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Abstract. Private set intersection (PSI) refers to a special case of secure
two-party computation in which the parties each have a set of items and
compute the intersection of these sets without revealing any additional
information. In this paper we present improvements to practical PSI
providing security in the presence of malicious adversaries.

Our starting point is the protocol of Dong, Chen & Wen (CCS 2013)
that is based on Bloom filters. We identify a bug in their malicious-secure
variant and show how to fix it using a cut-and-choose approach that has
low overhead while simultaneously avoiding one the main computational
bottleneck in their original protocol. We also point out some subtleties
that arise when using Bloom filters in malicious-secure cryptographic
protocols.

We have implemented our PSI protocols and report on its performance.
Our improvements reduce the cost of Dong et al.’s protocol by a factor
of 14− 110× on a single thread. When compared to the previous fastest
protocol of De Cristofaro et al., we improve the running time by 8−24×.
For instance, our protocol has an online time of 14 seconds and an overall
time of 2.1 minutes to securely compute the intersection of two sets of 1
million items each.

1 Introduction

Private set intersection (PSI) is a cryptographic primitive that allows two parties
holding sets X and Y , respectively, to learn the intersection X ∩ Y while not
revealing any additional information about X and Y .

PSI has a wide range of applications: contact discovery [19], secret hand-
shakes [12], measuring advertisement conversion rates, and securely sharing se-
curity incident information [22], to name a few.

There has been a great deal of recent progress in efficient PSI protocols
that are secure against semi-honest adversaries, who are assumed to follow the
protocol. The current state of the art has culminated in extremely fast PSI
protocols. The fastest one, due to Kolesnikov et al. [16], can securely compute
the intersection of two sets, each with 220 items, in less than 4 seconds.
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Looking more closely, the most efficient semi-honest protocols are those that
are based on oblivious transfer (OT) extension. Oblivious transfer is a fun-
damental cryptographic primitive (see Figure 1). While in general OT requires
expensive public-key computations, the idea of OT extension [3,13] allows the
parties to efficiently realize any number of effective OTs by using only a small
number (e.g., 128) of base OTs plus some much more efficient symmetric-key
computations. Using OT extension, oblivious transfers become extremely inex-
pensive in practice. Pinkas et al. [23] compared many paradigms for PSI and
found the ones based on OTs are much more efficient than those based on alge-
braic & public-key techniques.

Our contributions In many settings, security against semi-honest adversaries is
insufficient. Our goal in this paper is to translate the recent success in semi-honest
PSI to the setting of malicious security. Following the discussion above, this
means focusing on PSI techniques based on oblivious transfers. Indeed, recent
protocols for OT extension against malicious adversaries [1,15] are almost as
efficient as (only a few percent more expensive than) OT extension for semi-
honest adversaries.

Our starting point is the protocol paradigm of Dong, Chen & Wen [8] (here-
after denoted DCW) that is based on OTs and Bloom filter encodings. We
describe their approach in more detail in Section 3. In their work they describe
one of the few malicious-secure PSI protocols based primarily on OTs rather
than algebraic public-key techniques. We present the following improvements
and additions to their protocol:

1. Most importantly, we show that their protocol has a subtle security flaw,
which allows a malicious sender to induce inconsistent outputs for the re-
ceiver. We present a fix for this flaw, using a very lightweight cut-and-choose
technique.

2. We present a full simulation-based security proof for the Bloom-filter-based
PSI paradigm. In doing so, we identify a subtle but important aspect about
using Bloom filters in a protocol meant to provide security in the presence
of malicious adversaries. Namely, the simulator must be able to extract all
items stored in an adversarially constructed Bloom filter. We argue that
this capability is an inherently non-standard model assumption, in the sense
that it seems to require the Bloom filter hash functions to be modeled as
(non-programmable) random oracles. Details are in Section 5.1.

3. We implement both the original DCW protocol and our improved version.
We find that the major bottleneck in the original DCW protocol is not
in the cryptographic operations, but actually in a polynomial interpolation
computation. The absence of polynomial interpolation in our new protocol
(along with our other improvements) decreases the running time by a factor
of over 8-75x.
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1.1 Related Work

As mentioned above, our work builds heavily on the protocol paradigm of Dong
et al. [8] that uses Bloom filters and OTs. We discuss this protocol in great detail
in Section 3. We identify a significant bug in that result, which was independently
discovered by Lambæk [17] (along with other problems not relevant to our work).

Several other paradigms for PSI have been proposed. Currently the fastest
protocols in the semi-honest setting are those in a sequence of works initiated by
Pinkas et al. [23,22,16] that rely heavily on oblivious transfers. Adapting these
protocols to the malicious setting is highly non-trivial, and we were unsuccessful
in doing so. However, Lambæk [17] observes that the protocols can easily be made
secure against a malicious receiver (but not also against a malicious sender).

Here we list other protocol paradigms that allow for malicious security when
possible. The earliest technique for PSI is the elegant Diffie-Hellman-based pro-
tocol of [12]. Protocols in this paradigm achieving security against malicious
adversaries include the one of De Cristofaro et al. [7]. We provide a performance
analysis comparing their protocol to ours.

Freedman et al. [9] describe a PSI paradigm based on oblivious polynomial
evaluation, which was extended to the malicious setting in [6].

Huang et al. [11] explored using general-purpose 2PC techniques (e.g., gar-
bled circuits) for PSI. Several improvements to this paradigm were suggested in
[22]. Malicious security can be achieved in this paradigm in a generic way, using
any cut-and-choose approach, e.g., [18].

Kamara et al. [14] presented PSI protocols that take advantage of a semi-
trusted server to achieve extremely high performance. Our work focuses on the
more traditional setting with just 2 parties.

2 Preliminaries

We use κ to denote a computational security parameter (e.g., κ = 128 in our
implementations), and λ to denote a statistical security parameter (e.g., λ = 40
in our implementations). We use [n] to denote the set {1, . . . , n}.

2.1 Efficient Oblivious Transfer

Our protocol makes use of 1-out-of-2 oblivious transfer (OT). The ideal func-
tionality is described in Figure 1. We require a large number of such OTs, secure
against malicious adversaries. These can be obtained efficiently via OT exten-
sion [3]. The idea is to perform a fixed number (e.g., 128) of “base OTs”, and
from this correlated randomness derive a large number of effective OTs using
only symmetric-key primitives.

The most efficient OT extension protocols providing malicious security are
those of [2,15,21], which are based on the semi-honest secure paradigm of [13].
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Parameters: ` is the length of the OT strings.

– On input (m0,m1) ∈ ({0, 1}`)2 from the sender and b ∈ {0, 1} from the re-
ceiver, give output mb to the receiver.

Fig. 1. Ideal functionality for 1-out-of-2 OT

Parameters: σ is the bit-length of the parties’ items. n is the size of the honest
parties’ sets. n′ > n is the allowed size of the corrupt party’s set.

– On input Y ⊆ {0, 1}σ from Bob, ensure that |Y | ≤ n if Bob is honest, and
that |Y | ≤ n′ if Bob is corrupt. Give output bob-input to Alice.

– Thereafter, on input X ⊆ {0, 1}σ from Alice, likewise ensure that |X| ≤ n if
Alice is honest, and that |X| ≤ n′ if Alice is corrupt. Give output X ∩ Y to
Bob.

Fig. 2. Ideal functionality for private set intersection (with one-sided output)

2.2 Private Set Intersection

In Figure 2 we give the ideal functionality that specifies the goal of private set
intersection. We point out several facts of interest. (1) The functionality gives
output only to Bob. (2) The functionality allows corrupt parties to provide larger
input sets than the honest parties. This reflects that our protocol is unable to
strictly enforce the size of an adversary’s set to be the same as that of the honest
party. We elaborate when discussing the security of the protocol.

We define security of a PSI protocol using the standard paradigm of 2PC. In
particular, our protocol is secure in the universal composability (UC) framework
of Canetti [4]. Security is defined using the real/ideal, simulation-based paradigm
that considers two interactions:

– In the real interaction, a malicious adversary A attacks an honest party
who is running the protocol π. The honest party’s inputs are chosen by an
environment Z; the honest party also sends its final protocol output to Z.
The environment also interacts arbitrarily with the adversary. Our protocols
are in a hybrid world, in which the protocol participants have access to an
ideal random-OT functionality (Figure 1). We define real[π,Z,A] to be the
(random variable) output of Z in this interaction.

– In the ideal interaction, a malicious adversary S and an honest party
simply interact with the ideal functionality F (in our case, the ideal PSI
protocol of Figure 2). The honest party simply forwards its input from the
environment to F and its output from F to the environment. We define
ideal[F ,Z,S] to be the output of Z in this interaction.

We say that a protocol π UC-securely realizes functionality F if: for all PPT
adversaries A, there exists a PPT simulator S, such that for all PPT environ-
ments Z:

real[π,Z,A] ≈ ideal[F ,Z,S]

where “≈” denotes computational indistinguishability.
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Our protocol uses a (non-programmable) random oracle. In Section 5.4 we
discuss technicalities that arise when modeling such global objects in the UC
framework.

2.3 Bloom Filters

A Bloom filter (BF) is an N -bit array B associated with k random functions
h1, . . . , hk : {0, 1}∗ → [N ]. To store an item x in the Bloom filter, one sets
B[hi(x)] = 1 for all i. To check the presence of an item x in the Bloom filter, one
simply checks whether B[hi(x)] = 1 for all i. Any item stored in the Bloom filter
will therefore be detected when queried; however, false positives are possible.

3 The DCW Protocol Paradigm

The PSI protocol of Dong, Chen, and Wen [8] (hereafter DCW) is based on
representing the parties’ input sets as Bloom filters (BFs). We describe the
details of their protocol in this section.

If B and B′ are BFs for two sets S and S′, using the same parameters
(including the same random functions), then it is true that B ∧ B′ (bit-wise
AND) is a BF for S ∩ S′. However, one cannot construct a PSI protocol simply
by computing a bit-wise AND of Bloom filters. The reason is that B ∧B′ leaks
more about S and S′ than their intersection S ∩ S′. For example, consider the
case where S ∩ S′ = ∅. Then the most natural Bloom filter for S ∩ S′ is an all-
zeroes string, and yet B ∧ B′ may contain a few 1s with noticeable probability.
The location of these 1s depends on the items in S and S′, and hence cannot be
simulated just by knowing that S ∩ S′ = ∅.

DCW proposed a variant Bloom filter that they call a garbled Bloom
filter (GBF). In a GBF G meant to store m-bit strings, each G[i] is itself an
m-bit string rather than a single bit. Then an item x is stored in G by ensuring
that x =

⊕
iG[hi(x)]. That is, the positions indexed by hashing x should store

additive secret shares of x. All other positions in G are chosen uniformly.

The semi-honest PSI protocol of DCW uses GBFs in the following way.
The two parties agree on Bloom filter parameters. Alice prepares a GBF G rep-
resenting her input set. The receiver Bob prepares a standard BF B representing
his input set. For each position i in the Bloom filters, the parties use oblivious
transfer so that Bob can learn G[i] (a string) iff B[i] = 1. These are exactly
the positions of G that Bob needs to probe in order to determine which of his
inputs is stored in G. Hence Bob can learn the intersection. DCW prove that
this protocol is secure. That is, they show that Bob’s view {G[i] | B[i] = 1} can
be simulated given only the intersection of Alice and Bob’s sets.

DCW also describe a malicious-secure variant of their GBF-based proto-
col. The main challenge is that nothing in the semi-honest protocol prevents
a malicious Bob from learning all of Alice’s GBF G. This would reveal Alice’s
entire input, which can only be simulated in the ideal world by Bob sending the
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entire universe {0, 1}σ as input. Since in general the universe is exponentially
large, this behavior is unsimulatable and hence constitutes an attack.

To prevent this, DCW propose to use 1-out-of-2 OTs in the following way.
Bob can choose to either pick up a position G[i] in Alice’s GBF (if Bob has a
1 in B[i]) or else learn a value si (if Bob has a 0 in B[i]). The values si are an
N/2-out-of-N secret sharing of some secret s∗ which is used to encrypt all of
the G[i] values. Hence, Alice’s inputs to the ith OT are (si,Enc(s

∗, G[i])), where
Enc is a suitable encryption scheme. Intuitively, if Bob tries to obtain too many
positions of Alice’s GBF (more than half), then he cannot recover the key s∗

used to decrypt them.
As long as N > 2k|Y | (where Y is Bob’s input set), an honest Bob is guar-

anteed to have at least half of his BF bits set to zero. Hence, he can reconstruct
s∗ from the si shares, decrypt the G[i] values, and probe these GBF positions
to learn the intersection. We describe the protocol formally in Figure 3.

Parameters: X is Alice’s input, Y is Bob’s input. N is the required Bloom filter
size; We assume the parties have agreed on common BF parameters.

1. Alice chooses a random key s∗ ∈ {0, 1}κ and generates an N/2-out-of-N secret
sharing (s1, . . . , sN ).

2. Alice generates a GBF G encoding her inputs X. Bob generates a standard
BF B encoding his inputs Y .

3. For i ∈ [N ], the parties invoke an instance of 1-out-of-2 OT, where Alice gives
inputs (si, ci = Enc(s∗, G[i])) and Bob uses choice bit B[i].

4. Bob reconstructs s∗ from the set of shares {si | B[i] = 0} he obtained in the
previous step. Then he uses s∗ to decrypt the ciphertexts {ci | B[i] = 1},
obtaining {G[i] | B[i] = 1}. Finally, he outputs {y ∈ Y | y =

⊕
iG[hi(y)]}.

Fig. 3. The malicious-secure protocol of DCW [8].

3.1 Insecurity of the DCW Protocol

Unfortunately, the malicious-secure variant of DCW is not secure!1 We now
describe an a attack on their protocol, which was independently & concurrently
discovered by Lambæk [17]. A corrupt Alice will generate si values that are not
a valid N/2-out-of-N secret sharing. DCW do not specify Bob’s behavior when
obtaining invalid shares. However, we argue that no matter what Bob’s behavior
is (e.g., to abort in this case), Alice can violate the security requirement.

As a concrete attack, let Alice honestly generate shares si of s∗, but then
change the value of s1 in any way. She otherwise runs the protocol as instructed.
If the first bit of Bob’s Bloom filter is 1, then this deviation from the protocol is

1 We contacted the authors of [8], who confirmed that our attack violates malicious
security.
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invisible to him, and Alice’s behavior is indistinguishable from honest behavior.
Otherwise, Bob will pick up s1 which is not a valid share. If Bob aborts in
this case, then his abort probability depends on whether his first BF bit is 1.
The effect of this attack on Bob’s output cannot be simulated in the ideal PSI
functionality, so it represents a violation of security.

Even if we modify Bob’s behavior to gracefully handle some limited number of
invalid shares, there must be some threshold of invalid shares above which Bob
(information theoretically) cannot recover the secret s∗. Whether or not Bob
recovers s∗ therefore depends on individual bits of his Bloom filter. And whether
we make Bob abort or do something else (like output ∅) in the case of invalid
shares, the result cannot be simulated in the ideal world. Lambæk [17] points out
further attacks, in which Alice can cleverly craft shares and encryptions of GBF
values to cause her effective input to depend on Bob’s inputs (hence violating
input independence).

4 Our Protocol

The spirit of DCW’s malicious protocol is to restrict the adversary from setting
too many 1s in its Bloom filter, thereby learning too many positions in Alice’s
GBF. In this section, we show how to achieve the spirit of the DCW protocol
using a lightweight cut-and-choose approach.

The high-level idea is to generate slightly more 1-out-of-2 OTs than the
number of BF bits needed. Bob is supposed to use a limited number of 1s for
his choice bits. To check this, Alice picks a small random fraction of the OTs
and asks Bob to prove that an appropriate number of them used choice bit 0.
If Alice uses random strings as her choice-bit-0 messages, then Bob can prove
his choice bit by simply reporting this string.2 If Bob cannot prove that he used
sufficiently many 0s as choice bits, then Alice aborts. Otherwise, Alice has high
certainty that the unopened OTs contain a limited number of choice bits 1.

After this cut-and-choose, Bob can choose a permutation that reorders the
unopened OTs into his desired BF. In other words, if c1, . . . , cN are Bob’s choice
bits in the unopened OTs, Bob sends a random π such that cπ(1), . . . , cπ(N)

are the bits of his desired BF. Then Alice can send her GBF, masked by the
choice-bit-1 OT messages permuted in this way.

We discuss the required parameters for the cut-and-choose below. However,
we remark that the overhead is minimal. It increases the number of required
OTs by only 1–10%.

4.1 Additional Optimizations

Starting from the basic outline just described, we also include several important
optimizations. The complete protocol is described formally in Figure 4.

2 This committing property of an OT choice bit was pointed out by Rivest [24].
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Random GBF In their treatment of the semi-honest DCW protocol, Pinkas et
al. [23] suggested an optimization that eliminates the need for Alice to send her
entire masked GBF. Suppose the parties use 1-out-of-2 OT of random messages
(i.e., the sender Alice does not choose the OT messages; instead, they are chosen
randomly by the protocol / ideal functionality). In this case, the concrete cost
of OT extension is greatly reduced (cf. [1]). Rather than generating a GBF of
her inputs, Alice generates an array G where G[i] is the random OT message in
the ith OT corresponding to bit 1 (an honest Bob learns G[i] iff the ith bit of
his Bloom filter is 1).

Rather than arranging for
⊕

iG[hi(x)] = x, as in a garbled BF, the idea is
to let the G-values be random and have Alice directly send to Bob a summary
value Kx =

⊕
iG[hi(x)] for each of her elements x. For each item y in Bob’s

input set, he can likewise compute Ky since he learned the values of G corre-
sponding to 1s in his Bloom filter. Bob can check to see whether Ky is in the list
of strings sent by Alice. For items x not stored in Bob’s Bloom filter, the value
Kx is random from his point of view.

Pinkas et al. show that this optimization significantly reduces the cost, since
most OT extension protocols require less communication for OT of random
messages. In particular, Alice’s main communication now depends on the number
of items in her set rather than the size of the GBF encoding her set. Although the
optimization was suggested for the semi-honest variant of DCW, we point out
that it also applies to the malicious variant of DCW and to our cut-and-choose
protocol.

In the malicious-secure DCW protocol, the idea is to prevent Bob from see-
ing GBF entries unless he has enough shares to recover the key s∗. To achieve
the same effect with a random-GBF, we let the choice-bit-1 OT messages be
random (choice-bit-0 messages still need to be chosen messages: secret shares
of s∗). These choice-bit-1 OT messages define a random GBF G for Alice.
Then instead of sending a summary value

⊕
iG[hi(x)] for each x, Alice sends

[
⊕

iG[hi(x)]]⊕ F (s∗, x), where F is a pseudorandom function. If Bob does not
use choice-bit-0 enough, he does not learn s∗ and all of these messages from Alice
are pseudorandom.

In our protocol, we can let both OT messages be random, which significantly
reduces the concrete overhead. The choice-bit-0 messages are used when Bob
proves his choice bit in the cut-and-choose step. The choice-bit-1 messages are
used as a random GBF G, and Alice sends summary values just as in the semi-
honest variant.

We also point out that Pinkas et al. and DCW overlook a subtlety in how the
summary values and the GBF should be constructed. Pinkas et al. specify the
summary value as

⊕
iG[hi(x)] where hi are the BF hash functions. Suppose that

there is a collision involving two BF hash functions under the same x — that is,
hi(x) = hi′(x). Note that since the range of the BF hash functions is polynomial
in size ([Nbf]), such a collision is indeed possible with noticeable probability.
When such a collision happens, the term G[hi(x)] = G[hi′(x)] can cancel itself
out from the XOR summation and the summary value will not depend on this
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term. The DCW protocol also has an analogous issue.3 If the G[hi(x)] term was
the only term unknown to the Bob, then the collision allows him to guess the
summary value for an item x that he does not have. We fix this by computing
the summary value using an XOR expression that eliminates the problem of
colliding terms: ⊕

j∈h∗(x)

G[j], where h∗(x)
def
= {hi(x) : i ∈ [k]}.

Note that in the event of a collision among BF hash functions, we get |h∗(x)| < k.
Finally, for technical reasons, it turns out to be convenient in our protocol

to define the summary value of x to be H(x‖
⊕

j∈h∗(x)G[j]) where H is a (non-

programmable) random oracle.4

Hash only “on demand.” In OT-extension for random messages, the parties
compute the protocol outputs by taking a hash of certain values derived from
the base OTs. Apart from the base OTs (whose cost is constant), these hashes
account for essentially all the cryptographic operations in our protocol. We there-
fore modify our implementation of OT extension so that these hashes are not
performed until the values are needed. In our protocol, only a small number
(e.g., 1%) of the choice-bit-0 OT messages are ever used (for the cut-and-choose
check), and only about half of the choice-bit-1 OT messages are needed by the
sender (only the positions that would be 1 in a BF for the sender’s input). Hence,
the reduction in cost for the receiver is roughly 50%, and the reduction for the
sender is roughly 75%. A similar optimization was also suggested by Pinkas et
al. [23], since the choice-bit 0 messages are not used at all in the semi-honest
protocol.

Aggregating proofs-of-choice-bits Finally, we can reduce the communication cost
of the cut-and-choose step. Recall that Bob must prove that he used choice bit
0 in a sufficient number of OTs. For the ith OT, Bob can simply send mi,0, the
random output he received from the ith OT. To prove he used choice bit 0 for
an entire set I of indices, Bob can simply send the single value

⊕
i∈I mi,0, rather

than sending each term individually.

Optimization for programmable random oracles. The formal description of our
protocol is one that is secure in the non-programmable random oracle model.
However, the protocol can be significantly optimized by assuming a programmable
random oracle. The observation is that Alice’s OT input strings are always
chosen randomly. Modern OT extension protocols natively give OT of random
strings and achieve OT of chosen strings by sending extra correction data (cf.

3 Additionally, if one strictly follows the DCW pseudocode then correctness may be
violated in the event of a collision hi(x) = hi′(x). If hi(x) is the first “free” GBF
location then G[hi(x)] gets set to a value and then erroneously overwritten later.

4 In practice H is instantiated with a SHA-family hash function. The xor expression
and x itself are each 128 bits, so both fit in a single SHA block.
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[1]). If the application allows the OT extension protocol itself to determine the
sender’s strings, then this additional communication can be eliminated. In prac-
tice, this reduces communication cost for OTs by a factor of 2.

We can model OT of random strings by modifying the ideal functionality of
Figure 1 to choose m0,m1 randomly itself. The OT extension protocol of [21]
securely realizes this functionality in the presence of malicious adversaries, in the
programmable random oracle model. We point out that even in the semi-honest
model it is not known how to efficiently realize OT of strings randomly chosen
by the functionality, without assuming a programmable random oracle.

Parameters: X is Alice’s input, Y is Bob’s input. Nbf is the required Bloom filter
size; k is the number of Bloom filter hash functions; Not is the number of OTs to
generate. H is modeled as a random oracle with output length κ. The choice of
these parameters, as well as others α, pchk, Nmaxones, is described in Section 5.2.

1. [setup] The parties perform a secure coin-tossing subprotocol to choose (seeds
for) random Bloom filter hash functions h1, . . . , hk : {0, 1}∗ → [Nbf].

2. [random OTs] Bob chooses a random string b = b1 . . . bNot with an α fraction
of 1s. Parties perform Not OTs of random messages (of length κ), with Alice
choosing random strings mi,0,mi,1 in the ith instance. Bob uses choice bit bi
and learns m∗i = mi,bi .

3. [cut-and-choose challenge] Alice chooses a set C ⊆ [Not] by choosing each
index with independent probability pchk. She sends C to Bob. Bob aborts if
|C| > Not −Nbf.

4. [cut-and-choose response] Bob computes the set R = {i ∈ C | bi = 0}
and sends R to Alice. To prove that he used choice bit 0 in the OTs indexed
by R, Bob computes r∗ =

⊕
i∈Rm

∗
i and sends it to Alice. Alice aborts if

|C| − |R| > Nmaxones or if r∗ 6=
⊕

i∈Rmi,0.
5. [permute unopened OTs] Bob generates a Bloom filter BF containing his

items Y . He chooses a random injective function π : [Nbf] → ([Not] \ C) such
that BF [i] = bπ(i), and sends π to Alice.

6. [randomized GBF] For each item x in Alice’s input set, she computes a
summary value

Kx = H

x ∥∥∥∥ ⊕
i∈h∗(x)

mπ(i),1

 ,

where h∗(x)
def
= {hi(x) : i ∈ [k]}. She sends a random permutation of K =

{Kx | x ∈ X}.
7. [output] Bob outputs {y ∈ Y | H(y ‖

⊕
i∈h∗(y)m

∗
π(i)) ∈ K}.

Fig. 4. Malicious-secure PSI protocol based on garbled Bloom filters.
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5 Security

5.1 BF extraction

The analysis in DCW argues for malicious security in a property-based manner,
but does not use a standard simulation-based notion of security. This turns out
to mask a non-trivial subtlety about how one can prove security about Bloom-
filter-based protocols.

One important role of a simulator is to extract a corrupt party’s input. Con-
sider the case of simulating the effect of a corrupt Bob. In the OT-hybrid model
the simulator sees Bob’s OT choice bits as well as the permutation π that he
sends in 5. Hence, the simulator can easily extract Bob’s “effective” Bloom fil-
ter. However, the simulator actually needs to extract the receiver’s input set that
corresponds to that Bloom filter, so that it can send the set itself to the ideal
functionality.

In short, the simulator must invert the Bloom filter. While invertible Bloom
filters do exist [10], they require storing a significant amount of data beyond that
of a standard Bloom filter. Yet this PSI protocol only allows the simulator to
extract the receiver’s OT choice bits, which corresponds to a plain Bloom filter.
Besides that, in our setting we must invert a Bloom filter that may not have
been honestly generated.

Our protocol achieves extraction by modeling the Bloom filter hash functions
as (non-programmable) random oracles. The simulator must observe the adver-
sary’s queries to the Bloom filter hash functions.5 Let Q be the set of queries
made by the adversary to any such hash function. This set has polynomial size,
so the simulator can probe the extracted Bloom filter to test each q ∈ Q for mem-
bership. The simulator can take the appropriate subset of Q as the adversary’s
extracted input set. More details are given in the security proof below.

Simulation/extraction of a corrupt Alice is also facilitated by observing her
oracle queries. Recall that the summary value of x is (supposed to be) H(x‖⊕

j∈h∗(x)mπ(j),1). Since H is a non-programmable random oracle, the simulator
can obtain candidate x values from her calls to H.

More details about malicious Bloom filter extraction are given in the security
proof in Section 5.3.

Necessity of random oracles. We show that random oracles are necessary, when
using plain Bloom filters for a PSI protocol.

Lemma 1. There is no PSI protocol that simultaneously satisfies the following
conditions:

– The protocol is UC secure against malicious adversaries in the standard
model.

– When Bob is corrupted in a semi-honest manner, the view of the simulator
can be sampled given only on a Bloom filter representation of Bob’s input.

5 The simulator does not, however, require the ability to program the random oracle.
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– The parameters of the Bloom filter depend only on the number of items in
the parties’ sets, and in particular not on the bitlength of those items.

In our protocol, the simulator’s indeed gets to see the receiver’s OT choice
bits, which correspond to a plain Bloom filter encoding of their input set. How-
ever, the simulator also gets to observe the receiver’s random oracle queries, and
hence the statement of the lemma does not apply.

The restriction about the Bloom filter parameters is natural. One important
benefit of Bloom filters is that they do not depend on the bit-length of the items
being stored.

Proof. Consider an environment that chooses a random set S ⊆ {0, 1}` of size
n, and gives it as input to both parties (` will be chosen later). An adversary
corrupts Bob but runs semi-honestly on input S as instructed. The environment
outputs 1 if the output of the protocol is S (note that it does not matter if only
one party receives output). In this real execution, the environment outputs 1
with overwhelming probability due to the correctness of the protocol.

We will show that if the protocol satisfies all three conditions in the lemma
statement, then the environment will output 0 with constant probability in the
ideal execution, and hence the protocol will be insecure.

Suppose the simulator for a corrupt Bob sees only a Bloom filter representa-
tion of Bob’s inputs. Let N be the total length of the Bloom filter representation
(the Bloom filter array itself as well as the description of hash functions). Set
the length of the input items ` > 2N . Now the simulator’s view can be sampled
given only N bits of information about S, whereas S contains randomly chosen
items of length ` > 2N . The simulator must extract a value S′ and send it on
behalf of Bob to the ideal functionality. With constant probability this S′ will
fail to include some item of S (it will likely not include any of them). Then since
the honest party gave input S, the output of the functionality will be S∩S′ 6= S,
and the environment outputs zero.

5.2 Cut-and-choose parameters

The protocol mentions various parameters:

Not: the number of OTs
Nbf: the number of Bloom filter bits
k: the number of Bloom filter hash functions
α: the fraction of 1s among Bob’s choice bits

pchk: the fraction of OTs to check
Nmaxones: the maximum number of 1 choice bits allowed to pass the cut-and-

choose.

As before, we let κ denote the computational security parameter and λ denote
the statistical security parameter.

We require the parameters to be chosen subject to the following constraints:

12



– The cut-and-choose restricts Bob to few 1s. Let N1 denote the number of
OTs that remain after the cut and choose, in which Bob used choice bit 1. In
the security proof we argue that the difficulty of finding an element stored in
the Bloom filter after the fact is (N1/N)k (i.e., one must find a value which
all k random Bloom filter hash functions map to a 1 in the BF).
Let B denote the “bad event” that no more than Nmaxones of the checked
OTs used choice bit one (so Bob can pass the cut-and-choose), and yet
(N1/Nbf)

k ≥ 2−κ. We require Pr[B] ≤ 2−λ.
As mentioned above, the spirit of the protocol is to restrict a corrupt receiver
from setting too many 1s in its (plain) Bloom filter. DCW suggest to restrict
the receiver to 50% 1s, but do not explore how the fraction of 1s affects
security (except to point out that 100% 1s is problematic). Our analysis
pinpoints precisely how the fraction of 1s affects security.

– The cut-and-choose leaves enough OTs unopened for the Bloom filter. That
is, when choosing from among Not items, each with independent pchk prob-
ability, the probability that less than Nbf remain unchosen is at most 2−λ.

– The honest Bob has enough one choice bits after the cut and choose. When
inserting n items into the bloom filter, at most nk bits will be set to one. We
therefore require that no fewer than this remain after the cut and choose.

Our main technique is to apply the Chernoff bound to the probability that
Bob has too many 1s after the cut and choose. Let m1

h = αNot (resp. m0
h =

(1 − α)Not) be the number of 1s (resp. 0s) Bob is supposed to select in the
OT extension. Then in expectation, there should be m1

hpchk ones in the cut and
choose open set, where each OT message is opened with independent probability
pchk. Let φ denote the number of ones in the open set. Then applying the Chernoff
bound we obtain,

Pr[φ ≥ (1 + δ)m1
hpchk] ≤ e−

δ2

2+δm
1
hpchk ≤ 2−λ

where the last step bounds this probability to be negligible in the statistical
security parameter λ. Solving for δ results in,

δ ≤
λ+

√
λ2 + 8λm1

hpchk
2m1

hpchk
.

Therefore an honest Bob should have no more than Nmaxones = (1 + δ)m1
hpchk

1s revealed in the cut and choose, except with negligible probability. To ensure
there are at least nk ones6 remaining to construct the bloom filter, set m1

h =
nk+Nmaxones. Similarly, there must be at least Nbf unopened OTs which defines
the total number of OTs to be Not = Nbf +(1+δ∗)Notpchk where δ∗ is analogous
to δ except with respect to the total number of OTs opened in the cut and
choose.

A malicious Bob can instead select m1
a ≥ m1

h ones in the OT extension. In
addition to Bob possibly setting more 1s in the BF, such a strategy will increase

6 nk ones is an upper bound on the number of ones required. A tighter analysis could
be obtained if collisions were accounted for.

13



the probability of the cut and choose revealing more than Nmaxones 1s. A Chernoff
bound can then be applied to the probability of seeing a δ′ factor fewer 1s than
expected. Bounding this to be negligible in the statistical security parameter λ,
we obtain,

Pr[φ ≤ (1− δ′)pchkm1
a] ≤ e− δ

′2
2 pchkm

1
a ≤ 2−λ.

Solving for δ′ then yields δ′ ≤
√

2λ
pchkm1

a
. By setting Nmaxones equal to (1 −

δ′)pchkm
1
a we can solve for m1

a such that the intersection of these two distri-
bution is negligible. Therefore the maximum number of 1s remaining is N1 =
(1− pchk)m1

a +
√

2λpchkm1
a.

For a given pchk, n, k, the above analysis allows us to bound the maximum
advantage a malicious Bob can have. In particularly, a honest Bob will have at
least nk 1s and enough 0s to construct the bloom filter while a malicious Bob
can set no more than N1/Nbf fraction of bits in the bloom filter to 1. Modeling
the bloom filter hash function as random functions, the probability that all k
index the boom filter one bits is (N1/Nbf)

k. Setting this to be negligible in the
computational security parameter κ we can solve for Nbf given N1 and k. The
overall cost is therefore Nbf

(1−pchk) . By iterating over values of k and pchk we obtain

set of parameters shown in Figure 5.

5.3 Security Proof

Theorem 2. The protocol in Figure 4 is a UC-secure protocol for PSI in the
random-OT-hybrid model, when H and the Bloom filter hash functions are non-
programmable random oracles, and the other protocol parameters are chosen as
described above.

Proof. We first discuss the case of a corrupt receiver Bob, which is the more
difficult case since we must not only extract Bob’s input but simulate the output.
The simulator behaves as follows:

The simulator plays the role of an honest Alice and ideal functionalities
in steps 1 through 5, but also extracts all of Bob’s choice bits b for the
OTs. Let N1 be the number of OTs with choice bit 1 that remain after
the cut and choose. The simulator artificially aborts if Bob succeeds
at the cut and choose and yet (N1/Nbf)

k ≥ 2−κ. From the choice of
parameters, this event happens with probability only 2−λ.
After receiving Bob’s permutation π in step 5, the simulator computes
Bob’s effective Bloom filter BF [i] = bπ(i). Let Q be the set of queries
made by Bob to any of the Bloom filter hash functions (random oracles).
The simulator computes Ỹ = {q ∈ Q | ∀i : BF [hi(q)] = 1} as Bob’s
effective input, and sends Ỹ to the ideal functionality. The simulator
receives Z = X ∩ Ỹ as output, as well as |X|. For z ∈ Z, the simulator
generates Kz = H(z ‖

⊕
j∈h∗(z)mπ(j),1). The simulator sends a random

permutation ofKz along with |X|−|Z| random strings to simulate Alice’s
message in step 6.
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To show the soundness of this simulation, we proceed in the following sequence
of hybrids:

1. The first hybrid is the real world interaction. Here, an honest Alice also
queries the random oracles on her actual inputs x ∈ X. For simplicity later
on, assume that Alice queries her random oracle as late as possible (in step
6 only).

2. In the next hybrid, we artifically abort in the event that (N1/Nbf)
k ≥ 2−κ.

As described above, our choice of parameters ensures that this abort happens
with probability at most 2−λ, so the hybrids are indistinguishable.
In this hybrid, we also observe Bob’s OT choice bits. Then in step 5 of the
protocol, we compute Q, BF , and Ỹ as in the simulator description above.

3. We next consider a sequence of hybrids, one for each item x of Alice such
that x ∈ X \ Ỹ . In each hybrid, we replace the summary value Kx =
H(x ‖

⊕
j∈h∗(x)mπ(j),1) with a uniformly random value.

There are two cases for x ∈ X \ Ỹ :
– Bob queried some hi on x before step 5: If this happened but x was not

included in Ỹ , then x is not represented in Bob’s effective Bloom filter
BF . There must be an i such that Bob did not learn mπ(hi(x)),1.

– Bob did not query any hi on x: Then the value of hi(x) is random for
all i. The probability that x is present in BF is the probability that
BF [hi(x)] = 1 for all i, which is (N1/Nbf)

k since Bob’s effective Bloom
filter has N1 ones. Recall that the interaction is already conditioned on
the event that (N1/Nbf)

k < 2−κ. Hence it is with overwhelming proba-
bility that Bob did not learn mπ(hi(x)),1 for some i.

In either case, there is an i such that Bob did not learn mπ(hi(x)),1, so that
value is random from Bob’s view. Then the corresponding sum

⊕
j∈h∗(x)mπ(j),1

is uniform in Bob’s view.7 It is only with negligible probability that Bob
makes the oracle query Kx = H(x ‖

⊕
j∈h∗(x)mπ(j),1). Hence Kx is pseudo-

random and the hybrids are indistinguishable.

In the final hybrid, the simulation does not need to know X, it only needs
to know X ∩ Ỹ . In particular, the values {Kx | x ∈ X \ Ỹ } are now being
simulated as random strings. The interaction therefore describes the behavior of
our simulator interacting with corrupt Bob.

Now consider a corrupt Alice. The simulation is as follows:

The simulator plays the role of an honest Bob and ideal functionalities
in steps 1 through 4. As such, the simulator knows Alice’s OT messages
mi,b for all i, b, and can compute the correct r∗ value in step 4. The
simulator sends a completely random permutation π in step 5.

7 This is part of the proof that breaks down if we compute a summary value using⊕
imπ(hi(x)),1 instead of

⊕
j∈h∗(x)mπ(j),1. In the first expression, it may be that

hi′(x) = hi(x) for some i′ 6= i so that the randomizing term mπ(hi(x)),1 cancels out
in the sum.
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In step 6, the simulator obtains a set K as Alice’s protocol message.
Recall that each call made to random oracle H has the form q‖s. The
simulator computes Q = {q | ∃s : Alice queried H on q‖s}. The simula-
tor computes X̃ = {q ∈ Q | H(q ‖

⊕
j∈h∗(q)mπ(j),1) ∈ K} and sends X̃

to the ideal functionality as Alice’s effective input. Recall Alice receives
no output.

It is straight-forward to see that Bob’s protocol messages in steps 4 & 5 are
distributed independently of his input.

Recall that Bob outputs {y ∈ Y | H(y ‖
⊕

j∈h∗(y)m
∗
π(j)) ∈ K} in the last

step of the protocol. In the ideal world (interacting with our simulator), Bob’s
output from the functionality is X̃ ∩ Y = {y ∈ Y | y ∈ X̃}. We will show that
the two conditions are the same except with negligible probability. This will
complete the proof.

We consider two cases:

– If y ∈ X̃, then H(y ‖
⊕

j∈h∗(y)m
∗
π(j)) = H(y ‖

⊕
j∈h∗(y)mπ(j),1) ∈ K by

definition.
– If y 6∈ X̃, then Alice never queried the oracle H(y‖·) before fixing K, hence
H(y ‖

⊕
j∈h∗(y)m

∗
π(j)) is a fresh oracle query, distributed independently of

K. The output of this query appears in K with probability |K|/2κ.

Taking a union bound over y ∈ Y , we have that, except with probability
|K||Y |/2κ,

H(y ‖
⊕

j∈h∗(y)m
∗
π(j)) ∈ K ⇐⇒ y ∈ X̃

Hence Bob’s ideal and real outputs coincide.

Size of the adversary’s input set. When Alice is corrupt, the simulator extracts
a set X̃. Unless the adversary has found a collision under random oracle H
(which is negligibly likely), we have that |X̃| ≤ |K|. Thus the protocol enforces
a straightforward upper bound on the size of a corrupt Alice’s input.

The same is not true for a corrupt Bob. The protocol enforces an upper bound
only on the size on Bob’s effective Bloom filter and a bound on the number of
1s in that BF. We now translate these bounds to derive a bound on the size
of the set extracted by the simulator. Note that the ideal functionality for PSI
(Figure 2) explicitly allows corrupt parties to provide larger input sets than
honest parties.

First, observe that only queries made by the adversary before step 5 of the
protocol are relevant. Queries made by the adversary after do not affect the
simulator’s extraction. As in the proof, let Q be the set of queries made by Bob
before step 5. Bob is able to construct a BF with at most N1 ones, and causing
the simulator to extract items Ỹ ⊆ Q, only if:∣∣∣∣∣∣

⋃
y∈Ỹ ;i∈[k]

hi(y)

∣∣∣∣∣∣ ≤ N1.
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Then by a union bound over all Bloom filters with N1 bits set to 1, and all
Ỹ ⊆ Q of size |Ỹ | = n′, we have:

Pr

[
simulator extracts
some set of size n′

]
≤
(
|Q|
n′

)(
Nbf

N1

)(
N1

Nbf

)kn′
.

The security proof already conditions on the event that (N1/Nbf)
k ≤ 2−κ, so we

get:

Pr

[
simulator extracts
some set of size n′

]
≤
(
|Q|
n′

)(
Nbf

N1

)
2−κn

′

≤
(
|Q|n

′
) (

2Nbf
)

2−κn
′

To make the probability less than 2−κ it therefore suffices to have n′ = (κ +
Nbf)/(κ− log |Q|).

In our instantiations, we always have Nbf ≤ 3κn, where n denotes the in-
tended size of the parties’ sets. Even in the pessimistic case that the adversary
makes |Q| = 2κ/2 queries to the Bloom filter hash functions, we have n′ ≈ 6n.
Hence, the adversary is highly unlikely to produce a Bloom filter containing 6
times the intended number of items. We emphasize that this is a very loose
bound, but show it just to demonstrate that the simulator indeed extracts from
the adversary a modestly sized effective input set.

5.4 Non-Programmable Random Oracles in the UC Model

Our protocol makes significant use of a non-programmable random oracle. In the
standard UC framework [4], the random oracle must be treated as local to each
execution for technical reasons. The UC framework does not deal with global
objects like a single random oracle that is used by many protocols/instances.
Hence, as currently written, our proof implies security when instantiated with a
highly local random oracle.

Canetti, Jain, & Scafuro [5] proposed a way to model global random oracles
in the UC framework (we refer to their model as UC-gRO). One of the main chal-
lenges is that (in the plain UC model) the simulator can observe the adversary’s
oracle queries, but an adversary can ask the environment to query the oracle
on its behalf, hidden from the simulator. In the UC model, every functionality
and party in the UC model is associated with a session id (sid) for the protocol
instance in which it participates. The idea behind UC-gRO is as follows:

– There is a functionality gRO that implements an ideal random oracle. Fur-
thermore, this functionality is global in the sense that all parties and all
functionalities can query it.

– Every oracle query in the system must be prefixed with some sid.
– There is no enforcement that oracle queries are made with the “correct” sid.

Rather, if a party queries gRO with a sid that does not match its own, that
query is marked as illegitimate by gRO.
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– A functionality can ask gRO for all of the illegitimate queries made using
that functionality’s sid.

Our protocol and proof can be modified in the following ways to provide security
in the UC-gRO model:

1. In the protocol, all queries to relevant random oracles (Bloom filter functions
hi and outer hash function H) are prefixed with the sid of this instance.

2. The ideal PSI functionality is augmented in a standard way of UC-gRO:
When the adversary/simulator gives the functionality a special command
illegitimate, the functionality requests the list of illegitimate queries from
gRO and forwards them to the adversary/simulator.

3. In the proof, whenever the simulator is described as obtaining a list of the
adversary’s oracle queries, this is done by observing the adversary’s queries
and also obtaining the illegitimate queries via the new mechanism.

With these modifications, our proof demonstrates security in the UC-gRO model.

6 Performance Evaluation

We implemented our protocol in addition to the protocols of DCW [8] outlined
in Section 3 and that of DKT [7]. In this section we report on their performance
and analyze potential trade offs.

6.1 Implementation & Test Platform

In the offline phase, our protocol consists of performing 128 base OTs using
the protocol of [20]. We extend these base OTs to Not OTs using an optimized
implementation of the Keller et al. [15] OT extension protocol. Our implemen-
tation uses the programmable-random-oracle optimization for OT of random
strings, described in Section 4.1. In the multi-threaded case, the OT extension
and Base OTs are performed in parallel. Subsequently, the cut and choose seed
is published which determines the set of OT messages to be opened. Then one
or more threads reports the choice bits used for the corresponding OT and the
XOR sum of the messages. The sender validates the reported value and proceeds
to the online phase.

The online phase begins with both parties inserting items into a plaintext
bloom filter using one or more threads. As described in section 5.1, the BF hash
functions should be modeled as (non-programmable) random oracles. We use
SHA1 as a random oracle but then expand it to a suitable length via a fast PRG
(AES in counter mode) to obtain:8

h1(x)‖h2(x)‖ · · · ‖hk(x) = PRG(SHA1(x)).

8 Note that if we model SHA1 as having its queries observable to the simulator, then
this property is inherited also when expanding the SHA1 output with a PRG.
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Hence we use just one (slow) call to SHA to compute all BF hash functions
for a single element, which significantly reduces the time for generating Bloom
filters. Upon the computing the plaintext bloom filter, the receiver selects a
random permutation mapping the random OT choice bits to the desired bloom
filter. The permutation is published and the sender responds with the random
garbled bloom filter masks which correspond to their inputs. Finally, the receiver
performs a plaintext intersection of the masks and outputs the corresponding
values.

We evaluated the prototype on a single server with simulated network latency
and bandwidth. The server has 2 36-cores Intel(R) Xeon(R) CPU E5-2699 v3 @
2.30GHz and 256GB of RAM (e.i. 36 cores & 128 GB per party). We executed
our prototype in two network settings: a LAN configuration with both parties in
the same network with 0.2 ms round-trip latency, 1 Gbps; and a WAN configu-
ration with a simulated 95 ms round-trip latency, 60 Mbps. All experiments we
performed with a computational security parameter of κ = 128 and statistical
security parameter λ = 40. The times reported are an average over 10 trials.
The variance of the trials was between 0.1% − 5.0% in the LAN setting and
0.5%− 10% in the WAN setting with a trend of smaller variance as n becomes
larger. The CPUs used in the trials had AES-NI instruction set for fast AES
computations.

6.2 Parameters

We demonstrate the scalability of our implementation by evaluating a range of
set sizes n ∈ {28, 212, 216, 220} for strings of length σ = 128. In all of our tests,
we use system parameters specified in Figure 5. The parameters are computed
using the analysis specified in Section 5.2. Most importantly they satisfy that
except with probability negligible in the computation security parameter κ, a
receiver after step 5 of Figure 4 will not find an x not previously queried which
is contained in the garbled bloom filter.

The parameters are additionally optimized to reduce the overall cost of the
protocol. In particular, the total number of OTs Not = Nbf/(1 − pchk) is min-
imized. This value is derived by iterating over all the region of 80 ≤ k ≤ 100
hash functions and cut-and-choose probabilities 0.001 ≤ pchk ≤ 0.1. For a given
value of n, k, pchk, the maximum number of ones N1 which a possibly malicious
receiver can have after the cut and choose is defined as shown in Section 5.2.
This in turn determines the minimum value of Nbf such that (Nbf/N1)−k ≤ 2−κ

and therefore the overall cost Not. We note that for κ other than 128, a different
range for the number of hash functions should be considered.

6.3 Comparison to Other Protocols

For comparison, we implemented two other protocol paradigms, which we de-
scribe here:
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n pchk k Not Nbf α Nmaxones

28 0.099 94 99,372 88,627 0.274 3,182
212 0.053 94 1,187,141 1,121,959 0.344 22,958
216 0.024 91 16,992,857 16,579,297 0.360 150,181
220 0.010 90 260,252,093 257,635,123 0.366 962,092

Fig. 5. Optimal Bloom filter cut and choose parameters for set size n to achieve sta-
tistical security λ = 40 and computational security κ = 128. Not denotes the total
number of OTs used. Nbf denotes the bit count of the bloom filer. α is the faction of
ones which should be generated. Nmaxones is the maximum number of ones in the cut
and choose to pass.

Setting Protocol
Set size n

28 212 216 220

Total Online Total Online Total Online Total Online

LAN

*DCW (Fig. 3) 3.0 (1.4) 58.5 (27.8) 1, 134 (532) -
*DCW + RGBF 2.9 (1.4) 58.4 (27.6) 1, 145 (542) -
DKT 1.7 22.6 358 3, 050
Ours (Fig 4) 0.2 (0.003) 0.9 (0.04) 9.7 (0.7) 127 (14)

WAN

*DCW (Fig. 3) 4.2 (1.8) 61.3 (28.8) 1, 185 (532) -
*DCW + RGBF 4.0 (1.6) 60.6 (28.6) 1, 189 (530) -
DKT 1.7 23.1 393 5, 721
Ours (Fig 4) 0.95 (0.1) 4.6 (0.8) 56 (11) 935 (175)

Fig. 6. Total time in seconds, with online time in parentheses, for PSI of two sets of
size n with elements of 128 bits. The LAN (resp. WAN) setting has 0.2ms (resp. 95ms)
round trip time latency. As noted in Section 6.3, when the protocol is marked with an
asterisk, we report an optimistic underestimate of the running time. Missing times (-)
took > 5 hours.

DCW protocol. Our first point of comparison is to the protocol of Dong, Chen,
& Wen [8], on which ours is based. The protocol is described in Section 3. While
their protocol has issues with its security, our goal here is to illustrate that our
protocol also has significantly better performance.

In [8], the authors implement only their semi-honest protocol variant, not the
malicious one. An aspect of the malicious DCW protocol that is easy to overlook
is its reliance on an N/2-out-of-N secret sharing scheme. When implementing
the protocol, it becomes immediately clear that such a secret-sharing scheme is
a major computational bottleneck.

Recall that the sender generates shares from such a secret sharing scheme,
and the receiver reconstructs such shares. In this protocol, the required N is the
number of bits in the Bloom filter. As a concrete example, for PSI of sets of size
220, the Bloom filter in the DCW protocol has roughly 228 bits. Using Shamir
secret sharing, the sender must evaluate a random polynomial of degree ∼ 227

on ∼ 228 points. The sender must interpolate such a polynomial on ∼ 227 points
to recover the secret. Note that the polynomial will be over GF (2128), since the
protocol secret-shares an (AES) encryption key.
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Threads Protocol
Set size n

28 212 216 220

4
DKT 0.79 6.75 98.1 1, 558
Ours (Fig 4) 0.17 0.63 4.3 66

16
DKT 0.36 2.56 31.0 461
Ours (Fig 4) 0.17 0.46 3.8 51

64
DKT 0.17 1.30 20.1 309
Ours (Fig 4) 0.17 0.30 2.3 37

Fig. 7. Total running time in seconds for the DKT and our protocol when 4, 16, and 64
threads per party are used. The evaluations were performed in the LAN setting with
a 0.2ms round trip time.

set size n asymptotic
28 212 216 220 Offline Online

DCW (Fig. 3) 3.2 50.7 810 - 2nκ2 4nk2

DCW + RGBF 2.4 33.9 541 - 2nκ2 2nκ2 + nκ

DKT 0.05 0.8 14 213 0 6nφ+ 6φ+ nκ

Ours (Fig 4) 1.9 23 324 4,970 2nκ2 2nκ log2(2nκ) + nκ

Fig. 8. The empirical and asymptotic communication cost for sets of size n reported
in megabytes, and bits respectively. φ = 283 is the size of the elliptic curve elements.
Missing entries had prohibitively long running times and are estimated to be greater
than 8, 500MB.

We chose not to develop a full implementation of the malicious DCW pro-
tocol. Rather, we fully implemented the [garbled] Bloom filter encoding steps
and the OTs. We then simulated the secret-sharing and reconstruction steps in
the following way. We calculated the number of field multiplications that would
be required to evaluate a polynomial of the suitable degree by the Fast Fourier
Transform (FFT) method, and simply had each party perform the appropriate
number of field multiplications in GF (2128). The field was instantiated using
the NTL library with all available optimizations enabled. Our simulation signif-
icantly underestimates the cost of secret sharing in the DCW protocol, since:
(1) it doesn’t account for the cost associated with virtual memory accesses when
computing on such a large polynomial; and (2) evaluating/interpolating the poly-
nomial via FFT reflects a best-case scenario, when the points of evaluation are
roots of unity. In the protocol, the receiver Bob in particular does not have full
control over which points of the polynomial he will learn.

Despite this optimistic simulation of the secret-sharing step, its cost is sub-
stantial, accounting for 97% of the execution time. In particular, when comparing
our protocol to the DCW protocol, the main difference in the online phase is the
secret sharing reconstruction which accounts for a 113× increase in the online
running time for n = 216.

We simulated two variants of the DCW malicious-secure protocol. One vari-
ant reflects the DCW protocol as written, using OTs of chosen messages. The
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other variant includes the “random GBF” optimization inspired by [23] and de-
scribed in Section 4. In this variant, one of the two OT messages is set randomly
by the protocol itself, and not chosen by the sender. This reduces the online
communication cost of the OTs by roughly half. However, it surprisingly has a
slight negative effect on total time. The reason is that during the online phase
Alice has more than enough time to construct and send a plain GBF while Bob
performs the more time intensive secret-share reconstruction step. For n = 216,
the garbled bloom filter takes less than 5% of the secret share reconstruction
time to be sent. When using a randomized GBF, Alice sends summary values
to Bob, which he must compare to his own summary values. Note that there is
a summary value for each item in a party’s set (e.g., 220), so these comparisons
involve lookups in some non-trivial data structure. This extra computational
effort is part of the the critical path since the Bob has to do it. In summary,
the “random GBF” optimization does reduce the required communication, how-
ever it also increases the critical path of the protocol due to the secret-share
reconstruction hiding the effects of this communication savings and the small
additional overhead of performing n lookups.

DH-based PSI protocols. Another paradigm for PSI uses public-key techniques
and is based on Diffie-Hellman-type assumptions in cyclic groups. The most
relevant protocol in this paradigm that achieves malicious security is that of
De Cristofaro, Kim, and Tsudik [7] which we refer to as DKT. While protocols
in this paradigm have extremely low communication complexity, they involve a
large number of computationally expensive public-key operations (exponentia-
tions). Another potential advantage of the DKT protocol over schemes based
on Bloom filters is that the receiver can be restricted to a set size of exactly n
items. This is contrasted with our protocol where the receiver can have a set size
of n′ ≈ 6n.

We fully implemented the [7] PSI protocol both in the single and multi
threaded setting. In this protocol, the parties perform 5n exponentiations and
2n related zero knowledge proofs of discrete log equality. Following the sugges-
tions in [7], we instantiate the zero knowledge proofs in the RO model with the
Fiat-Shamir transform applied to a sigma protocol. The resulting PSI protocol
has in total 12n exponentiations along with several other less expensive group
operations. The implementation is built on the Miracl elliptic curve library using
Curve 25519 achieving 128 bit computational security. The implementation also
takes advantage of the Comb method to perform a precomputation to increase
the speed of exponentiations (point multiplication). Additionally, all operations
are performed in a streaming manner allowing for the greatest amount of work
to be performed concurrently by the parties.

6.4 Results

The running time of our implementation is shown in Figure 6. We make the dis-
tinction of reporting the running times for both the total time and online phase
when applicable. The offline phase contains all operations which are independent
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of the input sets. For the bloom filter based protocols the offline phase consists
of performing the OT extension and the cut and choose. Out of these operations,
the most time-consuming is the OT extension. For instance, with n = 220 we
require 260 million OTs which requires 124 seconds; the cut and choose takes
only 3 seconds. For the smaller set size of n = 212, the OT extension required
461ms and the cut and choose completed in 419ms. The relative increase in
the cut and choose running time is primarily due to the need to open a larger
portion of the OTs when n is smaller.

The online phase consists of the receiver first computing their bloom filter.
For set size n = 220, computing the bloom filter takes 6.4 seconds. The permuta-
tion mapping the receiver’s OTs to the bloom filter then computed in less than
a second and sent. Upon receiving the permutation, the sender computes their
PSI summary values and sends them to the receiver. This process when n = 220

takes roughly 6 seconds. The receiver then outputs the intersection in less than
a second.

As expected, our optimized protocol achieves the fastest running times com-
pared to the other malicious secure constructions. When evaluating our imple-
mentation with a set size of n = 28 on a single thread in the LAN setting, we
obtain an online running time of 3ms and an overall time of 0.2 seconds. The
next fastest is that of DH-based DKT protocol which required 1.7 seconds, an
8.5× slowdown compared to our protocol. For the larger set size of n = 212, our
overall running time is 0.9 seconds with an online phase of just 40ms. The DKT
protocol is again the next fastest requiring 25× longer resulting in a total run-
ning time of 22.6 seconds. The DCW protocol from which ours is derived incurs
more than a 60× overhead. For the largest set size performed of n = 220, our
protocol achieves an online phase of 14 seconds and an overall time of 127 sec-
onds. The DKT protocol overall running time was more than 95 minutes, a 47×
overhead compared to our running time. The DCW protocol took prohibitively
long to run but is expected to take more than 100× longer than our optimized
protocol.

When evaluating our protocol in the WAN setting with 95ms round trip
latency our protocol again achieves the fastest running times. For the small
set size of n = 28, the protocol takes an overall running time of 0.95 seconds
with the online phase taking 0.1 seconds. DKT was the next fastest protocol
requiring a total time of 1.7 seconds, an almost 2× slowdown. Both variants
of the DCW protocol experience a more significant slowdown of roughly 4×.
When increasing the set size, our protocol experiences an even greater relative
speedup. For n = 216, our protocol takes 56 seconds, with 11 of the seconds
consisting of the online phase. Comparatively, DKT takes 393 seconds resulting
in our protocol being more than 7× faster. The DCW protocols are even slower
requiring more than 19 minutes, a 20× slowdown. This is primarily due to the
need to perform the expensive secret-sharing operations and send more data.

In addition to faster serial performance, our protocol also benefits from easily
being parallelized, unlike much of the DCW online phase. Figure Figure 7 shows
the running times of our protocol and that of DKT when parallelized using p
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threads per party in the LAN setting. With p = 4 we obtain a speedup of 2.3×
for set size n = 216 and 2× speedup for n = 220. However, the DKT protocol
benefits from being trivially parallelizable. As such, they enjoy a nearly one-
to-one speedup when more threads are used. This combined with the extremely
small communication overhead of the DKT protocol could potentially allow their
protocol to outperform ours when the network is quite slow and the parties have
many threads available.

In Figure 8 we report the empirical and asymptotic communication costs of
the protocols. Out of the bloom filter based protocols, ours consumes signifi-
cantly less bandwidth. For n = 28, only 1.9MB communication was required
with most of that cost in the offline phase. Then computing the intersection for
n = 216, our protocol uses 324MB of communication, approximately 5KB per
item. The largest amount of communication occurs during the OT extension
and involves the sending of a roughly 2nκ2-bit matrix. The cut and choose con-
tributes minimally to the communication and consists of npchk choice bits and
the xor of the corresponding OT messages. In the online phase, the sending of
the permutation consisting of Nbf log2(Not) ≈ 2nκ log(2nκ) bits that dominates
the communication.
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