
New Collision Attacks on Round-Reduced
Keccak

Kexin Qiao1,3,4,?, Ling Song1,2,3(�), Meicheng Liu1,?, and Jian Guo2

1 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, China

{qiaokexin,songling,liumeicheng}@iie.ac.cn
2 Nanyang Technological University, Singapore

guojian@ntu.edu.sg
3 Data Assurance and Communication Research Center,

Chinese Academy of Sciences, China
4 University of Chinese Academy of Sciences, China

Abstract. In this paper, we focus on collision attacks against Keccak
hash function family and some of its variants. Following the framework
developed by Dinur et al. at FSE 2012 where 4-round collisions were
found by combining 3-round differential trails and 1-round connectors, we
extend the connectors one round further hence achieve collision attacks
for up to 5 rounds. The extension is possible thanks to the large degree
of freedom of the wide internal state. By linearization of all S-boxes of
the first round, the problem of finding solutions of 2-round connectors
are converted to that of solving a system of linear equations. However,
due to the quick freedom reduction from the linearization, the system has
solution only when the 3-round differential trails satisfy some additional
conditions. We develop a dedicated differential trail search strategy and
find such special differentials indeed exist. As a result, the first practical
collision attack against 5-round SHAKE128 and two 5-round instances of
the Keccak collision challenges are found with real examples. We also give
the first results against 5-round Keccak-224 and 6-round Keccak collision
challenges. It is remarked that the work here is still far from threatening
the security of the full 24-round Keccak family.

Keywords: Keccak, SHA-3, hash function, linearization, differential.

1 Introduction

The Keccak [3, 5] family of hash functions has attracted intensive cryptanalysis
since its submission to the SHA-3 competition in 2008 [1,9,10,11,13,14,16,17,19].
In 2012, the National Institute of Standards and Technology of the U.S. selected
Keccak as the winner of the SHA-3 competition. The SHA-3 family consists of four
cryptographic hash functions of fixed digest sizes and two eXtendable-Output
? This work was done while the authors were visiting Nanyang Technological University.

1

Functions (XOFs) named SHAKE128 and SHAKE256, each of which is based on an
instance of the Keccak algorithms [18]. Keccak[r, c, d] applies sponge construction
with bitrate r and capacity c to generate d bit digests from arbitrary length
messages where d = 224, 256, 384, 512 in the official SHA-3 versions and d = 160, 80
in the Keccak Crunchy Crypto Collision and Pre-image Contest [2]. Depending on
the size of the internal state in r + c bits from the set {200, 400, 800, 1600}, each
of the challenge versions contains 4 variants. SHAKE128 and SHAKE256 generate
digests that can be extended to any desired length. The suffixes “128” and “256”
indicate the security strengths against generic attacks that these two functions
support.

In this paper, we focus on collision attacks against the Keccak family, i.e.,
to find two different messages such that their hash digests are the same. The
best previous practical collision attacks on Keccak family are on Keccak-224 and
Keccak-256 reduced to 4 rounds found by Dinur et al. [10] in 2012 and later
furnished in the journal version [12]. After this, theoretical results improved to
5-round Keccak-256 [11]. However, the number of practically attacked rounds
remains at 4. To promote cryptanalysis against Keccak, the Keccak design team
proposed smaller variants in the Keccak challenge [2] with 160 digest size for
collision attack and 80 digest size for preimage attack with each of the 4 sizes
of internal states reduced to from 1 to 12 rounds. The ideal security levels of
both are set to be 280 unit computations for collision and preimages, respectively.
This is a level much lower than that of the main 4 instances of SHA-3, but still
beyond the reach of current computation resource one may have. The current
best solutions of collision challenges are instances reduced up to 4 rounds by
Dinur et al. [10] and Mendel et al. [17]. Theoretical results were found by Dinur
et al. [11] against Keccak-256 with complexities 2115 using generalized internal
differentials. To the best of our knowledge, this remains as the only results on
collision attack against Keccak reduced to 5 or more rounds up to date.

Our Contribution. We develop an algebraic and differential hybrid method
to launch collision attacks on Keccak family and practically find collisions of
5-round SHAKE128 and two 5-round instances of the Keccak collision challenges.
Theoretical results, with complexities below the birthday bound, against 5-round
Keccak-224 and 6-round Keccak collision challenges are also achieved.

These results follow a crucial observation that, the Keccak S-box can be
re-expressed as linear transformations, when the input is restricted to some affine
subspaces. It was already noted by Daemen et al. [3, 8] and Dinur et al. [10]
that when the input and output differences are fixed, the solution set of the
Keccak S-box contains affine subspaces of dimension up to 3. In this paper, we
show the maximum subspaces allowing linearization of S-box is of dimension 2.
Furthermore, all affine subspaces of dimension up to 2 allow S-box linearization,
and for those of dimension 3, six 2-dimensional affine subspaces out of it could
allow the linearization. With this property in mind, we enforce linearization
of all S-boxes in the first round, under which the first round function of the

2

Keccak permutation is transformed into a linear one. Combining with an invertion
method of the S-box layer of the second round, we convert the problem of finding
two-round connectors into that of solving a system of linear equations. Solving
the equation once will produce sufficiently many solutions so that at least one of
them will follow the differential trails in the following 3 rounds or more.

A side effect of linearization of all S-boxes is quick reduction of freedom
degrees, which in turn decides the existence of such two-round connectors. To
solve this problem, we aim to find differential trails, which impose least possible
conditions to the two-round connectors. We design a dedicated search strategy
to find suitable differential trails of up to 4 rounds. Implementation confirmed
the correctness of this idea, and found real examples of collisions for 5-round
SHAKE128 and two instances of challenge versions.

We list our results together with the related previous work in Table 1. Note, the
algorithm for building 2-round connectors is heuristic and there is no theoretical
bound for the solving time. However, it applies to our attacked instances within
practical time, so we indicate the real time cost instead of complexities here.
Experiments are run on a server with 32 cores of AMD processors.

Table 1: Collision attack results and comparison

Target [r, c, d] nr
Searching Searching Solving ReferenceComplexity Time Time2

SHAKE128 5 239 30m 25m Sect. 6.2

Keccak[1440,160,160] 5 240 2.48h 9.6s Sect. 6.1
6 270.24 N.A. 1 1h Sect. 6.4

Keccak[640,160,160] 5 235 2.67h 30m Sect. 6.3

Keccak-224 4 224 2∼3m [10]
212 0.3s 2m15s Sect. 6.6

5 2101 N.A. N.A. Sect. 6.5

Keccak-256 4 224 15∼30m [10]
212 0.28s 7m Sect. 6.6

1 N.A.: Not Available.
2 There is no theoretical estimate for the solving time of the heuristic
algorithms used here.

Organization. The rest of the paper is organized as follows. In Section 2 and
Section 3, notations and a brief description of Keccak family are given. In Section
4, we give a detailed description of the algebraic methods to achieve 2-round
connectors. In Section 5, we give the dedicated search strategies for differential
trails. Then the experimental results are presented in Section 6. We conclude the
paper in Section 7.

3

2 Notations

We summarize the majority of notations to be used in this paper here.

c Capacity of a sponge function
r Rate of a sponge function
b Width of a Keccak permutation in bits, b = r + c
d Length of the digest of a hash function
nr Number of rounds
θ, ρ, π, χ, ι The five step mappings that comprise a round, a

subscript i denotes the operation at i-th round, e.g.,
θi denotes the θ layer at i-th round for i = 0, 1, 2, · · · .

L composition of θ, ρ, π
L−1 Inverse of L
RC Round constant for a round of Keccak-f permutation
S(·) 5-bit S-box operating on each row of Keccak state
Ri(·) Keccak permutation reduced to the first i rounds
δin 5-bit input difference of an S-box,
δout 5-bit output difference of an S-box
DDT Differential distribution table
αi Input difference of the i-th round function, i =

0, 1, 2, · · ·
βi Input difference of χ in the i-th round, i = 0, 1, 2, · · ·
wi Weight of the i-th round, i = 0, 1, 2, · · ·
m1||m2 Concatenation of strings m1 and m2
x Bit value vector before χ in the first round
y Bit value vector after the first round
z Bit value vector before χ in the second round

3 Description of Keccak

In this section, we give a brief description of Keccak family of hash functions.
Keccak family applies sponge construction which processes messages in two phases
— absorbing phase and squeezing phase, as shown in Figure 1. The message is
firstly padded by appending a bit string of 10∗1, where 0∗ represents a shortest
string of 0’s so that the length of padded message is multiple of r. We denote
the original message by M and the padded message by M = M ||10∗1. The b-bit
internal state is initialized to be all 0’s. In absorbing phase, the padded message
is split into blocks of r-bits and each message block is XORed into the first r bits
of current internal state, followed by the application of the fixed permutation to
the entire b-bit state. This is repeated until all message blocks are processed. In
the squeezing phase, the first r bits of the state are returned as output, then the
permutation is applied and another r bits are outputted until all d output bits
are produced. When restricted to the case of b = 1600 and c = 2d, the four official
instances of Keccak family are denoted by Keccak-224/256/384/512 respectively
for d = 224, 256, 384, 512. SHAKE128 and SHAKE256 are defined from two instances

4

of Keccak with the capacity c being 256 and 512, respectively, and the additional
appending of a four-bit suffix 1111 to the original message M before applying
the Keccak padding. Without further specifications, we presume the digest sizes
are 256 and 512 for SHAKE128 and SHAKE256, respectively. We use M to denote
the padded message for SHAKE as well. Instances of Keccak challenges will be
denoted as Keccak[r, c, nr, d], where the parameters are explicitly indicated for
the rate, capacity, number of rounds the permutation is reduced to, and bit size
of the digest, respectively.

digest

d

Figure 1: Sponge Construction [4].

The Keccak permutation function in SHA-3 consists of 24 rounds of five layers
operating on the 1600-bit state that can be represented as 5× 5 64-bit lanes. In
general 2l is used to denote the bit length of lanes. If A denotes a 5-by-5-by-2l
array of bits that represents the state, then its indices are the integer triples
(i, j, k) for which 0 ≤ i < 5, 0 ≤ j < 5, and 0 ≤ k < 2l. The bit that corresponds
to (i, j, k) is denoted by A[i, j, k]. Names for single-dimensional sub-arrays and
two-dimensional ones are defined by the Keccak designers: A[·][j][k] is called
a row, A[i][·][k] is a column, and A[i][j][·] is a lane; A[i][·][·] is called a sheet,
A[·][j][·] is a plane, and A[·][·][k] is a slice.

The five layers in each round of the permutation are given below:

θ :A[i][j][k]← A[i][j][k] +
4∑

j′=0
A[i− 1][j′][k] +

4∑
j′=0

A[i+ 1][j′][k − 1]

ρ :A[i][j][k]← A[i][j][k + T (i, j)],where T (i, j) is a predefined constant

π :A[i][j][k]← A[i′][j′][k],where
(
i
j

)
=
(

0 1
2 3

)
·
(
i′

j′

)
.

χ :A[i][j][k]← A[i][j][k] + ((¬A[i+ 1][j][k]) ∧A[i+ 2][j][k]),
ι :A← A+RC[ir],where RC[ir] is the round constants.

5

It is interesting to note that the size of permutation can be reduced to one of
{25, 50, 100, 200, 400, 800} by choosing 2l = 1, 2, 4, 8, 16, 32, respectively for the
size of the lanes. In such cases, the round functions are defined exactly in the
same way except the rotation constants of the ρ operation are now in modulo
the respective 2l instead of 64 in the original 1600-bit full permutation. These
size-reduced permutations are not used in the SHA-3 instances, but in the Keccak
challenges.

The first three layers are linear mappings and we denote their composition by
L , θ ◦ρ◦π. The only non-linear layer of the permutation is χ, which can be seen
as a S-box layer that applies 5-bit substitution to 320 rows of the state. We use
S(x) to denote the substitution of a 5-bit input value x. The difference distribution
table of the S-box is denoted by DDT, where DDT(δin, δout) represents the size
of the set {x : S(x) + S(x + δin) = δout}. We denote the Keccak permutation
reduced to the first i rounds as Ri (note the round functions are identical up to a
difference of constant addition in ι and we will omit ι as it has little impact on
our differential collision attack), i.e., Ri(M) is the state after i rounds processing
of the padded message M .

4 Overview of Our Collision Attack

In this section, we give an overview of our collision attacks, followed by the
details of the algebraic methods to achieve two-round connectors. Without
further specification, we assume in this paper the length of the messages used
are of one block after padding. To fulfil the Keccak padding rule, one needs to
fix the last bit of the padded message to be “1”, hence the first r − 1 bits of the
state are under the full control of the attacker through the message bits, and the
last c bits of the state are fixed to zeros as in the IV specified by Keccak. When
applied to SHAKE, there are r− 6 free bits under control, by setting the last 6 bits
of the padded message to be all 1’s so it is compatible with the specific SHAKE
padding rule.

Following the framework by Dinur et al. [10], as well as many other collision
attacks utilizing differential trails, our collision attacks consist of two parts, i.e.,
a high probability differential trail and a connector linking the differential trail
with the initial value, as depicted in Figure 2. Let ∆SI and ∆SO denote the
input and output differences of the differential trail, respectively. Dinur et al.
explored a method, which they call “target difference algorithm”, to find message
pairs (M,M ′) such that the output difference after one round permutation is
∆SI , formally R1(M ||0c) + R1(M ′||0c) = ∆SI . In what follows, we show an
algebraic method to extend this connector to two rounds, i.e., a new target
difference algorithm to find (M,M ′) such that R2(M ||0c) + R2(M ′||0c) = ∆SI .
The differential trail is then fulfilled probabilistically with many such message
pairs, collision can be produced if the first d bits of ∆SO are 0. As we are aiming
at low complexity attacks, finding solutions of connectors should be practical
so that this part will not dominate the overall complexities of collision finding.
Details of the differential trail search will be discussed in Section 5.

6

Overall, the constraints of the two-round connectors are that the last c+ 1
(or c+ 6) bits of the initial state are fixed, and the output difference after two
rounds is given and fixed (this is determined by the differential trail to be used),
we are to utilize the degree of freedom from the first r − 1 (or r − 6) bits of the
initial state to find solutions efficiently. We will start with some observations on
the Keccak S-box, then move to the details of solution finding algorithm.

r

c

∆SO

d

∆SI

diff diff

value value

3-round differential

2-round connector

Figure 2: Overview of 5-round collision attack

4.1 S-box linearization and affine subspaces

The key observation is that internal state is much larger than the digest size,
providing large number of freedom degrees to attackers. One can choose some
subsets of the available spaces with special properties to achieve fast enumerations.
In case of Keccak, we are to choose the subsets which are linear with respective to
the S-box, i.e., the expression of S-box can be re-written as linear transformation
when the input is restricted to such subsets. It is obvious to note the S-box is
non-linear when the entire 25 input space is considered. However, affine subspaces
of size up to 4, as to be shown below, could be found so that the S-box can be
linearized. Note that the S-box is the only nonlinear part of the Keccak round
function. Hence, the entire round function becomes linear when restricted to such
subspaces. Formally, we define

Definition 1 (Linearizable affine subspace). Linearizable affine subspaces
are affine input subspaces on which S-box substitution is equivalent to a linear
transformation. If V is a linearizable affine subspace of an S-box operation S(·),
∀x ∈ V, S(x) = A · x+ b, where A is a matrix and b is a constant vector.

For example, when input is restricted to the subset {00000, 00001, 00100, 00101}
({00, 01, 04, 05} in hex), the corresponding output set of the Keccak S-box is
{00000, 01001, 00101, 01100}({00, 09, 05, 0C} in hex), and the expression of the

7

S-box can be re-written as linear transformation:

y =


1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1

 · x (1)

where x and y are bit vector representation of input and output values of
the Keccak S-box with the last bit on top. By rotation symmetry, four more
linearizable affine subspaces can be deduced from one.

Exhaustive search for the linearizable affine subspaces of the Keccak S-box
shows:
Observation 1 Out of the entire 5-dimensional input space,
a. there are totally 80 2-dimensional linearizable affine subspaces, as listed in

Table 5 in Appendix A.
b. there does not exist any linearizable affine subspace with dimension 3 or more.
For completeness, any 1-dimensional subspace is automatically linearizable affine
subspace.

Since the affine subspaces are to be used together with differential trails, we
are interested in those linearizable affine subspaces with fixed input and output
differences, which is more relevant with the differential distribution table (DDT)
of S-boxes. Referring to the DDT of Keccak S-box postponed to Appendix B, we
observe:
Observation 2 Given a 5-bit input difference δin and a 5-bit output difference
δout such that DDT(δin, δout) 6= 0, denote the value solution set V = {x : S(x) +
S(x+ δin) = δout} and S(V) = {S(x) : x ∈ V }, we have
a. if DDT(δin, δout) = 2 or 4, then V is a linearizable affine subspace.
b. if DDT(δin, δout) = 8, then there are six 2-dimensional subsets Wi ⊂ V, i =

0, 1, · · · , 5 such that Wi(i = 0, 1, · · · , 5) are linearizable affine subspaces.
It is interesting to note the 2-dimensional linearizable affine subspaces obtained
from analysis of DDT cover all the 80 cases in observation 1. It is already noted
in [15] there is one-to-one correspondence between linearizable affine subspaces
and entries with value 2 or 4 in DDT. As for the DDT entries of value 8, we will leave
the 6 choices of 2-dimensional linearizable affine subspaces for later usage. As
an example, the 3-dimensional affine subspace corresponding to DDT(01, 01), i.e.,
with both input and output differences being 01, is {10, 11, 14, 15, 18, 19, 1C, 1D}
and the six 2-dimensional linearizable affine subspaces from it are

{10, 11, 14, 15},
{10, 11, 18, 19},
{10, 11, 1C, 1D},
{14, 15, 18, 19},
{14, 15, 1C, 1D},
{18, 19, 1C, 1D}.

(2)

8

When projected to the whole Keccak state, direct product of affine subspaces
of each individual S-box form affine subspaces of the entire state with larger
dimensions. In other words, when all the S-boxes in the round function are
linearized, the entire round function becomes linear. This will be the way we are
to handle the S-box layer of the first round of the 2-round connector.

4.2 A connector covering two rounds

The core idea of our two-round connector is to convert the problem to solving a
system of linear equations. Two rounds of Keccak permutation can be expressed as
χ1 ◦L1 ◦ χ0 ◦L0 (omitting the ι). With the χ0 layer linearized by the techniques
discussed above, i.e., given the input and output differences of χ, the first
three operations L1 ◦ χ0 ◦ L0 become linear. We will give details of the method
how input and output differences of χ0 are selected later. Now, we show how
the χ1 can be inverted by adding more constraints of linear equations. In our
attack setting, the output difference of χ1 is given as ∆SI—input difference
of the 3-round differential trail. It is not necessary that all S-boxes of the
χ1 layer are active, i.e., with a non-zero difference. Here only active S-boxes
are concerned, and each of them is inverted by randomly choosing an input
difference with non-zero number of solutions, we call it compatible input difference.
Formally, given the output difference δout, compatible input differences are
{δin : DDT(δin, δout) 6= 0}. As noted previously [3,8,10], for any pair of (δin, δout),
the solution set V = {x : S(x) + S(x+ δin) = δout} forms an affine subspace. In
other words, V can be deduced from the set {0, 1}5 by setting up i constraints
that turn to be binary linear equations, when the size of solution set V is 25−i.
For example, corresponding to DDT(03, 02) is the 2-dimensional affine subspace
{14, 17, 1C, 1F} which can be formulated by the following three linear equations:0 0 1 0 0

1 1 0 0 0
0 0 0 0 1

 · x =

1
0
1

 . (3)

It is important to note, under the i linear constraints or set V , there is a
bijective relation between δin and δout, i.e., given one the other can be deduced
deterministically. Hence, each active S-box in χ1 layer is inverted by a choice of
compatible input difference together with the corresponding i linear constraints
on the input values. Once input difference and linear constraints for all active
S-boxes of χ1 are enforced and fulfilled, solutions of 2-round connector are found.
Note a compatible input difference of χ1 is a choice of β1, and α1 can be uniquely
determined by the relation α1 = L−1(β1). In the remaining part of this subsection,
more details on implementation of this idea are given.

As depicted in Figure 3, the variables of our equation system are the bit
values before the first χ layer denoted by vector x. y and z are bit vectors of
intermediate values for further interpretation where y represents the output after
the first χ layer and z the bits before the second χ layer. The main task is to
derive all constraints on differences and affine subspaces to that on the variables

9

x. Now, suppose β1 and β0 (details will be given in Section 4.4) are fixed, and
∆SI (aka. α2) is given, we show how the system of equations could be set up.
With the input difference β1 and output difference ∆SI of χ1, all the linear
constraints on the input affine subspaces of the active S-boxes can be derived
and stored as

G · z = m,

where G is a block-diagonal matrix in which each diagonal block together with
corresponding constants in m formulates the constraints of one active S-box.
Similar procedure is done for input affine subspaces of the first round, except that
the input is restricted to linearizable affine subspaces for all S-boxes regardless
whether or not the S-box is active so that χ0 layer can be replaced by a linear
transformation χL. We denote the constraints by

A · x = t. (4)

Then x and y can be linked by

χL · x+ χC = y,

where χC denotes the constant offsets for the affine subspaces. Furthermore, the
two equation systems can be linked by

L · (y +RC[0]) = z,

where RC[0] denotes the round constant of the first round. Note, only active
S-boxes of the second round are concerned, i.e., only part of bits of z are known,
hence the same applies to y, and we use y′ to denote the known bits of y for
later. Overall, the constraints on z can be derived to that on x as

G · L · (χL · x+ χC +RC[0]) = m. (5)

Note an additional constraint x needs to fulfil is that the last c + 1 (or c + 6)
bits of initial state are pre-fixed, which can be derived as

L−1(x) = CA, (6)

where CA denotes the preset values for bits of the inner state and padding bits.
We use EM to denote the equation systems (4), (5) and (6), solutions fulfilling
EM will be solutions of 2-round connectors.

Algorithm for building two-round connectors. We use the basic lineariza-
tion procedure to generate the equations for confining x to a smaller subspace
suitable for linearization of the first χ layer and use the main linearization pro-
cedure to generate the final equations to bypass the second χ layer. One of the
inputs of the basic procedure is the equation system EM on x values, other inputs
include the input and output differences of the first S-box layer β0, α1 and y′.

The Basic Linearization Procedure.
Inputs: EM , β0, α1, y

′.
Outputs: updated EM , χL, χC .

10

1. Initialize a matrix χL and a vector χC .
2. Iterate on each bit of y′, calculate the index of the bit in S-box level, say the
j-th bit of the i-th S-box in the first round. Then for the i-th S-box in the
first round:
(a) If the i-th S-box has not been processed in this procedure before, then:

(i) If it is non-active, randomly choose a linearizable 2-dimensional
subspace, check whether the 3 equations specifying this 2-dimensional
affine subspace is consistent with the current EM .
If so, add them to EM and update χL and χC with the j-th line of
the matrix which specifies the affine linear transformation. Continue
to next bit of y′ in step 2.
Otherwise, try another linearizable 2-dimensional subspace. If all
linearizable 2-dimensional subspaces have been tried and no consistent
equations exist, output “No Solution in basic procedure”.

(ii) Otherwise it is active: find its input and output differences from β0
and α1, i.e., δin, δout.

Case 1. When DDT(δin, δout) = 8, randomly choose one of the six lineariz-
able 2-dimensional subspaces and the corresponding equation to
specialize this 2-dimensional subspace (the other two of the three
equations to formulate the 2-dimentional subspace have already
been indicated in EM after choosing β0 procedure).
If current EM is consistent with this linear equation, add it to
EM and update χL and χC with the j-th line of the matrix which
specifies the linear map from the 2-dimensional subspace to the
output 2-dimensional subspace of S-box. Continue to next bit of
y′ in step 2.
Otherwise, try another randomly chosen 2-dimensional lineariz-
able subspace. If all six 2-dimensional linearizable subspaces have
been chosen and no consistent equation exist, output “No Solution
in basic procedure”.

Case 2. When DDT(δin, δout) = 2 or 4, update χL and χC with the j-th
line of the matrix which specifies the affine linear transformation
of the input 1 or 2-dimensional subspace to the output 1 or 2-
dimensional subspace of S-box. Continue to next bit of y′ in step
2.

(b) Otherwise, if the i-th S-box has already been processed in this procedure:
update χL and χC with the j-th line of the matrix which specifies the
affine linear transformation of the predefined linearizable subspace to the
output subspace of S-box.

3. Output the current equations system EM as well as χL and χC such that
χL · x+ χC = y′.

The inputs to the Main procedure are β0, α1, β1, α2(∆SI) and EM we get
after choosing β0.

The Main Linearization Procedure.
Input: EM , β0, α1, β1, α2.

11

Output: Updated EM .
1. Using β1 and α2, initialize a coefficient matrix G and a constant vector m

that specify the linear equations to constrain the input bits of the second
S-box layer for deriving the equation G · z = m.

2. Derive the L into the matrix format for L · (y +RC[0]) = z.
3. Initialize a counter to 0.
4. Execute the basic linear procedure with indexes of know bits y′ in y and
EM , β0 and α1. If the procedure succeeds, it will return the matrix specifying
the linearization of the first S-box layer such that χL · x + χC = y′, then
continue to Step 6. Otherwise, go to step 5.

5. Increment the counter. If the counter’s value is equal to a preset threshold
T1, output “Failed”. Otherwise, go to step 4.

6. Test whether the equation system (5) is consistent with EM . If so, add the
new system to EM and output final EM . Otherwise, go to step 5.
Note that the algorithms do not succeed all the time. To overcome this problem,

from the input difference ∆SI of a 3-round differential trail, we repeat random
picks of compatible input differences β1 until the main procedure succeeds. As
the number of active S-boxes in α2 is large enough (range from tens to hundreds
in our experiments), there are enough different cases for β1 resulting in high final
success probability. An interesting point is that the invertion from α2 to β1 does
not need to maintain high probability because this transition is covered in our
two-round connector. Besides, the unconstrained number of active S-boxes of
an input difference allows more freedom in searching of the most suitable three
round differential trails . We will describe the the searching strategies in Section
5. Finally, exhaustive search of solution for the following 3-round differential
trails can be performed from the solution space of EM .

4.3 Analysis of degree of freedom
The degree of freedom of solution space of final EM is a key factor on success of
our method. A solution space with degree of freedom larger than the weight of the
3-round differential trail is possible to suggest a message pair with collision digest.
After the linearization of the first round, the degree of freedom is

∑ b
5−1
i=0 DF(1)

i in
which DF(1)

i is the degree of freedom of 5-bit input space of the i-th S-box in the
first round. The value is assigned for DF(1)

i according to rules in Table 2.
The constraints on the initial state reduce (c+ p) degree of freedom where c

is the capacity and p is due to the padding rule. We have p = 1 for Keccak and
p = 6 for SHAKE. Another decrease on degree of freedom is due to the constraints
on the input values of the S-box layer in the second round. The definition of
DF(2)
i , the degree of freedom of 5-bit input values to S-boxes in the second round,

is

DF(2)
i =


1, DDT(δin, δout) = 2,
2, DDT(δin, δout) = 4,
3, DDT(δin, δout) = 8,
5, DDT(δin, δout) = 0,

(7)

12

Table 2: Rules for value assignment for DF1
i .

DF(1)
i

* Non-active DDT(δin, δout)=2 DDT(δin, δout)=4 DDT(δin, δout)=8
Involved in y′ 2 1 2 2

Not involved in y′ 5 1 2 3
* The value of DF(1)

i is based on whether the i-th S-box is involved in y′

and the value DDT(δin, δout) where δin and δout are the input and output
differences of the i-th S-box in the first round.

where δin and δout are the input and output differences of the i-th S-box in
the second round. For the i-th S-box in the second round, we add (5 − DF(2)

i)
equations to EM and suppose to deduce the degree of freedom by this amount.

The degree of freedom of the final EM is estimated as

DF =
b
5−1∑
i=0

DF(1)
i − (c+ p)−

b
5−1∑
i=0

(5− DF(2)
i). (8)

Large DF benefits our search for collisions in rounds beyond the second round.

4.4 How to choose β0

So far we have not given details on how β0 can be selected. We follow Dinur et al.’s
work [10] in a more general way to uniquely determine β0, the difference before
χ layer in the first round. The algorithm is called “target difference algorithm”
and consists of difference phase and value phase.

Given ∆SI , we have randomly chosen a compatible input difference β1. We
then build two equation systems E∆ and EM accordingly. E∆ is on differences
of the message pairs and EM is on values of one message. The initialization of
E∆ should abide by 1) the constraints implied by padding rules that the last
c+ 1 difference bits of initial state equal to 0, and 2) the input difference bits of
nonactive S-boxes in the first round equal to 0. The initialization of EM should
abide by the padding rules that the last c+ p value bits equal to 1p||0c. We set
p = 1 for Keccak and p = 6 for SHAKE. These rules are easy to be implemented
as the variable vector x is an invertible linear mapping of the initial vector.
Therefore, in the initialization period, we equate the corresponding bits to their
enforced values in E∆ and EM .

For E∆, we add additional equations to enforce that α1 is possibly deduced
from β0. Though the obvious way is to equate the 5 input difference bits to a
specific value for each active S-box in β0, this will restricts the solution space
significantly. As suggested in [10], we chose one of the 2-dimensional affine subsets
of input differences instead of a specific value for each active S-box. This is based
on the fact that given any nonzero 5-bit output difference to a Keccak S-box,
the set of possible input differences contains at least five 2-dimensional affine
subspaces. After a consistent E∆ system has been constructed, the solution space
is an affine subspace of candidates for β0. Then we continue to maintain E∆ by

13

iteratively add the additional 2 equations to uniquely specify each 5-bit input
difference for the active S-boxes. For all active S-boxes, once the specific input
differences is determined, we add equations to EM system to enforce every active
5-bit of x (input bits to active S-box) to an affine subspace corresponding to the
uniquely determined δin and δout. In this way, we always find a compatible β0
from α1 fulfilling the constraints from the c+ p bits of padding and pre-set bits
of capacities.

5 Search for Differential Trails

In this section, we elaborate on our searching algorithms for finding differential
trails of Keccak. Our ideas greatly benefit from previous works of searching
differential trails for Keccak [9, 14,19]. We start by recalling several properties of
the operations in the round function, followed by our considerations in finding
differential trails. Then, we describe our searching algorithms which provide
differential trails for practical collision attacks against Keccak[1440, 160, 5, 160], 5-
round SHAKE128 and Keccak[640, 160, 5, 160] respectively, and trails for theoretical
collision attack against 5-round Keccak-224 and Keccak[1440, 160, 6, 160].

5.1 Properties of θ, ρ, π, ι and χ

θ, ρ, π, ι are linear operations while χ acts as the parallel application of 5-bit
nonlinear S-boxes on the rows of the state. Since ι adds a round constant and
has no essential effect on difference, we ignore it in this section. Additionally, ρ
and π do not change the number of active bits in a differential trail, but only
positions. Therefore, θ and χ are the crucial parts for differential analysis.

To describe the properties of θ, we take definitions from [3]. The column
parity (or parity for short) P (A) of a value (or difference) A is defined as the
parity of the columns of A, i.e. P (A)[i][k] = ΣjA[i][j][k]. A column is even, if its
parity is 0, otherwise it is odd. A state is in CP-kernel if all its columns are even.

θ adds a pattern to the state, and this pattern is called the θ-effect. The
θ-effect of a state A is E(A)[i][k] = P (A)[i − 1][k] + P (A)[i + 1][k − 1]. So θ
depends only on column parities. The θ-gap is defined as the Hamming weight of
the θ-effect divided by two. Note that if the θ-gap is g, after applying θ there
are 10g bits flipped. Given a state A in CP-kernel, the θ-gap is zero and hence
the Hamming weight of A remains after θ. Another interesting property is that
θ−1 diffuses much faster than θ. More exactly, a single bit difference can be
propagated to about half state bits through θ−1.

Given an input difference to χ, all possible output differences occur with
the same probability. On the contrary, given an output difference to χ, it is not
the same case, but the highest probability of all possible input differences is
determined. Moreover, for one-bit differences, each S-box of χ acts as identity
with probability 2−2.

14

5.2 Representation of trails and their weights

As in previous sections, we denote the differences before and after i-th round by
αi and αi+1, respectively. Let βi = L(αi). Therefore an n-round differential trail
starting from 0-th round is of the following form

α0
L−→ β0

χ−→ α1
L−→ · · ·αn−1

L−→ βn−1
χ−→ αn.

For the sake of simplicity, a trail can also be represented with only βi’s or αi’s.
The weight of a differential β → α over a function f with domain {0, 1}b is

defined as
w(β → α) = b− log2|{x : f(x)⊕ f(x⊕ β) = α}|.

In other words, the weight of a differential β → α is equal to −log2Pr(β → α). If
Pr(β → α) > 0, we say α and β are compatible, otherwise the weight of β → α
is undefined.

We denote the weight of i-th round differential by wi where i starts from 0,
and thus the weight of a trail is the sum of the weights of round differentials
that constitute the trail. In addition, we use #AS(α) to represent the number
of active S-boxes in a state difference α. According to the properties of χ, given
βi the weight of (βi → αi+1) is determined; also, given βi the minimum reverse
weight of (βi−1 → L−1(βi)) is fixed.

As in [3], n− 1 consecutive βi’s, say (β1, · · · , βn−1) is called an n-round trail
core which defines a set of n-round trails α0

L−→ β0
χ−→ α1

L−→ β1 · · ·
L−→ βn−1

χ−→
αn where the first round is of the minimal weight determined by α1 = L−1(β1),
and αn is compatible with βn−1. The first step of mount collision attacks against
n-round Keccak is to find good (n− 1)-round trail cores.

5.3 Requirements for differential trails

Good trail cores are those satisfying all the requirements which we will explain
as follows. The first requirement is that the difference of the output is zero, i.e.
αdnr = 0 (we denote output digest difference after nr rounds with αdnr). The
second requirement relates to the freedom degree budget.

With the definition of weight, Equations (8) can be represented in an alterna-
tive way

DF =
b/5−1∑
i=0

DF(1)
i − (c+ p)− w1. (9)

The first term of the formula depends on the number of S-boxes that need to be
linearized and its corresponding DDT entry as depicted in Table 2. Empirically,
when all S-boxes are active and linearized in the first round it is more possible
to get a consistent equation system. Therefore, we heuristically set b

5 × 2 as a
threshold for the first term in (9), and denote a threshold of the first two terms
in (9) for further search conditions by

TDF = b

5 × 2− (c+ p).

15

To mount collision attacks against Keccak[r, c, nr, d] with methods described in
Section 4, it is necessary that

TDF > w1 + · · ·+ wnr−2 + wdnr−1 (10)

where wdnr−1 is the part of wnr−1 that relates to the digest5. The trail searching
phase is performed to provide ∆SI for the connector building algorithm. However,
the sufficient conditions for a good trail core is restrained by solving results of
the connector, i.e. the number of freedom degrees of the solution space of EM .
So we take (10) as a heuristic condition for searching good trail cores which are
promising for collision attacks.

Thirdly, the collision attack should be practical. Note that after we obtain
a subspace of message pairs making it sure to bypass the first two rounds,
the complexity for searching a collision is 2w2+···+wdnr−1 . To make our attacks
practical, we restrict w2 + · · ·+ wdnr−1 to be small enough, say 48.

We summarize the requirements for differential trails as follows and list TDFs
for different versions of Keccak[r, c, nr, d] in Table 3.

(1) αdnr = 0, i.e. the difference of output must be zero.
(2) TDF > w1 + · · ·+ wdnr−1, i.e. the degree of freedom must be sufficient;
(3) w2 + · · ·+ wdnr−1 ≤ 48, the complexity for finding a collision should be low.

Table 3: TDFs of different versions of Keccak[r, c, nr, d].
Keccak[r, c, nr, d] TDF Remarks

Keccak[1440, 160, 5, 160] 479 Challenge
Keccak[1344, 256, 5, 256] 378 SHAKE128
Keccak[640, 160, 5, 160] 159 Challenge
Keccak[1440, 160, 6, 160] 479 Challenge
Keccak[1152, 448, 5, 224] 191 Keccak-224

* ‘Challenge’ means that that version is in-
cluded in Keccak Crunchy Crypto Collision
and Pre-image Contest [2].

5.4 Searching strategies

Searching from light β3’s. Our initial goal is to find collisions for 5-round
Keccak. To facilitate a 5-round collision of Keccak, we need to find 4-round
differential trails satisfying the three requirements mentioned previously. However
it is difficult to meet all of them simultaneously even though each of them can
be fulfilled easily.
5 Suppose all the equations are independent. In later parts we will show these equations
are not necessarily independent.

16

We explain as follows. Since we aim for practical attacks, w2 + w3 + wd4
must be small enough, say 48. That is to say, the last three rounds of the trail
must be light and sparse. When we restrict a 3-round trail to be lightweight
and extend it backwards for one round, we almost always unfortunately get a
heavy state α2 (usually #AS(α2) > 120) whose weight may exceeds the TDF. We
take Keccak-224 as an example. The TDF of Keccak-224 is 191, which indicates
#AS(α2) < 92 as the least weight for an S-box is 2. For a lightweight 3-round
trail, it satisfies Requirement (1) occasionally. The greater d is, the less trails
satisfy Requirement (1).

With these requirements in mind, we search for 4-round differential trail cores
from light middle state differences β3’s. From light β3’s we search forwards and
backwards, and check whether Requirement(1) and (2) are satisfied respectively;
once these two requirements are satisfied, we compute the weight w2 + w3 + wd4
for brute force, hoping it is small enough for practical attacks.

α3, α4 in CP-kernel. The designers of Keccak show in [3] that it is not
possible to construct 3-round low weight differential trails which stay in CP-
kernel. However, 2-round differential trails in CP-kernel are possible, as studied
in [9, 14,19].

We restrict α3 in CP-kernel. If ρ−1 ◦ π−1(β3) is outside the CP-kernel and
sparse, say 8 active bits, the active bits of α3 = L−1(β3) will increase due to
the strong diffusion of θ−1 and the sparseness of β3. When #AS(α3) > 10, the
complexity for searching backwards for one β3 is greater than 231.7 which is too
time-consuming. We had better also confine α4 to the CP-kernel. If not, the
requirement αdnr = 0 may not be satisfied. As can be seen from the lightest
3-round trail for Keccak-f [1600] [14], even though the θ-gap is only one, after
θ the difference bits are diffused among the state making a 224-bit collision
impossible (a 160-bit collision is still possible). So our starting point is special
β3’s which makes sure α3 = L−1(β3) lies in CP-kernel, and for which there exists
a compatible α4 in CP-kernel. Fortunately, such kind of β3’s can be obtained
with KeccakTools [6].

Steps for searching 4-round differential trails. We sketch below our steps
for finding 4-round differential trail cores for Keccak and provide a description
in more detail in Appendix C. To mount collision attacks on 6-round Keccak,
5-round differential trail cores are needed. In this case, we just extend our forward
extension for one more round.
1. Using KeccakTools, find special β3’s with a low Hamming weight, say 8.
2. For every β3 obtained, traverse all possible α4 using a tree structure, compute
β4 = L(α4) and test whether there exists a compatible α5 where αd5 = 0. If
so, keep this β3 and record its forward extension, otherwise discard it.

3. For remaining β3’s, also using a tree structure traverse all possible β2 which
is compatible with L−1(β3)’s, compute #AS(α2) from β2. If #AS(α2) is
small enough, say below 110, check whether this trail core (β2, β3, β4) under
consideration is sufficient for collision attacks.

17

α0

L

x

β0

χ

y

α1

L

z

β1

χ

α2

L

β2

χ

α3

L

β3

χ

α4

L

β4

χ

α5

collision

linearization

extension one round
decryption for

min #AS

diff path searching
α3, α4 in kernel

2-round connector 3-round trail

Figure 3: Collision attacks on 5-round Keccak.

5.5 Searching results

Some of the best differential trail cores we obtained are listed in Table 4. As
can be seen that Trail cores No. 1∼3 are all suitable for collision attacks against
Keccak[1440,160,5,160], and Trail cores No. 1 and 2 for SHAKE128. Trail core No. 4
is sufficiently good for collision attacks against Keccak[640, 160, 5, 160]. However,
to mount collision attacks on Keccak-224, all the first three trail cores are not
good enough. Fortunately, a doubled version of Trail core No. 4 can make our two-
round attack possible because 85× 2 = 170 < 191. For Keccak[1440, 160, 6, 160],
we also find a trail core ripe for collision attacks except that Requirement (3) is
not satisfied. Details of these differential trail cores are provided in Appendix D.

Table 4: Differential trail cores for Keccak[r, c, nr, d].

No. r + c #AS(α2-β2-β3-βd
4) w1-w2-w3-wd

4 d

1 1600 102-8-8-2 240-19-16-4 256
2 1600 88-8-7-0 195-21-15-0 256
3 1600 85-9-10-2 190-25-20-3 224
4 800 38-8-8-0 85-20-16-0 160

No. r + c #AS(α2-β2-β3-β4-βd
5) w1-w2-w3-w4-wd

5 d

5 1600 145-6-6-10-14 340-15-12-22-23 160

6 Experiments and Results

In this section, we employ 4-round (5-round) trail cores to mount collision attacks
against 5-round (6-round) Keccak[r, c, nr, d]. Our attack consists of two main
stages:

18

– Connecting stage. Find a subspace of messages bypassing the first two rounds.
– Brute-force searching stage. Find a colliding pair from this subspace by brute

force.

In the first stage, with α2 fixed by the trail core, we choose compatible β1 where
α1 = L−1(β1) and all the S-boxes in α1 are active. In order to save freedom
degrees, we also restrict that β1 → α2 should be of least weight. When β1 is
chosen, we run the two-round connector. If a certain number of failures is reached,
we select another β1 until a solution is found, i.e. a subspace of message pairs
definitely reaching to α2 is obtained. If the number freedom degrees of this
subspace is large enough, the first stage succeeds. Once the first stage succeeds,
we move on to the second stage for finding a colliding message pair.

6.1 Collision Attack of Keccak[1440, 160, 5, 160]

We apply Trail core No. 2 to the collision attack of 5-round Keccak[1440, 160, 5, 160].
In this case, we choose compatible β1s randomly. After solving the two-round
problem in 9.6 seconds, the degree of freedom is 162, which is enough for collision
search of the remaining 3 rounds with probability 2−40. The searching time for
the collision is 2.48 hours. We give one example of collisions in Table 10, with
which we solve a challenge of Keccak Crunchy Crypto Collision and Pre-image
Contest [2].

6.2 Collision Attack of 5-round SHAKE128

We apply Trail core No. 1 to the collision attack of 5-round SHAKE1286. As the
capacity of SHAKE128 is much larger than that of Keccak [1440, 160, 5, 160], which
means about 100 more freedom degrees are needed, we just choose compatible
β1s where β1 → α2 is of least weight. We also follow this rule in later collision
attacks. After solving the two-round problem with 25 minutes, the degree of
freedom is 94 and the search for 3-round collision with probability 2−39 costs
half an hour. We give an instance of collision in Table 11.

6.3 Collision Attack of Keccak[640, 160, 5, 160]

We apply Trail core No. 5 to the collision attack of Keccak[640, 160, 5, 160]. The
methods used in this case are similar to those of 5-round SHAKE128. The first
stage succeeds in 30 minutes. The second stage takes 2 hours 40 minutes to find a
collision which happens with probability 2−35. An example of collision is provide
in Table 12, with which we solve another challenge of Keccak Crunchy Crypto
Collision and Pre-image Contest [2].

6 We also utilized Trail core No. 2, but Trail core No. 1 produces a colliding pair in a
relatively shorter time.

19

6.4 Collision Attack of Keccak[1440, 160, 6, 160]

We found four trail cores for which there exist zero 160-bit output differences.
The one with the best probability is Trail core No. 5 which is displayed in Table 9.
From β4 there are 24 trails to zero αd6. Taking all these trails into consideration,
we get a complexity of 267.24 ∼ 270.24 for the second stage. If we let #AS(α2)
(w2) be the smallest, the complexity for the second stage is 270.24 (267.24). In
the experiments, we let #AS(α2) be the smallest. In one hour our two-round
algorithm returns a subspace of messages with freedom degree 135, and in 20
minutes we get a message pair shown in Table 13 that follows the first four rounds
of the differential trail, which demonstrates that in time complexity of 270.24 a
collision for 6-round Keccak[1440, 160, 6, 160] will be found with great confidence.

6.5 Collision Attack of 5-round Keccak-224

For the collision attack of 5-round Keccak-224, all the 4-round trail cores we
found for Keccak-f [1600] are not good enough, i.e. the weight of the trail cores
exceeds TDF too much and even w2 > TDF. However, our two-round connector
is still likely to work. For one hand, from Trail core No. 4 for Keccak-f [800]
we can construct a 4-round trail core for Keccak-f [1600] with weight pattern
(170-40-32-0) which makes our two-round connector possible. From the other, as
the capacity increases, it is probable that equations added in connecting phase
are not always mutually independent, which means the assumption of freedom
degrees of our connector may be less than TDF. The applicability of our connector
in this case is verified with experiments. With Trail core No. 4, the two round
connector returns a subspace of messages of freedom degree 11 and 2 or 3 for
Trail core No. 3. Since the message subspaces derived are too small to mount
collision attacks against 5-round Keccak-224, we turn to two-block messages.
Once we get c bits from the first block, we set corresponding c bit constants in
EM to the value we obtained and then solve the system to find a subspace of
messages for the second block. Now the attack proceeds in the following way.

– Connecting stage.
• Use the two-round connector to find a message subspace with freedom

degree s as large as possible, hoping that t = (c+p)+rank(EM \ E(c,p))−
rank(EM) is as small as possible.

– Brute-force searching stage.
• Choose the first message randomly and compute the c-bit value for the

second block. Replace the corresponding c bit constants in EM and check
whether it is still consistent. If it is consistent, we obtain another subspace
with size 2s.
• Search for collision with the subspace.
• Repeat until we find a two-block collision.

In our experiment, using Trail core No. 3 the connector returns a message
subspace with freedom degree s = 2, and t = 55. Then the complexity for find a
two-block collision is 255+(48−2) = 2101.

20

6.6 Re-launch 4-round Collision Attacks of Keccak-224 and
Keccak-256

Though the 4-round collisions of Keccak-224 and Keccak-256 have already been
found [10], we use our method to optimize the complexity. We start from the
same 2-round differential trail in Dinur et al.’s work [10] and build a two-round
connector. The time spent on building and solving the two-round connectors is
2 minutes 15 seconds for Keccak-224 and 7 minutes for Keccak-256. Then the
complexity for brute forth searching is reduced to 212 and cost 0.325 seconds
and 0.28 seconds respectively which outperforms 224 on-line complexity in [10].
Besides, it is pointed out in [10] that even though they got subsets with more
than 230 message pairs from their target difference algorithm, they were not
able to find collisions within some of these subsets. The reason was suspected to
be the incomplete diffusion within the first two rounds and the closely related
message pairs within a subset. While in our algorithm, we did not encounter such
a problem. In other words, we always find collisions from the subsets deduced
from the two-round connector. Thus once we succeed in the 2-round connector
building phase with a large enough subset, we never need to repeat it.

7 Conclusion

In conclusion, we observed that the Keccak S-box can be re-expressed as linear
transformations under some restricted input subspaces. With this property, we
linearized all S-boxes of the first round, and extended the existing connector by
one round. Implementations confirmed our idea, and found us real examples of
5-round SHAKE128, and two instances of Keccak challenges. Theoretical results
on 5-round Keccak-224 and a 6-round Keccak challenge version are projected.

It is noted that the algorithm for solving the two-round connectors are
heuristic, further work includes finding the theoretical bounds of this algorithm
and factors deciding the complexities for possible improvements. Note, any
relaxation on the restrictions of ∆SI might lead us to better differential trails in
the searching phase.

Acknowledgement. The authors would like to thank anonymous reviewers
and Joan Daemen for their helpful comments and suggestions. The work of this
paper was supported by the National Key Basic Research Program of China
(2013CB834203) and the National Natural Science Foundation of China (Grants
61472417, 61472415, 61402469, and 61672516).

References

1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. rump session of Cryptographic Hardware
and Embedded Systems-CHES 2009 (2009) 67

21

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak Crunchy Crypto
Collision and Pre-image Contest. http://keccak.noekeon.org/crunchy_contest.
html

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, version
3.0 (2011). http://keccak.noekeon.org/Keccak-reference-3.0.pdf

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponge
functions. Submission to NIST (Round 3) (2011)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submission.
Submission to NIST (Round 3) 6(7) (2011) 16

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccaktools. http://keccak.
noekeon.org/ (2015)

7. Canteaut, A., ed.: FSE 2012. In Canteaut, A., ed.: FSE 2012. Volume 7549 of
LNCS., Washington, DC, USA, Springer, Heidelberg, Germany (March 19–21, 2012)

8. Daemen, J.: Cipher and hash function design strategies based on linear and
differential cryptanalysis. PhD thesis, Doctoral Dissertation, March 1995, KU
Leuven (1995)

9. Daemen, J., Van Assche, G.: Differential Propagation Analysis of Keccak. [7]
422–441

10. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-256.
[7] 442–461

11. Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of
SHA-3 Using Generalized Internal Differentials. In Moriai, S., ed.: FSE 2013.
Volume 8424 of LNCS., Singapore, Springer, Heidelberg, Germany (March 11–13,
2014) 219–240

12. Dinur, I., Dunkelman, O., Shamir, A.: Improved Practical Attacks on Round-
Reduced Keccak. Journal of Cryptology 27(2) (April 2014) 183–209

13. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Springer (2015) 733–761

14. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned Rebound Attack: Application to
Keccak. [7] 402–421

15. Guo, J., Jean, J., Nikolic, I., Qiao, K., Sasaki, Y., Sim, S.M.: Invariant Subspace
Attack Against Midori64 and The Resistance Criteria for S-box Designs. IACR
Transactions on Symmetric Cryptology 1(1) (2017) To appear.

16. Jean, J., Nikolic, I.: Internal Differential Boomerangs: Practical Analysis of the
Round-Reduced Keccak-f Permutation. In Leander, G., ed.: Fast Software Encryp-
tion - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015,
Revised Selected Papers. Volume 9054 of LNCS., Springer (2015) 537–556

17. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: Searching
through a minefield of contradictions. In Lee, D.H., Wang, X., eds.: ASIACRYP-
T 2011. Volume 7073 of LNCS., Seoul, South Korea, Springer, Heidelberg, Germany
(December 4–8, 2011) 288–307

18. National Institute of Standards and Technology: SHA-3 STANDARD:
PERMUTATION-BASED HASH AND EXTENDABLE-OUTPUT FUNCTIONS.
Federal Information Processing Standards (FIPS) Publication Series (2015)

19. Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round
Keccak. In Bernstein, D.J., Chatterjee, S., eds.: INDOCRYPT 2011. Volume 7107
of LNCS., Chennai, India, Springer, Heidelberg, Germany (December 11–14, 2011)
236–254

22

http://keccak.noekeon.org/crunchy_contest.html
http://keccak.noekeon.org/crunchy_contest.html
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/
http://keccak.noekeon.org/

A 2-dimentional Linearizable Affine Subspaces of Keccak
S-box

There are totally 80 2-dimensional linearizable affine subspaces for Keccak S-box
as listed in Table 5.

Table 5: Linearizable affine subspaces of Keccak S-box
{0, 1, 4, 5} {2, 3, 6, 7} {0, 1, 8, 9} {4, 5, 8, 9} {0, 2, 8, A}
{1, 2, 9, A} {0, 3, 8, B} {1, 3, 9, B} {2, 3, A, B} {6, 7, A, B}
{0, 1, C, D} {4, 5, C, D} {8, 9, C, D} {4, 6, C, E} {5, 6, D, E}
{4, 7, C, F} {5, 7, D, F} {2, 3, E, F} {6, 7, E, F} {A, B, E, F}
{0, 2, 10, 12} {8, A, 10, 12} {1, 3, 11, 13} {9, B, 11, 13} {0, 4, 10, 14}
{1, 5, 10, 14} {2, 4, 12, 14} {0, 4, 11, 15} {1, 5, 11, 15} {3, 5, 13, 15}
{10, 11, 14, 15} {0, 6, 10, 16} {2, 6, 12, 16} {3, 7, 12, 16} {4, 6, 14, 16}
{C, E, 14, 16} {1, 7, 11, 17} {2, 6, 13, 17} {3, 7, 13, 17} {5, 7, 15, 17}
{D, F, 15, 17} {12, 13, 16, 17} {10, 11, 18, 19} {14, 15, 18, 19} {0, 2, 18, 1A}
{8, A, 18, 1A} {10, 12, 18, 1A} {11, 12, 19, 1A} {10, 13, 18, 1B} {1, 3, 19, 1B}
{9, B, 19, 1B} {11, 13, 19, 1B} {12, 13, 1A, 1B} {16, 17, 1A, 1B} {8, C, 18, 1C}
{9, D, 18, 1C} {A, C, 1A, 1C} {8, C, 19, 1D} {9, D, 19, 1D} {B, D, 1B, 1D}
{10, 11, 1C, 1D} {14, 15, 1C, 1D} {18, 19, 1C, 1D} {8, E, 18, 1E} {A, E, 1A, 1E}
{B, F, 1A, 1E} {4, 6, 1C, 1E} {C, E, 1C, 1E} {14, 16, 1C, 1E} {15, 16, 1D, 1E}
{9, F, 19, 1F} {A, E, 1B, 1F} {B, F, 1B, 1F} {14, 17, 1C, 1F} {5, 7, 1D, 1F}
{D, F, 1D, 1F} {15, 17, 1D, 1F} {12, 13, 1E, 1F} {16, 17, 1E, 1F} {1A, 1B, 1E, 1F}

B Differential Distribution Table of Keccak S-box [14]

C Steps for Finding Differential Trials

In this section, we describe more at length about the steps for finding differential
trails.

1. Generate β3s each of which makes sure α3 = L−1(β3) lies in CP-kernel, and for
each β3 there exists a compatible α4 in CP-kernel using TrailCoreInKernelAtC
of KeccakTools [6] where the parameter aMaxWeight is set to be 52. As a
result, 503 such β3s are obtained.

2. For every β3 obtained, if #AS(β3) < 16 we traverse all possible α4 using a tree
structure, compute β4 = L(α4) and test whether there exists a compatible α5
where αd5 = 0. If so, keep this β3 and record its forward extension, otherwise
discard it. For d = 224, 351 β3s are left while 495 β3s are left for d = 160.

3. For remaining β3s, we also use a tree structure to search backwards. For
each β3 compute α3 = L−1(β3). If #AS(α3) < 10, traverse all possible β2s
which is compatible with α3, compute #AS(α2) from β2. If #AS(α2) is
small enough, say below 110, check whether this trail core (β2, β3, β4) under
consideration is sufficient for collision attacks.

Parameters and conditions in our algorithm can be changed and we just set
them as described for the sake of practicality. For example, in the third step if

23

Table 6: The differential distribution table of the χ when viewed as S-box. The first
bit of a row is viewed as the least significant bit. Given input difference ∆in and
output difference ∆out the number in the table shows the size of the solution set
{v | χ(v) + χ(v +∆in) = ∆out}. Differences are in hex number.
PPPP∆in

∆out 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

00 32 -
01 - 8 - - - - - - - 8 - - - - - - - 8 - - - - - - - 8 - - - - - -
02 - - 8 8 - - - - - - - - - - - - - - 8 8 - - - - - - - - - - - -
03 - - 4 4 - - - - - - 4 4 - - - - - - 4 4 - - - - - - 4 4 - - - -
04 - - - - 8 8 8 8 -
05 - - - - 4 - 4 - - - - - 4 - 4 - - - - - - 4 - 4 - - - - - 4 - 4
06 - - - - 4 4 4 4 - - - - - - - - - - - - 4 4 4 4 - - - - - - - -
07 - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2
08 - - - - - - - - 8 - 8 - 8 - 8 - - - - - - - - - - - - - - - - -
09 - 4 - 4 - - - - - - - - - 4 - 4 - 4 - 4 - - - - - - - - - 4 - 4
0A - - - - - - - - 4 - - 4 4 - - 4 - - - - - - - - 4 - - 4 4 - - 4
0B - 4 4 - - - - - - - - - - 4 4 - - 4 4 - - - - - - - - - - 4 4 -
0C - - - - - - - - 4 4 4 4 4 4 4 4 - - - - - - - - - - - - - - - -
0D - - - - 4 - 4 - 4 - 4 - - - - - - - - - - 4 - 4 - 4 - 4 - - - -
0E - - - - - - - - 2 2 2 2 2 2 2 2 - - - - - - - - 2 2 2 2 2 2 2 2
0F - - - - 2 2 2 2 2 2 2 2 - - - - - - - - 2 2 2 2 2 2 2 2 - - - -
10 - - - - - - - - - - - - - - - - 8 - - - 8 - - - 8 - - - 8 - - -
11 - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - - - 4 - -
12 - - 4 4 - - 4 4 - - - - - - - - - - - - - - - - - - 4 4 - - 4 4
13 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2
14 - - - - - - - - - - - - - - - - 4 4 - - - - 4 4 4 4 - - - - 4 4
15 - 4 - - - - - 4 - 4 - - - - - 4 4 - - - - - 4 - 4 - - - - - 4 -
16 - - 4 4 4 4 - 4 4 4 4 - -
17 - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - - - - 2 2 2 2 - -
18 - - - - - - - - - - - - - - - - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
19 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
1A - - - - - - - - 4 - - 4 4 - - 4 4 - - 4 4 - - 4 - - - - - - - -
1B - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 - - 2 2 -
1C - - - - - - - - - - - - - - - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1D - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
1E - - - - - - - - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 - - - - - - - -
1F - 2 2 - 2 - - 2 2 - - 2 - 2 2 - 2 - - 2 - 2 2 - - 2 2 - 2 - - 2

#AS(α3) > 10, it costs too much time for one β3 (> 231.7). For each β3, the
backward search costs more time than the forward search because of the property
of χ. Since the corresponding α3 has the same number of active bits with β3, the
numbers of active S-boxes are the same for both extension. Further, active bits
are rather sparse in both α3 and β3, and the active S-boxes in them are almost all
with one active bit. Note that given a one-bit input difference of an S-box, there
are only 4 possible output difference, while there are 9 possible input differences
given an one-bit output difference. This is the reason why the backward search is
more time-consuming.

To find a 5-round trail core for Keccak[1440, 160, 6, 160], we adapt the second
step as follows.

2. We first extend forwards from β3 for one round using KeccakFTrailExtension
of KeccakTools [6] with weight up to 36. Then for β4 of each trail core,
if #AS(β4) < 16, traverse all possible α5, compute β5 = L(α5) and test
whether there exists a compatible α6 where αd6 = 0. If so, we keep the β3 and
record the three-round trail core (β3, β4, β5), otherwise we discard the β3.

In the end four trail cores remain. In order to reduce the weight, we take
multiple trails from β4 to α5 into consideration and the trail core in Table 9 is
the best among the four trail cores.

24

D Differential Trails

In this section, we give details of differential trails of Keccak mentioned in Section
5. Actually we present trail cores. For example, a 4-round tail core (β2, β3, β4)
consisting three state differences represents a set of 4-round differential trails

α1
L−→ β1

χ−→ α2
L−→ β2

χ−→ α3
L−→ β3

χ−→ α4
L−→ β4

χ−→ α5

where α5 is compatible with β4 and β1 → α2 is of the least weight determined
by β2. In our collision attacks of 5-round Keccak, 4-round trail cores are needed.
In this section, we not only present trail cores used in collision attacks, but also
two 5-round trail cores we found.

Each state difference is represented with a matrix of 5× 5 lanes, ordered from
left to right, where ‘|’ is used as a separator between lanes; each lane is given in
hexadecimal using the little-endian format and ‘0’ is replaced with ‘-’.

E Collisions for Keccak[r, c, nr, d]

In this section, we give instances of collisions against Keccak[1440, 160, 5, 160],
5-round SHAKE128 and Keccak[640, 160, 5, 160] respectively. Note that we de-
note two colliding messages with M1,M2. For 5-round Keccak-224 and Keccak
[1440, 160, 6, 160], we are unable to find collisions for them because of the lim-
itation of computation power. However, we can demonstrate the soundness of
our method by providing instances of massage pairs that follow first 4 rounds of
the trail of Keccak[1440, 160, 6, 160] and first 2 rounds of the trail of 5-round
Keccak-224.

25

Table 7: Trail core No.1 ∼ 3 used in the collision attacks
Trail core No. 1, used in the collision attack of 5-round SHAKE128

β2

----------------|--------------24|--------------2-|----------------|----------------
----------------|---------------4|----------------|----------------|---------4------
----------------	------4---------	--------------2-	----------------	----------------
---------4------|------4---------|---------4------|---------4------|---------4------

β3

----------------|----4-----------|---1------------|----------------|-----1----------
----------------|----4-----------|----------------|----------------|----------------
---------------8|----------------|----------------|----------------|----------------
----------------|----------------|---1------------|----------------|----------------
---------------8|----------------|----------------|----------------|-----1----------

β4

----------------|----------------|----------------|----------------|2-4-------------
----------------|---------------8|--------------4-|---------8------|----------------
----------------|----------------|----------------|--8-------------|----------2-----
-------------4-8|-----------4----|-1--------------|8---------------|----------------
----4-----------|----------------|----------4-----|----------------|---1------------

Trail core No. 2, used in the collision attack of Keccak[1440, 160, 5, 160]

β2

----------------|----------------|----------------|----------------|----------------
--------1-------|-----------8----|-------------1--|--------1----1--|----------------
--------1-------|----------------|-1--------------|-1--------------|-1--------------
----------------|-----------8----|----------------|----------------|-1--------------
----------------|----------------|-------------1--|-------------1--|----------------

β3

----------------|8---------------|----------------|----------------|----------------
----------------|----------------|--------8-------|---------------1|----------------
----------------|----------------|----------------|---------------1|----------------
----------------|---------------1|----------------|----------------|---------------1
----------------|8---------------|--------8-------|----------------|----------------

β4

----------------|----------------|----------------|----------------|----------------
----------------|----------------|----------------|----2-----------|--------1-------
---------------1|------2---------|---------2------|----------------|----------------
----------------|----------------|-------------4--|----------------|----------------
----------------|--8-------------|----------------|----------------|---------------2

Trail core No. 3, used in the collision attack of 5-round Keccak-224

β2

----------------|----4-----------|----4-------1---|----4-----------|----4-----------
--------4-------	----------4-----	----------------	--------4-------	--------4-------
------------1---|----------4-----|------------1---|----4-----------|----------------
--------4-------|----4-----------|--------4-------|--------4-------|--------4-------

β3

----------------|---------------4|----------------|---------------8|----------------
-------------4--|----------------|----------------|---------8-----8|----------------
----------------|----------------|----------------|----------------|---1------------
----------------|---------------4|----------------|---------8------|----------------
-------------4--|----------------|----------------|----------------|---1------------

β4

----------------|----------------|----------------|---1------------|4---------------
--------8-------|----------------|----------------|----8-----------|----------------
---------------8|----------------|----------------|----------------|--------1-------
----------------|----4-----------|----------------|----------------|----------------
----------------|-4---------4----|----------8-----|----------------|----------------

Table 8: Trail core No. 4, used in the collision attack of Keccak[640, 160, 5, 160] and
its doubled version can be used in the collision attack of Keccak-224. β4 has two choices.

Trail core No. 4

β2

--------|-----8--|-----A--|-----8--|-----8--

β
(1)
4

--------|--------|--------|--------|--------
--------|--------|--------|--------|-------- 1------4|-4------|--------|--------|--------
2-------|2-------|--------|2-------|-------- --------|------4-|-2------|--------|-2------
2-------|--------|-----8--|-----8--|-1------ -------2|-----8--|--------|--------|4-------
--------|--------|-----2--|--------|-1------ 4-------|--------|--------|--------|--------

β3

--------|--------|--------|-------1|------4-

β
(2)
4

--------|--------|--------|--------|--------
------8-|--------|-------1|--------|------4- 1-------|-4------|--------|--------|--------
--------|--------|--------|-------1|-------- --------|------4-|-2------|--------|-2------
--------|--------|--------|--------|-------- -------2|-----8--|--------|--------|4-------
------8-|--------|--------|------4-|-------- 4-------|2-------|--------|--------|--------

26

Table 9: Trail cores No. 5, used in the collision attack of Keccak[1440, 160, 6, 160].

β2

----------------|----------------|----------------|----------------|----------------
--------------1-|---2------------|----------------|---2------------|--------------1-
---------------1|---------------1|----------------|---2------------|----------------
--------------1-	---------------1	----------------	----------------	----------------

β3

----------------|----------------|----------------|----------------|----------------
----------------|----------------|----------------|----2-----------|----------------
----------------|----------------|-------------4--|----------------|----------------
----------------|-----1----------|-------------4--|----------------|----------------
----------------|-----1----------|----------------|----2-----------|----------------

β4

----------------|----------------|--2-------------|----------------|----------------
----------------|----------------|------------2---|----------2-----|-----4----------
----------------|---8------------|----------------|----------------|----------------
----------------|----------------|----------------|---------2------|------2---------
----------------|------1---------|----------------|---8------------|-----4----------

β5

----------------|-4-----4--------|--------8--28-22|-C--4--4-----4--|-1-8--88-------2
-----2-----2---4|42--22--------8-|----------------|-8-----8--------|---2---A--88----
--8---------8---|-4--14-11--8----|8-----4-----4---|-8-----22-------|----------------
--11--------4--1|----------------|2--------1-----1|--28-22--------8|----28--4-----2-
---C--14-11-----|----1---2---1-1-|1--------4--1--1|----------------|-12---4----1----

Table 10: Collision for Keccak[1440, 160, 5, 160]

M1

C09C5501A913CC3C|7406D907E6569334|89182C870A0387A0|980A9D8F82C40A90|9306194AEBBC1C17
6D7DFE249ED35BB5|35C1981BFF84755C|37E7FA11AAD390EB|19485675C7530B8E|042893444D9EC364
6D317B9B40DE874C|E2EC2A3613678DDA|3939A7F72AC29BF6|4FABBC80AE5192EA|AB50ABCBCC7E5CC7
0F152006D01F65AC|AEC5B4B7EEC068E1|58E287388571520A|569ED102CB7D2EFA|4AC1C2A0645D5B2C
4C323DADBB2DAFC4|36F6BEEB558F2B22|0000000089F71BE8|0000000000000000|0000000000000000

M2

D634EAE0EF26F002|90371C35BB5CFABC|7396C3D058D2F577|78CDF403D882B742|22ECA6BCBFC9501F
2352A9667EB05FCD|4CA3FD90EFB8A2D3|8DDFF276C0B60599|4B4CCD54AD6B2646|A490FAFA55BF4E37
234734EA58D9191D|3C580CA9664107ED|29E6AEB01815FB08|8FB33829BABDF8C2|48A21B6E764A7987
D9FA24DCB0331C80|9272D67CEF52F8E3|0C82810B4BE7307A|CF164B325F4DEEBE|BA41517B4D315C3C
99CD68FF39016FC4|AB018238479D9A8D|00000000E3233895|0000000000000000|0000000000000000

digest A6E173DCDFC3E8EF|8242EAEA1EE736D5| E33875A0

Table 11: Collision for 5-round SHAKE128

M1

0A3E44EBE62104A0|1E8617C352E80FBC|B69A38114369962F|1237F5EEA8045DAB|D4144AC64E22044C
1240A93D79FCCB2E|C8C63A830CBACFFC|B36B34C0E1719824|F94803ECC5586680|ACF133FE29839CAD
CA5F88F260DEFAA7|972FE7E882A4AB03|D11344BE12431A54|814488EBAE68F93B|56D10CF0251FAED3
77A665FCC5F52D9F|D50EF69FAB128ACC|87F3F1816E740894|770D4D55489234B0|737134B1243F3A3D
FE0E2AE7F23D8E40|0000000000000000|0000000000000000|0000000000000000|0000000000000000

M2

0CDDD5D25A8BD7CA|F71D259EE445A4D8|EB84F177D51C9D45|0A70C1FC50024C24|7108096E3F024F63
3B8D1EEBC5E9150E|EADCC9FB19824E75|B8A97CB74697BAAD|5988E2CD64063AD1|FB55123185E2E4A4
E74FF74033CA1486|915F016B41BDAF6B|145441AAC9EFA342|D9A609CF15E6C626|5609C4F58F5DEE0A
AB4E178C43BA8687|3774B01D78F2ABE4|AA35E3D371664594|A26EAD50F73069A7|DE4E25F8A0F8E928
FE431BE34F8371D8|0000000000000000|0000000000000000|0000000000000000|0000000000000000

digest 9D2E953AD7C6A939|326F59A68A6016EF|A71EAFEE371700D7|3C463D5D098D9B76

Table 12: Collision for Keccak[640, 160, 5, 160].

M1

297DB73F|CE5FB46D|63EFD5AB|AB75DBB2|020119E7

M2

5B150BCB|C0F3F2FC|5907B5A5|22736DC3|914CF0C5
06927773|A645A6A4|68E6E3F8|15282462|633AAB83 87477D63|A675A649|8BBEA96F|52EB8AE3|19402D41
96C7A5FB|5E4CBEB5|92614C96|DD9647DA|D4B0094F D9FB4CC3|669FD630|D8C9FC71|57558554|0662F64A
4C68376F|D3B63751|6286AB56|DE577A52|9003EA0F 64B4B5C5|7F12BF56|2BEADBF0|F6207B10|F2FD9787
00000000|00000000|00000000|00000000|00000000 00000000|00000000|00000000|00000000|00000000

digest F90B5ABA|7430682D|85668C62|66E1B0AD|B052AC35

27

Table 13: Collision attack of Keccak[1440, 160, 6, 160]. From a message space of
freedom degree 135 which definitely leads to β2 of Trail core No. 5, we present a pair of
messages following the first 4 rounds. To find a collision of Keccak[1440, 160, 6, 160], it
costs a time complexity of 270.24

M1

F33E499A09AD9B73|CA5358DF1D89473D|1B984D8B14D538AB|F7B7ADD4FBE9425A|B9B58D552AB12786
CEA1C136D6ADE06C|7CCD4A72E45C8222|3337867744F8E6B1|416948B8E8F30A01|E9BA1151837A99C0
CB2F620C029A0E29|6BDA24629364CE16|C1B6C702D518B1C0|DF3D3F6121C87C5E|1A5154511DCF5069
97CF66E84A7DF86F|E6D669B526963387|EC88B00FD1D1328A|7DB7FCD1A05744B2|288722B23E653CF2
051F63BA5C5EC16E|C7F1EF8734BFB4FA|000000008CE14DA4|0000000000000000|0000000000000000

M2

B3411F19C5C972E6|C6CF4F990A6FAD57|354F4EA8568AB4A4|E4A48E7A516C6A62|92B3E65F1A4114A9
28D238874AD48D50|2F4B715A451EFF5E|516C7EC96CCF73BB|24638F92E701C38B|D83A34C323CBB335
6F9D34ADABA26565|48276ACC061BF678|37B2B688A051EDB2|E93C28A0A17F2CEA|5A976AD0DAF3CB8D
5235F8FF84041376|95F8173A97D0D448|D3D8B045A3008325|28C4FD73A1542DB7|B8AB1796BACD1E17
C8ECEF0F993328A3|C2F7160C897CD9A4|00000000C6BAF84B|0000000000000000|0000000000000000

Table 14: Collision attack of 5-round Keccak-224. From a message space of freedom
degree 2 which definitely leads to β2 of Trail core No. 3, we present a pair of messages
following the first 2 rounds. To find a collision of 5-round Keccak-224, it costs a time
complexity of 2101.

M1

8E85F0BC15BBA27B|776FF9140B9AED24|52C6D4A9251C9886|D74E6FC4FB7EE6CB|40C5BF16312FEA11
0618F45C4F30B4EA|FEA4F176FFB65180|8B03CFC2E0C168A8|E47CFF2303F924D6|280AC9CC77707399
790244BCD16F3621|4125A834D1FEB877|5DA576EB0306BE03|5498B00302BECD5C|F13E10DD2A230829
26AADDAF76496EA0|E3EC0DC10D9FC852|9CDF3DE3421ACD7B|0000000000000000|0000000000000000
0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000000000000000

M2

D756F690FEDC7326|248DA8A7D0F3432D|276828C7C3A3728A|CFAC96E3956C5F35|AC2B2D679F6F1745
933191AEDE3EB500|6562F098D4099896|D24C31AF425CE2E7|ADC9058BB5E4FEFC|06D4880875530CB0
C2C4BCB373FFAD24|C2E9DCD965CAA725|06B1F37EE7F51056|4D43F63490D82FBC|18FA91952DC4DB40
14F2289283846D81|73FE0284B87D9815|91590D20B7E9251F|0000000000000000|0000000000000000
0000000000000000|0000000000000000|0000000000000000|0000000000000000|0000000000000000

28

	Introduction
	Notations
	Description of Keccak
	Overview of Our Collision Attack
	S-box linearization and affine subspaces
	A connector covering two rounds
	Analysis of degree of freedom
	How to choose 0

	Search for Differential Trails
	Properties of ,,, and
	Representation of trails and their weights
	Requirements for differential trails
	Searching strategies
	Searching results

	Experiments and Results
	Collision Attack of Keccak[1440,160,5,160]
	Collision Attack of 5-round SHAKE128
	Collision Attack of Keccak[640,160,5,160]
	Collision Attack of Keccak[1440,160,6,160]
	Collision Attack of 5-round Keccak-224
	Re-launch 4-round Collision Attacks of Keccak-224 and Keccak-256

	Conclusion
	2-dimentional Linearizable Affine Subspaces of Keccak S-box
	Differential Distribution Table of Keccak S-box FSE:DGPW12
	Steps for Finding Differential Trials
	Differential Trails
	Collisions for Keccak[r,c,nr,d]

