
Non-Malleable Codes for Bounded Depth,
Bounded Fan-in Circuits

Marshall Ball1, Dana Dachman-Soled2, Mukul Kulkarni2, and Tal Malkin1

1 Columbia University
2 University of Maryland

Abstract. We show how to construct efficient, unconditionally secure
non-malleable codes for bounded output locality. In particular, our
scheme is resilient against functions such that any output bit is depen-
dent on at most nδ bits, where n is the total number of bits in a codeword
and 0 ≤ δ < 1 a constant. Notably, this tampering class includes NC0 .

1 Introduction

Non-malleable codes were first introduced by Dziembowski, Pietrzak and
Wichs [24] as an extension of error-correcting codes. Whereas error-correcting
codes provide the guarantee that (if not too many errors occur) the receiver can
recover the original message from a corrupted codeword, non-malleable codes are
essentially concerned with security. In other words, correct decoding of corrupted
codewords is not guaranteed (nor required), but it is instead guaranteed that
adversarial corruptions cannot influence the output of the decoding in a way that
depends on the original message: the decoding is either correct or independent
of the original message

The main application of non-malleable codes is in the setting of tamper-
resilient computation. Indeed, as suggested in the initial work of Dziembowski et
al. [24], non-malleable codes can be used to encode a secret state in the memory
of a device such that a tampering adversary interacting with the device does
not learn anything more than the input-output behavior. Unfortunately, it is
impossible to construct non-malleable codes secure against arbitrary tampering,
since the adversary can always apply the tampering function that decodes the
entire codeword to recover the message m and then re-encodes a related message
m′. Thus, non-malleable codes are typically constructed against limited classes of
tampering functions F . Indeed, given this perspective, error correcting codes can
be viewed as a special case of non-malleable codes, where the class of tampering
functions, F , consists of functions which can only modify some fraction of the
input symbols. Since non-malleable codes have a weaker guarantee than error
correcting codes, there is potential to achieve non-malleable codes against much
broader classes of tampering functions F .

Indeed, there has been a large body of work on constructing non-malleable
codes against classes of tampering functions which can potentially change every
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bit of the codeword, and for which no error correcting is possible. In particular,
much attention has been given in the literature to the bit-wise tampering class
(cf. [24,17,9]), where each bit of the codeword can be tampered individually, and
its generalization, the split state tampering class (cf. [31,23,3,13,14,2,1]), where
the codeword is split into two or more parts, each of which can be tampered
individually (and independently of other blocks). One goal in this line of papers
is to bring down the number of states, preferably to just two split states. Another
goal is to increase the rate of the code, defined as the ratio k/n where k is the
length of the original message and n is the length of the codeword outputted by
the encoding algorithm. A constant-rate code is preferred, with the best possible
rate being 1.

However, beyond some non-explicit (randomized) or inefficient constructions
for more general classes (cf. [24,13,26]), almost all known results are only for
function classes that are split state or “compartmentalized”. There are a few
exceptions, providing explicit and efficient non-malleable codes against non-
compartmentalized classes of functions, including Chabanne et al. [10]—who
address certain types of linear tampering functions—and Agrawal et al. [5,6]—
who address the class of functions that can permute the bits of a codeword, flip
individual bits, or set them to 0 or 1.

Other than the above results, achieving (explicit and efficient) non-malleable
codes against natural tampering classes that are not split-state is a fundamental
open question in this area, and is the focus of our paper.

1.1 Our Results

In this work, we devise explicit, efficient, and unconditionally secure non-
malleable codes against a powerful tampering class which includes all bounded-
depth circuits with bounded fan-in and unbounded fan-out. Specifically, we
consider the class Local`o , consisting of all functions f : {0, 1}n → {0, 1}n that
can be computed with output locality `o(n), where each output bit depends on
at most `o(n) input bits. Note that this class includes all fan-in-b circuits of
depth at most logb `o.

The class of bounded depth circuits is natural both as a complexity class
and in the context of practical tampering attacks, where it seems to realistically
capture the capabilities of a tampering adversary who has limited time to tamper
with memory before the memory gets overwritten and/or refreshed. Moreover,
the class of bounded output locality functions is a natural class in its own right,
and is in fact much broader, including arbitrarily complex functions (even those
outside of P), as long as the output locality constraint is maintained; we do not
impose any constraints on the number or type of gates in the circuit. Finally, as
we discuss below, our constructions actually hold for an even broader class, that
also includes all split state functions, and beyond. We prove the following.
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Main Theorem (informal): For any `o = o( n
logn ), there is an explicit,

unconditionally secure non-malleable code for Local`o , which encodes a
2k bit string into a string of length n = Θ(k`o) bits. The encoding and
decoding run in time polynomial in n, namely poly(k, `o).

This construction can be instantiated for any `o = o(n/ log n), and the resulting
code has rate Θ(1/`o). In general, since the the output length is n = Θ(k`o) bits,
this may result in super-polynomial length encoding. However, using sublinear
locality nδ yields an efficient code. We highlight this, as well as the special cases
of constant depth circuits (a subset of LocalO(1)), in the following.

Corollaries: There are efficient, explicit, and unconditionally secure
non-malleable codes for the following classes:

– Localn
δ

for any constant 0 ≤ δ < 1, with inverse-polynomial rate.
– NC0 with rate Θ(1/`o) for any `o = ω(1).
– NC0

c for any constant c, with constant rate.

The first corollary follows by instantiating the main theorem with `o = nδ, the
second by using any `o that is super constant (e.g., log∗(n)), and the third by
using `o = 2c (a constant).

While our result for NC0 correspond to constant depth circuits, the first
corollary above implies as a special case that the code is also non-malleable
against any δ log n depth NC circuit, for any constant 0 ≤ δ < 1. Note that, since
separations between P and NC1 are not known, constructing (unconditional) non-
malleable codes against NC1 is unlikely, since an attacker in P can always decode
and re-encode a related message, thus immediately breaking non-malleability.

Intermediate Results for (Input-and-Output) Local Functions. To
prove our results, we use the concept of non-malleable reduction, introduced
by Aggarwal et al. [2]. Informally, a class of functions F reduces to the class G, if
there is an encoding and decoding algorithms satisfying the following: applying
the encoding to the input, then applying any f ∈ F , and then applying the
decoding, can be simulated by directly applying some function g ∈ G to the
input. [2] prove that in this case a non-malleable code for G can be used to
construct one for F , and further prove a composition theorem, providing an
elegant and powerful way to construct non-malleable codes.

Following this technique, we start by proving two separate results, and
compose them (together with known results for the class of split state functions),
to obtain a restricted variant of the main theorem above. We then use the same
ideas to show a single construction allowing for a better combined analysis that
achieves the full main theorem (via reduction to the class of split state functions).
We believe our techniques are more comprehensible presented in this modular
fashion, and the intermediate results are of independent interest.

First, we consider the class Local`o`i of local functions, with output locality
`o as well as input locality `i (namely each input bit influences at most `i
output bits). This class includes bounded-depth circuits with bounded fan-in and
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bounded fan-out. Our first intermediate result shows that the class Local
Õ(
√
n)

Õ(
√
n)

(and in fact a larger, leaky version of it) can be non-malleably reduced to the
class of split state functions. Plugging in known results for non-malleable split
state codes, we obtain a non-malleable code for this class. Our second result

shows a non-malleable reduction of the class LocalÕ(
√
n) to the above class (thus

giving a non-malleable code for functions with output locality Õ(
√
n)). Finally,

we combine the encoding schemes presented previously to a single encoding
scheme (via a reduction to split state class), and improve the analysis to show
resilience against o(n/ log n) output locality.

We remark that our first technical result for (input and output) local
functions is of independent interest, and although as stated it is strictly weaker
than our output-local results, the construction can have advantages in terms of
complexity and concrete parameters, and has stronger resilience to tampering
functions that are both local and split-state, as we discuss next. We believe
that both Local`o`i and Local`o are interesting classes, capturing natural types of
tampering adversaries.

Extended Classes: Combining with Split State and Beyond. Our results
are in fact broader than presented so far. First, every one of our results works
not only for the class of functions claimed, but also for any split state function.
This is because for all of our schemes, encoding is applied independently on each
half of the input, and thus can handle a split-state tampering function trivially.

Furthermore, our intermediate result for (input-output) local functions can
handle any function that applies arbitrary changes within each part and has
bounded input and output locality between the two parts (this class is much
broader than all functions that are either split state or local). More precisely,
we can handle functions where any bit on the left affects at most Õ(

√
n) bits on

the right (and vice-versa), and any bit on the left is affected by at most Õ(
√
n)

bits on the right (and vice-versa).

Finally, our constructions can also handle some leakage to the tampering
function, capturing an adversary that first leaks some bits, and can then select a
tampering function. For our input-output local tampering result, the leakage can
be a constant fraction of the bits, while for our output-local tampering result,
the leakage is more limited.

Relation of Our Class to Previous Work. As mentioned above, almost
all previous results presenting explicit and efficient non-malleable codes, do so
for a split state tampering class (with two or more states). These classes are a
special case of ours, as we explained, which is not surprising given that we use
results for split state functions as a starting point to prove our result. As for
the exceptions that go beyond split state, we note that the class of functions
that permute the bits or apply bitwise manipulations, introduced by [5], is also
a special case of our class, as it is a subset of Local1 (in fact, even a subset of
Local11). The restricted linear tampering class considered by [10], on the other
hand, seems incomparable to our class of output-local functions.
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Thus, in terms of the tampering class captured, our results simultaneously
encompass (and significantly extend) almost all previously known explicit,
efficient constructions of non-malleable codes (we are aware of only one
exception). This is not the case in terms of the rate, where several previous
works focus on optimizing the rate for smaller classes of functions (e.g., [14]
achieve rate 1−o(1) non-malleable codes for bit-wise tampering functions), while
we only achieve a constant rate for these classes.

We also mention that the original work of Dziembowski et al. [24] already
considered the question of constructing non-malleable codes against the class
Localδ·n, where n is the length of the codeword and δ < 1 is a constant. We
emphasize, however, that in [24] (and an improvement in [13]), they showed a
construction of non-malleable codes against Localδ·n in a non-standard, random
oracle model where the encoding and decoding functions make queries to a
random oracle, but the adversarial tampering function does not query the
random oracle. Our work shows that it is possible to construct non-malleable
codes for Localδ·n for δ = o(1/ log n) in the standard model, with no random
oracle.

On Randomized Decoding. Our constructions require the decoding function
of the non-malleable code to be randomized. We note that, unlike the case of
error correcting codes and encryption schemes, deterministic decoding for non-
malleable codes does not seem to be without loss of generality, even in the
case where the encoding scheme enjoys perfect correctness. To see why, note
that while perfect correctness guarantees that all possible coins of the decoding
algorithm produce the same output on a valid codeword, correctness provides no
guarantees in the case when the codeword is corrupted and so it is not possible
to derandomize by simply fixing an arbitrary sequence of coins for the decoder.
Moreover, since the decoder holds no secret key in the non-malleable codes
setting, it is also not possible to derandomize the decoding process by including
the key of a pseudorandom function in the secret key. Since the encoding
procedure must be randomized, and since non-malleable codes are only secure in
the one-time setting—each time the codeword is decoded it must immediately
be refreshed by re-encoding the original message—we believe that allowing
randomized decoding is the natural and “correct” definition for non-malleable
codes (although the original definition required deterministic decoding).

Interestingly, we can combine our technical building blocks into a con-
struction of non-malleable codes against Local`o for any `o ≤ n1/4, using
deterministic decoding. Unfortunately, when compared to our construction
utilizing randomized decoding, this construction has a lower rate of O(1/`o

2)
(instead of O(1/`o)), and due to that also lower output locality that can be

supported (Localn
1/4

instead of Localn
δ

or Localo(n/ logn) without efficiency).

We therefore leave as an interesting open question to resolve whether ram-
domized decoding is necessary for achieving security against certain tampering
classes, F , or whether there is a generic way to derandomize decoding algorithms
for non-malleable codes.
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1.2 Technical Overview

We give a high level technical overview of our constructions. We use as an
underlying tool a so called “reconstructable probabilistic encoding scheme”, a
code that can correct a constant fraction of errors (denoted cerr), and enjoys
some additional secret-sharing like properties: given a (smaller) constant fraction
csec of the codeword gives no information on the encoded message, and can in
fact be completed to a (correctly distributed) encoding of any message. This
or similar tools were used in previous works either implicitly or explicitly, e.g.,
the construction based on Reed Solomon codes and Shamir secret sharing with
Berlekamp-Welch correction, as used already in [8] is a RPE (any small enough
subset of shares is distributed uniformly at random, and any such collection of
shares can be extended to be the sharing of any message of our choice). Other
RPE schemes with possibly improved parameters can be constructed from, e.g.,
[21,15,19,16].

Handling Local Functions. Local functions are functions that have both
small input and small output locality (i.e. each input bit affects a small number
of output bits and each output bit depends on a small number of input bits).
Our goal is to show a non-malleable reduction from a class of local functions with
appropriate parameters, to the class of split-state functions. Loosely speaking,
a non-malleable reduction from a class F to a class G, is a pair (E,D) of
encoding/decoding functions along with a reduction that transforms every
f ∈ F into a distribution Gf over functions g ∈ G, such that for every x,
the distributions D(f(E(x))) and Gf (x) are statistically close. In the case of
reductions to split-state, we let x = (L,R) where L,R ∈ {0, 1}k. We want to
construct (E,D) such that, informally, given any local f , the effect of applying
f to the encoding E(x) and then decoding D(f(E(x))), can be simulated by
applying some split state function g = (gL, gR) directly to x = (L,R).

We will use an encoding that works on each half of the input separately,
and outputs E(L,R) = (EL(L), ER(R)) = (sL, sR), where |sL| = nL, |sR| = nR
(we will refer to these as “left” and “right” sides, though as we will see they
will not be of equal lengths, and we will have appropriately designed decoding
algorithms for each part separately). Now for any given local f , consider
f(sL, sR) = (fL(sL, sR), fR(sL, sR)). Clearly, if fL only depended on sL and fR

only depended on sR, we would be done (as this would naturally correspond to
a distribution of split state functions on the original x = (L,R)). However, this
is generally not the case, and we need to take care of “cross-effects” of sR on fL

and sL on fR.

Let’s start with fL, and notice that if its output locality is at most `o, then
at most nL`o bits from sR could possibly influence the output of fL. Thus, we
will use ER that is an RPE with nL`o ≤ csecnR. This means that we can just
fix the relevant nL`o bits from sR = ER(R) randomly (and independently of R),
and now fL will only depend on sL, while sR can still be completed to a correctly
distributed encoding of R. Note that this requires making the right side larger
than the left side (nR ≥ nL`o

csec ).
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Now let’s consider fR. Clearly we cannot directly do the same thing we did for
fL, since that technique required nR to be much longer than nL, while applying
it here would require the opposite. Instead, we will take advantage of the smaller
size on the left, and its limited input locality. Specifically, if the input locality of
fL is `i, then at most nL`i bits on the right side can be influenced by sL.

A first (failed) attempt would be to just make sure that the encoding on
the right can correct up to nL`i errors, and hope that we can therefore set sL

arbitrarily when computing fR and the resulting encoding would still be decoded
to the same initial value R. While this argument works if the only changes made
to sR (a valid codeword) are caused by the “crossing bits” from sL, it fails to
take into account that fR can in fact apply other changes inside sR, and so it
could be that sR is malformed in such a way that applying fR will cause it to
decode differently in a way that crucially depends on sL. The issue here seems
to be that there is an exact threshold for when the decoding algorithm succeeds
or not, and thus the function can be designed so that fR is just over or under
the threshold depending on the left side.

To overcome this problem, we use randomized decoding and a “consistency
check” technique introduced in [15], and a forthcoming version by the same
authors [16], in a different context. Roughly speaking, we make the right side
encoding redundant, so that any large enough subset of bits is enough to recover
R. An RPE has this property due its error correction capabilities. The decoding
algorithm will decode via the first such subset, but will check a random subset of
bits were consistent with a particular corrected codeword. This will yield similar
behavior, regardless of which subset is used to decode. This construction has
various subtleties, but they are all inherited from previous work, so we do not
explain them here. The main point is that, like in [15,16], while the real decoding
algorithm uses the first subset large enough, it can be simulated by using any
other large enough subset.

Now, using the fact that “large enough” is not too large, and that at most
nL`i bits on the right side can be influenced by sL, we can show that with high
probability, there is a large enough “clean” subset of sR that has no influence
from sL. The real decoding algorithm could be simulated by a decoding that
uses this clean subset, which in turn means that the output of the decoding on
fR(sL, sR) is in fact independent of sL, as needed.

Putting the above together provides us the first result, namely a non-
malleable reduction from local to split state functions. We note that the proof
above in fact works for a more general class of functions (a fact we will use in
our second construction). In particular, the first part requires a limit on the
output locality of fL, and the second part requires a limit on the output locality
of fR and the input locality of fL, where all of these only refer to “cross-over”
influences (within each part separately f can be arbitrary). Moreover, due to our
use of encoding, security is maintained even with leakage, as long as the leakage
is a constant fraction of bits on the left and a constant fraction on the right,
independently. Similarly, security is maintained even when a constant fraction
of bits on the left do not adhere to the input locality bound.
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Removing Input Locality. We next present a non-malleable reduction from
output local functions (which have no restriction on input locality) to local
functions. Now let f be an output local tampering function. Since the input and
output to f are the same size, note that the average input locality of f can be
bounded by its output locality, `o. Our local construction above requires low
input locality for the left side, but also requires the left side to be much shorter
than the right side. Unfortunately, what this means is that the input locality of
all bits on the left side of the local encoding described above can be far higher
than average. So, in order to bound the average input locality of the left side,
we must increase the length of the left side, but this destroys our analysis from
the first construction.

In order to achieve the best of both worlds, our idea is to construct a non-
malleable reduction which increases the size of the left side of the underlying local
encoding by adding dummy inputs. The “relevant” inputs, which correspond
to bits of the left side of the underlying local encoding, are placed randomly
throughout the left side of the new encoding. The idea is that since the adversary
does not know which bit positions on the left side are “relevant,” it cannot
succeed in causing too many “relevant” positions to have input locality that is
too much above average.

But now, in order to decode properly, the decoding algorithm must be able
to recover these “relevant” locations, without sharing a secret state with the
encoding algorithm (which is disallowed in the standard non-malleable codes
setting). In order to do this, the first idea is to encode the relevant positions on
the left side of the new encoding in an additional string, which is then appended
to the left side during the new encoding procedure. Unfortunately, it is not clear
how to make this work: Since this additional string is long, it can depend on
a large number of input bits from both the left and right sides; on the other
hand, in order to obtain a reduction from output local to local functions, the
reduction must be able to recover this (possibly tampered) additional string so

that it “knows” which output bits of X̃L are relevant.

The solution is to use a PRG with a short seed. The seed of the PRG is now
the additional string that is appended to the left side and the output of the PRG
yields an indicator string which specifies the “relevant” locations for decoding.
Note that now since the PRG seed of length r is short, we can, using the leakage
resilient properties of the underlying local code, leak all r ·`o ≤ csec ·nL ≤ csec ·nR
number of bits affecting these output locations from both the left and right sides.

Moreover, because the tampering attacker is very limited, in the sense that it
must choose the tampering function before learning any information about the
output of the PRG, we are able to show that Nisan’s PRG (see Definition 12),
an unconditional PRG is sufficient for our construction. Thus, our construction
does not rely on any computational assumption.

Improving the parameters. Ultimately the technique sketched above and
presented in the body of the paper imposes two restrictions on output locality
(modulo smaller terms): (1) nL`o ≤ nR (2)`o ≈ `i ≤ nL. Together these
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restrictions imply tolerance against output locality of approximately
√
n. The

first restriction follows from the asymmetric encoding to handle bits on the left
dependent on the right. The second restriction results from handling bits on the
left of affecting the right side’s consistency check.

To bypass this
√
n barrier, we consider the two encoding schemes as a single

scheme. Then in analysis, we can use the pseudorandom hiding of the left side
encoding to relax the second bound. Namely, with high probability only a small
portion of the left side RPE affects the consistency check, even if the consistency
check and/or output locality is large with respect to nL. This simple change in
analysis gives resilience against o(n/ log n) output locality.

1.3 Other Related Work

The concept of non-malleability was introduced by Dolev, Dwork and Naor [22]
and has been applied widely in cryptography since. Although it was defined in
computational setting, most recent work on non-malleability has been in the
information-theoretic setting. The study of non-malleable codes was inspired by
error-correcting codes and early works on tamper resilience [29], [27], [28].

Dziembowski, Pietrzak and Wichs [24] motivated and formalized the notion of
non-malleable codes. They showed the existence of such codes for the class of all
bit-wise independent functions (which can be viewed as split state with n parts).
Later work on split state classes improved this by reducing the number of states,
increasing the rate, or adding desirable features to the scheme. For example, [23]
presented an information theoretic non-malleable code for 1-bit messages against
2 state split state functions, followed by [3], who gave an information-theoretic
construction for k-bit messages using results from additive combinatorics. A
constant rate construction for a constant (> 2) number of states was provided
in [12,3]. This line of research culminated with the result of [2], who used their
reduction-based framework to achieve constant rate codes for two state split-
state functions (using several intermediate constructions against various classes
of functions). [1] improve this to (optimal) rate 1 non-malleable codes for two
states, in the computational setting.

Beyond the above and other results constructing explicit efficient codes, there
are several inefficient, existential or randomized constructions for much more
general classes of functions (sometimes presented as efficient construction in a
random-oracle model). In particular, Dziembowski et al. [24] gave an existential
proof for the existence non-malleable codes secure against any ‘small-enough’
tampering family (< 22

n

). [13,26] give randomized construction of non-malleable
codes against bounded poly-size circuits (where the bound on the circuit size is
selected prior to the code).

Several other variants and enhanced models were considered. For example,
[17], in the context of designing UC secure protocols via tamperable hardware
tokens, consider a variant of non-malleable codes which has deterministic encryp-
tion and decryption. It is interesting to note the contrast between their restriction
to deterministic encoding (and decoding) and our relaxation to randomized
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decoding (and encoding). They provide inefficient general constructions and
efficient constructions for bit-wise functions and generalizations. [31], in the
context of securing cryptographic protocols against continual split-state leakage
and tampering, provide a (computational) non-malleable code for split state
functions, in the CRS model. This was one of the first works using the split
state model for tampering. [20,11] consider a variant of non-malleable codes
that is also locally decodable and updatable. [25] allow continual tampering,
and [4] allow for bounded leakage model. As discussed previously, [10] considers
a subclass of linear tampering functions. We guide the interested reader to [30]
and [31] for illustrative discussion of various models.

2 Preliminaries

2.1 Notation

Firstly, we present some standard notations that will be used in what follows.
For any positive integer n, [n] := {1, . . . , n}. If x = (x1, . . . , xn) ∈ Σn (for
some set Σ), then xi:j := (xi, xi+1, . . . , xj−1, xj) for i ≤ j. If Σ is a set, then
ΣΣ := {f : Σ → Σ}, the set of all functions from Σ to Σ. We say two vectors
x, y ∈ Σn are ε-far if they disagree on at least ε · n indices, |{i : xi 6= yi}| ≥ εn.
Conversely, we say two vectors x, y ∈ Σn are (1−ε)-close if they agree on at least
(1−ε)·n indices, |{i : xi = yi}| ≥ (1−ε)n. Alternatively, for x, y ∈ GF(2)n define

their distance to be d(x, y) := ‖x+y‖0
n . (I.e. x and y are ε-far if d(x, y) ≥ ε.) We

take the statistical distance between two distributions, A and B, over a domain
X to be ∆(A,B) := 1/2

∑
x∈X |A(x)−B(x)|. We say A and B are statistically

indistinguishable, A
s
≈ B, if ∆(A,B) is negligible, in some parameter appropriate

to the domain.

2.2 Non-Malleable Codes and Reductions

Definition 1 (Coding Scheme). [24] A Coding scheme, (E,D), consists of a
randomized encoding function E : {0, 1}k 7→ {0, 1}n and a randomized decoding
function D : {0, 1}n 7→ {0, 1}k∪{⊥} such that ∀x ∈ {0, 1}k,Pr[D(E(x)) = x] = 1
(over randomness of E and D).

We note that this definition differs from the original one given in [24], in
that we allow the decoding to be randomized, while they required deterministic
decoding. While this technically weakens our definition (and a code with
deterministic decoding would be preferable), we feel that allowing randomized
decoding fits the spirit and motivation of non-malleable codes, and possibly is
“the right” definition (which was simply not used before because it was not
needed by previous constructions). More importantly, it may allow for a wider
classes of functions.

This difference (allowing randomized decoding) also applies to the rest of
the section, but all the previous results (in particular, Theorem 1) go through in
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exactly the same way, as long as we have independent randomness in all encoding
and decoding.

Originally, non-malleable codes were defined in the following manner:

Definition 2 (Non-Malleable Code). [2] Let F denote a family of tampering
functions. Let E : B → A, D : A→ B be a coding scheme. For all f ∈ F and all
x ∈ B define:

Tamperfx := {c← E(x); c̃← f(c); x̃← D(c̃); output: x̃}.

Then, (E,D) is an ε-non-malleable code with respect to F , if there exists a
distribution Df over {0, 1}k∪{⊥, same} such that ∀x ∈ B, the statistical distance
between

Simf
x := {x̃← Df ; output: x if x̃ = same & x̃, otherwise},

and Tamperfx is at most ε.

The above of definition has its origins in [24]. Dziembowski, Pietrzak, and
Wichs required the simulator to be efficient. Aggarwal et al. demonstrated that
the above relaxation is, in fact, equivalent for deterministic decoding. Allowing
decoding to be randomized does not affect their proof. For this reason, we will not
concern ourselves with the efficiency of a simulator (or, equivalently, sampling
relevant distributions) for the remainder of this paper.

Aggarwal et al. provide a simpler alternative to the above simulation-based
definition, which they prove equivalent.[2] Their definition is based on the notion
of non-malleable reduction, which we will use.

Definition 3 (Non-Malleable Reduction). [2] Let F ⊂ AA and G ⊂ BB

be some classes of functions. We say F reduces to G, (F ⇒ G, ε), if there
exists an efficient (randomized) encoding function E : B → A, and an efficient
(randomized) decoding function D : A→ B, such that

(a) ∀x ∈ B,Pr[D(E(x)) = x] = 1 (over the randomness of E,D).
(b) ∀f ∈ F ,∃G : ∀x ∈ B, ∆(D(f(E(x)));G(x)) ≤ ε, where G is a distribution

over G and G(x) denotes the distribution g(x), where g ← G.

If the above holds, then (E,D) is an (F ,G, ε)-non-malleable reduction.

Definition 4 (Non-Malleable Code). [2] Let NMk denote the set of trivial
manipulation functions on k-bit strings, consisting of the identity function
id(x) = x and all constant functions fc(x) = c, where c ∈ {0, 1}k.

A coding scheme (E,D) defines an (F , k, ε)-non-malleable code, if it defines
an (F ,NMk, ε)-non-malleable reduction.

Aggarwal et al. also prove the following useful theorem for composing non-
malleable reductions.

Theorem 1 (Composition). [2] If (F ⇒ G, ε1) and (G ⇒ H, ε2), then (F ⇒
H, ε1 + ε2).

We note that the proof given in [2] goes through unchanged with randomized
decoding.
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2.3 Tampering Families

Definition 5 (Split-State Model). [24] The split-state model, SSk, denotes
the set of all functions:

{f = (f1, f2) : f(x) = (f1(x1:k) ∈ {0, 1}k, f2(xk+1:2k) ∈ {0, 1}k) for x ∈ {0, 1}2k}.

Theorem 2 (Split-State Non-malleable Codes with Constant Rate).
[2] There exists an efficient, explicit (SSO(k), k, 2

−Ω(k)) non-malleable code,
(ESS,DSS).

We next define a class of local functions, where the number of input bits
that can affect any output bit (input locality) and the number of output bits
that depend on an input bit (output locality) are restricted. Loosely speaking,
an input bit xi affects the output bit yj if for any boolean circuit computing f ,
there is a path in the underlying DAG from xi to yj . The formal definitions are
below, and our notation follows that of [7]

Definition 6. We say that a bit xi affects the boolean function f ,
if ∃ {x1, x2, · · ·xi−1, xi+1, · · ·xn} ∈ {0, 1}n−1 such that,
f(x1, x2, · · ·xi−1, 0, xi+1, · · ·xn) 6= f(x1, x2, · · ·xi−1, 1, xi+1, · · ·xn).

Given a function f = (f1, . . . , fn) (where each fj is a boolean function), we
say that input bit xi affects output bit yj, or that output bit yj depends on input
bit xi, if xi affects fj.

Definition 7 (Output Locality). A function f : {0, 1}n → {0, 1}n is said to
have output locality m if every output bit fi is dependent on at most m input
bits.

Definition 8 (Input Locality). A function f : {0, 1}n → {0, 1}n is said to
have input locality ` if every input bit fi is affects at most ` output bits.

Definition 9 (Local Functions). [7] A function f : {0, 1}n → {0, 1}n is said
to be (m, `)-local, f ∈ Localm` , if it has input locality ` and output locality m. We
denote the class Localmn (namely no restriction on the input locality) by Localm.

The above notions can be generalized to function ensembles {fn : {0, 1}n →
{0, 1}n}n∈Z with the following corresponding locality bound generalizations:
`(n),m(n).

Recall that NC0 is the class of functions where each output bit can be
computed by a boolean circuit with constant depth and fan-in 2 (namely in

constant parallel time). It is easy to see that NC0 ⊆ LocalO(1).

2.4 Reconstructable Probabilistic Encoding Scheme

Reconstructable Probabilistic Encoding (RPE) schemes were defined by Choi et
al. (in an in-submission journal version of [15], as well as in [16]), extending a
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definition given by Decatur, Goldreich and Ron [21]. Informally, this is an error
correcting code, which has an additional secrecy property and reconstruction
property. The secrecy property allows a portion of the output to be revealed
without leaking any information about the encoded message. The reconstruction
property allows, given a message and a partial codeword for it, to reconstruct
a complete consistent codeword. Thus, this is a combination of error correcting
code and secret sharing, similar to what has been used in the literature already
starting with Ben-Or, Goldwasser, and Wigderson [8].

Definition 10 (Binary Reconstructable Probabilistic Encoding).
[15,16] We say a triple (E,D,Rec) is a binary reconstructable probabilistic encoding
scheme with parameters (k, n, cerr, csec), where k, n ∈ N, 0 < cerr, csec < 1, if it
satisfies the following properties:

1. Error correction. E : {0, 1}k → {0, 1}n is an efficient probabilistic
procedure, which maps a message m ∈ {0, 1}k to a distribution over {0, 1}n.
If we let W denote the support of E, any two strings in W are 2cerr-far.
Moreover, D is an efficient procedure that given any w′ ∈ {0, 1}n that is
(1− ε)-close to some string w in W for any ε ≤ cerr, outputs w along with a
consistent m.

2. Secrecy of partial views. For all m ∈ {0, 1}k and all sets S ⊂ [n] of size
≤ bcsec · nc, the projection of E(m) onto the coordinates in S, as denoted by
E(m)|S, is identically distributed to the uniform distribution over {0, 1}bcsecnc.

3. Reconstruction from partial views. Rec is an efficient procedure that
given any set S ⊂ [n] of size ≤ bcsec · nc, any I ∈ {0, 1}n, and any
m ∈ {0, 1}k, samples from the distribution E(m) with the constraint ∀i ∈
S,E(m)i = Ii.

Choi et al. show that a construction of Decatur, Goldreich, and Ron [21]
meets the above requirements.

Lemma 1. [15,16] For any k ∈ N, there exists constants 0 < crate, cerr, csec < 1
such that there is a binary RPE scheme with parameters (k, cratek, cerr, csec).

Remark 1. To achieve longer encoding lengths ck, with the same cerr and csec

parameters, one can simply pad the message to an appropriate length.

Specifically, Decatur, Goldreich and Ron [21] construct a probabilistic
encoding scheme that possesses the first two properties listed above. Moreover,
since the construction they present, instantiates E with a linear error-correcting
code, we have that property (3) holds. (Any linear error-correcting code has
efficient reconstruction.)

These are the parameters we use here, but we believe it may be possible to
achieve a better rate if we use parameters based on the recent result of Coretti
et al. [18] (see also [14]).
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2.5 Boolean Function Restrictions

The following two definitions are special cases of Boolean function restrictions. It
will be convenient to have explicit notation for restrictions of Boolean functions
f where the input/output of the function f has a particular form.

Definition 11 (Restriction). For a vector v ∈ {0, 1, ∗}n and a Boolean
function f : {0, 1}n → {0, 1}n the restriction of f to v, f̃ |v is defined as
f̃ |v(x) = f(z) where,

zi =

{
xi vi = ∗
vi vi ∈ {0, 1}

Let f : D → {0, 1}r be a function. Then, we denote by fi the function which
outputs the i-th output bit of f . Let f : D → {0, 1}r be a function and let
v ∈ {0, 1}r be a vector. Then, we denote by fv the function which outputs all fi
such that vi = 1.

2.6 Pseudorandom Generators of Space-Bounded Computation

Definition 12. [32] A generator prg : {0, 1}m → ({0, 1}n)k is a pseudorandom
generator for space(w) and block size n with parameter ε if for every finite state
machine, Q, of size 2w over alphabet {0, 1}n we have that

|Pr
y

[Q accepts y]− Pr
x

[Q accepts prg(x)]| ≤ ε

where y is chosen uniformly at random in ({0, 1}n)k and x in {0, 1}m.

Theorem 3. [32] There exists a fixed constant c > 0 such that for any w, k ≤ cn
there exists an (explicit) pseudorandom generator prg : {0, 1}O(k)+n → {0, 1}n2k

for space(w) with parameter 2−cn. Moreover, prg can be computed in polynomial
time (in n, 2k).

3 Non-malleable Codes for Local
`i(n)
`o(n)

Theorem 4. (E,D) is a (Local
`o(k)
`i(k)

⇒ SSk, negl(k))-non-malleable reduction

given the following parameters for Local
`o(k)
`i(k)

(where crate, cerr, csec are taken from

lemma 1):

– `o ≤ cratecseck
log2(k)

.

– `i ≤ 12`o/c
sec.

– n := crate k2

log2(k)
+ cratek = O

(
k2

log2(k)

)
.
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Putting together Theorem 4 with Theorems 1 and 2, we obtain the following.

Corollary 1. (E ◦ESS,DSS ◦D) is a (Local``, k, negl(k))-non-malleable code with
rate Θ(1/`), where ` = Õ(

√
n).

Remark 2. The reduction presented below is, in fact, a (XLocal`` ⇒ SSk, negl(k))-
non-malleable reduction, where ` = Õ(

√
n) and XLocal`` is the following class of

functions f : {0, 1}nL+nR → {0, 1}nL+nR :

– For i = 1, . . . , nL, there are at most ` indices j ∈ {nL+ 1, . . . , nL+nR} such
that the i-th input bit affects fj . And, for i = nL+ 1, . . . , nL+nR, there are
at most ` indices j ∈ {1, . . . , nL} such that the i-th input bit affects fj .

– For i = 1, . . . , nL, there are at most ` indices j ∈ {nL+ 1, . . . , nL+nR} such
that the fi-th is affected by the j-th input bit. And, for i = nL+ 1, . . . , nL+
nR, there are at most ` indices j ∈ {1, . . . , nL} such that the fi-th is affected
by the j-th input bit.

In other words, the reduction holds for a generalized variant of split state
tampering where we only restrict locality with respect to the opposite side, and
allow arbitrary locality within each side. nL and nR are the lengths of the left
and right side codewords, respectively.

We construct an encoding scheme (E,D) summarized in Figure 1 and

parametrized below. We then show that the pair (E,D) is an (Local
`o(k)
`i(k)

,SSk, negl(k))-

non-malleable reduction. This immediately implies that given a non-malleable
encoding scheme (Ess,Dss) for class SSk (where SS is the class of split-state func-
tions), the encoding scheme scheme Π = (Ebd,Dbd), where Ebd(m) := E(Ess(m))

and Dbd(s) := Dss(D(s)) yields a non-malleable code against Local
`o(k)
`i(k)

.

We parametrize our construction for Local
`o(k)
`i(k)

⇒ SSk with the following:

– (EL,DL) parametrized by (k, nL, c
err
L , c

sec
L ) := (k, cratek, cerr, csec) where cerr, csec, crate

are taken from lemma 1.
– ncheck := log2(k).

– `sec :=
√

cnL
ncheck

= Θ(
√
k

log(k) ).

– (ER,DR) parametrized by (k, nR, c
err
R , c

sec
R ) := (k, `oc

ratek
csec , cerr, csec).

– n := `oc
ratek + cratek = O( k2

log2(k))
.

Note that this setting of parameters is taken with our forthcoming reduction
in mind. (See Corollary 2 and Theorem 5.) One may take any parametrization
for which (a) such RPEs exist, (b) (1 − cerr/4)ncheck is negligible in k, and (c)
Observation 1 (below) is satisfied. For certain applications, parametrization other
than ours may be advantageous.

Let f(sL, sR) = (fL(sL, sR), fR(sL, sR)), where (sL, sR) ∈ {0, 1}nL × {0, 1}nR
and fL(sL, sR) ∈ {0, 1}nL and fR(sL, sR) ∈ {0, 1}nR .



16

Let (EL,DL,RecL) be a binary reconstructable probabilistic encoding scheme with
parameters (k, nL, c

err
L , c

sec
L ) and let (ER,DR,RecR) be a binary reconstructable

probabilistic encoding scheme with parameters (k, nR, c
err
R , c

sec
R ).

Also let `sec, ncheck be parameters.

E(x := (L,R)):

1. Compute (sL1, . . . , s
L
nL)← EL(L) and (sR1 , . . . , s

R
nR)← ER(R).

2. Output the encoding (sL, sR) := ([sLi ]i∈[nL], [s
R
i ]i∈[nR]).

D(σ := (σL,σR)):

1. Let (σL,σR) := ([σL
i ]i∈[nL], [σ

R
i ]i∈[nR]).

2. Compute ((wL
1, . . . , w

L
nL), L) ← DL(σL

1, . . . , σ
L
nL). If the decoding fails, set

L :=⊥.
3. (decoding-check on right) Let t := dnR(1 − cerrR /4)e Define σ′

R
:=

σ′R1 , . . . , σ
′R
nR as follows: Set σ′R` := σR

` for ` = 1, . . . , t. Set σ′R` := 0 for
` = t + 1, . . . , nR. Compute ((wR

1 , . . . , w
R
nR),R) ← DR(σ′R1 , . . . , σ

′R
t ). If the

decoding fails or (wR
1 , . . . , w

R
nR) is not cerrR /4-close to (σR

1 , . . . , σ
R
tR), set R :=⊥.

4. (codeword-check on right) Pick a random subset Rcheck ⊂ [nR] of size
ncheck < csecR · nR. For all ` ∈ Rcheck, check that σR

` = wR
` . If the check fails,

set R :=⊥.
5. (output) Output x := (L,R).

Fig. 1. The (Local
`o(k)

`i(k)
, SS, negl(k))-non-malleable reduction (E,D)
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– Let SR→L denote the set of positions j such that input bit sRj affects the

output of fL.

– Let SL→R denote the set of positions i such that input bit sLi affects the
output of fR.

– For J ⊂ [nR], let SJL→R denote the set of positions i such that input bit sLi
affects the output of fRj for some j ∈ J .

– For a set Rcheck ⊆ nR of size ncheck, let Scheck denote the set of positions i
such that input bit sLi affects the output of fR` for some ` ∈ Rcheck.

sL and sR is the split state representation of the output of the encoded message.

sL1 sL2 sL3 · · · sLnL

σR
1 σR

2 σR
3 · · · σR

i−1 σR
i σR

i+1 · · · σR
nR−2 σR

nR−1 σR
nR

σL and σR is the split state representation of the output of the tampering function.

σL
1 σL

2 σL
3 · · · σL

nL

sR1 sR2 sR3 · · · sRi−1 sRi sRi+1 · · · sRnR−2 sRnR−1 sRnR

Fig. 2. The adversary chooses tampering function f = (fL, fR) ∈ Local
`o(k)

`i(k)
which takes

inputs (sL, sR) and produces outputs (σL,σR). The highlighted bits of sL and sR are the
“bad” bits. E.g. note that bits sR2 and sRi affect the output bits σL

2 and σL
1 respectively

after fL is applied to (sL, sR). Thus we add 2 and i to the set SR→L. Similarly, the bits
sL1 and sL3 affect the bits {σR

1 , σ
R
i } and the bits {σR

2 , σ
R
i+1, σ

R
nR,} respectively after the

tampering function fR is applied to (sL, sR). We therefore add 1 to the sets S1
L→R and

SiL→R, while we add 3 to the sets S2
L→R,Si+1

L→R and SnRL→R. We also add both 1 and 3 to
the set SL→R.

The sets defined above are illustrated in Figure 2. We observe the following
immediate facts about their sizes:

Observation 1 For f ∈ Local`o`i , we have the following:

1. There is some set J∗ ⊂ [nR] such that |J∗| = t and |SJ∗L→R| = 0 (from now
on, J∗ denotes the lexicographically first such set).

(Since |SL→R| ≤ `i · nL ≤ nR − t.)
2. By choice of parameters nL, ncheck, c

sec
L , we have that |Scheck| ≤ nL · csecL .

(Since Scheck ≤ `o · ncheck.)

3. By choice of parameters nL, nR, c
sec
R , we have that |SR→L| ≤ `o ·nL ≤ nR ·csecR .
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Now, for every f ∈ Local`o`i , we define the distribution Gf over SSk. A draw from
Gf is defined as follows:

– Choose a random subset Rcheck ⊆ [nR] of size ncheck.
– Choose vectors IL ∈ {0, 1}nL × {∗}nL , IR ∈ {∗}nL × {0, 1}nR uniformly at

random.
– Let J∗ be the subset of [nR] as described in Observation 1.
– The split-state tampering function g := (gL, gR) ∈ SSk has IL, IR hardcoded

into it and is specified as follows:
gL(L):
1. (apply tampering and plain decode on left) Let sL := Rec(Scheck, IL, L).

Let (σL
1 , . . . , σ

L
nL) := fL|IR(sL). Compute ((wL

1, . . . , w
L
nL), L̃)← DL(σL

1 , . . . , σ
L
nL).

If the decoding fails, set L̃ :=⊥.
2. (output) Output L̃.
gR(R):
1. (apply tampering and decoding-check on right) Let sR = (sR1 , . . . , s

R
nR) :=

Rec(SR→L, I
R,R). Let (σR

1 , . . . , σ
R
nR) := fR|IL(sR). Define σ′

R
:=

σ′R1 , . . . , σ
′R
nR as follows: Set σ′R` := σR

` for ` ∈ [J∗]. Set σ′R` := 0

for ` /∈ [J∗]. Compute ((wR
1 , . . . , w

R
nR), R̃) ← DR(σ′R1 , . . . , σ

′R
t ). If the

decoding fails or (wR
1 , . . . , w

R
nR) is not cerrR /4-close to (σR

1 , . . . , σ
R
nR), then

set R̃ :=⊥.
2. (codeword-check on right) For all ` ∈ Rcheck, check that σR

` = wR
` . If

the check fails, set R̃ :=⊥.
3. (output) Output R̃.

– Output g = (gL, gR).

Whenever Rec is run above, we assume that enough positions are set by S
such that there is only a single consistent codeword. If this is not the case, then
additional positions are added to S from IL, IR, respectively.

By the definition of a non-malleable reduction (Definition 3), in order to
complete the proof of Theorem 4, we must show that (E,D) have the following
properties:

1. For all x ∈ {0, 1}k, we have D(E(x)) = x with probability 1.
2. For all f ∈ Local`o`i ,

∆(D(f(E(x)));Gf (x)) ≤ negl(k),

where Gf is the distribution defined above.

Item (1) above is trivial and can be immediately verified. In the following, we
prove Item (2) above by considering the following sequence of hybrid arguments
for each function f ∈ Local`o`i (for the intermediate hybrids, we highlight the
step in which they are different from the desired end distributions).

Hybrid H0. This is the original distribution D(f(E(x)))
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Hybrid H1. H1 corresponds to the distribution D′(f(E(x))), where D′ is defined
as follows:

D(σ := (σL,σR)):

1. (plain decode on left) Let (σL,σR) := ([σL
i ]i∈[nL], [σ

R
` ]`∈[nR]). Compute

((wL
1, . . . , w

L
nL), L)← DL(σL

1 , . . . , σ
L
nL). If the decoding fails, set L :=⊥.

2. (decoding-check on right) Define σ′
R

:= σ′R1 , . . . , σ
′R
nR as follows: Set

σ′R` := σR
` for ` ∈ J∗ and σ′R` := 0 for ` /∈ J∗, where J∗ ⊆ [nR]

is the lexicographically first set such that |J∗| = t and |SJ∗L→R| = 0.
Compute ((wR

1 , . . . , w
R
nR),R) ← DR(σ′R1 , . . . , σ

′R
tR). If the decoding fails or

(wR
1 , . . . , w

R
nR) is not cerrR /4-close to (σR

1 , . . . , σ
R
tR), set R :=⊥.

3. (codeword-check on right) For all ` ∈ Rcheck, check that σR
` = wR

` . If the
check fails, set R :=⊥.

4. (output) Output x := (L,R).

Note that the only difference between D and D′ is that in decoding-check

on right, σR is decoded from J∗, instead of the first ncheck positions.

Claim.
H0

s
≈ H1.

Proof. Let δ :=
cerrR
4 . Additionally, define

ρ(nR, δ, ncheck) :=

(
(1−δ)nR
ncheck

)(
nR
ncheck

) .

Notice that our parametrization of ncheck, δ yields ρ(nR, δ, ncheck) = negl(k).

(
(1−δ)nR
ncheck

)(
nR
ncheck

) = ((1−δ)nR)!ncheck!(nR−ncheck)!
ncheck!((1−δ)nR−ncheck)!nR! =

(
(1−δ)nR
nR

)(
(1−δ)nR−1
nR−1

)
· · ·
(

(1−δ)nR−ncheck+1
nR−ncheck+1

)
≤ (1− δ)ncheck ,

where the last inequality follows due to the fact that for i ∈ {0, . . . , ncheck − 1},
(1−δ)nR−i
nR−i ≤ (1−δ). Since (1−δ) < 1 is a constant, we can set ncheck = ω(log(k)).

Note that correctness still holds for D′ with probability 1.

We want to show that for every σ = (σL,σR)← f(E(x)), D(σ) = D′(σ) with
high probability, over the coins of D,D′.

Let D := (DL,DR) (respectively, D′ := (D′
L
,D′

R
)), where DR (respectively,

D′
R
) correspond to the right output of the decoding algorithm. Notice that only

decoding on the right changes. So, it suffices to show that for each (σL,σR) in
the support of the distribution f(E(x)),

Pr[D|σL(σR) = D′|σL(σR)] ≥ 1− negl(n), (3.1)
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where the probabilities are taken over the coins of D,D′.

Let W denote the set of all valid codewords for the given reconstructable
probabilistic encoding scheme with parameters k, nR, c

err
R , c

sec
R ,GF(2)). For x ∈

GF(2)nR , define its distance from W to be d(x,W) := minw∈W d(x,w).

To analyze (3.1), we define the following set of instances (which intuitively
corresponds to the set of instances on which both D|σL and D′|σL are likely to
output ⊥).

Π⊥ := {σR ∈ {0, 1}nR d(σ,W) ≥ δ}.

So, now consider the two cases:

– Suppose σR ∈ Π⊥. Then, both D(σR) and D′(σR) will fail the codeword-
check with probability ≥ 1− ρ(nR, δ, ncheck).

– Suppose σR /∈ Π⊥. Then, ∃w ∈ W such that d(σR, w) ≤ δ. Moreover, in

both D and D′ it must be the case that σ′
R

is cerr/2-close to w. (Because
δ + (nR − t)/nR ≤ cerr/2). So both D and D′ must decode to the same w.
Fix a set of coins for D and D′. Therefore, when D and D′ are run with the
same coins, all comparisons made during the codeword-check are identical,
and thus the probability (over the coins of D,D′) that the codeword-check
fails in D and D′ is identical.

So for any σ = (σL,σR),∆({D(σ)}, {D′(σ)}) = ∆({DR|σL(σR)}, {D′R|σL(σR)}) ≤
ρ(nR, δ, ncheck). Therefore, ∆({D(f(E(x)))}, {D′(f(E(x)))} ≤ ρ(nR, δ, ncheck).

Hybrid H2. H2 corresponds to the distribution G′(x), where G′f is a distribution
over functions g′ = (g′L, g

′
R) defined as follows:

– Choose a random subset Rcheck ⊆ [nR] of size ncheck.

– Choose vectors IL ∈ {0, 1}nL , IR ∈ {0, 1}nR in the following way: IL ←
EL(L), IR ← ER(R).

– Let J∗ be the subset of [nR] as described in Observation 1.
– The split-state tampering function g := (gL, gR) ∈ SSk has IL, IR hardcoded

into it and is specified as follows:
gL(L):
1. (apply tampering and plain decode on left) Let sL := Rec(S :=

Scheck, IL, L). Let (σL
1 , . . . , σ

L
nL) := fL|IR(sL). Compute ((wL

1, . . . , w
L
nL), L̃)←

DL(σL
1 , . . . , σ

L
nL). If the decoding fails, set L̃ :=⊥.

2. (output) Output L̃.
gR(R):
1. (apply tampering and decoding-check on right) Let sR = (sR1 , . . . , s

R
nR) :=

Rec(SR→L, I
R,R). Let (σR

1 , . . . , σ
R
nR) := fR|IL(sR). Define σ′

R
:=

σ′R1 , . . . , σ
′R
nR as follows: Set σ′R` := σR

` for ` ∈ [J∗]. Set σ′R` := 0

for ` /∈ [J∗]. Compute ((wR
1 , . . . , w

R
nR), R̃) ← DR(σ′R1 , . . . , σ

′R
t ). If the

decoding fails or (wR
1 , . . . , w

R
nR) is not cerrR /4-close to (σR

1 , . . . , σ
R
nR), then

set R̃ :=⊥.
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2. (codeword-check on right) For all ` ∈ Rcheck, check that σR
` = wR

` . If

the check fails, set R̃ :=⊥.
3. (output) Output R̃.

– Output g = (gL, gR).

Note that the only difference between Gf and G′f is that IL ← EL(L), IR ←
ER(R) are chosen honestly, instead of being chosen uniformly at random.
Furthermore, note that g′ = (g′L, g

′
R) are not split-state, since g′L depends on

IR and g′R depends on IL.

Claim.
H1 ≡ H2.

The claim can be verified by inspection.

Hybrid H3. Hybrid H3 is simply the distribution Gf (x), defined previously.

Claim.
H2 ≡ H3.

Note that the result of fR only depends on the bits in J∗ andRcheck. Moreover,
fRχJ∗∪Rcheck

only depends on on sR, [sLi ]i∈Scheck . Moreover, note that fL depends

only on sL, [sRi ]i∈SR→L
. Since by Observation 1, we have that |Scheck| ≤ nL ·

csecL and |SR→L| ≤ nR · csecR , the claim follows from the secrecy property of the
reconstructable probabilistic encoding scheme.

3.1 Extending to Leaky Local

The construction from Section 3 is actually secure against a slightly larger class
of tampering functions beyond Local`o`i functions, which we call LL, or “Leaky
Local.” Notice that the parameters given above (as in observation 1) in fact
yield:

1. |SJ∗L→R|+ |Scheck| = |Scheck| ≤ nL ·
csecL
3 .

2. |S+R→L| ≤ `o · nL ≤ nR ·
2csecR
3 .

It is not too hard to see that we can leak 1/3 of the security threshold, on both
the left and right, to a tampering adversary. Given this leakage, the adversary
can then select a tampering function from the subset of Local`o where all but a
fraction of the first nL bits have input locality `i. Note that the input locality
restrictions are only needed on the left portions of codewords in the above proof.
We formalize this new class of tampering functions as follows.

Definition 13. Let LL ⊆ {{0, 1}nL × {0, 1}nR → {0, 1}nL × {0, 1}nR}, Leaky
Local, be the set of functions {ψf,h1,h2}, parametrized by functions (f, h1, h2),
where ψf,h1,h2

(sL, sR) := Cuniv(f(h1(sL), h2(sR)), sL, sR), f outputs a circuit C
and Cuniv is a universal circuit that computes the output of the circuit C on
input (sL, sR). Moreover, we require that f, h1, h2 have the following form:



22

– On input sL ∈ {0, 1}nL , h1 outputs a subset of cerrL /3 of its input bits.
– On input sR ∈ {0, 1}nR , h2 outputs a subset of cerrR /3 of its input bits.
– On input h1(sL), h2(sL) ∈ {0, 1}cerrL /3 × {0, 1}cerrR /3, f outputs a circuit C :
{0, 1}nL × {0, 1}nR → {0, 1}nL × {0, 1}nR , where C has output-locality `o.
Of the first nL input bits, all but at most cerrL /3-fraction have input-locality
at most `i.

The following corollary can be easily verified.

Corollary 2. (E◦ESS,DSS◦D) is an (LL,SSk, negl(k))-non-malleable reduction.

4 Extending to Localm(n)

We now state our theorem for Localm(n) tampering functions, or bounded fan-in
bounded-depth circuits.

Theorem 5. (E′,D′) is a (Local`o
′
⇒ LL, negl(n))-non-malleable reduction

given the following parameters for Local`o
′
:

– `o
′ := csec/12 · `i, where `i is the input locality of LL,

– E′ : {0, 1}n → {0, 1}N , where N = nin + 2n− nL, and r = log4(k), where n
is the output length of LL and nL is the length of the left output of LL.

We construct an encoding scheme (E′,D′) summarized in Figure 3 and
parametrized below. In brief, our encoding simply distributes the bits of the
left input pseudorandomly in a string comparable in length to the right input.
We then append a short description of where the encoding is hiding, a seed to
pseudorandom generator.

We then show that the pair (E′,D′) is an (Local`o
′
,LL, negl(n))-non-malleable

reduction. Combined with our previous construction, this immediately implies
that given a non-malleable encoding scheme (Ess,Dss) for SSk, the encoding

scheme scheme Π̂ = (Êbd, D̂bd), where Êbd(m) := E′(E(Ess(m))) and D̂bd(s) :=
Dss(D(D′(s))) yields the following corollary, a non-malleable code against

Local`o
′
.

Corollary 3. (E′,D′) yields, with previous results, a (LocalÕ(
√
n), k, negl(k))-

non-malleable reduction with sublinear rate, where n = Θ( k2

log2(k)
).

Remark 3. As before, the encoding scheme presented below is independent on

the left and right. Therefore, our reduction holds for not just for Local`o
′

but
additionally any split-state function, independent on each side, trivially.

We parametrize our construction for Local`o
′
⇒ LL with the following:

– r := log4(k)
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Let prg be a pseudorandom generator for space bounded computations (see
Definition 12), with inputs of length r and outputs of length log(τ) · τ .
Let G(ζ) be defined as follows:

1. Compute y := prg(ζ).
2. Divide pseudorandom tape y into blocks of bit strings y1, . . . , yτ . Let φ be

the randomized function that chooses a bit b ∈ {0, 1} with bias p := 3nL/2τ .
For i ∈ [τ ], let ρi = φ(yi), where yi is the explicit randomness of φ. Let
ρ = ρ1, . . . , ρτ . Let num denote the number of positions of ρ that are set to 1.

3. If num < nL, set ρ := 1nL0τ−nL .
4. Otherwise, flip all but the first nL 1’s in ρ to 0.
5. Output ρ.

Let E′ : {0, 1}n → {0, 1}N and D′ : {0, 1}N → {0, 1}n.

E′(xL := xL1, . . . , x
L
nL , x

R):

1. Choose ζ ← {0, 1}r uniformly at random. Choose ζ ← {0, 1}r uniformly at
random. Compute ρ := G(ζ).

2. For j ∈ [num], let posj denote the j-th position i such that ρi = 1.

3. Let XL ∈ {0, 1}τ be defined in the following way: For j ∈ [nL], XL
posj

:= xLj . In

all other locations, XL
i is set uniformly at random.

4. Output the encoding (ζ,XL, xR).

D′(Z := (ζ̃, X̃L, x̃R)):

1. (Recover ρ̃) Let ρ̃ := G(ζ̃). Let ñum ≥ nL denote the number of ones in
ρ̃ := ρ̃1, . . . , ρ̃τ .

2. (Recover x) For j ∈ [ñum], let posj denote the j-th position i such that ρ̃i = 1.

3. Let x̃Lj ∈ {0, 1}nL be defined in the following way: For j ∈ [min(ñum, nL)],

x̃Lj := X̃L
posj

.

4. (output) Output (x̃L, x̃R).

Fig. 3. The (Local`o
′
,LL, negl(n))-non-malleable reduction (E′,D′)
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– τ := 2(n − nL), where n is the length of the output of LL and nL is the
length of the left output of LL.

Now, for every µ ∈ Local`o
′
where µ(ζ,XL, xR) := (µζ(ζ,XL, xR), µL(ζ,XL, xR), µR(ζ,XL, xR))

we define the distribution Gµ over LL. A draw from Gµ is defined as follows:

– Choose ζ ← {0, 1}r uniformly at random. Compute y := prg(ζ), where
y = y1, . . . , yτ . For i ∈ [τ ], compute Compute ρi := φ(yi).

– If ρ has less than nL number of ones, then set h1, h2, f all to the constant
function 0.

– Otherwise, choose vector IL ∈ {0, 1}τ+nR such that ∀ i such that 1 ≤ i ≤ τ
if ρi = 1 then ILi = ∗ and otherwise, ILi is chosen uniformly at random.

– The function h1 is defined as follows: h1 outputs the bits in input xL that
affect the output bits of µζ (at most r · `o′ ≤ csecL /3 · nL).

– The function h2 is defined as follows: h2 outputs the bits in xR that affect
the output bits of µζ (at most r · `o′ ≤ csecR /3 · nR).

– The function f is defined as follows:

• f computes ζ̃, given ζ and the output of h1, h2.
• f computes ỹ := prg(ζ̃), where ỹ = ỹ1, . . . , ỹτ .
• For i ∈ [τ ], f computes ρ̃i := φ(ỹi).
• Let ρ̃∗ ∈ {0, 1}τ be defined as follows: For i ∈ [pos∗], ρ̃∗ = ρ̃; for pos∗ <
i ≤ τ, ρ̃∗ = 0, where pos∗ is the index of the nL-th one in ρ̃ (and is set
to τ if no such index exists).

• Let µL,ζ (resp. µR,ζ) correspond to the function µL(ζ,XL, xR) (resp.
µR(ζ,XL, xR))), which has ζ hardcoded in it.

• Let C be the circuit corresponding to the following restriction: ((µL,ζ |IL)ρ̃∗ , µR,ζ |IL).
• If C is in LL, then f outputs C. Otherwise, f outputs the constant

function 0.

By the definition of a non-malleable reduction (Definition 3), in order to
complete the proof of Theorem 5, we must show that (E′,D′) has the following
properties:

1. For all x ∈ {0, 1}n, we have D′(E′(x)) = x with probability 1.

2. For all µ ∈ Local`o
′
,

∆(D′(µ(E′(x)));Gµ(x)) ≤ negl(n),

where Gµ is the distribution defined above.

Item (1) above is trivial and can be immediately verified.

In the following, we prove Item (2), above, by noting that the statistical
distance ∆(D′(µ(E′(x)));Gµ(x)) is upper bounded by the probability that either
ρ does not contain at least nL number of ones or C is not in LL.

We first argue that if ρ is chosen uniformly at random, then the probability
that either of these events occurs is negligible and then show that the same must
be true when ρ is chosen via a PRG with appropriate security guarantees.
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Clearly, by multiplicative Chernoff bounds, if ρ is chosen uniformly at
random, then the probability that ρ contains less than nL ones is negligible.
We now show that the probability that C /∈ LL is negligible. If C /∈ LL, it means
that more than csecL /3 number of positions i in XL are such that (1) XL

i has “high
input locality” (i.e. input locality greater than 12/csecL · `o

′ = `i) (2) ρi = 1.

Since the adversary first specifies the tampering function µ, all positions in
XL with “high input locality” are determined. Note that, by choice of parameters
(since τ ≥ N/2), there can be at most csecL · τ/6 number of positions in XL with
“high input locality”. Since p = 3nL/2τ , we expect csecL ·nL/4 number of positions
i in XL where (1) XL

i has “high input locality” and (2) ρi = 1. Therefore, by
multiplicative Chernoff bounds, the probability that more than csecL ·nL/3 number
of positions i in XL are such that (1) XL

i has “high input locality” and (2) ρi = 1
is negligible.

We now argue that these events must also occur with negligible probability
when ρ is pseudorandom. Assume the contrary, then the following is a
distinguisher T that can distinguish truly random strings y from strings y :=
prg(ζ) with non-negligible probability.

T is a circuit that has a string w ∈ {0, 1}τ hardwired into it (non-uniform
advice). w corresponds to the high input locality positions determined by the
tampering function µ that was chosen by the adversary A. Intuitively, w is the
string that causes A to succeed in breaking security of the non-malleable code
with highest probability.

On input y = y1, . . . , yτ (where either y := prg(ζ) or y is chosen uniformly
at random), T (y) does the following:

1. Set count1 = 0, count2 = 0.
2. For i = 1 to τ :

(a) Run φ(yi) to obtain ρi.
(b) If ρi = 1, set count2 := count2 + 1
(c) If ρi = 1 and wi = 1, set count1 := count1 + 1.

3. If count1 > csecL · nL/3 or count2 < nL, output 0. Otherwise, output 1.

T can clearly be implemented by a read-once, Finite State Machine (FSM)

with 2O(log2(τ)) number of states. However, note that by Theorem 3, prg is
a pseudorandom generator for space log3(k) with parameter 2− log3(k). Thus,
existence of distinguisher T as above, leads to contradiction to the security of
the Nisan PRG.

5 Achieving Resilience against o(n/ logn) Output
Locality

Here we sketch how to improve parameters. We refer readers to the full paper
for the complete proof.

Theorem 6. There exists an explicit (Local`o ⇒ SS, negl(n))-non-malleable
reduction, (E : {0, 1}2k → {0, 1}n,D : {0, 1}n → {0, 1}2k), for any `o =
o(n/ log n) where n = O(`ok).
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Roughly, the reduction (E,D) is simply a composition of the reductions
presented previously. Recall that the encoding scheme is independent on the
left and right, E(L,R) = (EL(L),ER(R)). The left side, EL(L), is comprised of
a seed for a PRG that describes where to pseudorandomly embedded a (small)
RPE of L and that very embedding. The right side, ER(R), is simply a (longer)
RPE of R. Decoding is the same as before as well. The parameters are slightly
different, but we will gloss over that here.

To prove the theorem, we analyze the composed encoding schemes as a single
reduction. As mentioned in the introduction, the idea is to use the PRG to “free
up” the restrictions relating the size of the left RPE (previously denoted by nL)
and `o that is an artifact of the piecewise analysis.

Recall that our encoding scheme is comprised of three blocks: (1) the PRG
seed, (2) the “hidden” left side encoding, and (3) the right side encoding. First,
(as in the previous section) we claim that a number of good things happen if the
left side is “hidden” in a large block in a truly random way. Namely, we have
that, with respect to the tampering function, only a small fraction of bits in the
hidden left-side RPE is either (1) of high input locality, (2) effects bits in the
right-side’s consistency check or (3) effects the PRG seed used in decoding. (1)
Implies that there exists a “safe” subset to simulate decoding from (as before),
and (2) and (3) allow us to relax the bounds on locality. Next, we use a hybrid
argument to essentially disconnect influence between the 3 blocks of our encoding
(that is dependent on the underlying message, (L,R)).

We will present the “good” event described above and sketch the hybrid
argument.

Definition 14 (informal). The event Goodf occurs if for tampering function

f ∈ Local`o all of the following hold:

1. ρ contains at least nL ones, where nL is the length of the left side RPE.
2. |S| is below the security threshold of the left-side RPE, where S is the set of

bits in the “hidden” RPE of L that have (1) “high” input locality, (2) effect
the consistency check on the right (consider this chosen secretly and randomly
at the time of encoding), or (3) effect the PRG seed used in decoding.

3. There is some (large enough) set, J∗, of bits that is not effected by any bit
in the RPE of L which does not have “high” input locality.

4. The bits on the right that effect the output of decoding on the left is below
the security threshold of the RPE.

Claim. Suppose ρ is chosen truly at random (ones occurring with bias p =
3nL/2τ). Then for every f ∈ Local`o , Pr[Goodf ] ≥ 1− negl(n).

The first two items follow from Chernoff bounds. The main difference in the new
analysis is that the hidden RPE of L is now very small size. Whereas previously
the events (2), (3) described in the second item held simply because the total
number of bits on the left affecting the consistency check and PRG seed was
below the security threshold of the left RPE, now, since the left RPE is now
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very small, we must rely on Chernoff bounds and the fact that the relevant bits
are hidden to argue that (2) and (3) hold. The second two items are similar to
Observation 1, given item (2).

Next as in the previous section, we argue that with high probability, the
pseudorandomness of the PRG is sufficient to obtain that the event Goodf holds
even when ρ is chosen via the PRG (instead of being truly random). This gives
us the bounds on the “bad” bits in the output of the encoding of the left input,
L, mentioned previously.

Now we are in essentially a similar situation to the proof of Theorem 4 and
we can apply a very similar sequence of hybrids.

First, we use hybrids to effectively sample the bits on the left and the right
that effect some other block, or are in the “bad” set S. By our claim above,
all of these sets together will be below the security properties of the respective
RPEs. So, the distribution over the randomness of the encoding procedure will
be identical, for any message.

Second, we use hybrids to effectively simulate decoding on the right from the
set J∗ that is not effected by the RPE on the left. This completes the proof.
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