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Abstract. Constraint-hiding constrained PRFs (CHCPRFs), initially
studied by Boneh, Lewi and Wu [PKC 2017], are constrained PRFs
where the constrained key hides the description of the constraint. Envi-
sioned with powerful applications such as searchable encryption, private-
detectable watermarking and symmetric deniable encryption, the only
known candidates of CHCPRFs are based on indistinguishability obfus-
cation or multilinear maps with strong security properties.
In this paper we construct CHCPRFs for all NC1 circuits from the Learn-
ing with Errors assumption. The construction draws heavily from the
graph-induced multilinear maps by Gentry, Gorbunov and Halevi [TCC
2015], as well as the existing lattice-based PRFs. In fact, our construc-
tion can be viewed as an instance of the GGH15 approach where security
can be reduced to LWE.
We also show how to build from CHCPRFs reusable garbled circuits
(RGC), or equivalently private-key function-hiding functional encryp-
tions with 1-key security. This provides a different approach of construct-
ing RGC from that of Goldwasser et al. [STOC 2013].

1 Introduction

Constrained PRFs [15,39,16] are pseudorandom functions with a special mode
that outputs a constrained key defined by a predicate C. The constrained key
CKC preserves the functionality over the inputs x s.t. C(x) = 1, while leaving
the function values on inputs x s.t. C(x) = 0 pseudorandom. In the standard
formulation of constrained PRFs, the constrained key is not required to hide
the predicate C. In fact, many constructions of constrained PRFs do reveal the
constraint. A quintessential example is GGM’s puncturable PRF [33] where CK
explicitly reveals the punctured points.

The notion of constraint-hiding constrained PRF (CHCPRF), proposed by
Boneh, Lewi and Wu [12], makes the additional guarantee that the constraining
predicate C remains hidden, even given the constrained key. Such an additional
property allows the primitive to provide fairly natural constructions of search-
able encryption, watermarking, deniable encryption, and others. However, they
only propose candidates of CHCPRFs based on strong assumptions, like indistin-
guishability obfuscation (iO) or heuristic assumptions on candidate multilinear
maps (multilinear-DDH or subgroup elimination).
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This work. We further investigate the notion of CHCPRF, propose constructions
based on standard cryptographic assumptions, and demonstrate more applica-
tions.

We first propose an alternative, simulation-based definition for CHCPRF.
While for the cases addressed in our constructions the new style is (almost)
equivalent to the indistinguishability-based one from [12], the new formulation
provides a different viewpoint on the primitive.

Our main result is a construction of CHCPRF for all NC1 circuit constraints
based on the Learning with Errors (LWE) assumption [48]:

Theorem 1. Assuming the intractability of LWE, there are CHCPRFs with 1-
key simulation-based security, for all constraints recognizable by NC1 circuits.

The construction combines the graph-induced multilinear maps by Gentry, Gor-
bunov and Halevi [31], their candidate obfuscator, and the lattice-based PRFs of
[6,11,5,19]. At the heart of our technical contribution is identifying a restricted
(yet still powerful) variant of the GGH15 maps, whose security can be reduced
to LWE. This involves formulating new “LWE-hard” secret distributions that
handle the permutation matrices underlying Barrington’s construction.

In addition, we construct function-hiding private-key functional encryptions
(equivalently, reusable garbled circuits [34]) from CHCPRFs. This gives a con-
struction of reusable garbled circuits from LWE that is very different from that
of [34]:

Theorem 2. For a circuit class C, assuming 1-key simulation-based CHCPRFs
for constraints in C, and CPA secure private-key encryption whose decryption
circuit is in C, there exist 1-key secure reusable garbled circuits for C.

1.1 CHCPRFs, functional encryption and obfuscation

We propose a simulation-based definitional approach for CHCPRF, and compare
this approach to the indistinguishability-based approach of Boneh et al [12].

Defining CHCPRFs. A constrained PRF consists of three algorithms: Master
secret key generation, constrained key generation, and function evaluation. We
first note that in order to have hope to hide the constraint, the function evalu-
ation algorithm should return a random-looking value v even if evaluated on a
constrained input x, as opposed to returning ⊥ as in the standard formulation.
Furthermore, we require that the value of the original function on x remains
pseudorandom even given the constrained key and the value v.

The definition of CHCPRF is aimed at capturing three requirements: (1)
the constrained keys preserve functionality on inputs that do not match the
constraint; (2) the function values at constrained points remain pseudorandom
given the constrained key; (3) the constrained key does not reveal any informa-
tion on the constraining function.

Boneh et al [12] give a number of indistinguishability-based definitions that
vary in strength, depending on the level of adaptivity of the adversary in choosing
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the constraints and evaluation points, as well as on the number of constrained
keys that the adversary is allowed to see. We take an alternative approach and
give a simulation-based definition. We also compare the definitions, and show
equivalence and derivations in a number of cases.

Here is a sketch of the non-adaptive single-key variant of our simulation-based
definition. The definition captures all three requirements via a single interaction:
We require that, for any polytime adversary, there exists a polytime simulator
such that the adversary can distinguish between the outcomes of the following
two experiments only with negligible probability:

– In the real experiment, the system first generates a master secret key K. The
adversary can then query a constraint circuit C and many inputs x(1), ..., x(t).
In return, it obtains CKC , x

(1), ..., x(t), y(1), ..., y(t), where CKC is a key con-
strained by C, and y(i) is the result of evaluating the original, unconstrained
function with key K at point x(i). (This is so regardless of whether x(i) meets
the constraint or not.)

– In the ideal experiment, the simulator samples a master secret key KS . Once
received a constraint query, the simulator obtains only the description length
of C and creates a simulated constrained key CKS . Once received input
queries x(1), ..., x(t), the simulator also t indicator bits d(1), ..., d(t) where the
d(i) denotes whether x(i) is in the constraint, and generates simulated values
y(1)S , ..., y(t)S . If d(i) = 0, then the simulated y(i)S is uniformly random. The
output of the experiment is CKS , x(1), ..., x(t), y(1)S , ..., y(t)S .

Secret-key functional encryption from simulation-based CHCPRFs. We sketch
our construction of functional encryption from CHCPRFs. Functional encryp-
tion [13] allows the evaluator, given a functional decryption key, to learn the
value of the function applied to encrypted data without learning anything else.
With CHCPRFs in hand, it is rather simple to construct a private-key func-
tional encryption scheme that is both function-private and input-private. Our
functional encryption scheme proceeds as follows:

– Key generation: The master key for the scheme is a key K for a CHCPRF,
and a key SK for a CPA-secure symmetric encryption scheme (Enc,Dec).

– Encrypt a messagem: CT = (c, t), where c = EncSK(m), and t = CHCPRFK(c).
– Functional decryption key: The functional decryption key for a binary func-

tion f is a constrained-key CKf̂ for the function f̂(c) = f(DecSK(c)). That

is, f̂ has SK hardwired; it decrypts its input c and applies f to the plaintext.
– Functional decryption: Given ciphertext CT = (c, t) and the constrained

decryption key CKf̂ , output 1 if t = CHCPRFCKf̂
(c), 0 otherwise.

Correctness of decryption follows from the correctness and constrainability of
the CHCPRF, and secrecy follows from the constraint-hiding property.

This construction is conceptually different from the previous construction
[34]. In particular, the size of ciphertext (for 1-bit output) is the size of a sym-
metric encryption ciphertext plus the security parameter, independent of the
depth of the circuit.
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Two-key CHCPRFs imply obfuscation. It is natural to consider an extension
of the CHCPRF definition to the case where the adversary may obtain mul-
tiple constrained keys derived from the same master key. Indeed in [12] some
applications of this extended notion are presented.

We observe that this extended notion in fact implies full fledged program
obfuscation: To obfuscate a circuit C, choose a key K for a CHCPRF, and
output two constrained keys: The constrained key CK[C], and the constrained
key CK[I], where I is the circuit that always outputs 1. To evaluate C(x) check
whether CHCPRFCK[C](x) = CHCPRFCK[I](x).

Again, correctness of evaluation follows from the correctness and constrain-
ability of the CHCPRF. The level of security for the obfuscation depends on the
definition of CHCPRF in use. Specifically, the natural extension of the above
simulation-based definition to the two-key setting implies that the above simple
obfuscation method is VBB (which in turn means that the known impossibility
results for VBB obfuscation carry over to this variant of two-key CHCPRF).
The indistinguishability-based definition of [12] implies that the above obfusca-
tion method is IO.

1.2 Overview of our construction

Our construction of CHCPRFs draws heavily from the multilinear maps by Gen-
try, Gorbunov and Halevi [31], and the lattice-based PRFs of Banerjee, Peikert
and Rosen and others [6,11,5,19]. We thus start with a brief review of the relevant
parts of these works.

Recap GGH15. The GGH15 multilinear encoding is depicted by a DAG that
defines the rule of homomorphic operations and zero-testing. For our purpose it
is sufficient to consider the following special functionality (which corresponds to a
graph of ` nodes and two parallel edges from node i to node i+1, see Figure 1.1a):
We would like to encode 2`+ 1 secrets s01, s

1
1, ..., s

0
` , s

1
` , sT over some finite group

G, in such a way that an evaluator who receives the encodings can test, for any
given x ∈ {0, 1}`, whether sT =

∏`
i=1 s

xi
i , and at the same time the encodings

hide “everything else” about the secrets. (Indeed, “everything else” might have
different meanings in different contexts.)

To do that, GGH15 take the group G to actually be a ring Rq, where R
denotes the base ring (typical choices include R = Zn×n or R = Z[x]/(Φn(x)),
where n is a parameter related to the lattice dimension, and Φn is the nth cyclo-
tomic polynomial), and q is the modulus. The encoder then samples `+ 1 hard
Ajtai-type matrices {A1,A2, ...,A`,A`+1 ← R1×m

q } with trapdoors [2,3,44], and
associates each matrix with the corresponding node of the graph. These matri-
ces and their trapdoors are treated as (universal) public and secret parameters,
respectively. We refer to the indices 1 . . . `+ 1 as levels.

The 2` secrets are associated with the 2` edges of the graph in the natural
way. Encoding a secret sbi is done in two steps: First create an LWE sample
for the secret sbi under the matrix Ai+1, namely Yb

i = sbiAi+1 + Eb
i . Next,

sample a preimage Db
i of Yb

i under the matrix Ai, using the trapdoor of Ai.
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(a) The normal mode (i.e. ∀x, C(x) = 1)
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(b) The bit-fixing constraint ?0? (i.e. C(x) = 1 iff x2 = 0)

A5A4A3A2AJ

I⊗ s14

Q−1 ⊗ s04

R−1 ⊗ s13

I⊗ s03

I⊗ s12

Q⊗ s02

R⊗ s11

I⊗ s01

(c) The NC1 constraint for point x = 10 (i.e. C(x) = 0 iff x1 = 1 ∧ x2 = 0)

Fig. 1.1: Examples of the GGH15-based PRFs

That is, AiD
b
i = Yb

i and Db
i is sampled from discrete Gaussian distribution of

small width. The encoder then lets Db
i be the encoding of sbi . The encoding T

of sT , where sT =
∏`
i=1 s

xi
i for some x ∈ {0, 1}`, is defined as T = F (x), where

F (x) = A1

∏`
i=1 Dxi

i . Finally, the values A1,D
0
1,D

1
1, ...,D

0
` ,D

1
` , T are given to

the evaluator. To test a given x′ ∈ {0, 1}`, the evaluator computes F (x′) and
checks whether F (x′)− T is a matrix with small entries.

To see why this works out functionality-wise consider the following equation:

F (x) = A1

∏̀
i=1

Dxi
i =

∏̀
i=1

sxii A`+1 +
∑̀
i=1

i−1∏
j=1

sxii ·E
xi
i ·

∏̀
k=i+1

Dxi
i


︸ ︷︷ ︸

Ex

(mod q).

(1)
Indeed, if the secrets sbi are set with small norm, then the entire Ex term can

be viewed as a small error term, so the dominant factor,
∏`
i=1 s

xi
i A`+1, will

be purely determined by the multiplicative relationship of the secrets. As for
security, observe that the encoding Db

i of each secret sbi amounts to an LWE

encoding of sbi , and furthermore the encoding of sx =
∏`
i=1 s

xi
i is also in the

form of an LWE instance A`+1,
∏`
i=1 s

xi
i A`+1 + Ex (mod q). Of course, being

in the form of LWE does not amount to a clear security property that is based
on LWE. We discuss this point further below.

The power and danger in the GGH15 approach. The GGH15 encoding embeds
the plaintext s into the secret term of the LWE instance, unlike in other LWE-
based systems (e.g. Regev [48] or dual-Regev [32]) where the plaintext is as-
sociated with the error term or the A matrix. While the graph structure and
trapdoor sampling mechanism enables homomorphic evaluations on the LWE
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secrets, analyzing the security becomes tricky. Unlike the traditional case where
the LWE secrets s are independent and random, here the LWE secrets, repre-
senting plaintexts, are taken from distributions that are potentially structured
or correlated with each other.

Such dependencies make it hard to prove security of the trapdoor sampling:
Recall that the encoding Di of some secret ŝi (possibly obtained from an eval-
uation over correlated secrets) is the preimage of Yi := ŝiAi+1 + E sampled
by the trapdoor of Ai. For instance, in the extreme case where ŝi = 0, then
the public encoding Di becomes a “weak trapdoor” of Ai, which endangers the
secrets encoded on the edges heading to Ai [31].

Consequently, to safely use the GGH15 encoding, one has to consider the
joint distribution of all the LWE secrets sbi , and demonstrate that the trap-
door sampling algorithm remains secure even with respect to these secrets. We
demonstrate how to do that in a specific setting, by showing that there exists a
“simulated” way to sample the encodings without knowing the secrets or trap-
doors, and the resulting sample is indistinguishable from the real one.

LWE-based PRFs. The example of the “subset product” type encoding may
remind the readers of the lattices-based pseudorandom functions [6,11,5,19]. In-
deed, recall the basic construction of Banerjee et al [6, Section 5.1]. For modulus
2 ≤ p < q chosen such that q/p is exponential in the input length `. The secret
keys of the PRF are exactly 2` LWE secrets s01, s

1
1, ..., s

0
` , s

1
` and a uniform ma-

trix A over Rq. To evaluate, compute F (x) =
⌊∏`

i=1 s
xi
i A

⌉
p

where bvep means

multiplying v by p/q and rounding to the nearest integer. Rounding plays a
crucial role in the security proof, since it allows to add fresh small noise terms
without changing the functionality whp, hence one can inductively obtain fresh
LWE instances on any level.

Our construction for bit-fixing constraints. A bit-fixing constraint is specified by
a string c ∈ {0, 1, ?}`, where 0 and 1 are the matching bits and ? denotes the
wildcards. The constrain predicate C outputs 1 if the input matches c.

The combination of GGH15 and lattice-based PRFs inspires us to construct
CHCPRFs for bit-fixing constraints. In fact, after rounding F (x) in Equation (1),
the functionality of bF (x)e is equivalent to (up to the rounding error) both the
BPR PRF [6, Section 5.1] and a variant of the PRF in [11, Section 5.1]. If
we take the 2` LWE secrets s01, s

1
1, ..., s

0
` , s

1
` as master secret key, the encodings

A1,D
0
1,D

1
1, ...,D

0
` ,D

1
` as the evaluation key in the normal mode. An intuitive

constraining algorithm is simply replacing the LWE secret of the constrained bit
with an independent random element t, and reproduce its encoding Dt. As an
example, Figure 1.1a and Figure 1.1b illustrate the normal mode and constrained
mode of a bit-fixing PRF.

We show that the key and the outputs from both the normal mode and
the constrained mode (both modes use trapdoor sampling) are indistinguishable
from an oblivious sampling procedure without using the trapdoors. The proof
proceeds level-by-level (from level ` to level 1). Within each level i, there are
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two steps. The first step uses the computational hardness of LWE: observe that
the LWE samples associated on Ai+1 are with independent secrets, and Ai+1

is trapdoor-free in that hybrid distribution by induction, so the LWE samples
are indistinguishable from uniformly random. The second step uses a statistical
sampling lemma by Gentry, Peikert and Vaikuntanathan [32], which says the
preimage of uniform outputs can be sampled without using the trapdoor of Ai.
The proof strategy is first illustrated by Brakerski et al. where they construct
an evasive conjunction obfuscator from GGH15 [20].

We note that this construction and analysis imply that a variant of the PRF
from [11] also satisfies 1-key bit-fixing constraint hiding. Although the PRF from
[11] does not involve the trapdoor sampling procedure and is much simpler as
a bit-fixing CHCPRF, understanding the GGH15-based version is beneficial for
understanding the CHCPRF for NC1 coming next.

Embedding a general constraint in the PRF keys. We move on towards embed-
ding a general constraint in the key. Consider in particular the task of puncturing
the key at a single point without revealing the point, which is essential to the ap-
plications like watermarking and deniable encryption mentioned in [12]. Indeed,
even that simple function seems to require some new idea.

To preserve the graph structure while handling general constraints, Barring-
ton’s Theorem [8] comes into the picture. Recall that Barrington’s Theorem
converts any depth-d Boolean circuits into an oblivious branching program of
length z ≤ 4d composed of permutation matrices {Bb

i}b∈{0,1},i∈[z] of dimension
w (by default w = 5). Evaluation is done via multiplying the matrices selected
by input bits, with the final output Iw×w or a w-cycle P recognizing 1 or 0
respectively.

To embed permutation matrices in the construction, we set the secret term

for the normal mode as Sbi = Iw×w ⊗ sbi =

s
b
i 0

. . .

0 sbi

 (where ⊗ is the tensor

product operator); in the constrained mode as Sbi = Bb
i ⊗ sbi . This provides the

functionality of constraining all NC1 circuits. See Figure 1.1c for an example of
2-bit point constraint x1x2 ∈ {0, 1}2, where x1 controls the 1st and 3rd branches,
x2 controls the 2nd and 4th branches, Q and R represent different w-cycles.

We then analyze whether the permutation matrix structures are hidden in
the constrained key, and whether the constrained outputs are pseudorandom.
The first observation is that the tensor product of a permutation matrix B
and any hard LWE secret distribution s forms a hard LWE distribution, i.e. A,
(B⊗ s) ·A + E is indistinguishable from uniformly random. This means both
the secret and the permutation matrices are hidden in the constrained key.

Still, the rounded constrained output
⌊
(P⊗

∏`
i=1 s

xi
i ) ·Az+1

⌉
is a fixed per-

mutation of the original value. so the adversary can left-multiply P−1 to obtain
the original output. To randomize the constrained outputs, we adapt the “book-
end” idea from the GGH15 candidate obfuscator. That is, we multiply the output



8 Ran Canetti and Yilei Chen

on the left by a small random vector J ∈ R1×w. By a careful reduction to stan-
dard LWE, one can show that A, JA+E, J (P⊗ 1R) A+E′ is indistinguishable
from uniformly random.

With these two additional hard LWE distributions in the toolbox, we can base
NC1 CHCPRF on LWE via the same two-step proof strategy (i.e. LWE+GPV
in each level) used in the bit-fixing construction.

1.3 More on related work

More background on multilinear maps and the implication of this work. The
notion of cryptographic multilinear maps was introduced by Boneh and Silver-
berg [14]. Currently there are three main candidates [30,26,31], with a number
of variants. However, what security properties hold for the candidates remains
unclear. In particular, none of the candidates is known to satisfy the multilinear
DDH or subgroup elimination assumptions that are sufficient for the CHCPRFs
by Boneh et al [12] (see [30,24,37,25] for the attacks on these assumptions).

Note that even our result does not imply that GGH15 satisfies the traditional
assumptions like multilinear DDH, but at least it demonstrates a safe setting.
To what extent can the safe setting be generalized remains an open problem.
Indeed, a central task in the study of the existing candidate multilinear maps
is to identify settings where they can be used based on standard cryptographic
assumptions [36].

Relations to the GGH15 candidate program obfuscator. Our construction for NC1

constraints is strongly reminiscent of the candidate obfuscator from GGH15 [31,
Section 5.2]. In particular, the “secrets” in the CHCPRF corresponds to the
“multiplicative bundling scalars” from the GGH15 obfuscator. Under the re-
striction of releasing only 1 branch (either the functional branch or the dummy
branch), our result implies that the “scalars” and permutation matrices can be
hidden (without using additional safeguards such as the Kilian-type randomiza-
tion and padded randomness on the diagonal).

In contrast, the recent cryptanalysis of the GGH15 obfuscator [23] shows that
when releasing both the functional key and the dummy key, one can extract the
bundling scalars even if the obfuscator is equipped with all the safeguards.

It might be instructive to see where our reduction to LWE fail if one attempts
to apply our proof technique to the two-key setting. The point is that in this case,
the adversary obtains LWE samples Y, Y′ with correlated secrets; Therefore it
is not clear how to simulate the Gaussian samples of D conditioned on AD = Y
or of D′ conditioned on A′D′ = Y′, without knowing the trapdoors of A and
A′.

1.4 Concurrent work

In an independent work, Boneh, Kim and Montgomery [10] build CHCPRF from
LWE, for the special case of input puncturing constraints. Their construction is
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very different from ours. In particular, their starting point is the (non-hiding)
constrained PRF by Brakerski and Vaikuntanathan [19].

While they analyze their construction with respect to the indistinguishability-
based definition, they also consider a simulation-based definition that is signif-
icantly stronger than the one here. They show that it is impossible to realize
that definition for general functions. To do that, they use the same construction
of functional encryption from CHCPRFs as the one presented here.

2 Preliminaries

Notations and terminology. Let R,Z,N be the set of real numbers, integers
and positive integers. The notation R is often used to denote some base ring.
The concrete choices of R are Zn×n (the integer matrices) and Z[x]/(xn + 1)
(where n is a power of 2). We denote R/(qR) by Rq. The rounding operation
baep : Zq → Zp is defined as multiplying a by p/q and rounding the result to the
nearest integer.

For n ∈ N, [n] := {1, ..., n}. A vector in Rn is represented in column form,
and written as a bold lower-case letter, e.g. v. For a vector v, the ith component
of v will be denoted by vi. A matrix is written as a bold capital letter, e.g. A.
The ith column vector of A is denoted ai.

The length of a vector is the `p-norm ‖v‖p = (
∑
vpi )1/p. The length of a

matrix is the norm of its longest column: ‖A‖p = maxi ‖ai‖p. By default we use
`2-norm unless explicitly mentioned. When a vector or matrix is called “small”
(or “short”), we refer to its norm (resp. length). The thresholds of “small” will be
precisely parameterized in the article and are not necessary negligible functions.

2.1 Matrix branching programs

Definition 1 (Matrix branching programs). A width-w, length-z matrix
branching program over `-bit inputs consists of an index-to-input map, a sequence
of pairs of matrices Bb

i , and a non-identity matrix P representing 0: BP = {ι :
[z] → [`], {Bb

i ∈ {0, 1}w×w}i∈[z],b∈{0,1}, P ∈ {0, 1}w×w \ {I}}. The program

computes the function fBP : {0, 1}` → {0, 1}, defined as

fBP(x) =


1 if

∏
i∈[z] B

xι(i)
i = I

0 if
∏
i∈[z] B

xι(i)
i = P

⊥ elsewhere

A set of branching programs {BP} is called oblivious if all the programs in
the set have the same index-to-input map ι.

Theorem 3 (Barrington’s theorem [8]). For d ∈ N, and for any set of
depth-d fan-in-2 Boolean circuits {C}, there is an oblivious set of width-5 length-
4d branching programs {BP} with a index-to-input map ι, where each BP is
composed of permutation matrices {Bb

i ∈ {0, 1}5×5}i∈[z],b∈{0,1}, a 5-cycle P,
and ι.



10 Ran Canetti and Yilei Chen

2.2 Lattices

An n-dimensional lattice Λ is a discrete additive subgroup of Rn. Given n linearly
independent basis vectors B = {b1, ...,bn ∈ Rn}, the lattice generated by B is

Λ(B) = Λ(b1, ...,bn) = {
n∑
i=1

xi · bi, xi ∈ Z}. We have the quotient group Rn/Λ

of cosets c + Λ = {c + v,v ∈ Λ}, c ∈ Rn. Let B̃ denote the Gram-Schmidt
orthogonalization of B.

Gaussian on lattices. For any σ > 0, define the Gaussian function on Rn centered
at c with parameter σ:

∀x ∈ Rn, ρσ,c(x) = e−π‖x−c‖
2/σ2

For any c ∈ Rn, σ > 0, and n-dimensional lattice Λ, define the discrete
Gaussian distribution over Λ as:

∀x ∈ Λ, DΛ+c,σ(x) =
ρσ,c(x)

ρσ,c(Λ)

Lemma 1 ([47,45]). Let B be a basis of an m-dimensional lattice Λ, and let
σ ≥ ‖B̃‖ · ω(log n), then Prx←DΛ,σ [‖x‖ ≥ σ ·

√
m ∨ x = 0] ≤ negl(n).

Gentry, Peikert and Vaikuntanathan [32] show how to sample statistically
close to discrete Gaussian distribution in polynomial time for sufficiently large σ
(the algorithm is first proposed by Klein [40]). The sampler is upgraded in [18]
so that the output is distributed exactly as a discrete Gaussian.

Lemma 2 ([32,18]). There is a p.p.t. algorithm that, given a basis B of an
n-dimensional lattice Λ(B), c ∈ Rn, σ ≥ ‖B̃‖ ·

√
ln(2n+ 4)/π, outputs a sample

from DΛ+c,σ.

We then present the trapdoor sampling algorithm and the corollary of GPV
lemma in the general ring R.

Lemma 3 ([2,3,44]). There is a p.p.t. algorithm TrapSam(R, 1n, 1m, q) that,
given the base ring R, modulus q ≥ 2, lattice dimension n, and width parameter
m (under the condition that m = Ω(log q) if R = Zn×n, m = Ω(n log q) if
R = Z[x]/(xn + 1)), outputs A← U(R1×m

q ) with a trapdoor τ .

Lemma 4 ([32]). There is a p.p.t. algorithm PreimgSam(A, τ,y, σ) that with
all but negligible probability over (A, τ)← TrapSam(R, 1n, 1m, q), for sufficiently
large σ = Ω(

√
n log q), the following distributions are statistically close:

{A,x,y : y← U(Rq),x← PreimgSam(A, τ,y, σ)} ≈s {A,x,y : x← γσ,y = Ax}

where γσ represents D1×n
Znm,σ if R = Zn×n; represents DRm,σ if R = Z[x]/(xn+1).

When the image is a matrix Y = [y1||...||y`], we abuse the notation for the
preimage sampling algorithm, use D ← PreimgSam(A, τ,Y, σ) to represent the
concatenation of ` samples from di ← PreimgSam(A, τ,yi, σ)i∈[`].
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2.3 General learning with errors problems

The learning with errors (LWE) problem, formalized by Regev [48], states that
solving noisy linear equations, in certain rings and for certain error distributions,
is as hard as solving some worst-case lattice problems. The two typical forms used
in cryptographic applications are (standard) LWE and RingLWE. The latter is
introduced by Lyubashevsky, Peikert and Regev [42].

We formulate them as the General learning with errors problems similar to
those of [17], with more flexibility in the secret distribution and the base ring.

Definition 2 (General learning with errors problem). The (decisional)
general learning with errors problem (GLWE) is parameterized by the base ring
R, dimension parameters k, `,m for samples, dimension parameter n for lattices,
modulus q, the secret distribution η over Rk×`, and the error distribution χ
over R`×m. The GLWER,k,`,m,n,q,η,χ problem is to distinguish the following two
distributions: (1) LWE samples s ← η, A ← U(R`×mq ), E ← χk×m, output

(A, sA + E) ∈ (R`×mq ×Rk×mq ); (2) uniform distributions U(R`×mq ×Rk×mq ).

We define GLWER,k,`,m,n,q,η,χ-hardness for secret distributions. The subscripts
are dropped if they are clear from the context.

Definition 3. A secret distribution η is called GLWER,k,`,m,n,q,η,χ-hard if no
p.p.t. adversary distinguishes the two distributions in the GLWER,k,`,m,n,q,η,χ
problem with 1/2 plus non-negligible probability.

Here are the connections of decisional LWE/RingLWE to the worst-case lat-
tice problems, in the language of GLWE-hardness. For the LWE problem we
present the version where the secret is a square matrix.

Lemma 5 (LWE [48,46,18]). Let n be an integer, R = Zn×n. q be an integer
modulus, 0 < σ < q such that σ > 2

√
n. If there exists an efficient (possibly

quantum) algorithm that breaks GLWER,1,1,m,n,q,U(Rq),D
n×n
Z,σ

, then there exists an

efficient (possibly quantum) algorithm for approximating SIVP and GapSVP in
the `2 norm, in the worst case, to within Õ(nq/σ) factors.

Lemma 6 (RingLWE [42,29,41]). Let n be a power of 2, R = Z[x]/(xn + 1).
Let q be a prime integer s.t. q ≡ 1 (mod n). 0 < σ < q, σ > ω(

√
log(n)),

σ′ > n3/4m1/4σ. If there exists an efficient (possibly quantum) algorithm that
breaks GLWER,1,1,m,n,q,U(Rq),DR,σ′

, then there exists an polynomial time quantum
algorithm for solving SVP for ideal-lattices over R, in the worst case, to within
Õ(
√
nq/σ) factors.

For proper choices of parameters, error distributions of small norm can be
used as hard secret distribution (usually called Hermit-normal-form LWE).

Lemma 7 (HNF-LWE [4,18]). For R,m, n, q, σ chosen as was in Lemma 5,
GLWER,1,1,m′,n,q,Dn×nZ,σ ,Dn×nZ,σ

is as hard as GLWER,1,1,m,n,q,U(Rq),D
n×n
Z,σ

for m′ ≤
m− (16n+ 4 log log q).

Lemma 8 (HNF-RingLWE [43]). For R,m, n, q, σ, σ′ chosen as in Lemma 6,
GLWER,1,1,m−1,n,q,DR,σ′ ,DR,σ′ is as hard as GLWER,1,1,m,n,q,U(Rq),DR,σ′

.
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Pseudorandom functions based on GLWE. We adapt theorems from the PRF
construction of Boneh, Lewi, Montgomery, and Raghunathan [11, Theorems 4.3, 5.1].
The result was originally stated for LWE. We observe that it holds for general
rings under proper choices of parameter. A proof sketch is described in [21].

Lemma 9 (Adapted from [11]). Let ` ∈ N be the bit-length of the input.
m,n, q, p ∈ N, σ,B ∈ R s.t. 0 < σ < q, B ≥ σ

√
m, q/p > B`. η = U(Rq), γσ is

a distribution over Rm×m parameterized by σ, χσ is a distribution over R1×m

parameterized by σ. ‖γσ‖, ‖χσ‖ ≤ σ
√
m.

Consider the function f : {0, 1}` → R1×m
p , fU(x) =

⌊
U
∏`
i=1 Dxi

i

⌉
p
, where

U ← U(R1×m
q ) is the private parameter, {Db

i ← γσ}b∈{0,1},i∈[`] is the public
parameter.

If there is an efficient algorithm that given input A ← U(R1×m
q ), outputs

U ∈ R1×m
q ,D ∈ Rm×m that are statistically close to U(R1×m

q )× γσ and UD =
A; then f is a PRF assuming the hardness of GLWER,1,1,m,n,q,η,χσ .

3 GLWE-hard distributions: extension package

We prove GLWE-hardness for the following “structural” secret distributions.
They are used in the analysis of Construction 11.

Lemma 10. Fix a permutation matrix B ∈ {0, 1}w×w. If a secret distribution
η over R is GLWER,1,1,w2m,n,q,η,χ-hard, then the secret distribution B ⊗ η is
GLWERw×w,1,1,m,n,q,B⊗η,χw×w -hard.

Proof. For a permutation matrix B ∈ {0, 1}w×w, suppose there is a p.p.t. dis-
tinguisher between samples from

(B,A, (B⊗ s)A + E), where A← U(Rw×wmq ), s← η,E← χw×wm

and samples from the uniform distribution (B, U(Rw×wmq ), U(Rw×wmq )), then we
build an attacker for GLWER,1,1,w2m,n,q,η,χ.

The attacker is given an GLWER,1,1,w2m,n,q,η,χ instance

(A′,Y′) = (A1||...||Aw,Y1||...||Yw), where Ai,Yi ∈ R1×wm, i ∈ [w].

It then rearranges the blocks as (U,V) ∈ Rw×wm × Rw×wm, where the ith

(blocked) row of U is Ai, the ith (blocked) row of V is Yi. The attacker then
sends (B,U, (B⊗ 1R) V) to the distinguisher. Observe that (B,U, (B⊗ 1R) V)
is from the B⊗ η secret distribution if (A′,Y′) is from the η secret distribution,
or from the uniform distribution if (A′,Y′) is from the uniform distribution.
Hence the attacker wins with the same probability as the distinguisher. ut

Lemma 11. Let w ∈ [2,∞) ∩ Z. Fix a permutation matrix C ∈ {0, 1}w×w that
represents a w-cycle. If a secret distribution η over R is GLWER,1,1,wm,n,q,η,χ-
hard, then (η1×w, η1×w×(C⊗ 1R)) is GLWER,2,w,m,n,q,(η1×w,η1×w×(C⊗1R)),χ-hard.
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Proof. Let H = [h1, h2, ..., hw] where {hi ← η}i∈[w]. Let

H := {(Aj ,Yi,j = hiAj + Ei,j)|Aj ← U(R1×m
q ), hi ← η,Ei,j ← χ, i, j ∈ [w]}

be the rearranging of w independent GLWE samples from GLWER,1,1,wm,n,q,η,χ.
H is indistinguishable from the uniform distribution U := {(Aj ,Yi,j)|Aj ←
U(R1×m

q ),Yi,j ← U(R1×m
q ), i, j ∈ [w]} due to standard GLWE.

We show that if there is an attacker D′ that distinguishes

(A,HA + E,H (C⊗ 1R) A + E′),

where E,E′ ← χ1×m from

U(Rw×mq ×R1×m
q ×R1×m

q ),

then there is a distinguisher D for (a subset of) H and U .
To do so, we simulate the (η1×w, η1×w × (C⊗ 1R)) samples from H or U

by setting A ∈ Rw×m where the jth row of A is Aj , Y :=
∑
j∈[w] Yj,j , and

Z :=
∑
j∈[w] Yζ(j),j , where ζ(j) : [w] → [w] outputs the row number of the

1-entry in the jth column of C. Note that being a w-cycle indicates that the
1-entries in C disjoint with the 1-entries in Iw×w. Observe that the sample
(A,Y,Z) is from the secret distribution (η1×w, η1×w× (C⊗ 1R)) if transformed
from H, or from the uniform distribution if transformed from U . Hence the
distinguisher D′ wins with the same probability as the attacker D. ut

4 Constraint-hiding constrained PRFs

This section provides the definitions of constraint-hiding constrained PRFs.
We first recall the indistinguishability-based definition from [12], then give our
simulation-based definition, and discuss the relations among these two definitions
and program obfuscation.

4.1 The indistinguishability-based definition

We first recall the indistinguishability-based definition for CHCPRF from [12].

Definition 4 (Indistinguishability-based CHCPRF [12]).
Consider a family of functions F = {Fλ}λ∈N where Fλ = {Fk : Dλ →

Rλ}λ∈N, along with a triple of efficient functions (Gen, Constrain, Eval). For
a constraint family C = {Cλ : Dλ → {0, 1}}λ∈N; the key generation algo-
rithm Gen(1λ) generates the master secret key MSK, the constraining algorithm
Constrain(1λ,MSK, C) takes the master secret key MSK, a constraint C, outputs
the constrained key CK; the evaluation algorithm Eval(k, x) takes a key k, an
input x, outputs Fk(x).

We say that F is an indistinguishability-based CHCPRF for C if it
satisfies the following properties:
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Functionality preservation over unconstrained inputs. For input x ∈
Dλ s.t. C(x) = 1, Pr[Eval(MSK, x) = Eval(CK, x)] ≥ 1 − negl(λ), where the
probability is taken over the randomness in algorithms Gen and Constrain.

Pseudorandomness for constrained inputs. Consider the following ex-
periment between a challenger and an adversary. The adversary can ask 3 types
of oracle queries: constrained key oracle, evaluation oracle, and challenge ora-
cle. For b ∈ {0, 1}, the challenger responds to each oracle query in the following
manner:

– Constrained key oracle. Given a circuit C ∈ C, the challenger outputs a
constrained key CK← Constrain(1λ,MSK, C).

– Evaluation oracle. Given an input x ∈ Dλ, the challenger outputs y ←
Eval(MSK, x).

– Challenge oracle. Given an input xc ∈ Dλ, the challenger outputs y ←
Eval(MSK, xc) if b = 1; outputs y ← U(Rλ) if b = 0.

The queries from the adversary satisfy the conditions that C(xc) = 0, and xc is
not sent among evaluation queries. At the end of the experiment, the adversary
chooses b′ and wins if b′ = b. The scheme satisfies the pseudorandomness prop-
erty if the winning probability of any p.p.t. adversary is bounded by 1/2+negl(λ).

Indistinguishability-based constraint-hiding. Consider the following
experiment between a challenger and an adversary. The adversary can ask 2 types
of oracle queries: constrained key oracle or evaluation oracle. For b ∈ {0, 1}, the
challenger responds to each oracle query in the following manner:

– Constrained key oracle. Given a pair of circuits C0, C1 ∈ C, the challenger
outputs a constrained key for Cb: CK← Constrain(1λ,MSK, Cb).

– Evaluation oracle. Given an input x ∈ Dλ, the challenger outputs y ←
Eval(MSK, x).

For a circuit C ∈ C, denote S(C) := {x ∈ Dλ : C(x) = 1}. Suppose the adversary

asks h pairs of circuit constraints {C(g)
0 , C

(g)
1 }g∈[h], the queries are admissible

if (1) ∀i 6= j ∈ [h], S(C
(i)
0 ) ∩ S(C

(j)
0 ) = S(C

(i)
1 ) ∩ S(C

(j)
1 ); (2) for all input

evaluation queries x, for all g ∈ [h], C
(g)
0 (x) = C

(g)
1 (x).

At the end of the experiment, the adversary chooses b′ and wins if b′ = b.
The scheme satisfies the constraint-hiding property if the winning probability of
any p.p.t. adversary is bounded by 1/2 + negl(λ).

4.2 The simulation-based definition

Next we give the simulation-based definition. We first present a definition that
is central to the discussions and constructions in the paper, then mention its
variants.

Definition 5 (Simulation-based CHCPRF). Consider a family of functions
F = {Fλ}λ∈N with the same syntax as in Definition 4. We say that F is
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simulation-based CHCPRF for family C of circuits if for any polytime
stateful algorithm Adv, there is a polytime stateful algorithm Sim such that:

{Experiment REALAdv(1
λ)}λ∈N ≈c {Experiment IDEALAdv,Sim(1λ)}λ∈N

The ideal and real experiments are defined as follows for adversaries Adv and
Sim. Both algorithms are stateful.

Experiment REALAdv(1
λ) Experiment IDEALAdv,Sim(1λ)

MSK← Gen(1λ), Sim← 1λ

Repeat : Repeat :

Adv→ (x, dx); y = Eval(MSK, x) Adv→ (x, dx); y = Sim(x, dx)

Adv← y if dx = 0 then y = U(R);Adv← y

Adv→ C; Adv→ C;

if dx 6= C(x) for some x then Output ⊥ if dx 6= C(x) for some x then Output ⊥

else Adv ← Constrain(MSK, C) else Adv← Sim(1|C|)

Repeat : Repeat :

Adv→ x; y = Eval(MSK, x) Adv→ x; y = Sim(x,C(x))

Adv← y if C(x) = 0 then y = U(R);Adv← y

Adv→ b; Output b Adv→ b; Output b

That is, in the experiments the adversary can ask a single constraint query and
polynomially many input queries, in any order. For input queries x made before
the circuit query, Adv is expected to provide a bit bx indicating whether C(x) = 1.
In the real experiment Adv obtains the unconstrained function value at x. In the
ideal experiment Sim learns the indicator bit dx; if dx = 1 then Adv gets a value
generated by Sim, and if dx = 0 then Adv obtains a random value from the
range R of the function. Once Adv makes the constraint query C ∈ Cλ, both
experiments verify the consistency of the indicator bits dx for all the inputs x
queried by Adv so far. If any inconsistency is found then the experiment halts.
Next, in the real experiment Adv obtains the constrained key generated by the
constraining algorithm; in the ideal experiment Adv obtains a key generated by
Sim, whereas Sim is given only the size of C. The handling of input queries made
by Adv after the circuit query is similar to the ones before, with the exception
that the indicator bit dx is no longer needed and Sim obtains the value of C(x)
instead. The output of the experiment is the final output bit of Adv.

Remark 1. One may also consider a stronger definition than Definition 5 where
the adversary is not required to provide the indicator bits dx in the queries
prior to prodiving the constraint. However we note that this stronger definition
is unachievable if the number of input queries before the constraint query is
unbounded, due to an “incompressibility” argument similar to the one from [1].

Remark 2. The simulation-based definition can also be generalized to the setting
where the adversary queries multiple constrained keys. That is, once received
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each constrained key query, the simulator has to simulate a constrained key,
given only the size of the constraining circuit. We further discuss this strong
variant shortly.

4.3 Relations among the definitions

We discuss the relation among the definitions of CHCPRF and program obfus-
cation.

Multiple-key CHCPRFs implies obfuscation. We show that the simulation-based
CHCPRF for 2 keys implies virtual black-box obfuscation (VBB), which is im-
possible to obtain for general functionalities [35,7]. For the indistinguishability-
based definition proposed in [12], achieving 2-key security implies indistinguisha-
bility obfuscation [7].

Recall the definitions for VBB obfuscation (we present the strongest variant
in [7]) and indistinguishability obfuscation.

Definition 6 (Obfuscation [35,7]). A probabilistic algorithm O is an obfus-
cator for a class of circuit C if the following conditions hold:

– (Preservation of the function) For all inputs x, Pr[C(x) = O(C(x))] > 1 −
negl(λ).

– (Polynomially slowdown) There is a polynomial p s.t. |O(C)| < p(|C|).
– (Strong virtual black-box obfuscation) For any p.p.t. adversary Adv, there is

a p.p.t. simulator Sim s.t. for all C, {Adv(1λ, O(C))} ≈c {SimC(1λ, |C|)}.
– (Indistinguishability obfuscation) For functionally equivalent circuits C0, C1,
O(C0) ≈c O(C1).

Construction 4 (Obfuscator from 2-key CHCPRFs) Given a CHCPRF,
we construct an obfuscator for C by create a constrained key CK[C], and a con-
strained key CK[I] where I is the circuit that always outputs 1. To evaluate C(x),
output 1 if CHCPRFCK[C](x) = CHCPRFCK[I](x), 0 otherwise.

Theorem 5. If 2-key simulation-secure CHCPRF exists for circuit class C, then
strong VBB obfuscation exists for circuit class C.

Proof. The simulator for the VBB obfuscator (does not have to make oracle
queries to C) runs the simulator for CHCPRF, produce simulated constraint
keys for CKS [C], CKS [I], which are indistinguishable from the real constrained
keys CK[C], CK[I] that are used to construct the obfuscator. ut

Corollary 1 ([35,7]). There are circuit classes for which 2-key simulation-
secure CHCPRF does not exist.

Theorem 6. If 2-key indistinguishability-based CHCPRF exists for circuit class
C, then indistinguishability obfuscation exists for circuit class C.

Proof. For a circuit C, the obfuscator outputs CK[C], CK[I]. For functionally
equivalent circuits C0 and C1, S(C0) ∩ S(I) = S(C1) ∩ S(I). By indistinguisha-
bility constraint-hiding, (CK[C0],CK[I]) ≈c (CK[C1],CK[I]). ut
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Simulation and indistinguishability-based definitions for CHCPRF. Next we dis-
cuss the relation of the simulation and indistinguishability-based definitions for
CHCPRF, under 1-key security. The two definitions are equivalent in the 1-key
setting, for the corresponding order of queries and adaptivity. Below we state
the theorems for the non-adaptive version of the definitions, then discuss their
generalizations to the adaptive setting.

We first show that the simulation based definition implies the indistinguisha-
bility based definition.

Theorem 7. If a CHCPRF satisfies the non-adaptive simulation-based defini-
tion, then it satisfies the non-adaptive indistinguishability-based definition.

The proof of this theorem is via a standard hybrid argument and we describe
the proof in [21]. The implication holds for the adaptive setting. In particular,
the standard simulation definition from Definition 5 implies Definition 4 where
the predicates on the input queries are committed; for the stronger simulation
definition discussed in Remark 1, it implies the fully adaptive variant of Defini-
tion 4.

In the 1-key setting, the indistinguishability definition implies the simulation
based definition.

Theorem 8. If a CHCPRF satisfies 1-key non-adaptive indistinguishability-
based definition, it satisfies the 1-key non-adaptive simulation-based definition.

Proof. For a CHCPRF F that satisfies Definition 4 for one constrained key
query, we construct a simulator as per Definition 5. The simulator picks an all-1
circuit CS = I such that I(x) = 1,∀x ∈ Dλ, and use the indistinguishability-
secure constraining algorithm to derive a constrained key CKS for CS . Once
the simulator obtains the inputs and the indicators {x(k), d(k)}k∈[t], if d(k) = 1,

outputs Eval(CKS , x(k)); if d(k) = 0, outputs y ← U(Rλ).
We first prove constraint-hiding. Suppose there is an adversary A′ that dis-

tinguishes the simulated distribution from the real distribution, we build an
adversary A that breaks the indistinguishability definition for F . A sends con-
strained circuit queries C0 = C and C1 = I, obtains CK[Cb]. Then A sends input
queries. For x(k) s.t. C(x(k)) = I(x(k)) = 1, the output is Eval(CK[Cb], x

(k)); for
x(k) s.t. C(x(k)) 6= I(x(k)), it is an inadmissible query so A samples an uniform
random output on its own. Then A forwards CK[Cb], inputs and outputs to A′.
The choice of A′ for the real or the simulated distribution corresponds to b = 0
or 1, hence the advantage of A is equivalent to A′.

The proof for pseudorandomness of constrained outputs is analogous. ut

The theorem extends to the setting where the input queries can be made after
the constraint query.

5 The constructions

In Sections 5.1 and 5.2 we present the bit-fixing and NC1 CHCPRFs.
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5.1 Bit-fixing CHCPRFs

Definition 7 (Bit-fixing constraint [15]). A bit-fixing constraint is specified
by a string c ∈ {0, 1, ?}`, where 0 and 1 are the fixing bits and ? denotes the
wildcards. C(x) = 1 if the input matches c, namely ((x1 = c1) ∨ (c1 = ?)) ∧ ... ∧
((x` = c`) ∨ (c` = ?)).

We start with a brief overview of the construction and then give the details.
For a PRF with `-bit input, the key-generation algorithm samples 2` secrets
from GLWE-hard distributions with small Euclidean norm {sbi ← η}b∈{0,1},i∈[`],
places them in a chain of length ` and width 2, and uses the GGH15 methodology
to encode the chain. The evaluation key consists of the resulting A1 matrix and
the D matrices {Db

i}b∈{0,1},i∈[`].
The evaluation algorithm selects the path according to the input, computes

the product of D matrices along the path
∏`
i=1 Dxi

i , then multiplies A1 on the

left. The unrounded version of the output A1

∏`
i=1 Dxi

i is close to
∏`
i=1 s

xi
i A`+1,

where “close” hides the cumulated error terms. Finally, the resulting subset
product is rounded by p where 2 ≤ p < q, q/p > B with B being the maximum
error bound. Rounding is required for correctness and security.

Construction 9 (Bit-fixing CHCPRFs) We construct a function family F =
{f : {0, 1}` → R1×m

p } equipped with algorithms (Gen,Constrain,Eval) and a set

of vectors C = {c ∈ {0, 1, ?}`}:

– Gen(1λ) takes the security parameter λ, samples parameters q, p, σ,m, A`+1 ←
U(Rmq ), {(Ai, τi) ← TrapSam(R, 1n, 1m, q)}i∈[`]. Then, sample 2` indepen-

dent small secrets from GLWE-hard distributions {sbi ← η}b∈{0,1},i∈[`]. Next,

encode the secrets as follows: first compute {Yb
i = sbiAi+1 + Eb

i ,E
b
i ←

χm}i∈[`],b∈{0,1}, then sample {Db
i ← PreimgSam(Ai, τi,Y

b
i , σ)}i∈[`],b∈{0,1}

Set MSK := ({Ai}i∈[1,`+1], {τi}i∈[`], {sbi ,Db
i}i∈[`],b∈{0,1}).

– Constrain(MSK, c) takes MSK and the bit-matching vector c, for i ∈ [`],
if ci 6= ? (i.e. specified as 0 or 1), replaces the original s1−cii by a fresh
t1−cii ← η, then updates the encodings on these secrets: Y1−ci

i = t1−cii Ai+1+

E′
1−ci
i ,E′

1−ci
i ← χm, samples D1−ci

i ← PreimgSam(Ai, τi,Y
1−ci
i , σ).

Set CK := (A1, {Db
i}i∈[`],b∈{0,1}).

– Eval(k, x) takes the key k = (A1, {Db
i}i∈[`],b∈{0,1}) and the input x, outputs⌊

A1

∏`
i=1 Dxi

i

⌉
p
.

Remark 3. We occasionally call i ∈ {1, 2, ..., `} “levels”, from low to high.

Setting of parameters. Parameters shall be set to ensure both correctness (i.e.
the preservation of functionality over unconstrained inputs) and security. Note
that the approximation factors of the underlying worst-case (general or ideal)
lattices problems are inherently exponential in `.

Specifically, for R = Zn×n, set η = χ = Dn×n
Z,σ , γ = D1×nm

Znm,σ. The parameters

are set to satisfy m ≥ 2 log q due to Lemma 3; q/p > (σ ·m)` due to Lemma 1
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for the correctness of rounding; 0 < σ < q, σ = 2
√
n log q, nq/σ < 2λ

1−ε
due

to Lemmas 4, 5, 7, and 9. An example setting of parameters: p = 2, ε = 1/2,
q = (32`n2 log n)`, λ = n = (log q)2.

For R = Z[x]/(xn + 1), n being a power of 2, set η = χ = DR,σ, γ =
D1×m
Rm,σ. The parameters are set to satisfy m ≥ 2 · n log q due to Lemma 3;

q/p > (σ ·n3/4m5/4)` due to Lemma 1 for the correctness of rounding; 0 < σ < q,

σ = 2
√
n log q, nq/σ < 2λ

1−ε
due to Lemmas 4, 6, 8, and 9. An example setting

of parameters against the state-of-art ideal SVP algorithms [9,27,28]: p = 2,
ε = 0.5001, q = (70`n3 log n)`, λ = n = (log q)2.1.

Theorem 10. Assuming GLWER,1,1,m,n,q,η,χ, Construction 9 is a simulation-
secure bit-fixing CHCPRF.

Functionality preservation on the unconstrained inputs. The constraining algo-
rithm does not change any secrets on the unconstrained paths. So the function-
ality is perfectly preserved.

Security proof overview. The aim is to capture two properties: (1) pseudoran-
domness on the constrained inputs (2) the constrained key is indistinguishable
from an obliviously sampled one.

We construct a simulator as follows: the simulator samples a key composed
of A matrices from uniform distribution and D matrices from discrete-Gaussian
distribution of small width. For the input-output pairs queried by the adversary,
if the functionality is preserved on that point, then the simulator, knowing the
input x, simply outputs the honest evaluation on the simulated key. If the input
is constrained, it means at some level i, the secret txii in the constrained key
is sampled independently from the original secret key sxii . Therefore the LWE
instance sxii Ai+1 +Exi

i , in the expression of the constrained output, provides an
fresh random mask U. The reduction moves from level `+ 1 to level 1. At level
1, by the result of [11], the rounded output on x is pseudorandom if C(x) = 0.

Note that the evaluation algorithm only needs A1 but not the rest of the A
matrices. However, in the analysis we assume all the A matrices are public.

Proof. The simulator samples all the {Aj}j∈[1,`+1] matrices from random and

{Db
i}b∈{0,1},i∈[`] from γ, outputs the constrained key (A1, {Db

i}i∈[`],b∈{0,1}). To

respond the input queries, the simulator picks {y(k)}k∈[t] according to {d(k)}k∈[t]:
if d(k) = 1 (i.e. the functionality is preserved on the constraint key at x(k)), then

outputs y(k) =

⌊
A1

∏`
i=1 D

x
(k)
i
i

⌉
p

(the honest evaluation on the simulated key);

otherwise y(k) ← U(R1×m
p ).

The proof consists of two parts. The first part (Lemma 12) shows that the
real distribution is indistinguishable from a semi-simulated one, where all the D
matrices on the constrained key are sampled obliviously without knowing the
constraint and the trapdoors of A matrices, and all the outputs are derived
from the simulated constrained key. The second part (Lemma 13) argues that
the outputs are pseudorandom if they are in the constrained area.
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In the first part, we define intermediate hybrid distributions {Hv}v∈[0,`]. H`
corresponds to the real constrained key and outputs, H0 corresponds to the
simulated constrained key and the semi-simulated outputs. The intermediate
simulator in Hv knows the partial constraint from level 1 to v, and the level
w(k) ∈ {v, ..., `} where the input x(k) starts to deviate from the constraint vector.

Descriptions of Hv, v ∈ [0, `]: The simulator in Hv

1. Samples {(Aj , τj) ← TrapSam(R, 1n, 1m, q)}j∈[v] with trapdoors, {Aj′ ←
U(Rmq )}j′∈[v+1,`+1] from uniform;

2. Samples the GLWE secrets {sbi ← η}b∈{0,1},i∈[v] below level v; then, with
part of the constraint vector c[v] in hand, for i ∈ [v], if ci 6= ?, samples

t1−cii ← η;
3. For b ∈ {0, 1}, i ∈ [v], if tbi is sampled in the previous step, samples Yb

i :=

tbiAi+1 + E′
b
i ; otherwise, Yb

i := sbiAi+1 + Eb
i ,

4. Samples {Db
i ← PreimgSam(Ai, τi,Y

b
i , σ)}b∈{0,1},i∈[v] as the constrained-

key below level v. Samples the rest of the D matrices obliviously {Db
i ←

γ}b∈{0,1},i∈[v+1,`].
5. To simulate the outputs, the simulator maintains a list U of U matrices

(to be specified) initiated empty. For k ∈ [t], if the constraint is known to

deviate in the path of x
(k)
[v+1,`] from level w(k) ∈ [v + 1, `], then compute

y(k) as

⌊∏v
i=1 s

x
(k)
i
i U

x
(k)

[v+1,w]
∏`
j=w(k) D

x
(k)
j

j

⌉
p

— here U
x
(k)

[v+1,w] is indexed by

x
(k)
[v+1,w]; if it is not in the list U , sample U

x
(k)

[v+1,w] ← U(Rmq ), include it in

U ; otherwise, reuse the one in U . If x(k) has not deviated above level v, then

y(k) =

⌊∏v
i=1 s

x
(k)
i
i Av+1

∏`
j=v+1 D

x
(k)
j

j

⌉
p

.

Lemma 12. Hv ≈c Hv−1, for v ∈ {`, ..., 1}.

Proof. The difference of Hv and Hv−1 lies in the sampling of D0
v, D1

v and the
outputs {y(k)}. We first analyze the difference of the outputs between Hv and
Hv−1 by classifying the input queries into 3 cases:

1. For input x(k) that matches the partial constraint vector c[v,`], observe that⌊∏v−1
i=1 s

x
(k)
i
i Av

∏`
j=v D

x
(k)
j

j

⌉
p

=

⌊∏v−1
i=1 s

x
(k)
i
i (s

x(k)
v
v Av+1 + E

x(k)
v
v )

∏`
j=v+1 D

x
(k)
j

j

⌉
p

≈s
⌊∏v

i=1 s
x
(k)
i
i Av+1

∏`
j=v+1 D

x
(k)
j

j

⌉
p

, where ≈s is due to the small norm of

∏v−1
i=1 s

x
(k)
i
i E

x(k)
v
v

∏`
j=v+1 D

x
(k)
j

j . Hence the output is statistically close in Hv−1
and Hv.

2. For the input x(k) that is preserving above level v but deviated at level v,

the fresh LWE secret t
x(k)
v
v sampled in the constrained key is independent

from the original key s
x(k)
v
v . So s

x(k)
v
v Av+1 + E

x(k)
v
v and t

x(k)
v
v Av+1 + E′

x(k)
v
v are

treated as independent LWE instances w.r.t. Av+1.
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3. For x(k) that has deviated above level v, the output can be written as

y(k) =

 v∏
i=1

s
x
(k)
i
i U

x
(k)

[v+1,w]

∏̀
j=w(k)

D
x
(k)
j

j


p

≈s

v−1∏
i=1

s
x
(k)
i
i (s

x(k)
v
v U

x
(k)

[v+1,w] + E′)
∏̀

j=w(k)

D
x
(k)
j

j


p

,

(2)

where U
x
(k)

[v+1,w] is uniform by induction.

To summarize, there are less than 3(|U|+1) matrices that are GLWE samples in
Hv while uniform in Hv−1. The GLWE samples involves 3 independent secrets:
s0v, s

1
v and t1−cvv if cv 6= ?. t1−cvv is only masked by Av+1; {sbv}b∈{0,1} are masked

by Av+1 (in the constrained key and the outputs of cases (1) and (2)) and the
uniform matrices in the list U (the outputs of case (3)); all the samples are
associated with independently sampled noises.

If there is an attacker A′ that distinguishes Hv and Hv−1 with non-negligible
probability ζ, we can build an attacker A who distinguishes (a subset among the
3(|U|+ 1)) GLWE samples

{[Av+1,U
1,U2, ...,U|U|], [s0v, s

1
v, t

1−ci
v ]T · [Av+1,U

1,U2, ...,U|U|] + Ẽ},

where Ẽ← χ3×(|U|+1)m from

{U(R(|U|+1)m
q ×R3×(|U|+1)m

q )}

To do so, once A obtains the samples, it places the samples under mask Av+1

in the constrained key and the outputs of cases (1) and (2); places the samples
under masks U1, ...,U|U| in the outputs of cases (3). Then samples {Aj}j∈[v]
with trapdoors, GLWE secrets {sbi ← η}b∈{0,1},i∈[v]. Then samples {Db

i ←
PreimgSam(Ai, τi,Y

b
i , σ)}b∈{0,1},i∈[v] as the constrained-key below level v. Sam-

ples the rest of the D matrices obliviously {Db
i ← γ}b∈{0,1},i∈[v+1,`].

With these matrices the attacker A is able to simulate the outputs, send
the outputs and constrained key to A′. If the samples are from GLWE, then it
corresponds to Hv; if the samples are uniform, then the matrices {Db

v}b∈{0,1}
sampled via {Db

v ← PreimgSam(Av, τv,Y
b
v, σ)}b∈{0,1} are statistically close to

the obliviously sampled ones due to Lemma 4, so it is statistically close to Hv−1.
Hence A breaks GLWE with probability more than ζ/(3(t+1)), which contradicts
to Lemma 7.

ut

Lemma 13. If C(x(k)) = 0, then the output y(k) in H0 is pseudorandom.

Proof. A constrained output y(k) can be expressed as

⌊
U
x
(k)

[1,w]
∏`
j=w(k) D

x
(k)
j

j

⌉
p

,

where the secret U
(k)

[1,w(k)]
is uniform; the public D matrices are sampled from

discrete-Gaussian distribution γ. By Lemma 9 y(k) is pseudorandom. ut
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The proof completes by combining Lemma 12 and Lemma 13. ut

5.2 Constraint-hiding for NC1 circuits

Next we present the CHCPRF for NC1 circuit constraints. For circuits of depth
d, use Barrington’s Theorem [8] to convert them into a set of oblivious branching
program {BP} with the same index-to-input map ι : [z]→ [`], the same w-cycle P
that represents the 0 output (by default w = 5). Let {Bb

i ∈ {0, 1}w×w}i∈[z],b∈{0,1}
be the permutation matrices in each BP.

The master secret key for the CHCPRF consists of 2z secrets from GLWE-
hard distributions η over R with small Euclidean norm {sbi ← η}b∈{0,1},i∈[z],
together with a vector J ∈ R1×w. To generate an evaluation key, in the normal
setting, let Sbi := Iw×w ⊗ sbi ∈ {0, 1}w×w ⊗R R; in the constrained setting for
a constraint recognized by BP, let Sbi := Bb

i ⊗ sbi ∈ {0, 1}w×w ⊗R R. For both
settings, places {Sbi}b∈{0,1},i∈[z] in a chain of length z and width 2, places J on
the left end of the chain, and uses the GGH15 methodology to encode the chain.
The encoding of J is merged into A1 and denote the resultant matrix as AJ .
The evaluation key consists of AJ and the D matrices {Db

i}b∈{0,1},i∈[z].
To evaluate on x, output

⌊
AJ

∏z
i=1 D

xι(i)
i

⌉
p
. To elaborate the functionality,

for x s.t. C(x) = 1,
⌊
AJ

∏z
i=1 D

xι(i)
i

⌉
p
≈s
⌊
J(Iw×w ⊗

∏z
i=1 s

xι(i)
i )Az+1

⌉
p
; for x

s.t. C(x) = 0,
⌊
AJ

∏z
i=1 D

xι(i)
i

⌉
p
≈s
⌊
J(P⊗

∏z
i=1 s

xι(i)
i )Az+1

⌉
p
. As a reminder,

the permutation matrix P that represent the w-cycle is not a secret to the
construction, so the use of the left-bookend J is essential for security.

Construction 11 (CHCPRFs for NC1 circuits) We construct a function fam-
ily F = {f : {0, 1}` → R1×wm

p } equipped with 3 algorithms (Gen,Constrain,Eval),
associated with a set of oblivious branching programs {BP} of length z obtained
by applying Lemma 3 on all the NC1 circuits.

– Gen(1λ) samples parameters q, p, σ,m, z (the length of branching programs),
{(Ai, τi) ← TrapSam(Rw×w, 1n, 1m, q)}i∈[z], Az+1 ← U(Rw×wmq ). Samples

2z independent small secrets from GLWE-hard distributions {sbi ← η}b∈{0,1},i∈[z],
sets the secret matrices to be Sbi = Iw×w ⊗ sbi . Next, encode the secrets as
follows: first compute {Yb

i = SbiAi+1 + Eb
i ,E

b
i ← χw×wm}i∈[z],b∈{0,1}; then,

sample {Db
i ← PreimgSam(Ai, τi,Y

b
i , σ)}i∈[z],b∈{0,1}. Additionally, sample a

small secret J← η1×w as the left-bookend. Compute AJ := JA1 + EJ where
EJ ← χ1×wm.
Set MSK := ({Ai}i∈[1,z+1], {τi}i∈[z],AJ , {sbi ,Db

i}i∈[z],b∈{0,1}).
– Constrain(MSK,BP) takes MSK, and a matrix branching program BP = {Bb

i ∈
Rw×w}i∈[z],b∈{0,1}. For i ∈ [z], b ∈ {0, 1}, compute Yb

i =
(
Bb
i ⊗ sbi

)
Ai+1 +

E′
b
i ,E

′b
i ← χw×wm, samples Db

i ← PreimgSam(Ai, τi,Y
b
i , σ).

Set the constrained key CK := (AJ , {Db
i}i∈[z],b∈{0,1}).

– Eval(k, x) takes the input x and the key k = (AJ , {Db
i}i∈[z],b∈{0,1}), outputs⌊

AJ

∏z
i=1 D

xι(i)
i

⌉
p
.
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Setting of parameters. Settings of the distributions and their dimensions: For
R = Zn×n, set η = χ = Dn×n

Z,σ , γ = D1×nwm
Znwm,σ . For R = Z[x]/(xn + 1), n being a

power of 2, set η = χ = DR,σ, γ = D1×wm
Rwm,σ.

The restriction on the parameters are analogous to the settings in the bit-
fixing construction.

Theorem 12. Assuming GLWER,1,1,w2m,n,q,η,χ, Construction 11 is a simulation-

secure CHCPRF for NC1 constraints.

Proof overview. The simulation algorithm and the overall proof strategy is
similar to the one for the bit-fixing constraints. Namely, we close the trapdoors
for A matrices from level z to level 1. Within each level v, there are several GLWE
instance associated with Av+1 whose trapdoor is closed in the previous hybrid.
The additional complexity comes from dealing with secrets with permutation
matrix structures. They are handled by the new GLWE packages from Section 3.

Proof. The simulator samples {Ai ← U(Rw×wmq )}i∈[1,z+1], and {Db
i ← γ}b∈{0,1},i∈[z].

It also samples J ← η1×w, computes AJ := JA1 + EJ where EJ ← χ1×wm.
Outputs the constrained key (AJ , {Db

i}i∈[z],b∈{0,1}). The simulator responds the

input queries by picking {y(k)}k∈[t] according to {d(k)}k∈[t]: if d(k) = 1, then

outputs y(k) =

⌊
AJ

∏z
i=1 D

x
(k)
i
i

⌉
p

; otherwise y(k) ← U(R1×wm
p ).

The proof consists of two parts. The first part (Lemma 14) shows that the
real distribution is indistinguishable from a semi-simulated one, where all the D
matrices on the constrained key are sampled without knowing the constraint and
trapdoors of A matrices, and all the outputs are expressed by these obliviously
sampled A and D matrices. The second part (Lemma 15) argues that the outputs
are pseudorandom if they are in the constrained area.

In the first part, we define intermediate hybrid distributions {Hv}v∈[0,z].
Hz corresponds to the real constrained key and output distributions, H0 cor-
responds to the simulated constrained key and the semi-simulated outputs.
The simulators in Hz, Hz−1, ..., H1 know the full description of the constraint
BP = {Bb

i}i∈[z],b∈{0,1}; the simulator in H0 only knows the indicators {d(k)}k∈[t].
Descriptions of Hv, v ∈ [0, z]: The simulator in Hv

1. Samples {(Aj , τj) ← TrapSam(Rw×w, 1n, 1m, q)}j∈[v] with trapdoors; sam-
ples {Aj′ ← U(Rw×wmq )}j′∈[v+1,z+1] uniformly random;

2. Samples the GLWE secrets {sbi ← η}b∈{0,1},i∈[v] below level v; and a bookend
vector J← η1×w;

3. Samples Yb
i :=

(
Bb
i ⊗ sbi

)
Ai+1 + E′

b
i ; computes AJ := JA1 + EJ ;

4. Simulates {Db
i ← PreimgSam(Ai, τi,Y

b
i , σ)}b∈{0,1},i∈[v] as the constrained-

key below level v. Samples the rest of the D matrices obliviously {Db
i ←

γ}b∈{0,1},i∈[v+1,z].

5. Simulates the outputs. For k ∈ [t], computes y(k) as

y(k) =

⌊
J×

((
z∏

j=v+1

B
x
(k)
ι(j)

j

)−1

⊗
v∏
i=1

s
x
(k)
ι(i)

i

)
×Av+1

z∏
j=v+1

D
x
(k)
ι(j)

j

⌉
p

(3)
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Lemma 14. Hv ≈c Hv−1, for v ∈ [z].

Proof. The difference of Hv and Hv−1 lies in the sampling of D0
v,D

1
v and the

outputs {y(k)}. We first examine the outputs. For k ∈ [t], we express the output
y(k), starting from the expression in Hv to the one in Hv−1:

y(k) =

⌊
J×

((
z∏

j=v+1

B
x
(k)
ι(j)

j

)−1

⊗
v∏
i=1

s
x
(k)
ι(i)

i

)
×Av+1

z∏
j=v+1

D
x
(k)
ι(j)

j

⌉
p

=

⌊
J×

((
z∏

j=v+1

B
x
(k)
ι(j)

j

)−1

⊗
v−1∏
i=1

s
x
(k)
ι(i)

i

)
×

(
Iw×w ⊗ s

x
(k)
ι(v)
v

)
Av+1

z∏
j=v+1

D
x
(k)
ι(j)

j

⌉
p

=

⌊
J×

((
z∏

j=v+1

B
x
(k)
ι(j)

j

)−1

⊗
v−1∏
i=1

s
x
(k)
ι(i)

i

)

×

(
B
x
(k)
ι(v)
v ⊗ 1R

)−1

×

(
B
x
(k)
ι(v)
v ⊗ s

x
(k)
ι(v)
v

)
Av+1

z∏
j=v+1

D
x
(k)
ι(j)

j

⌉
p

≈s

⌊
J×

((
z∏
j=v

B
x
(k)
ι(j)

j

)−1

⊗
v−1∏
i=1

s
x
(k)
ι(i)

i

)

×

[(
B
x
(k)
ι(v)
v ⊗ s

x
(k)
ι(v)
v

)
Av+1 + E′

]
z∏

j=v+1

D
x
(k)
ι(j)

j

⌉
p

=

⌊
J×

((
z∏
j=v

B
x
(k)
ι(j)

j

)−1

⊗
v−1∏
i=1

s
x
(k)
ι(i)

i

)
×Y

x
(k)
ι(v)
v

z∏
j=v+1

D
x
(k)
ι(j)

j

⌉
p

=

⌊
J×

((
z∏
j=v

B
x
(k)
ι(j)

j

)−1

⊗
v−1∏
i=1

s
x
(k)
ι(i)

i

)
×Av

z∏
j=v

D
x
(k)
ι(j)

j

⌉
p

(4)

where Y
x
(k)

ι(v)
v = AvD

x
(k)

ι(v)
v . The correctness of this equation is a routine check.

The implication is that the difference of Hv and Hv−1 fully lies in the sampling
of Y0

v,Y
1
v (being GLWE samples in Hv or uniform in Hv−1) and their preimages

D0
v,D

1
v sampled by the trapdoor of Av.

Formally, suppose there is an attacker A′ that distinguishes Hv and Hv−1
with non-negligible probability ζ, we can build an attacker A who distinguishes:

Av+1, {Yb
v =

(
Bb
v ⊗ sbv

)
Av+1 + Eb

v}b∈{0,1}

from
{U(Rw×wmq ×Rw×wmq ×Rw×wmq )}

To do so, once A obtains the samples, it samples {Aj}j∈[v] with trapdoors, and

produce the preimages {Db
v ← PreimgSam(Av, τv,Y

b
v, σ)}b∈{0,1}. Then places

Av+1, Y0
v, Y1

v, D0
v, D1

v in the constrained key and the outputs. It further samples
GLWE secrets {sbi ← η}b∈{0,1},i∈[v], {Db

i ← PreimgSam(Ai, τi,Y
b
i , σ)}b∈{0,1},i∈[v]

as the constrained-key below level v. Samples the rest of the D matrices oblivi-
ously {Db

i ← γ}b∈{0,1},i∈[v+1,z].
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With these matrices the attacker A is able to simulate the rest of the outputs,
send the outputs and constrained key to A′. If the samples are from GLWE, then
it corresponds to Hv; if the samples are uniform, then the matrices {Db

v}b∈{0,1}
sampled via {Db

v ← PreimgSam(Av, τv,Y
b
v, σ)}b∈{0,1} are statistically close to

the obliviously sampled ones due to Lemma 4, so it is statistically close to Hv−1.
Hence A breaks GLWE with probability more than ζ/2, which contradicts to
Lemma 10. ut

Lemma 15. If C(x(k)) = 0, then the output y(k) in H0 is pseudorandom.

Proof. Following Eqn. 3, a constrained output y(k) in H0 can be expressed as:

y(k) =

⌊
J×

(
P−1 ⊗ 1R

)
×A1

z∏
j=1

D
x
(k)
ι(j)

j

⌉
p

≈s

⌊(
J×

(
P−1 ⊗ 1R

)
×A1 + E

) z∏
j=1

D
x
(k)
ι(j)

j

⌉
p

(5)

For JA1 + EJ as part of the constrained key, J ×
(
P−1 ⊗ 1R

)
×A1 + E as

part of the constrained output y(k), (JA1 + EJ ,J ×
(
P−1 ⊗ 1R

)
×A1 + E) is

indistinguishable from U(R1×wm
q , R1×wm

q ) due to Lemma 11. This means each

constrained output y(k) is indistinguishable from

⌊
U
∏z
j=1 D

x
(k)

ι(j)

j

⌉
p

where U←

U(R1×wm
q ). Hence y(k) is pseudorandom if C(x(k)) = 0 due to Lemma 9. ut

The proof completes by combining the Lemmas 14 and 15. ut

6 Private-key functional encryption from CHCPRF

We construct private-key function-hiding functional encryptions for NC1 circuits
from (1) CHCPRFs for NC1; (2) semantic secure private-key encryption schemes
with decryption in NC1. The scheme satisfies 1-key simulation-based security.

6.1 The definition of functional encryption

Definition 8 (Function-hiding private-key functional encryption [34]).
A functional encryption scheme for a class of functions Cµ = {C : {0, 1}µ →
{0, 1}} is a tuple of p.p.t. algorithms (Setup,FSKGen,Enc,Dec) such that:

– Setup(1λ) takes as input the security parameter 1λ, outputs the master secret
key MSK.

– FSKGen(MSK, C) takes MSK and a function C ∈ Cµ, ouputs a functional
decryption key FSKC .

– Enc(MSK,m) takes MSK and a message m ∈ {0, 1}µ, outputs a ciphertext
CTm.

– Dec(FSKC ,CTm) takes as input a ciphertext CTm and a functional decryp-
tion key FSKC , outputs (in the clear) the result C(m) of applying the function
on the message.
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We require that:
Correctness. For every message m ∈ {0, 1}µ and function C ∈ Cµ we have:

Pr

b = C(m)

∣∣∣∣∣∣∣∣
MSK ← Setup(1λ)
FSKC ← FSKGen(MSK, C)
CTm ← Enc(MSK,m)
b ← Dec(FSKC ,CTm)

 = 1− negl(λ)

Security. We require that for all polytime, stateful algorithm Adv, there is a
polytime, stateful algorithm Sim such that:

{Experiment REALAdv(1
λ)}λ∈N ≈c {Experiment IDEALAdv,Sim(1λ)}λ∈N

The real and ideal experiments of stateful algorithms Adv,Sim are as follow:

Experiment REALAdv(1
λ) Experiment IDEALAdv,Sim(1λ)

MSK← Gen(1λ), Sim← 1λ

Repeat : Repeat :

Adv→ (m, dm); Adv← Enc(MSK,m); Adv→ (m, dm); Adv← Sim(1|m|, dm);

Adv→ C; Adv→ C;

if dm 6= C(m)for some m then Output ⊥ if dm 6= C(m)for some m then Output ⊥

else Adv← FSKC = FSKGen(MSK, C); else Adv← FSKS = Sim(1|C|);

Repeat : Repeat :

Adv→ m; Adv← Enc(MSK,m) Adv→ m; Adv← Sim(1|m|, C(m))

Adv→ b; Output b Adv→ b; Output b

That is, in the experiments Adv can ask for a single functional decryption key and
polynomially many input queries, in any order. For encryption queries m made
before the decryption key query, Adv is expected to provide a bit dx indicating
whether C(m) = 1. In the real experiment Adv obtains the encryption of m.
In the ideal experiment Adv obtains a value generated by Sim, whereas Sim is
given only 1|m| and dm. Once Adv makes the functional key query for circuit
C ∈ Cλ, both experiments verify the consistency of the indicator bits dm for all
the encryption queries m made by Adv so far. If any inconsistency is found then
the experiment halts. Next, in the real experiment Adv obtains the constrained
key generated by the constraining algorithm; in the ideal experiment Adv obtains
a key generated by Sim, whereas Sim is given only the size of C. The handling
of encryption queries made by Adv after the circuit query is similar to the ones
before, with the exception that the indicator bit dm is no longer needed and Sim
obtains the value of C(m) instead. The output of the experiment is the final
output bit of Adv.

6.2 The construction

Theorem 13. If there are 1-key secure constraint-hiding constraint PRFs for
constraint class C, and symmetric-key encryption schemes with decryption in
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the class C, then there are 1-key secure private-key function-hiding functional
encryptions for function class C.

Corollary 2. Assuming the intractability of GLWE, there are 1-key secure private-
key function-hiding functional encryptions for NC1.

Construction 14 Given a CHCPRF (F.Gen,F.Constrain,F.Eval), a semantic
secure symmetric-key encryption scheme (Sym.Gen,Sym.Enc,Sym.Dec), we build
a private-key functional encryption FE as follows:

– FE.Setup(1λ) takes as input the security parameter 1λ, runs Sym.Gen(1λ)→
Sym.SK, F.Gen(1λ) → F.MSK, outputs the master secret key FE.MSK =
(Sym.SK,F.MSK).

– FE.Enc(FE.MSK,m) parses FE.MSK = (Sym.SK,F.MSK), computes Sym.CT =
Sym.Enc(m), Tag = F.Eval(F.MSK,Sym.CT). Outputs FE.CT = (Sym.CT,Tag).

– FE.FSKGen(FE.MSK, C) parses FE.MSK = (Sym.SK,F.MSK), outputs the
functional decryption key FE.FSKC = F.Constrain(F.MSK, F [Sym.SK, C]),
where the functionality of F [Sym.SK, C](·) is:
• On input x, computes Sym.Dec(Sym.SK, x)→ m ∈ {0, 1}µ ∩ ⊥;
• if m = ⊥, return 0; else, return C(m).

– FE.Dec(FE.FSKC ,FE.CT) parses FE.FSKC = F.CKF , FE.CT = (Sym.CT,Tag),
computes T = F.Eval(F.CKF ,Sym.CT). Outputs 1 if T = Tag, 0 if not.

Correctness. Correctness follows the correctness of Sym and F.

Proof. We build the FE simulator FE.Sim from the symmetric-key encryption
simulator Sym.Sim and CHCPRF simulator F.Sim:

1. Generates the simulated master secret-keys Sym.SKS and F.MSKS

2. Given a function-decryption key query (for function C), FE.Sim runs CKS ←
F.Sim1(1λ, 1|F [Sym.SK,C]|, F.MSKS), outputs CKS as FE.FSKS .

3. Given a ciphertext query and the output bit C(m), FE.Sim runs Sym.CTS ←
Sym.Sim(1λ, 1|m|,Sym.SKS) and TagS ← FSim2(F.MSKS ,CKS ,Sym.CTS , C(m)),
outputs (Sym.CTS ,TagS) as FE.CTS .

To show that the simulated outputs are indistinguishable from the real outputs,
consider an intermediate simulator FE.Sim′ which is the same to FE.Sim, except
that it uses the real Sym ciphertexts in the ciphertext queries. Observe that the
secret-key of Sym is not exposed in FE.Sim′ or FE.Sim, the output distributions
of FE.Sim′ and FE.Sim are indistinguishable following the security of Sym.

Next, assume there is a distinguisher D for the outputs of the real FE scheme
and FE.Sim′, we build an attacker A for the CHCPRF F. A samples a secret
key for Sym, sends a constrained circuit query, obtains the real CK if it is the
real distribution, or the simulated CKS if it is the simulated distribution; then
creates symmetric-key ciphertexts, sends as the input queries to the CHCPRF.
It obtains the real outputs if it is the real case, or the simulated outputs if it
is the simulated case. A treats the outputs as tags. A forwards the ciphertexts,
tags and FSK to D. D’s success probability transfers to the one for A. ut
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