for constant ε. To
recall, an instance of the multiple-discrete-log problem is a vector (gx1 , . . . , gxM )
for random xi ∈ ZN . The solution is the vector (x1, . . . , xM ). Then we have the
following theorem:

Theorem 11. There exists a generic algorithm with preprocessing for the M-
instance multiple-discrete-log problem in a group of prime order N that makes
use of a random function, uses Õ(S) bits of group-specific advice, runs in time
Õ(T ), succeeds with constant probability, and satisfies ST 2/M + T 2 = O(MN).

We prove the theorem in the full version of this paper [25].

7.3 Distinguishers with Preprocessing

In this section, we give a new distinguishing algorithm for certain decisional
problems in groups.

For concreteness, we first demonstrate how to use preprocessing to attack the
square decisional Diffie-Hellman problem (sqDDH) [50], which is the problem of
distinguishing tuples of the form (g, gx, gy) from tuples of the form (g, gx, g(x2))
for random x, y ∈ ZN . In groups for which DDH is hard, the best known attack
against this assumption requires solving the discrete-log problem. Later on,
we show how to generalize the attack to a larger family of natural decisional
assumptions in groups.
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Definition 12. We say that an oracle algorithm AO has advantage ε at distin-
guishing distributions D1 and D2 if

∣∣Pr[AO(d1) = 1] − Pr[AO(d2) = 1]
∣∣ = ε,

where the probability is over the randomness of the oracle and samples d1 ∼ D1

and d2 ∼ D2.

Theorem 13. There is a sqDDH distinguisher with preprocessing that makes
use of a random function, uses Õ(S) bits of group-specific advice, runs in time
Õ(T ), and achieves distinguishing advantage ε whenever ST 2 = Ω(ε2N).

Remark. A simple sqDDH distinguisher takes as input a sample (h0, h1) ∈ G2,
computes the discrete logarithm x = logg(h0) of the first group element and
checks whether h1 = g(x2) ∈ G. Theorem 2 indicates that such a distinguisher
using advice S and time T and achieving advantage ε must satisfy ST 2 = Ω̃(εN).
So, this attack allows the parameter setting S = T = 1/ε = N1/4. In contrast, the
distinguisher of Theorem 13 allows the better running time and advice complexity
roughly S = T = 1/ε = N1/5.

Remark. To see the cryptographic significance of Theorem 13, consider the
pseudo-random generator P (x) =def (gx, g(x2)) that maps ZN to G2. Theorem 13
shows that, for generic algorithms with preprocessing, it is significantly easier to
distinguish this PRG from random than it is to compute discrete logs.

Proof Sketch of Theorem 13. The attack that proves the theorem combines two
technical tools. The first tool is a general method for using preprocessing to
distinguish PRG outputs from random, which we adopt from Bernstein and
Lange [13]. (De et al. [28] rigorously analyze a more nuanced PRG distinguisher
with preprocessing.) The second tool, adopted from the attack of Sect. 7.1, is
the idea of taking a walk on the elements of the group, and applying the PRG
distinguisher only to the set of points that lie at the end of long walks.

The attack works because a walk that begins at a point of the form (gx, g(x2))
is likely to hit one of the precomputed endpoints quickly and applying the PRG
distinguisher yields an ε-biased output value. In contrast, an attack that begins
at a point of the form (gx, gy) will never hit a precomputed point and applying
the distinguisher yields a relatively unbiased output.

The algorithm (illustrated in Fig. 2) takes as input parameters S, T ∈ Z+.
As in the attack of Sect. 7.1, we use a random function to define a walk on a

graph. In this case, the vertices of the graph are pairs of group elements—so every
vertex is an element of G2. We also define the subset of vertices Y = {(gx, g(x2)) |
x ∈ ZN} ⊂ G2 that correspond to “yes” instances of the sqDDH problem. The
subset Y is very small relative to the set of all vertices G2, since |G2| = N2, while
|Y| = N .

To define the walk on the vertices of this graph, we use a random function
F that maps G2 → ZN . Given a point (h0, h1) ∈ G2, the walk computes α ←
F (h0, h1) and moves to the point (hα0 , h

(α2)
1 ) ∈ G2. Observe that if the walk

starts in Y (i.e., at a “yes” point), the walk remains inside of Y . If the walk starts
at a point outside of Y, the walk remains outside of Y.
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G2

Y
M

(h0, h1)

p1 p2 p3 p4

advice string

Fig. 2. The preprocessing phase of the sqDDH distinguisher takes walks on the elements
of Y ⊂ G2. Each walk terminates upon hitting the set of marked points M, which we
further partition into S “colors”. The advice consists of a string pc for each of the colors,
such that the sum

∑
H(pc,m) is maximized over all the endpoints of color c. In the

online phase (in red), the algorithm walks from the input point until hitting a marked
point.

Out of the N2 total vertices in the graph, we choose a set of distinguished
or “marked” points M, by marking each point independently at random with
probability 1/T . (In practice, we can choose the set of marked points using a hash
function.) To each point inM, we assign one of S different “colors,” again using
a hash function. So there are roughly N2/(ST ) points each with color 1, 2, . . . , S.

Given these preliminaries, the algorithm works as follows:
– Preprocessing phase. Choose N/3T 2 random points in Y . From each of these

points, take 2T steps of the walk on G2 that F defines. Halt the walk upon
reaching a marked point m ∈M. If the walk hits a marked point, store the
marked point along with its color c in a table.
Group the endpoints of the walks by color. For each of the colors c ∈ [S], find
the prefix string pc ∈ {0, 1}logN that maximizes the sum

∑
H(pc,m), where

H : {0, 1}logN ×G2 → {0, 1} is a random function and the sum is taken over
the stored marked points m of color c.
Store the prefix strings (p1, . . . , pS) as the distinguisher’s advice.

– Online phase. Given a sqDDH challenge (h0, h1) ∈ G2 as input, perform at
most 10T steps of the walk on G2 that the function F defines. As soon as
the walk hits a marked point m ∈ M of color c, return the value H(pc,m)
as output. If the walk never hits a marked point, output “0” or “1” with
probability 1/2 each.
The distinguisher uses Õ(S) bits of group-specific advice and runs in time

Õ(T ) as desired. So all we must argue is that the algorithm achieves distinguishing
advantage ε = Ω(

√
ST 2/N). We argue this last step in the full version of this

paper [25].

Attacking More-General Problems. The distinguishing attack of Theorem 13
applies to a general class of decisional problems in cyclic groups. Let (f1, . . . , f`)
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be k-variate polynomials and let x̄ = (x1, . . . , xk) ∈ ZkN . Then we can define the
problem of distinguishing tuples of the form

(gx1 , . . . , gxk , gf1(x̄), . . . , gf`(x̄)) from (gx1 , . . . , gxk , gr1 , . . . , gr`),

for uniformly random x1, . . . , xk, r1, . . . , r` ∈ ZN .
The attack of Theorem 13 applies whenever there exists an index i, a linear

function L : Gk+` → G, and a constant c > 1 such that L(x̄, f1(x̄), . . . , f`(x̄)) =
xci . To apply the attack, first apply L(·) “in the exponent” to the challenge to get
a pair (gxi , gx

c
i ) ∈ G2 and then run the distinguisher on this pair of elements.

As an example, this attack can distinguish tuples of the form (gx1 , gx2 ,
g(x2

1), gx1x2 , g(x2
2)) from random. The attack uses i = 1, L(z1, z2, z3, z4, z5) = z3,

and c = 2. Note that this assumption is very closely related to the standard DDH
assumption, except that the challenge tuple includes the extra elements g(x2

1)

and g(x2
2).

Remark. Somewhat surprising is that the distinguishing attack of Theorem 13
does not translate to an equivalently strong attack for the DDH problem. The
immediate techical obstacle for this is the fact that the distinguishing advantage
of the generic PRG distinguisher reduces as the size of the seed space of the PRG
grows. That space is of size N in the sqDDH problem, but of size N2 in the DDH
case, which results in a weaker distinguisher.

8 Conclusion

We studied the limits of generic group algorithms with preprocessing for the
discrete-logarithm problem and related computational tasks.

In almost all cases, our lower bounds match the best known attacks up to
logarithmic factors in group order. The one exception is our lower bound for the
decisional Diffie-Hellman problem, in which our lower bound is ST 2 = Ω̃(ε2N),
but the attack requires computing a discrete logarithm with ST 2 = Õ(εN). When
the success probability ε is constant, these bounds match. For intermediate values
of ε, such as ε = N−1/4, it is not clear which bound is correct.

One useful task for future work would be to generalize our lower bounds
to more complex assumptions, such as Diffie-Hellman assumptions on pairing-
equipped groups [17], q-type assumptions [15], or the “uber” assumptions [16, 19].

In addition, our upper bounds of Sect. 7 make use of a public random function.
Making the attacks fully constructive by removing this heuristic, in the spirit of
Fiat and Naor [35] and De et al. [28], would be valuable as well.
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