
Valiant's Universal Cir
uit is Pra
ti
al

(Full Version)

*

Ágnes Kiss, Thomas S
hneider

TU Darmstadt, Darmstadt, Germany

{agnes.kiss, thomas.s
hneider}�
risp-da.de

Abstra
t. Universal
ir
uits (UCs)
an be programmed to evaluate any
ir
uit of a given size k. They

provide elegant solutions in various appli
ation s
enarios, e.g. for private fun
tion evaluation (PFE)

and for improving the �exibility of attribute-based en
ryption (ABE) s
hemes. The optimal size of a

universal
ir
uit is proven to be Ω(k log k). Valiant (STOC'76) proposed a size-optimized UC
onstru
-

tion, whi
h has not been put in pra
ti
e ever sin
e. The only implementation of universal
ir
uits was

provided by Kolesnikov and S
hneider (FC'08), with size O(k log2 k).
In this paper, we re�ne the size of Valiant's UC and further improve the
onstru
tion by (at least) 2k.
We show that due to re
ent optimizations and our improvements, it is the best solution to apply in the

ase for
ir
uits with a
onstant number of inputs and outputs. When the number of inputs or outputs

is linear in the number of gates, we propose a more e�
ient hybrid solution based on the two existing

onstru
tions. We validate the pra
ti
ality of Valiant's UC, by giving an example implementation for

PFE using these size-optimized UCs.

Keywords: Universal
ir
uit, size-optimization, private fun
tion evaluation

1 Introdu
tion

Any
omputable fun
tion f(x)
an be represented as a Boolean
ir
uit with input bits x = (x1, . . . , xu).
Universal
ir
uits (UCs) are programmable
ir
uits, whi
h means that beyond the true u inputs, they re
eive

p = (p1, . . . , pm) program bits as further inputs. By means of these program bits, the universal
ir
uit is

programmed to evaluate the fun
tion, su
h that UC (x, p) = f(x). The advantage of universal
ir
uits in

general is that one
an apply the same UC for
omputing di�erent fun
tions of the same size. An analogy

between universal
ir
uits and a universal Turing ma
hine allows to turn any fun
tion into data in the form

of a program des
ription. Thus, the size-depth problem of UCs
an be related to the time-spa
e problem for

Turing ma
hines [Val76℄.

E�
ient
onstru
tions
onsidering both the size and the depth of the UC were proposed. The �rst ap-

proa
h was the optimization of the size by Valiant [Val76℄, resulting in a
onstru
tion with asymptoti
ally

optimal size O(k log k) and depth O(k), where k denotes the size of the simulated
ir
uits. The se
ond opti-

mization was proposed with respe
t to the UC depth in [CH85℄, where a
onstru
tion with linear depth O(d)

in the simulated
ir
uit depth d and size O(k3d
log k) was designed. In this paper, due to the appli
ations that

we revisit in �1.2, e.g., diagnosti
 programs, blinded poli
ies and database queries, we
on
entrate on the

existing size-optimized UCs and note, that the asymptoti
ally optimal size is Ω(k log k) [Val76,Weg87℄.

The most prominent appli
ation of universal
ir
uits is the evaluation of private fun
tions based on se
ure

fun
tion evaluation (SFE) or se
ure two-party
omputation. SFE enables two parties P1 and P2 to evaluate a

publi
ly known fun
tion f(x, y) on their private inputs x and y, ensuring that none of the parti
ipants learns

anything about the other parti
ipant's input. SFE ensures that both P1 and P2 learn the
orre
t result of the

evaluation. Many se
ure
omputation proto
ols use Boolean
ir
uits for representing the desired fun
tionality,

su
h as Yao's garbled
ir
uit proto
ol [Yao82, Yao86, LP09a℄ and the GMW proto
ol [GMW87℄. In some

appli
ations the fun
tion itself should be kept se
ret. This setting is
alled private fun
tion evaluation (PFE),

*

Please
ite the
onferen
e version of this work published at Euro
rypt'16 [KS16℄.

mailto:agnes.kiss@crisp-da.de
mailto:thomas.schneider.crisp-da.de

where we assume that only one of the parties P1 knows the fun
tion f(x), whereas the other party P2 provides

the input to the private fun
tion. P2 learns no information about f besides the size of the
ir
uit de�ning

the fun
tion and the number of inputs and outputs.

PFE
an be redu
ed to SFE [AF90,SYY99,Pin02,KS08b℄ by se
urely evaluating a UC that is programmed

by P1 to evaluate the fun
tion f on P2's input x. Thus, P1 provides the program bits for the UC and P2

provides his private input x into an SFE proto
ol that
omputes a UC. The
omplexity of PFE in this

ase is determined mainly by the
omplexity of the UC
onstru
tion. The se
urity follows from that of the

SFE proto
ol that is used to evaluate the UC. If the SFE proto
ol is se
ure against semi-honest,
overt or

mali
ious adversaries, then the PFE proto
ol is se
ure in the same adversarial setting.

1.1 Related Work on Universal Cir
uits and Private Fun
tion Evaluation

Universal Cir
uits. Valiant presented an asymptoti
ally optimal universal
ir
uit
onstru
tion with size

≈ 4.75(u + v + k∗) log2(u + v + k∗) [Val76℄, relying on edge-universal graphs. u, k and v denote the re-

spe
tive number of inputs, gates and outputs in the simulated
ir
uit, and k∗ is the number of gates in

the equivalent fanout-2
ir
uit, with k ≤ k∗ ≤ 2k + v. Valiant's size-optimized UC
onstru
tion was re-

apitulated in [Weg87, �4.8℄. However, Valiant's
onstru
tion has been
onsidered to be mostly a proof of

existen
e of a universal
ir
uit, whereas details needed for the pra
ti
al realization, e.g., how to derive

the program for the UC are left open. Kolesnikov and S
hneider proposed a UC
onstru
tion with size

≈ 0.75k log22 k + 2.25k log2 k + k log2 u + (0.5k + 0.5v) log2 v [KS08b, S
h08℄. They present the �rst imple-

mentation of PFE using UCs by extending the Fairplay se
ure
omputation framework [MNPS04℄. Some

building blo
ks of this
onstru
tion are of interest, but due to its asymptoti
ally non-optimal size, we show

in �3.2 that Valiant's UC
onstru
tion results in smaller UCs for
ir
uits in the most general
ase. The UC

onstru
tions from [Val76,KS08b℄ were generalized for
ir
uits
onsisting of gates with more than two inputs

in [SS08℄. In this paper, we show the pra
ti
ality of Valiant's UC
onstru
tion.

In
on
urrent and independent work [LMS16℄, Lipmaa et al. also bring the same UC
onstru
tion to

pra
ti
e. They detail a k-way re
ursive
onstru
tion for UCs, instantiate it for k ∈ {2, 4} as in [Val76℄, and

des
rease its total number of gates
ompared to that of Valiant's
onstru
tion. However, in
ontrast to our

optimizations, their number of AND gates is exa
tly the same and therefore their improvement does not

a�e
t PFE with UC, when XOR gates are evaluated for free [KS08a℄. Currently their implementation for

generating and programming UCs supports the 2-way re
ursive
onstru
tion, the same
onstru
tion that we

study and realize in pra
ti
e in this work.

Private Fun
tion Evaluation. In [KM11℄, Katz and Malka presented an approa
h for PFE that does not rely

on UCs. They use (singly) homomorphi
 publi
-key en
ryption as well as a symmetri
-key en
ryption s
heme

and a
hieve
onstant-round PFE with linear
ommuni
ation
omplexity. However, the number of publi
-key

operations is linear in the
ir
uit size and due to the gap between the e�
ien
y of publi
-key and symmetri
-

key operations, this results in a less e�
ient proto
ol for
ir
uits with reasonable size. Their proto
ol is se
ure

against semi-honest adversaries and uses Yao's garbled
ir
uit te
hnique [Yao86℄. Mohassel and Sadeghian

onsider PFE with semi-honest adversaries in [MS13℄. Their generi
 PFE framework
an be instantiated

with di�erent se
ure
omputation proto
ols. The �rst version uses homomorphi
 en
ryption with whi
h they

a
hieve linear
omplexity in the
ir
uit size and the se
ond alternative relies solely on oblivious transfers (OT),

that results in a method with O(k log k) symmetri
-key operations, where k denotes the
ir
uit size. The

OT-based
onstru
tion is more desirable in pra
ti
e, sin
e using OT extension, the number of expensive

publi
-key operations
an signi�
antly be redu
ed, s.t. it is independent of the number of OTs [IKNP03,

ALSZ13℄. The asymptoti
al
omplexity of the OT-based
onstru
tion of [MS13℄ and Valiant's UCs for PFE

is the same, and therefore we
ompare these solutions for PFE in more detail in �4.2. Mohassel et al. extend

the framework from [MS13℄ to mali
ious adversaries in [MSS14℄ and show that an a
tively se
ure PFE

framework with linear
omplexity O(k) is feasible, using singly homomorphi
 en
ryption.

1.2 Appli
ations of Universal Cir
uits

Universal
ir
uits have several appli
ations, whi
h we summarize in this se
tion.

2

Private Fun
tion Evaluation. As mentioned before, UCs
an be used to se
urely evaluate a private fun
tion

using a generi
 se
ure
omputation proto
ol. [CCKM00℄ shows an appli
ation for se
ure
omputation, where

evaluating UCs or other PFE proto
ols would ensure priva
y: when autonomous mobile agents migrate

between several distrusting hosts, the priva
y of the inputs of the hosts is a
hieved using SFE, while priva
y

of the mobile agent's
ode
an be guaranteed with PFE. Priva
y-preserving
redit
he
king using garbled

ir
uits is des
ribed in [FAZ05℄. Their original s
heme
annot represent any poli
y, though by evaluating

a UC, their s
heme
an be extended to more
ompli
ated
redit
he
king poli
ies. [OI05℄ show a method

to �lter remote streaming data obliviously, using se
ret keywords and their
ombinations. Their s
heme
an

additionally preserve data priva
y by using PFE to sear
h the mat
hing data with a private sear
h fun
tion.

Priva
y-preserving evaluation of diagnosti
 programs was
onsidered in [BPSW07℄, where the owner of the

program does not want to reveal the diagnosti
 method and the user does not want to reveal his data. Example

appli
ations for su
h programs in
lude medi
al systems [BFK

+
09℄ and remote software fault diagnosis, where

in both
ases the fun
tion and the user's input are desired to be handled privately. In the proto
ol presented

in [BPSW07℄, the diagnosti
 programs are represented as binary de
ision trees or bran
hing programs whi
h

an easily be
onverted into a Boolean
ir
uit representation and evaluated using PFE based on universal

ir
uits. Besides, PFE
an be applied to
reate blinded poli
y evaluation proto
ols [FAL06,FLA06℄. [FAL06℄

utilizes UCs for so-
alled oblivious
ir
uit poli
ies and [DDKZ13℄ for hiding the
ir
uit topology in order to

reate one-time programs. Further appli
ations of PFE given in [MS13℄ are evaluation of bran
hing programs

on en
rypted data [IP07℄ and priva
y-preserving intrusion dete
tion [NSMS14℄. Sin
e PFE using UCs utilizes

general se
ure
omputation proto
ols, it is possible to outsour
e the fun
tion and the data to two or multiple

servers (using XOR se
ret sharing) and then run private queries on these. This is not dire
tly possible with

other PFE proto
ols, e.g., with the proto
ol presented in [KM11℄ or the homomorphi
 en
ryption-based

proto
ols from [MS13,MSS14℄.

Beyond Private Fun
tion Evaluation. Besides being used for PFE, universal
ir
uits
an be applied in vari-

ous other s
enarios. The e�
ient veri�ability of
omputation on en
rypted data was studied in [FGP14℄. A

veri�able
omputation s
heme was proposed for arbitrary
omputations and a UC is required to hide the

fun
tion. [GGPR13℄ make use of universal
ir
uits for redu
ing the veri�er's prepro
essing step. In [GHV10℄,

a multi-hop homomorphi
 en
ryption s
heme is proposed that also uses a universal
ir
uit evaluator to

a
hieve the priva
y of the fun
tion. When the
ommon referen
e string is dependent on a fun
tion that the

veri�er is interested in outsour
ing, then the fun
tion des
ription
an be provided as input to a UC of ap-

propriate size. In [PKV

+
14,FVK

+
15℄, universal
ir
uits are used for hiding queries in database management

systems (DBMSs). The Blind Seer DBMS was improved in [PKV

+
14℄ by making use of a simpler UC for

evaluating queries, whi
h does not hide the
ir
uit topology. The authors mention that in
ase the topology

of the SQL formula and the
ir
uit have to be kept private, a UC
an be utilized. As des
ribed in [Att14℄,

the Attribute-Based En
ryption (ABE) s
hemes for any polynomial-size
ir
uits of [GGH

+
13℄ and [GVW13℄

an be turned into
iphertext-poli
y ABE by using universal
ir
uits. The ABE s
heme of [GGHZ14℄ also

uses UCs.

Implied Theoreti
al Results. We mention two theoreti
al results relying on UCs. Both the depth-optimized

UC
onstru
tion from [CH85℄ and Valiant's size-optimized method were adapted in [BFGH10℄ to
onstru
t

universal quantum
ir
uits. The design of universal parallel
omputers were inspired by Valiant's universal

ir
uit
onstru
tion as well [GP81,Mey83℄.

1.3 Outline and Our Contributions

In �2, we revisit the two existing size-optimized UC
onstru
tions of [Val76,KS08b℄. We put an emphasis on

the asymptoti
ally size-optimal method proposed by Valiant in [Val76℄. This
omplex
onstru
tion makes

use of an internal graph representation and programs a so-
alled edge-universal graph. However, the algo-

rithm for programming a universal
ir
uit is not expli
itly des
ribed and in the presen
e of the in
luded

optimizations is not straightforwardly appli
able. In �2.1, we re
apitulate Valiant's re
ursive edge-universal

graph
onstru
tion and des
ribe how the
onstru
tion of UCs
an be redu
ed to this problem. In �2.2, we

3

brie�y summarize the main building blo
ks of the UC
onstru
tion of [KS08b℄. To help understanding the

onstru
tion, we re
apitulate our notations in Appendix A.

Optimized Size and Depth of Valiant's UC Constru
tion: In �3, we elaborate on the
on
rete size of Valiant's

UC
onstru
tion. We re�ne upper and lower bounds for the size of the edge-universal graph and approximate

a
losed formula with ≤ 2% deviation from the a
tual size in �3.1. We in
lude two optimizations detailed in

�3.2, a
hieving altogether a linear improvement of at least 4u + 4v + 2k. We give hybrid
onstru
tions for

ases with many inputs and outputs in the same se
tion. In �3.2, we
ompare the re�ned
on
rete size and

the depth of Valiant's
onstru
tion with that of [KS08b℄ and
on
lude the advantage of Valiant's method

(potentially using building blo
ks from [KS08b℄).

Valiant's Size-Optimized UC Constru
tion in Pra
ti
e: In �4, we detail the steps of our algorithm for a pra
-

ti
al realization of Valiant's UC
onstru
tion and provide an example appli
ation for PFE. We des
ribe the

internal representations and the algorithms in our UC
ompiler in �4.1, along with detailed implementations

of universal gates and swit
hes. We
ompare our resulting PFE with the OT-based proto
ol from [MS13℄ in

�4.2. We show
on
rete example
ir
uits and elaborate on the number of symmetri
-key operations and the

performan
e of our UC
ompiler.

2 Existing Universal Cir
uit Constru
tions

In this se
tion, we summarize the two size-optimized universal
ir
uit
onstru
tions: of [Val76℄ in �2.1 and

of [KS08b℄ in �2.2.

2.1 Valiant's Universal Cir
uit Constru
tion

In this se
tion, we des
ribe Valiant's edge-universal graph
onstru
tion for graphs for whi
h all nodes have

at most one in
oming and at most one outgoing edge and detail how two su
h graphs
an be used for

onstru
ting universal
ir
uits [Val76℄.

Edge-Universal Graphs. G = (V,E) is a dire
ted graph with the set of nodes V = {1, . . . , n} and the set

of edges E ⊆ V ×V . A dire
ted graph has fanin or fanout ℓ if ea
h of its nodes has at most ℓ edges dire
ted

into or out of it, respe
tively. Γℓ(n) denotes the set of all a
y
li
 dire
ted graphs with n nodes and fanin

and fanout ℓ. Further on, we require a labelling of the nodes in a topologi
al order, i.e., i > j implies that

there is no dire
ted path from i to j. In a graph in Γℓ(n) , a topologi
al ordering
an always be found with

omputational
omplexity O(n+ ℓn).

An edge-embedding of graph G = (V,E) into G′ = (V ′, E′) is a mapping that maps V into V ′
one-

to-one, with possible additional nodes in V ′
, and E into dire
ted paths in E′

, su
h that they are pairwise

edge-disjoint, i.e., an edge
an be used only in one path. A graph G′
is edge-universal for Γℓ(n) if it has

distinguished poles {p1, . . . , pn} ⊆ V ′
and every graph G ∈ Γℓ(n) with node set V = {1, . . . , n}
an be

edge-embedded into G′
by a mapping ϕG

su
h that ϕG : i 7→ pi and ϕG : (i, j) 7→ {path from pole pi to

pole pj} for ea
h i, j ∈ V .

Here, we re
apitulate Valiant's
onstru
tion for a
y
li
 edge-universal graph for Γ1(n), denoted by Un,

that has fewer than 2.5n log2 n nodes, fanin and fanout 2 and poles with fanin and fanout 1. Valiant presents

another edge-universal graph
onstru
tion with a lower multipli
ative
onstant 2.375n log2 n. We omit that

version of the algorithm for two reasons: �rstly, our aim is to show the pra
ti
ality of Valiant's approa
h and

se
ondly, in
luding all the optimizations even in the simpler
onstru
tion is a
hallenging task in pra
ti
e. The

more e�
ient algorithm uses four subgraphs instead of two at ea
h re
ursion and utilizes a skeleton with a

more
omplex stru
ture. For more details on this improved algorithm, the reader is referred to [Val76,LMS16℄.

We leave showing the pra
ti
ality of the improved method as future work.

4

n2

n3

n4

n5

n6
PSfrag repla
ements

p1

p2

p3

p4

pn−1

pn

q1

q2

qn−2
2

r1

r2

rn−2
2

B

A

(a) Un, n even

n2

n3

n4

n5

n6

PSfrag repla
ements

p1

p2

p3

p4

pn−2

pn−1

pn

q1

q2

qn−3
2

qn−1
2

r1

r2

rn−3
2

B

A

(b) Un, n odd

PSfrag repla
ements

p1

p2

p3

p4

B

(
) U4

PSfrag repla
ements

p1

p2

p3

p4

p5

B

B

(d) U5

PSfrag repla
ements

p1

p2

p3

p4

p5

p6

B

B

(e) U6

Fig. 1: Skeleton of Valiant's edge-universal graph and optimized
ases.

5

Valiant's Edge-Universal Graph Constru
tion of Size 2.5n log2 n for Γ1(n) Graphs: The edge-universal graph
for Γ1(n), denoted by Un, is
onstru
ted with poles {p1, . . . , pn} with fanin and fanout 1, whi
h are
onne
ted
a

ording to the skeleton shown in Figures 1a�1b. The poles are emphasized as spe
ial nodes with squares, and

the additional nodes are shown as
ir
les. The re
ursive
onstru
tion works as follows: the nodes denoted

by {q1, . . . , q⌈n−2
2

⌉} and {r1, . . . , r⌊n−2
2

⌋} are
onsidered as the poles of two smaller edge-universal graphs

alled subgraphs Q⌈n−2
2

⌉ and R⌊n−2
2

⌋, respe
tively, that are otherwise not shown. Sin
e they are poles of the

two subgraphs with su
h a skeleton but not of Un, they will have at most the allowed fanin and fanout 2:

they inherit one in
oming and one outgoing edge from the outer skeleton, and at most one in
oming and

one outgoing edge from the subgraph. Q⌈n−2
2

⌉ (and R⌊n−2
2

⌋) is then
onstru
ted similarly: the skeleton is

ompleted and two smaller graphs with sizes ⌈
⌈n−2

2
⌉−2

2 ⌉ and ⌊
⌈n−2

2
⌉−2

2 ⌋ (and sizes ⌈
⌊n−2

2
⌋−2

2 ⌉ and ⌊
⌊n−2

2
⌋−2

2 ⌋)
are
onstru
ted. For starting o� the re
ursion, U1 is a graph with a single pole while U2 and U3 are graphs

with two and three
onne
ted poles, respe
tively. Valiant gives spe
ial
onstru
tions for U4, U5 and U6 and

shows that it is possible to obtain the respe
tive edge-universal graphs with altogether 3, 7 and 9 additional

nodes, respe
tively, as shown in Figures 1
�1e.

We re
apitulate the proof from [Val76℄ that Un is edge-universal for Γ1(n), su
h that any graph with

n nodes and fanin and fanout 1
an be edge-embedded into Un. A

ording to the de�nition of edge-embedding,

it has to be shown that given any Γ1(n) graph G with set of edges E, for any (i, j) ∈ E and (k, l) ∈ E we

an �nd pairwise edge-disjoint paths from pi to pj and from pk to pl in Un. As before, the labelling of nodes

V = {1, . . . , n} in the Γ1(n) graph is a

ording to a topologi
al order of the nodes.

Firstly, ea
h two neighbouring poles of the edge-universal graph, p2s and p2s+1 for s ∈ {1, . . . , ⌈n
2 ⌉}, are

thought of as merged superpoles, with their fanin and fanout be
oming 2. In a similar manner, any G ∈ Γ1(n)
graph
an be regarded as a Γ2(⌈

n
2 ⌉) graph with supernodes, i.e. ea
h pair (2s, 2s+1) will be merged into one

node in a Γ2(⌈
n
2 ⌉) graph G′ = (V ′, E′). If there are edges between the nodes in G, they are simulated with

loops.

1

The set of edges of this graph G is partitioned to sets E1 and E2, s.t. G1 = (V,E1) and G2 = (V,E2)
are instan
es of Γ1(⌈

n
2 ⌉) and Γ1(⌊

n
2 ⌋), respe
tively. This
an be done e�
iently, as shown later in this se
tion.

The edges in E1 are embedded as dire
ted paths in Q, and the edges in E2 as dire
ted paths in R. Both E1

and E2 have at most one edge dire
ted into and at most one dire
ted out of any supernode and therefore,

there is only one edge from E1 and one from E2 to be simulated going through any superpole in Un as well.

Thus, the edge
oming into a superpole (p2s, p2s+1) in E1 is embedded as a path through qs−1, while the

edge going out of the pole in E1 is embedded as a path through qs in the appropriate subgraph. Similarly,

the edges in E2 are simulated as edges through rs−1 and rs. These paths
an be
hosen disjoint a

ording to

the indu
tion hypothesis. Finally, the paths from qs−1 and rs−1 to superpole (p2s−1, p2s) as well as the paths
from (p2s−1, p2s) to qs and rs
an be
hosen edge-disjoint due to the skeleton shown in Figures 1a�1b. With

this, Valiant's graph
onstru
tion is a valid edge-universal graph
onstru
tion with asymptoti
ally optimal

size O(n log n), and depth O(n) [Val76℄.

Valiant's Edge-Universal Graph Constru
tion for Γ2(n) Graphs: Given a dire
ted a
y
li
 graph G ∈ Γ2(n),
the set of edges E
an be separated into two distin
t sets E1 and E2, su
h that graphs G1 = (V,E1) and
G2 = (V,E2) are instan
es of Γ1(n), having fanin and fanout 1 for ea
h node [Val76℄. Given the set of nodes

V = {1, . . . , n}, one
onstru
ts a bipartite graph G = (V ,E) with nodes V = {m1, . . . ,mn,m
′
1, . . . ,m

′
n} and

edges E su
h that (mi,m
′
j) ∈ E if and only if (i, j) ∈ E. The edges of G and thus the
orresponding edges

of G
an be
olored in a way that the result is a valid two-
oloring. Having fanin and fanout at most 2,

su
h
oloring
an be found dire
tly with the following method, used in the proof of K®nig-Hall theorem

in [K®31,LP09b℄:

1: while There are un
olored edges in G do

2: Choose an un
olored edge e = (mi,m
′
j) randomly and
olor the path or
y
le that
ontains it in an

alternating manner: the neighbouring edge(s) of an edge of the �rst
olor will be
olored with the se
ond

olor and vi
e versa.

1

We note that these G′
graphs are
onstru
ted from the original Γ1(n) graph G in order to de�ne the
orre
t

embedding. Therefore, they are not required to be a
y
li
.

6

3: end while

This
oloring
an be performed in O(n) steps and it de�nes the edges in E1 and E2, s.t. E1
ontains the

edges
olored with
olor one and E2 the ones with
olor two and G1 = (V,E1) and G2 = (V,E2) (
f. example

in Figure 7 in Appendix B).

With this method, the problem of
onstru
ting edge-universal graphs for Γ2(n)
an be redu
ed to

the Γ1(n)
onstru
tion. After
onstru
ting two edge-universal graphs for Γ1(n) (i.e. Un,1 and Un,2), their

poles are merged and an edge-universal graph for Γ2(n) is obtained. The merged poles now have fanin and

fanout 2, sin
e the poles of Un,1 and Un,2 previously had fanin and fanout 1. E1
an then be edge-embedded

using the edges of Un,1 and E2 using the edges of Un,2.

Universal Cir
uits. We now des
ribe how to
onstru
t UCs by means of Valiant's edge-universal graph

onstru
tion for Γ2(n) graphs [Val76℄. Our goal is to obtain an a
y
li

ir
uit built from spe
ial gates that

simulate any a
y
li
 Boolean
ir
uit with u inputs, v outputs and k gates. In the
ir
uit, the inputs of the

gates are either
onne
ted to an input variable, to the output of another gate or are assigned a �xed
onstant.

Due to the nature of Valiant's edge-universal graph
onstru
tion, we have two restri
tions on the original

ir
uit. Firstly, all the gates must have at most two inputs and se
ondly, the fanout of inputs and gates must

be at most 2, i.e., ea
h input of the
ir
uit and ea
h output of any gate
an only be the input of at most

two later gates. This is ne
essary in order to guarantee that the graph of the original
ir
uit has fanin and

fanout 2. We note that the �rst restri
tion was present in
ase of the
onstru
tion in [KS08b℄ as well, but

the output of any input or any gate
ould be used multiple times. However, it was proven in [Val76℄ that the

general
ase, where the fanout of the
ir
uit
an be any integer m ≥ 2,
an be transformed to the spe
ial
ase

when m ≤ 2 by introdu
ing
opy gates, where the resulting
ir
uit will have k∗ gates with k ≤ k∗ ≤ 2k + v,

where k denotes the number of gates and v the number of outputs in the
ir
uit. We detail how this
an be

done in �4.1.

After this transformation, given a
ir
uit C with u inputs, v outputs and k∗ gates with fanin and fanout 2,

the graph of C, denoted by GC

onsists of a node for ea
h gate, input and output variable and thus is in

Γ2(u + v + k∗). The wires of
ir
uit C are represented by edges in GC
. A topologi
al ordering of the gates

is
hosen, whi
h ensures that gate gi has no inputs that are outputs of a later gate gj, where j > i. The

inputs and the outputs
an be ordered arbitrarily within themselves as long as the inputs are kept before the

topologi
ally ordered gates and the outputs after them. Even though the output nodes
ause an overhead

in Valiant's UC, they are required to fully hide the topology of the
ir
uit in the
orresponding universal

ir
uit. If, in the fanout-2
ir
uit, one
an observe whi
h gates provide the output of the
omputation, it

might reveal information about the stru
ture of the
ir
uit, e.g. how many times is the result of an output

gate used after being
al
ulated. We ensure by adding nodes
orresponding to the outputs that the last v

nodes in Uu+v+k∗
are the ones providing the outputs. We note that our understanding of universal
ir
uits

here slightly di�ers from Valiant's, sin
e he
onstru
ts Uu+k∗
[Val76℄.

Therefore, after obtaining GC
a Γ2 edge-universal graph Uu+v+k∗

is
onstru
ted, into whi
h GC
is edge-

embedded. Valiant shows in [Val76℄ how to obtain the universal
ir
uit
orresponding to Uu+v+k∗
and how

to program it a

ording to the edge-embedding of GC
. Firstly, the �rst u poles be
ome inputs, the next

k∗ poles are so-
alled universal gates, and the last v poles are outputs in the universal
ir
uit. A universal

gate denoted by U(in1, in2; c0, c1, c2, c3),
an
ompute any fun
tion with two inputs in1 and in2 and four

ontrol bits c0, c1, c2 and c3 as in Equation 1.

out1 = U(in1, in2; c0, c1, c2, c3) = c0in1in2 ⊕ c1in1in2 ⊕ c2in1in2 ⊕ c3in1in2. (1)

The rest of the nodes of the edge-universal graph are translated into universal swit
hes or X gates,

denoted by (out1, out2) = X(in1, in2; c) that are de�ned by one
ontrol bit c and return the two input values

either in the same or in reversed order as in Equation 2.

out1 = c in1 ⊕ c in2, out2 = c in1 ⊕ c in2. (2)

The programming of the universal
ir
uit means spe
ifying the
ontrol bit of ea
h universal swit
h and the

four
ontrol bits of ea
h universal gate. The universal gates are programmed a

ording to the simulated

7

gates in C and the universal swit
hes a

ording to the paths de�ned by the edge-embedding of the graph

of the
ir
uit GC
in the edge-universal graph Uu+v+k∗

. Depending on if the path takes the same dire
tion

during the embedding (e.g. arrives from the left and
ontinues on the left) or
hanges its dire
tion at a given

node (e.g. arrives from the left and
ontinues on the right), the
ontrol bit of the universal swit
h
an be

programmed a

ordingly. In �4.1, we detail our
on
rete method for programming the universal
ir
uit and

dis
uss e�
ient implementations of universal gates and swit
hes.

2.2 Universal Cir
uit Constru
tion from [KS08b℄

The universal
ir
uit
onstru
tion from [KS08b℄ is built from three main building blo
ks (for the stru
ture

f. Figure 8a in Appendix D) that we summarize in this se
tion. The
onstru
tion uses e�
ient building

blo
ks for hiding the wiring of the u inputs and v outputs, using the fa
t that the maximum number of

inputs to a
ir
uit with k gates is 2k and the maximum number of outputs is k. A re
ursive building blo
k

with size O(k log2 k) is
onstru
ted for hiding the wiring between the gates.

For hiding the input wiring, a sele
tion blo
k Su
2k≥u is used, i.e., a programmable blo
k that sele
ts

for 2k outputs one of u ≤ 2k inputs. This means that with the u inputs of
ir
uit C, it
an be programmed

to assign the output wires a

ording to the original stru
ture of C and assign dupli
ates to the rest of the

wires. The authors show an e�
ient implementation of sele
tion blo
ks with size O(k log k) and depth O(k)
with a small
onstant fa
tor [KS08b℄.

For hiding the output wiring, the authors use a smaller sele
tion blo
k. We note that the usage of

their so-
alled trun
ated permutation blo
k is enough to program the output wires a

ording to the original

topology of C as no dupli
ates
an o

ur. This trun
ated permutation blo
k TP
k≥v
v permutes a subset of

the maximal k inputs to the v ≤ k outputs. An e�
ient
onstru
tion of size O(k log v) and depth O(log k)
is given in [KS08b℄.

A universal blo
k UBk is pla
ed between the input sele
tion blo
k and the output permutation blo
k. It

takes
are of the simulation of the gates using universal gates and ensures that every possible wiring
an be

implemented in the UC. The universal blo
k
onstru
tion is re
ursive, makes use of two universal blo
ks of

smaller size with a sele
tion blo
k and a so-
alled mixing blo
k (essentially a layer of universal swit
hes with

one output) in between them. The O(k log2 k) size of this universal blo
k is asymptoti
ally not optimal and

its O(k log k) depth is also a fa
tor of log k larger than Valiant's UC's. Thus, despite the e�
ien
y of the

other two building blo
ks, the
onstru
tion from [KS08b℄ results in larger
ir
uits than Valiant's UC in most

ases. However, we note that using some of its building blo
ks
an be bene�
ial in some s
enarios (
f. �3.2).

3 The Size and the Depth of Valiant's Constru
tion

In this se
tion, we obtain new formulae for the size and the depth of Valiant's
onstru
tion: the Γ1 edge-

universal graph
onstru
tion is des
ribed in �3.1 and the universal
ir
uit
onstru
tion in �3.2. The size

of the edge-universal graph is the number of nodes,
ounting all the poles and nodes
reated while using

Valiant's
onstru
tion. The depth of the edge-universal graph is the number of nodes on the longest path

between any two nodes. When
onsidering UCs and the PFE appli
ation, sin
e XOR gates
an be evaluated

for free in se
ure
omputation [KS08a℄, the ANDsize of the universal
ir
uit is the number of AND gates

that are needed to realize the UC in total. The ANDdepth of the universal
ir
uit in this s
enario is the

maximum number of AND gates between any input and output. For the sake of generality, we give the total

size and depth of Valiant's UC
onstru
tion with respe
t to both the AND and XOR gates that are used.

Our implementation of universal gates and swit
hes is optimized for PFE (
f. �4.1) and therefore uses the

fewest AND gates possible. However, the total size and depth
an be relevant when optimizing for other

appli
ations, in whi
h
ase our implementation gives an upper bound that
an be improved. For instan
e,

when XOR and AND gates have the same
osts, one needs to minimize the total number of gates instead of

the number of AND gates as in [LMS16℄.

8

0

1 · 106

2 · 106

3 · 106

4 · 106

5 · 106

0 20 000 40 000 60 000 80 000 100 000

4.15 · 106

3.75 · 106

3.39 · 106

3.25 · 106

S

i

z

e

o

f

t

h

e

e

d

g

e

-

u

n

i

v

e

r

s

a

l

g

r

a

p

h

U
n

Size n of embedded graph

Valiant's upper bound (2.5n log2 n)
Our upper bound (Equation 5)

Exa
t size (Equations 3-4)

Our lower bound (Equation 6)

Fig. 2: Our upper and lower bounds for the size of Valiant's edge-universal graph
onstru
tion for Γ1(n)
graphs, along with Valiant's upper bound on the same
onstru
tion and the exa
t size Exa
t(n),
onsidering
the size of the embedded graph n ∈ {1, . . . , 100 000}.

3.1 The Size and the Depth of the Γ1 Edge-Universal Graph

In the skeleton, node A in Figure 1a is redundant, sin
e one
an
hoose to embed the edge (y, n − 1) as
(py, pn−1) through Q, and (z, n) as (pz, pn) through R for any y and z nodes [Val76℄. Thus, the number of

nodes other than poles Exa
t(n), for even n be
omes

Exa
t(n) = 2 · Exa
t

(

n− 2

2

)

+ 5 ·
n− 2

2
. (3)

For odd n, the
onstru
tion makes use of

n−1
2 poles in Q and

n−3
2 poles in R. Then, edge (y, n) is embedded

as (py, pn) through Q for any y node, and node A is again redundant. Thus,

Exa
t(n) = Exa
t

(

n− 1

2

)

+Exa
t

(

n− 3

2

)

+ 5 ·
n− 3

2
+ 3. (4)

Using these re
ursive formulae, given the value n, it is possible to obtain the exa
t number of nodes other

than poles in Un. Valiant in
ludes optimizations for starting o� the re
ursion: for 1, 2, 3, 4, 5 and 6 nodes; the
respe
tive number of additional nodes are 0, 0, 0, 3, 7 and 9 (
f. Figures 1
�1e). Thus, a simple algorithm using

dynami
 programming based on the re
ursion relations of Equations 3-4 yields the exa
t number of nodes

other than the original n poles that are
reated during the edge-universal graph
onstru
tion. It depends on

the parity of the input n at ea
h iteration and unfortunately does not yield a
losed formula for the size of

Valiant's edge-universal graph
onstru
tion, whi
h is n+Exa
t(n).
Valiant states that using his method, an edge-universal graph for Γ1(n)
an be found �with fewer than

19
8 n log2 n nodes, and fanin and fanout 2 � [Val76℄. As mentioned in �2.1, we
onsider the more detailed

algorithm that yields the result with a slightly larger prefa
tor of 2.5n log2 n instead of 2.375n log2 n. In this

se
tion, we sharpen this bound and give an approximate
losed formula for the size of the
onstru
tion. We

�rst give upper and lower bounds, and then derive an approximation for a
losed formula. For our lower

bound, we
onsider the
ase when only the formula for even numbers, i.e., Equation 3, is
onsidered. This

yields our lower bound of

n+ 5





log2 n−1
∑

i=0

2i
(

n

2i+1
−

2(2i+1 − 1)

2i+1

)



 = 2.5n log2 n− 9n+ 5 log2 n+ 10. (5)

9

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 20 000 40 000 60 000 80 000 100 000

D

e

v

i

a

t

i

o

n

ε

i

n

p

e

r

e

n

t

a

g

e

Size n of embedded graph

Fig. 3: The deviation of the mean of our upper and lower bounds (Equation 5 and Equation 6) from the

exa
t size of the edge-universal graph Exa
t(n) + n,
onsidering the size of the embedded graph n ∈
{1, . . . , 100 000}.

The upper bound
an be obtained similarly,
onsidering the
ase when only the formula for odd numbers

with 5 ·
(

n−1
2

)

is
onsidered

n+ 5





log2 n−1
∑

i=0

2i
(

n

2i+1
−

2i+1 − 1

2i+1

)



 = 2.5n log2 n− 4n+ 2.5 log2 n+ 5. (6)

Figure 2 depi
ts our upper and lower bounds along with Valiant's upper bound on the same
onstru
tion

for up to 100 000 nodes. We observe that the mean of our bounds is very
lose to the exa
t number of nodes.

Figure 3 shows that already after a
ouple of hundreds of poles, it only slightly deviates from the exa
t

number of nodes Exa
t(n). Thus, we a

ept

size(Un) ≈ 2.5n log2 n− 6.5n+ 3.75 log2 n+ 7.5 (7)

as a good approximation of the
losed formula for the size of the
onstru
tion, noting that an estimated

deviation of at most 2%
ompared to the exa
t number of nodes, i.e., ε ≤ 0.02 · size(Un) may o

ur.

The depth of the edge-universal graph, i.e., the maximum number of nodes between any two nodes is

de�ned by the number of nodes between p1 and pn in the skeleton (
f. Figures 1a�1b). Thus, depth(Un) =
3n− 3 for even n and depth(Un) = 3n− 2 for odd n.

3.2 The Size and the Depth of Valiant's Universal Cir
uit

As des
ribed in �2.1, a universal
ir
uit is
onstru
ted by means of an edge-universal graph for graphs with

fanin and fanout 2, whi
h is in turn
onstru
ted from two Γ1 edge-universal graphs with poles merged

together and thus taken only on
e into
onsideration. When
onstru
ting a UC, the number of inputs u,

the number of outputs v and the number of gates k is publi
. We set k∗ as the number of gates in the

equivalent fanout-2
ir
uit, where k ≤ k∗ ≤ 2k + v, in order to be able to later fairly
ompare with the UC

onstru
tion of [KS08b℄. We
onsider k∗ as the publi
 parameter instead of k, sin
e without the knowledge

of the original number of simulated gates, it does not reveal information about the simulated
ir
uit. If the

original k is publi
, one
an hide k∗ by setting it to its maximal value 2k + v. Thus, using Valiant's UC

onstru
tion, a Γ2 edge-universal graph with u + v + k∗ poles is
onstru
ted and thus, our approximative

formula for the size of the Γ2 edge-universal graph
orresponding to the graph of the
ir
uit would be
ome

2 · size(Uu+v+k∗)− (u+ v+ k∗) and the exa
t number would be u+ v+ k∗ + 2 ·Exa
t(u+ v+ k∗), i.e., the

10

u+ v + k∗ merged poles of the two edge-universal graphs plus the exa
t number of nodes other than poles.

Therefore, the size of Valiant's UC is

size(UCValiant

u,v,k∗) ≈ [5(u+ v + k∗) log2(u+ v + k∗)− 15(u+ v + k∗)

+ 7.5 log2(u + v + k∗) + 15] · size(X) + k∗ · size(U) (8)

and the depth stays

depth(UCValiant

u,v,k∗) ≈ [2(u+ v + k∗)− 2] · depth(X) + k∗ · depth(U). (9)

When transforming the Γ2 edge-universal graph into a UC, the �rst u poles are asso
iated with inputs,

the last v poles with outputs, and the k∗ poles between are realized with universal gates (
f. Equation 1)

and their programming is de�ned by the
orresponding gates in the simulated
ir
uit. The rest of the nodes

of the edge-universal graph are translated into universal swit
hes (
f. Equation 2), whose programming is

de�ned by the edge-embedding of the graph of the
ir
uit into the Γ2 edge-universal graph. Thus, the size

and depth of Valiant's UC
an be dire
tly derived from the size of the Γ2 edge-universal graph. However, we

in
lude two optimizations to obtain a smaller size of the UC. The �rst optimization improves already the

size of the edge-universal graph and the se
ond optimization is applied when translating the edge-universal

graph into a UC des
ription (
f. �4.1).

1. Optimization for Input and Output Nodes: We observe that obviously
ir
uit inputs need no ingo-

ing edges and
ir
uit outputs need no outgoing edges. Therefore, sin
e u, v and k∗ are publi
ly known, we

optimize by deleting nodes that be
ome redundant while
an
eling the edges going to the �rst u (input)

and
oming from the last v (output) nodes. Depending on the parity of u, v and u+ v + k∗, the number

of redundant swit
hing nodes is u+ v − 3± 1 in both Γ1 edge-universal graphs that build up the graph

of the UC. Therefore, we have, on average, 2(u + v − 3) redundant nodes, whi
h number we use in our

al
ulations further on. This optimization also a�e
ts the depth by, on average, u+ v − 3.
2. Optimization for Fanin-1 Nodes: We observe that in the skeleton of the Γ1 edge-universal graph

onstru
tion there is a fanin-1 node (denoted with B in Figures 1a�1b). Su
h fanin-1 nodes exist in the

base-
ases for a small number of poles as well (
f. Figures 1
�1e). These nodes are important to a
hieve

fanin and fanout 2 of ea
h nodes in the graph, but
an be ignored and repla
ed with wires when translated

into a
ir
uit des
ription, essentially resulting in the same UC. A

ording to Valiant's
onstru
tion, these

gates would translate into universal swit
hes with one real input (and an other arbitrary one). Instead,

we translate ea
h of them into two wires and therefore set the se
ond input to the same as the �rst one.

Sin
e at least one su
h node
an be ignored in ea
h subgraph when nodes are translated into gates, this

results in altogether around

2 ·





log2(u+v+k∗)−1
∑

i=0

2i



− 1 = 2(u+ v + k∗)− 3 (10)

less gates for the two Γ1 edge-universal graphs. This improvement has no e�e
t on the depth of the

onstru
tion.

Sin
e both the size and the depth are dependent on the underlying representation of the
ir
uit building

blo
ks (of the universal gate U and of the universal swit
h or X gate), and the se
ure
omputation proto
ol,

we express the size of the universal
ir
uit with the size and depth of U and of X as parameters. In
luding

the above optimizations of altogether 4(u + v) + 2k∗ − 9, the approximate formula for the size of Valiant's

optimized UC
onstru
tion be
omes

size(UC opt

u,v,k∗) ≈ [5(u+ v + k∗) log2(u+ v + k∗)− 17k∗ − 19(u+ v)

+ 7.5 log2(u+ v + k∗) + 24] · size(X) + k∗ · size(U). (11)

11

To obtain the exa
t size of the UC, we use the re
ursive relations depi
ted in Equations 3-4 and in
lude our

optimizations. Thus, we obtain

size

exa
t

(UC opt

u,v,k∗) = [2 · Exa
t(u+ v + k∗)− 4(u+ v)− 2k∗ + 9] · size(X) + k∗ · size(U). (12)

From the depth of the edge-universal graph, the depth of the UC be
omes

depth(UC opt

u,v,k∗) ≈ [u+ v + 2k∗ + 3] · depth(X) + k∗ · depth(U). (13)

Depending on the appli
ation, size(X) and size(U) as well as depth(X) and depth(U)
an be optimized.

Due to the PFE appli
ation, where XOR gates
an be evaluated for free, we assess the ANDsize and AND-

depth of our AND-optimized implementations of universal gates and swit
hes (
f. �4.1). In general, a universal

gate
an be realized with 3 AND gates (and 6 XOR gates), and ANDdepth of 2 (total depth of 6). Universal

swit
hes
an be realized with only one AND gate (and 3 XOR gates), and ANDdepth of 1 (total depth

of 3) [KS08a℄.

For private fun
tion evaluation, the size and the depth of U
an be further optimized depending on

the underlying se
ure
omputation proto
ol. In
ase the SFE implementation uses Yao's garbled
ir
uit

proto
ol [Yao86℄, both ANDsize(U) and ANDdepth(U)
an be minimized to 1, due to the fa
t that in some

garbling s
hemes the evaluator does not learn the type of the evaluated gate su
h as in
ase of garbled 3-row-

redu
tion [NPS99℄. Therefore, a universal gate
an be implemented with one 2-input non-XOR gate [PSS09℄.

Optimized Hybrid Universal Cir
uit Constru
tion: We investigate if hybrid methods utilizing building

blo
ks of both UC
onstru
tions, i.e., of both [Val76℄ summarized in �2.1 and [KS08b℄ in �2.2,
ould yield

better size. The simulation of the k gates of the original
ir
uit is asymptoti
ally more e�
ient using Valiant's

UC
onstru
tion due to the logarithmi
 fa
tor, despite the overhead
aused by taking the equivalent fanout-2

ir
uit with k∗ gates, where k ≤ k∗ ≤ 2k + v. However, we
al
ulate if the modular approa
h of [KS08b℄

using a sele
tion blo
k Su
m≥u for sele
ting the input variables or a trun
ated permutation blo
k TP

k∗≥v
v for

the output variables would result in a smaller size.

Pla
ing a sele
tion blo
k on top of Valiant's UC withm universal gates would imply a sele
tion blo
k Su
m≥u

whi
h is then programmed to dire
t the u inputs of the
ir
uit to the proper inputs of the m universal gates.

Depending on how the output nodes are represented, m is either 2(k∗ + v) for the
ase when in
luding the

outputs in Valiant's
onstru
tion or 2k∗ for the
onstru
tion with a trun
ated permutation blo
k. In the latter

ase, TP

k∗≥v
v takes
are of permuting a subset of the outputs of the k∗ gates, resulting in the v outputs of the

UC. A sele
tion blo
k Su
m≥u has size

u+m
2 log2 u+m log2 m−u+1 and depth 2 log2 u+2 log2 m+m−2, and a

trun
ated permutation blo
k TP
k∗≥v
v has size

k∗+v
2 log2 v−2v+k∗+1 and depth log2 k

∗+log2 v−1 [KS08b℄
(
f. Appendix C).

Let us take three s
enarios into
onsideration, depending on the number of inputs u and the number of

outputs v. The number of gates in the
ir
uit to be simulated is k and the number of gates in the equivalent

fanout-2
ir
uit is k∗ with k ≤ k∗ ≤ 2k + v.

1. Constant I/O Case: u = c1
onstant, v = c2
onstant: If both u and v are
onstant values c1 and c2
respe
tively, as is the
ase in many appli
ations that
ompute a non-trivial fun
tion with relatively few

inputs and outputs, the size of the sele
tion blo
k be
omes ≈ 2k∗ log2 k
∗+(2+ log2 c1)k

∗
and the size of

the trun
ated permutation blo
k is ≈ (0.5 log2 c2 + 1) k∗. With Valiant's UC
onstru
tion, the overhead

aused by a
onstant number of inputs and outputs is around 5(c1 + c2) log2 k
∗
. The depth of Valiant's

UC is only a�e
ted with
onstant overhead, while the depth of the sele
tion and permutation blo
ks are

≈ 2k∗ + 2 log2 k
∗
and ≈ log2 k, respe
tively. Thus, both for the inputs and the outputs, Valiant's UC is

an asymptoti
ally better solution in the
ase with a
onstant number of inputs and outputs.

2. Many Inputs: u ∼ k, v = c
onstant: For many inputs where u is around the number of gates k and

we have a
onstant number of c outputs, we in
lude these c nodes in Valiant's UC instead of using a

trun
ated permutation blo
k due to the same reasoning as in the previous
ase. However, a sele
tion blo
k

an be
onstru
ted to dire
t k inputs to k∗ + c universal gates. Thus, its size be
omes ≈ 2k∗ log2 k
∗ +

12

0

2 · 106

4 · 106

6 · 106

8 · 106

1 · 107

1.2 · 107

1.4 · 107

0 10 000 20 000 30 000 40 000 50 000

1.44 · 107

6.72 · 106

3.34 · 106

1.27 · 107
1.23 · 107
1.20 · 107

7.15 · 106

6.12 · 106

S

i

z

e

o

f

t

h

e

u

n

i

v

e

r

s

a

l

i

r

u

i

t

U
C

u
,v

,k
∗

Number of fanin-fanout-2 gates k∗ = k

Valiant's UC, maximal I/O

Valiant's UC, many inputs

Valiant's UC,
onstant I/O

[KS08b℄ UC, maximal I/O

[KS08b℄ UC, many inputs

[KS08b℄ UC,
onstant I/O

Hybrid, maximal I/O

Hybrid, many inputs

Fig. 4: Comparison between the sizes of the UC
onstru
tions for k∗ = k ∈ {0, . . . , 50 000} gates,
onsidering
the three s
enarios:
onstant I/O with
onstant number of inputs and outputs, many inputs with ∼ k inputs

and
onstant outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs.

k∗ log2 k+0.5k log2 k+2k∗− k+3c log2 k
∗
and its depth ≈ 2k∗+2 log2 k

∗+2 log2 k. In
ase of Valiant's

UC
onstru
tion, k inputs result in an overhead of ≈ 5k log2 k−9k+5c log2 k for the size and ≈ k for the

depth, sin
e a large part (up to a half) of the
ir
uit is built in order to hide the input wiring. Therefore,

in this s
enario it is often worth to use a hybrid method, utilizing the sele
tion blo
k from [KS08b℄ for

input sele
tion. Our many inputs hybrid
onstru
tion pla
es a sele
tion blo
k on top of a UC with k∗+ c

universal gates and has approximate size when u ∼ k and v is
onstant c

size(UCmany I

k,c,k∗) ≈ [7k∗ log2 k
∗ + k∗ log2 k + 0.5k log2 k − k − 15k∗

+ (7.5 + 5c) log2 k
∗ + 3c log2 k

∗ +O(1)] · size(X) + k∗ · size(U) (14)

and approximate depth

depth(UCmany I

k,c,k∗) ≈ [4k∗ + 2 log2 k
∗ + 2 log2 k +O(1)] · depth(X) + k∗ · depth(U). (15)

3. Maximal I/O Case: u ∼ 2k, v ∼ k: For
ir
uits with u ∼ 2k inputs and v ∼ k outputs, we dis
uss

the possibility of using both an input sele
tion blo
k and an output permutation blo
k. The size of the

sele
tion blo
k is ≈ 2k∗ log2 k
∗+k∗ log2 k+k log2 k+3k∗−k and its depth is ≈ 2k∗+2 log2 k

∗+2 log2 k,
whi
h is more bene�
ial (when it
omes to the size) than the ≈ 10k log2 k − 12k size overhead and

≈ 2k depth overhead in Valiant's
onstru
tion
aused by 2k inputs (up to half of the UC is
onstru
ted

for inputs only). The trun
ated permutation blo
k has size ≈ 0.5k∗ log2 k + 0.5k log2 k + k∗ − 2k and

depth ≈ log2 k
∗ + log2 k, while the same amount of outputs in Valiant's
onstru
tion introdu
es at

least 5k log2 k−9k new swit
hes with depth of ≈ k. Thus, for the
ase when the maximal 2k inputs and k

outputs are
onsidered, we
on
lude that it is advantageous to use our maximal I/O hybrid
onstru
tion,

utilizing Valiant's graph
onstru
tion for the k∗ gates [Val76℄, a sele
tion blo
k for the inputs and a

trun
ated permutation blo
k for the outputs [KS08b℄. This yields an approximate size when u ∼ 2k and

v ∼ k

size(UC
max I/O

2k,k∗,k) ≈ [7k∗ log2 k
∗ + 1.5k∗ log2 k + 1.5k log2 k − 13k∗ − 3k

+ 7.5 log2 k
∗ +O(1)] · size(X) + k∗ · size(U) (16)

13

0

2 · 105

4 · 105

6 · 105

8 · 105

1 · 106

0 10000 20000 30000 40000 50000

3.50 · 105

2.51 · 105

2.02 · 105

9.81 · 105

3.01 · 105

D

e

p

t

h

o

f

t

h

e

u

n

i

v

e

r

s

a

l

i

r

u

i

t

U
u
,v

,k
∗

Number of fanin-fanout-2 gates k∗ = k

Valiant's UC, maximal I/O

Valiant's UC, many inputs

Valiant's UC,
onstant I/O

[KS08b℄ UC, maximal I/O

[KS08b℄ UC, many inputs

[KS08b℄ UC,
onstant I/O

Hybrid, maximal I/O

Hybrid, many inputs

Fig. 5: Comparison between the depths of the UC
onstru
tions for k∗ = k ∈ {0, . . . , 50 000} gates,
onsidering
the three s
enarios:
onstant I/O with
onstant number of inputs and outputs, many inputs with ∼ k inputs

and
onstant outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs.

and an approximate depth

depth(UC
max I/O

2k,k∗,k) ≈ [4k∗ + 3 log2 k
∗ + 3 log2 k +O(1)] · depth(X) + k∗ · depth(U). (17)

We
on
lude that in
ase of a large number of inputs and outputs it is bene�
ial to
onstru
t a hybrid UC,

making use of both existing
onstru
tions (
f. �2.1 and �2.2). Most pra
ti
al appli
ations have input and

output with
onstant size and only some spe
i�
 appli
ations use input size linear in the number of gates (e.g.

simple
omputations on large databases). Thus, we
onsider Valiant's
onstru
tion as the most bene�
ial

for general purposes, however we have shown, that one
an optimize the
onstru
tion for many inputs or

outputs by adding sele
tion or trun
ated permutation blo
ks from [KS08b℄.

Comparison with the Universal Cir
uit Constru
tion from [KS08b℄. In [KS08b℄, a universal
ir-

uit
onstru
tion was proposed with approximate size 1.5k log22 k + 2.5k log2 k. This was
al
ulated with

the doubled size of the universal swit
hes, not yet
onsidering the free-XOR optimizations of [KS08a℄. We

re
al
ulated the size of the
onstru
tion with our additional optimization for the outputs des
ribed in �2.2.

We give our detailed
al
ulations in Appendix C, and summarize its exa
t size here as

size(UC
[KS08b℄

u,v,k) = [0.75k log22 k + 2.25k log2 k + (0.5 + k) log u+

(0.5k + 0.5v) log v + 5k − u− 2v] · size(X) + k · size(U), (18)

and from [KS08b℄ we know that its depth is

depth(UC
[KS08b℄

u,v,k) = [k log2 k + 2k + 7 log2 k + 2 log2 u+ log2 v − 14] · depth(X) + k · depth(U). (19)

It was
on
luded in [KS08b℄ that this
onstru
tion outperforms Valiant's
onstru
tion for
ir
uits with up

to 5 000 gates. However, this was a
hieved using the assumption that Valiant's universal
ir
uit has size

≈ 9.5(u+ 2v + 2k) log2(u+ 2v + 2k), whi
h
an vary between two to four times its a
tual size. On the one

hand, a fa
tor of two of this di�eren
e is due to the free-XOR optimizations in [KS08a℄. On the other

14

hand, [KS08b℄ used the maximal k∗ = 2k + v in their approximation. In �4.2, we show on
on
rete example

ir
uits that k∗ stays signi�
antly below this upper bound. The
onstru
tion des
ribed in detail in �2.1 has

a larger
onstant fa
tor 5, but due to the logarithmi
 fa
tor it outperforms the
onstru
tion from [KS08b℄

(�2.2) already for a few hundred gates in the
onstant I/O
ase. Figure 4 and Figure 5
ompare the sizes

and depth of the di�erent UC
onstru
tions, respe
tively in the three s
enarios des
ribed above, with the

lowest possible gate number k∗ = k. When
onsidering the hybrid approa
h, the method
orresponding to

the given s
enario is indeed always the most e�
ient
onstru
tion for many inputs and/or outputs. We give

a
omparison for the upper bound
ase k∗ = 2k + v as well in Figure 9 in Appendix D.

4 Implementing Valiant's Universal Cir
uit in Pra
ti
e

In this se
tion, we detail the
hallenges that we fa
ed while demonstrating the pra
ti
ality of Valiant's univer-

sal
ir
uit
onstru
tion. We show how to
onstru
t a universal
ir
uit from a standard
ir
uit des
ription and

how to program it a

ordingly. We validate our results with an implementation,
reating a novel tool
hain

for private fun
tion evaluation, using two existing frameworks as frontend and ba
kend of our appli
ation.

We emphasize that our tool for
onstru
ting and programming UC is generi
 and
an easily be adapted to

other se
ure
omputation frameworks or other appli
ations of UCs listed in �1.2.

4.1 Our Tool for Universal Cir
uit Constru
tion and Tool
hain for Private Fun
tion

Evaluation

The ar
hite
ture of our tool
hain for PFE using UCs is shown in Figure 6. In this se
tion, we des
ribe its

di�erent artifa
ts and its use of the Fairplay [MNPS04℄ and ABY [DSZ15℄ frameworks. Our implementation

is available online at http://en
rypto.de/
ode/UC.

Step 1. Compiling Input Cir
uits from High-Level Fun
tionality: Due to its easy adoptability, we

de
ided to use the Fairplay
ompiler [MNPS04,BNP08℄ with the FairplayPF extension [KS08b℄ to translate

the fun
tionality des
ribed in the high-level SFDL format to the Fairplay
ir
uit des
ription
alled Se
ure

Hardware De�nition Language (SHDL). The FairplayPF extension already
onverts
ir
uits with gates of

an arbitrary fanin into gates with at most two inputs, whi
h is required for Valiant's
onstru
tion as well.

However, in
ase of Valiant's UC
onstru
tion, there is another restri
tion on the input
ir
uit. It has to have

fanout 2, i.e., the outputs of all the gates and inputs
an only be used as the input of at most two later gates.

In
ase the input
ir
uit does not follow this restri
tion, an algorithm pla
es a binary tree in pla
e of ea
h

gate with fanout larger than 2, following Valiant's proposition: �Any gate with fanout x+ 2
an be repla
ed

by a binary fanout tree with x+ 1 gates� [Val76, Corollary 3.1℄. This is done using so-
alled
opy gates, i.e.,

identity gates, ea
h of them eliminating one from the extra fanout of the original gate. An upper bound

an be given on the number of
opy gates. The
lass of Boolean fun
tions with u inputs and v outputs that

an be realized by a
y
li

ir
uits with k gates and arbitrary fanout,
an also be realized with an a
y
li

fanout-2
ir
uit with k ≤ k∗ ≤ 2k+ v gates [Val76, Corollary 3.1℄. We give
on
rete examples in �4.2 on how

this
onversion
hanges the input
ir
uit size for pra
ti
al
ir
uits and show that in most
ases, the resulting

number of gates remains signi�
antly below the upper bound 2k + v.

Step 2. Obtaining the Γ2 Graph of the Cir
uit: From the SHDL des
ription of a C
ir
uit with fanin

and fanout 2, the Γ2 graph GC
of the
ir
uit C
an be dire
tly generated as des
ribed in �2.1: with the

number of inputs u, the number of outputs v and the number of gates k∗ in
ir
uit C, GC
has u + v + k∗

nodes and the wires are represented as edges in the graph. Then, the �rst u nodes in the topologi
al order

orrespond to the inputs, the last v nodes to the outputs and the nodes in between them to the k∗ ordered

gates. We note that sin
e C had fanin and fanout 2, the resulting GC
graph is in Γ2(u+ v + k∗).

Therefore in GC
, ea
h node
an have at most two in
oming edges, one de�ned to be the �rst and the

other the se
ond. It is possible in the modi�ed SHDL
ir
uit des
ription that an internal value be
omes two

times the �rst or two times the se
ond input of gates. This is due to the fa
t that in the original SHDL

15

http://encrypto.de/code/UC

Cir
uit Des
ription Cf

(SHDL)

1. Modi�ed Cir
uit C

(SHDL)

Cir
uit Compiler

(Fairplay)

Fun
tionality f

(SFDL)

P1

2. Γ2 Graph

Representation GC

4. Embedding of GC

into Uu+v+k∗

5. Program Bits

Input p

3. Edge-Universal

Graph Uu+v+k∗

Publi

5. Universal Cir
uit

Des
ription UC

6. SFE Framework

(ABY)

P2

Input x

Output UC (x, p)

Our UC Compiler

Fig. 6: Our tool
hain for universal
ir
uits and private fun
tion evaluation.

ir
uit with arbitrary fanout, a value
ould be the input of arbitrary number of later gates. Transforming

the
ir
uit to a fanout-2
ir
uit by adding
opy gates allows a value to be an input only two times, but the

order of the inputs is �xed. Therefore, in su
h a
ase when a value is the se
ond time the same input to a

gate (i.e., �rst or se
ond), besides the two inputs, the two middle bits of the fun
tion table of the gate must

be reversed as well (i.e., to
ompute f(in1, in2) instead of f(in2, in1)) for the
orre
t programming of the

universal
ir
uit in Step 5.

Step 3. Generating Γ2 Edge-Universal Graph Un: Knowing the number of input bits u, the number

of gates k∗ and the number of output bits v one
an
onstru
t the
orresponding edge-universal graph Un,

where n = u+v+k∗, with out input-output optimization from �3.2. We note that no knowledge is ne
essary

about the topology or the gate tables in
ir
uit C for this step. As we des
ribed in �2.1, two edge-universal

graphs for Γ1(n), i.e. Un,1 and Un,2, are merged in order to obtain an edge-universal graph for Γ2(n), su
h
that the poles are merged and the edges
oming into and going out from them be
ome as follows: the edges

in Un,1 will be the �rst input and output for ea
h pole, the edges in Un,2 will be the se
ond input and output.

For e�
ien
y reasons, we dire
tly generate the merged edge-universal graph, i.e., an edge-universal graph

for Γ2(n), with the poles as
ommon nodes.

We in
lude our optimization for the input and output nodes from �3.2 and Valiant's optimizations

for n ∈ {2, 3}, but do not
onsider Valiant's optimizations for n ∈ {4, 5, 6} (
f. Figures 1
-1e). These spe
ial

ases lead to a spe
i�
 edge-embedding for the nodes and result in linear improvement only in very rare

16

Algorithm 1 Supergraph(G)

Input: Γ1(n) graph G with set of nodes V = {1, . . . , n}
Output: Γ1(n) supergraph

1: Create a graph H with ⌈n
2
⌉ − 1 nodes ⊲ H Γ2 graph (with possible loops)

2: if there exist an edge (i, j) in G and ⌈ j

2
⌉ − 1 ≥ ⌈ i

2
⌉ then

3: Add edge

(

⌈ i
2
⌉, ⌈ j

2
⌉ − 1

)

in H ⊲ ea
h pair of nodes in G is one node in H

4: end if

5: Partition H into two Γ1 graphs G1 of size ⌈n
2
⌉ − 1 and G2 of size ⌊n

2
⌋ − 1 using K®nig's theorem as in �2.1

⊲ in odd
ase, the (e, ⌈n
2
⌉ − 1) edge in H for arbitrary e will be added in G1

6: if size(G1) 6= 0 then
7: Supergraph(G1)
8: Store G1 as the left subgraph of G

9: end if

10: if size(G2) 6= 0 then
11: Supergraph(G2)
12: Store G2 as the right subgraph of G

13: end if

14: delete H

15: return G

ases. Moreover, with our se
ond optimization from �3.2, we ignore most of the extra nodes when the graph

is translated into a universal
ir
uit des
ription, i.e., we have for n = {4, 5, 6} only {3, 5, 8} additional nodes
other than poles, respe
tively, in our implementation whi
h is already an improvement over Valiant's original

optimizations.

We note that the edge-universal graph (with unde�ned fun
tion tables and
ontrol bits for the universal

swit
hes)
an be publi
ly generated. However, the party programming it has to either generate or re
eive

a
opy of it for programming the
ontrol bits a

ording to the topology of the simulated
ir
uit (i.e., to

edge-embed GC
into Un).

Step 4. Programming Un A

ording to an Arbitrary Γ2(n) Graph: The Γ2 graph of the
ir
uit GC

with n nodes is partitioned into two Γ1(n) graphs GC
1 and GC

2 whi
h are embedded into the two edge-

universal graphs for Γ1(n) that build up Un. Valiant proved in [Val76℄ that for any topologi
ally ordered

Γ1(n) graph, for any (i, j) ∈ E and (k, l) ∈ E edges there exist edge-disjoint paths in Un between the ith

and the jth poles and between the kth and the lth poles. We des
ribed Valiant's method in �2.1 and here we

show the algorithm that uniquely de�nes these paths in Un.

For the des
ription of our algorithm, we �rst de�ne a Γ1(n) supergraph, whi
h is a Γ1(n) graph with

additionally a binary tree of Γ1 graphs of de
reasing size. These Γ1 graphs uniquely de�ne the embedding

of the edges into Un. When embedding an edge (i, j) of the topologi
ally ordered graph G into the edge-

universal graph, one needs to
onstru
t the supergraph of G as des
ribed in Algorithm 1 and then look at

the binary tree in the supergraph. The path of the edge (i, j) de�nes the edge-embedding uniquely. This

means that if edge (⌈ i
2⌉, ⌈

j
2⌉ − 1) is in the left subgraph of G, then it
an be embedded through subgraph Q

in Un, otherwise it is in the right subgraph of G and
an be embedded through subgraph R in Un. The

unique embedding happens through {r⌈ i
2
⌉, r⌈ j

2
⌉−1} or through {q⌈ i

2
⌉, q⌈ j

2
⌉−1}, utilizing the unique shortest

path between them, through subpoles further identi�ed by smaller subgraphs of G.

When the embedding is done (
f. Appendix E), for de�ning the
ontrol bits, ea
h node x has at most

two nodes that have ingoing edges to x, one is represented as the left parent and one as the right parent of x

in the edge-universal graph. The two
onse
utive nodes are also saved as left and right
hildren of x. Now,

when x is a swit
hing node and we take edges (v, x) and (x,w) in the path, we save for x if parent v and

hild w are on the same or on the opposite side in the edge-universal graph. This de�nes the
ontrol bit of

17

ea
h universal swit
h in the translated universal
ir
uit, where left and right parent and
hild translate to

�rst and se
ond input and output, respe
tively. We note that in order to program Un
orre
tly, we require

that if x is the left (right) parent of v in the edge-universal graph, then v is the left (right)
hild of x as well.

Step 5. Generating the Output Cir
uit Des
ription and the Programming of the Universal

Cir
uit: After embedding the graph of the simulated
ir
uit into the edge-universal graph Un, we write

the resulting
ir
uit in a �le using our own
ir
uit des
ription. In the edge-universal graph, ea
h node stores

the program bit resulting from the edge-embedding (
ontrol bit c of the
orresponding universal swit
h in

Equation 2) and ea
h pole stores four bits
orresponding to the simulated
ir
uit (the four
ontrol bits of the

fun
tion table, c0, c1, c2, c3 in Equation 1, their order possibly
hanged in Step 2). Thus, after topologi
ally

ordering Un, one
an dire
tly write out the gate identi�ers into a
ir
uit �le and the program bits to a

programming �le.

Our
ir
uit des
ription format starts with enumerating the inputs and ends with enumerating the outputs.

We have universal gates denoted by U , universal swit
hes denoted by X or Y depending on the number of

outputs (X with two outputs and Y with one). We note that we repla
e any gates that have only one input

by wires in the UC, thus a
hieving our fanin-1 node optimization from �3.2. The wires are represented in

the following manner:

U in1 in2 out1

X in1 in2 out1 out2 (20)

Y in1 in2 out1

denotes that wire out1 (and possibly out2) is
oming from a gate with input wires in1 and in2. The program

bits are not represented in the
ir
uit format, but in a separate �le, for ea
h universal gate we save a four-bit

number representing the
ontrol bits and for ea
h universal swit
h we store the
ontrol bit. The output nodes

are outputs of Y universal swit
hes and are marked in the end of the �le as O o1 o2 . . . ov. The
ir
uit

and its programming are given in plain text �les.

Step 6. Evaluating Universal Cir
uits for PFE in ABY: As an example appli
ation of UCs, we

implement PFE using SFE of a universal
ir
uit. We adapted the ABY se
ure two-party
omputation frame-

work [DSZ15℄ for this purpose. Firstly, sin
e ABY uses the free-XOR optimization from [KS08a℄, we
onstru
t

universal gates and swit
hes with low ANDsize and ANDdepth given in �3.2. With the
ost metri
 we
on-

sider, X and Y gates have the same AND
omplexity, optimized in [KS08a℄ and are obtained as

out1 = Y (in1, in2; c) = (in1 ⊕ in2)c⊕ in1

(out1, out2) = X(in1, in2; c) = (e⊕ in1, e⊕ in2) with e = (in1 ⊕ in2)c (21)

with ANDsize and ANDdepth of 1 for both universal swit
hes. X gates are realized with one additional XOR

gate
ompared to Y gates.

Our e�
ient implementation of generi
 universal gates uses Y gates yielding

out1 = U(in1, in2; c0, c1, c2, c3) = Y [Y (c0, c1; in2), Y (c2, c3; in2); in1] (22)

with ANDsize(U) = 3 and ANDdepth(U) = 2. This universal gate implementation is generi
 and works in

all se
ure
omputation proto
ols. However, for Yao's garbled
ir
uits proto
ol, one
an further optimize it

to ANDsize=ANDdepth= 1, as in some garbling s
hemes su
h as the garbled 3-row-redu
tion [NPS99℄ the

gate being evaluated remains oblivious to the evaluator.

After
onstru
ting the e�
ient building blo
ks, the output
ir
uit �le of our UC
ompiler is parsed, a

ir
uit is generated a

ordingly and programmed with the input program bits. We
on
lude that our tool
hain

is the �rst implementation of Valiant's size-optimized universal
ir
uit that supports e�
ient private fun
tion

evaluation.

18

Cir
uit u k v k∗ − k (

k∗

k
) Valiant [KS08b℄ OT-based [MS13℄

AES-non-exp 256 31 924 128 15 312 (1.48) 1.171 · 107 2.797 · 107 6.243 · 106

AES-expanded 1 536 25 765 128 11 794 (1.46) 9.388 · 106 2.206 · 107 4.942 · 106

DES-non-exp 128 19 464 64 10 871 (1.56) 7.146 · 106 1.560 · 107 3.639 · 106

md5 512 43 234 128 31 083 (1.72) 1.942 · 107 3.995 · 107 8.681 · 106

add_32 64 188 33 123 (1.65) 44 968 55 717 20 064

omp_32 64 150 1 60 (1.4) 26 440 40 222 15 424
mult_32x32 64 6 995 64 5 678 (1.81) 2.672 · 106 4.647 · 106 1.184 · 106

Bran
hing_18 72 121 4 3 (1.02) 17 312 30 994 11 995
CreditChe
k 25 50 1 6 (1.12) 5 056 9 348 4 199
MobileCode 80 64 16 0 (1) 12 528 13 727 5 644

Table 1: The number of symmetri
-key operations using di�erent PFE proto
ols: Valiant's UC with SFE,

the universal
ir
uit
onstru
tion from [KS08b℄ or Mohassel et al.'s OT-based method from [MS13℄. u, v and

k denote the number of inputs, outputs and gates in the simulated
ir
uit, and k∗ denotes the number of

gates in the equivalent fanout-2
ir
uit.

4.2 Comparison of Our PFE-Tool
hain with Other PFE Proto
ols

Mohassel et al. in [MS13℄ design a generi
 framework for PFE and apply it to three di�erent s
enarios: to

the m-party GMW proto
ol [GMW87℄, to Yao's garbled
ir
uits [Yao86℄ and to arithmeti

ir
uits using

homomorphi
 en
ryption [CDN01℄. Both the two-party version of their framework with the GMW proto
ol

and the solution with Yao's garbled
ir
uit proto
ol has two alternatives: using homomorphi
 en
ryption

they a
hieve linear
omplexity O(k) in the
ir
uit size k and when using a solution solely based on obliv-

ious transfers (OTs), they obtain a
onstru
tion with O(k log k) symmetri
-key operations. The OT-based

onstru
tion in both
ases is more desirable in pra
ti
e, sin
e using OT extension the number of publi
-key

operations
an be redu
ed signi�
antly [IKNP03,ALSZ13℄.

Sin
e the asymptoti
al
omplexity of this
onstru
tion and using Valiant's UC for PFE is the same, we

ompare these methods for PFE. We revisit the formulas provided in [MS13℄ for the PFE proto
ol based

on Yao's garbled
ir
uits and elaborate on the number of symmetri
-key operations when the di�erent PFE

proto
ols are used. Mohassel et al. show that the total number of swit
hes in their framework is 4k log2(2k)+1
that are evaluated using OT extension, for whi
h they
al
ulate 8k log2(2k) + 8 symmetri
-key operations

together with 5k operations for evaluating the universal gates with Yao's proto
ol. We
ount only the work

of the party that performs most of the work, i.e., 4k symmetri
-key operations for
reating a garbled
ir
uit

with k gates and 3 symmetri
-key operations (two
alls to a hash fun
tion and one
all to a pseudorandom

fun
tion (PRF)) for ea
h OT using today's most e�
ient OT extension of [ALSZ13℄. Hen
e, a

ording to

our estimations, the proto
ol of [MS13℄ requires 12 log2(2k) + 4k + 12 symmetri
-key operations.

In the same way, we assume that in our
ase, for evaluating both the universal gates and swit
hes, the

garbler needs 4k symmetri
-key operations. Thus, for a fair
omparison, we essentially update Table 4 from

the full version of [MS13, Appendix J.1℄, where Valiant's UC size was
al
ulated with assumed k∗ = 2k+ v,

without
al
ulating 4 operations for the garbling.

We took our example
ir
uit �les of varying size in Table 1 from two di�erent sour
es and elaborate on

the resulting number of symmetri
-key operations using the di�erent
onstru
tions. The �rst 7
ir
uits we

obtained from the fun
tion set of [TS15℄ and the last three from the FairplayPF extension of the Fairplay

ompiler [MNPS04,KS08b℄. The example
ir
uits that we took from [TS15℄ had to be
onverted to our desired

SHDL format, whi
h was a ne
essary step in order to be able to elaborate on the performan
e of these more

ompli
ated
ir
uits as well. We in
luded the NOT gates in the fun
tion table of the
onse
utive gate and

therefore, resulted in smaller gate numbers k for the equivalent SHDL
ir
uits with arbitrary fanout. Then,

these SHDL
ir
uits were
onsidered as input
ir
uits for our tool.

We now
ompare the size of the three two-party PFE proto
ols: the two UC-based PFE with se
ure

omputation and the OT-based method of [MS13℄. We assess our �ndings in Table 1. We note that our

numbers are estimations, i.e., we do not
onsider that [MS13℄ works with
ir
uits made up solely of NAND

19

Cir
uit

UC Compile GMW Yao

Time (ms) Time (ms) Comm. (bytes) Time (ms) Comm. (bytes)

AES-non-exp 39.49 5 522.08 140 862 594 2 349.35 90 539 632
AES-expanded 37.34 4 136.72 111 650 604 1 878.75 71 779 824
DES-non-exp 22.48 2 695.51 78 483 846 1 310.52 49 337 024
md5 73.28 7 041.12 173 628 240 3 547.68 112 684 640

add_32 0.13 31.97 468 760 26.49 230 160

omp_32 0.13 29.94 348 400 8.90 163 560
mult_32x32 8.32 1 092.46 31 798 816 539.98 19 191 656

Bran
hing_18 0.088 26.23 315 161 17.34 149 371
CreditChe
k 0.036 26.25 116 066 5.67 46 230
MobileCode 0.065 25.71 207 362 28.16 105 934

Table 2: Running time and
ommuni
ation for our UC-based PFE implementation with ABY. We in
lude

the
ompile time of the UC
ompiler in millise
onds and the evaluation time and the total
ommuni
ation

between the parties in GMW as well as in Yao sharing.

gates. Sin
e Valiant's UC
onstru
tion depends also on the number of gates with fanout more than 2 in the

original
ir
uit, we in
lude the number of
opy gates, (k∗ − k) in the table. We emphasize the ratio between

the new number of gates k∗ and the original number of gates k and
on
lude that in general
ir
uits, it is

well below the maximal

k∗

k ∼ 2. The size of the UC
onstru
tion from [KS08b℄ obviously makes their method

less e�
ient, in our examples using more than twi
e as many symmetri
-key operations as the method with

Valiant's UC and four times as many as Mohassel et al.'s e�
ient OT-based method [MS13℄. We
on
lude

that universal
ir
uits are not the most e�
ient solution to perform PFE, however, we show the feasibility

of generating and evaluating UCs simulating large
ir
uits. We emphasize that even though the PFE-spe
i�

proto
ol from [MS13℄ a
hieves better results for PFE, universal
ir
uits are generi
 and
an be applied for

various other s
enarios (
f. �1.2), and the most e�
ient UC
onstru
tion is Valiant's
onstru
tion.

Our Experimental Results. We validated the pra
ti
ality of Valiant's universal
ir
uit
onstru
tion with

an e�
ient implementation. We ran our experiments on two Desktop PCs, ea
h equipped with an Intel

Haswell i7-4770K CPU with 3.5 GHz and 16 GB RAM, that are
onne
ted via Gigabit-LAN and give our

ben
hmarks in Table 2. We are able to generate UCs up to around 300 000 gates of the simulated
ir
uit,

i.e., whi
h results in billions of gates in the UC. Until now, the only implementation of universal
ir
uits

was given in [KS08b℄, whi
h is outperformed by Valiant's
onstru
tion already for a
ouple of hundred gates

(
f. Figures 4-5) due to its asymptoti
ally larger
omplexity. We show the real pra
ti
ality of UCs through

experimental results proving the e�
ien
y of our implementation of PFE with the ABY framework [DSZ15℄.

Furthermore, due to its asymptoti
ally smaller depth, we are also able to evaluate our generated UCs with

the GMW proto
ol [GMW87℄, whereas the
onstru
tion from [KS08b℄ was only evaluated with Yao's garbled

ir
uit proto
ol. We do not dire
tly
ompare our runtimes with the method of [MS13℄, sin
e to the best of

our knowledge, their framework has not yet been implemented.

Converting from
ir
uit des
riptions and writing into and reading out from �les slows down the pro-

gram signi�
antly, but it still a
hieves good performan
e for pra
ti
al
ir
uits su
h as AES and DES. Our

implementation in ABY
an evaluate most of the
ir
uits in both the GMW and Yao's proto
ols, but for

some examples it runs out of memory (e.g. SHA-256). However, improvements on SFE proto
ols imply im-

provements on UC-based PFE frameworks as well. As
an be seen in Table 2, the evaluation time and the

ommuni
ation in
ase of Yao's garbled
iru
it proto
ol is about a fa
tor of two smaller than that of the

GMW proto
ol. This di�eren
e is due to the more e�
ient universal gate
onstru
tion with only one gate for

the
ase of Yao's proto
ol in
ontrast to the universal gates used in the GMW proto
ol with ANDsize = 3
and ANDdepth = 2.

20

A
knowledgements. This work has been
o-funded by the European Union's 7th Framework Program

(FP7/2007-2013) under grant agreement n. 609611 (PRACTICE), by the German Federal Ministry of Ed-

u
ation and Resear
h (BMBF) within CRISP, by the DFG as part of proje
t E3 within the CRC 1119

CROSSING, and by the Hessian LOEWE ex
ellen
e initiative within CASED. We thank Mi
hael Zohner

and Daniel Demmler for helping with the implementation in ABY.

Referen
es

AF90. Martín Abadi and Joan Feigenbaum. Se
ure
ir
uit evaluation. J. Cryptology, 2(1):1�12, 1990.

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas S
hneider, and Mi
hael Zohner. More e�
ient oblivious transfer

and extensions for faster se
ure
omputation. In ACM CCS'13, pages 535�548. ACM, 2013.

Att14. Nuttapong Attrapadung. Fully se
ure and su

in
t attribute based en
ryption for
ir
uits from multi-

linear maps. IACR Cryptology ePrint Ar
hive, 2014:772, 2014.

BFGH10. Debajyoti Bera, Stephen A. Fenner, Frederi
 Green, and Steven Homer. E�
ient universal quantum

ir
uits. Quantum Information and Computation, 10(1�2):16�27, 2010.

BFK

+
09. Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Ri

ardo Lazzeretti, Ahmad-Reza Sadeghi, and

Thomas S
hneider. Se
ure evaluation of private linear bran
hing programs with medi
al appli
ations.

In European Symposium on Resear
h in Computer Se
urity � ESORICS'09, volume 5789 of LNCS, pages

424�439. Springer, 2009.

BNP08. Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for se
ure multi-party
ompu-

tation. In ACM CCS'08, pages 257�266. ACM, 2008.

BPSW07. Justin Bri
kell, Donald E. Porter, Vitaly Shmatikov, and Emmett Wit
hel. Priva
y-preserving remote

diagnosti
s. In ACM CCS'07, pages 498�507. ACM, 2007.

CCKM00. Christian Ca
hin, Jan Camenis
h, Joe Kilian, and Joy Müller. One-round se
ure
omputation and se-

ure autonomous mobile agents. In International Colloquium on Automata, Languages and Program-

ming (ICALP'00), volume 1853 of LNCS, pages 512�523. Springer, 2000.

CDN01. Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty
omputation from threshold ho-

momorphi
 en
ryption. In Advan
es in Cryptology � EUROCRYPT'01, volume 2045 of LNCS, pages

280�299. Springer, 2001.

CH85. Stephen A. Cook and H. James Hoover. A depth-universal
ir
uit. SIAM J. Computing, 14(4):833�839,

1985.

DDKZ13. Konrad Durnoga, Stefan Dziembowski, Tomasz Kazana, and Mi
hal Zaja
. One-time programs with

limited memory. In Information Se
urity and Cryptology (INSCRYPT'13), volume 8567 of LNCS, pages

377�394. Springer, 2013.

DSZ15. Daniel Demmler, Thomas S
hneider, and Mi
hael Zohner. ABY � a framework for e�
ient mixed-proto
ol

se
ure two-party
omputation. In Network and Distributed System Se
urity (NDSS'15). The Internet

So
iety, 2015. Code: http://en
rypto.de/
ode/ABY.

FAL06. Keith B. Frikken, Mikhail J. Atallah, and Jiangtao Li. Attribute-based a

ess
ontrol with hidden poli
ies

and hidden
redentials. IEEE Transa
tions on Computers, 55(10):1259�1270, 2006.

FAZ05. Keith B. Frikken, Mikhail J. Atallah, and Chen Zhang. Priva
y-preserving
redit
he
king. In ACM

Ele
troni
 Commer
e (EC'05), pages 147�154. ACM, 2005.

FGP14. Dario Fiore, Rosario Gennaro, and Valerio Pastro. E�
iently veri�able
omputation on en
rypted data.

In ACM CCS'15, pages 844�855. ACM, 2014.

FLA06. Keith B. Frikken, Jiangtao Li, and Mikhail J. Atallah. Trust negotiation with hidden
redentials, hidden

poli
ies, and poli
y
y
les. In Network and Distributed System Se
urity (NDSS'06), pages 157�172. The

Internet So
iety, 2006.

FVK

+
15. Ben Fis
h, Binh Vo, Fernando Krell, Abishek Kumarasubramanian, Vladimir Kolesnikov, Tal Malkin, and

Steven M. Bellovin. Mali
ious-
lient se
urity in Blind Seer: A s
alable private DBMS. In IEEE Symposium

on Se
urity and Priva
y (S&P'15), pages 395�410. IEEE, 2015.

GGH

+
13. Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based en
ryption for

ir
uits from multilinear maps. In Advan
es in Cryptology � CRYPTO'13, volume 8043 of LNCS, pages

479�499. Springer, 2013.

GGHZ14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully se
ure attribute based en
ryption

from multilinear maps. IACR Cryptology ePrint Ar
hive, 2014:622, 2014.

21

http://encrypto.de/code/ABY

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadrati
 span programs and

su

in
t NIZKs without PCPs. In Advan
es in Cryptology � EUROCRYPT'13, volume 7881 of LNCS,

pages 626�645. Springer, 2013.

GHV10. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphi
 en
ryption and rerandomizable

Yao
ir
uits. In Advan
es in Cryptology � CRYPTO'10, volume 6223 of LNCS, pages 155�172. Springer,

2010.

GMW87. Oded Goldrei
h, Silvio Mi
ali, and Avi Wigderson. How to play any mental game or a
ompleteness

theorem for proto
ols with honest majority. In ACM Symposium on Theory of Computing (STOC'87),

pages 218�229. ACM, 1987.

GP81. Zvi Galil and Wolfgang J. Paul. An e�
ient general purpose parallel
omputer. In ACM Symposium on

Theory of Computing (STOC'81). ACM, 1981.

GVW13. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoete
k Wee. Attribute-based en
ryption for
ir
uits. In

ACM Symposium on Theory of Computing (STOC'13), pages 545�554. ACM, 2013.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers e�
iently. In

Advan
es in Cryptology � CRYPTO'03, volume 2729 of LNCS, pages 145�161. Springer, 2003.

IP07. Yuval Ishai and Anat Paskin. Evaluating bran
hing programs on en
rypted data. In Theory of Cryptog-

raphy Conferen
e (TCC'07), volume 4392 of LNCS, pages 575�594. Springer, 2007.

K®31. Dénes K®nig. Gráfok és mátrixok. In Matematikai és Fizikai Lapok, volume 38, pages 116�119, 1931.

KM11. Jonathan Katz and Lior Malka. Constant-round private fun
tion evaluation with linear
omplexity. In

Advan
es in Cryptology � ASIACRYPT'11, volume 7073 of LNCS, pages 556�571. Springer, 2011.

KS08a. Vladimir Kolesnikov and Thomas S
hneider. Improved garbled
ir
uit: Free XOR gates and appli
ations.

In International Colloquium on Automata, Languages and Programming (ICALP'08), volume 5126 of

LNCS, pages 486�498. Springer, 2008.

KS08b. Vladimir Kolesnikov and Thomas S
hneider. A pra
ti
al universal
ir
uit
onstru
tion and se
ure evalu-

ation of private fun
tions. In Finan
ial Cryptography and Data Se
urity (FC'08), volume 5143 of LNCS,

pages 83�97. Springer, 2008. Code: http://en
rypto.de/
ode/FairplayPF.

KS16. Ágnes Kiss and Thomas S
hneider. Valiant's universal
ir
uit is pra
ti
al. In Advan
es in Cryptology �

EUROCRYPT'16, LNCS. Springer, 2016.

LMS16. Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant's universal
ir
uit: Improve-

ments, implementation, and appli
ations. Cryptology ePrint Ar
hive, Report 2016/017, 2016.

http://eprint.ia
r.org/2016/017.

LP09a. Yehuda Lindell and Benny Pinkas. A proof of se
urity of Yao's proto
ol for two-party
omputation.

J. Cryptology, 22(2):161�188, 2009.

LP09b. L. Lovász and M.D. Plummer. Mat
hing Theory. AMS Chelsea Publishing Series. Ameri
an Mathemati
al

So
., 2009.

Mey83. Friedhelm Meyer auf der Heide. E�
ien
y of universal parallel
omputers. In Theoreti
al Computer

S
ien
e, volume 145 of LNCS, pages 221�241. Springer, 1983.

MNPS04. Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - se
ure two-party
omputation

system. In USENIX Se
urity Symposium 2004, pages 287�302. USENIX, 2004.

MS13. Payman Mohassel and Seyed Saeed Sadeghian. How to hide
ir
uits in MPC an e�
ient framework for

private fun
tion evaluation. In Advan
es in Cryptology � EUROCRYPT'13, volume 7881 of LNCS, pages

557�574. Springer, 2013.

MSS14. PaymanMohassel, Seyed Saeed Sadeghian, and Nigel P. Smart. A
tively se
ure private fun
tion evaluation.

In Advan
es in Cryptology � ASIACRYPT'14, volume 8874 of LNCS, pages 486�505. Springer, 2014.

NPS99. Moni Naor, Benny Pinkas, and Reuban Sumner. Priva
y preserving au
tions and me
hanism design. In

ACM Ele
troni
 Commer
e (EC'99, pages 129�139, 1999.

NSMS14. Salman Niksefat, Babak Sadeghiyan, Payman Mohassel, and Seyed Saeed Sadeghian. ZIDS: A priva
y-

preserving intrusion dete
tion system using se
ure two-party
omputation proto
ols. Comput. J.,

57(4):494�509, 2014.

OI05. Rafail Ostrovsky and William E. Skeith III. Private sear
hing on streaming data. In Advan
es in Cryp-

tology � CRYPTO'05, volume 3621 of LNCS, pages 223�240. Springer, 2005.

Pin02. Benny Pinkas. Cryptographi
 te
hniques for priva
y-preserving data mining. SIGKDD Explorations,

4(2):12�19, 2002.

PKV

+
14. Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Seung Geol Choi, Wesley

George, Angelos D. Keromytis, and Steve Bellovin. Blind Seer: A s
alable private DBMS. In IEEE

Symposium on Se
urity and Priva
y (S&P'14), pages 359�374. IEEE, 2014.

22

http://encrypto.de/code/FairplayPF
http://eprint.iacr.org/2016/017

PSS09. Annika Paus, Ahmad-Reza Sadeghi, and Thomas S
hneider. Pra
ti
al se
ure evaluation of semi-private

fun
tions. In Applied Cryptography and Network Se
urity (ACNS'09), volume 5536 of LNCS, pages 89�106.

Springer, 2009.

S
h08. Thomas S
hneider. Pra
ti
al se
ure fun
tion evaluation. Master's thesis, University Erlangen-Nürnberg,

Germany, February 27, 2008.

SS08. Ahmad-Reza Sadeghi and Thomas S
hneider. Generalized universal
ir
uits for se
ure evaluation of private

fun
tions with appli
ation to data
lassi�
ation. In Information Se
urity and Cryptology (ICISC'08),

volume 5461 of LNCS, pages 336�353. Springer, 2008.

SYY99. Tomas Sander, Adam L. Young, and Moti Yung. Non-intera
tive
rypto
omputing for NC

1
. In Foundations

of Computer S
ien
e (FOCS'99), pages 554�567. IEEE, 1999.

TS15. Stefan Tilli
h and Nigel Smart, 2015. http://www.
s.bris.a
.uk/Resear
h/CryptographySe
urity/MPC/.

Val76. Leslie G. Valiant. Universal
ir
uits (preliminary report). In ACM Symposium on Theory of Comput-

ing (STOC'76), pages 196�203. ACM, 1976.

Weg87. Ingo Wegener. The
omplexity of Boolean fun
tions. Wiley-Teubner, 1987.

Yao82. Andrew Chi-Chih Yao. Proto
ols for se
ure
omputations (extended abstra
t). In Foundations of Com-

puter S
ien
e (FOCS'82), pages 160�164. IEEE, 1982.

Yao86. Andrew Chi-Chih Yao. How to generate and ex
hange se
rets (extended abstra
t). In Foundations of

Computer S
ien
e (FOCS'86), pages 162�167. IEEE, 1986.

A Glossary

UC Universal
ir
uit, a
ir
uit that
an be programmed to evaluate

any
ir
uit up to a given size

�1

SFE Se
ure fun
tion evaluation �1

PFE Private fun
tion evaluation �1

OT Oblivious Transfer �1.1

G = (V,E) G graph with node set V = {1, . . . , n} and set of edges E ⊆ V ×V �2.1

n Size of graph G, the number of nodes in graph G �2.1

Fanin A graph has fanin ℓ if ea
h of its nodes has at most ℓ ingoing

edges

�2.1

Fanout A graph has fanout ℓ if ea
h of its nodes has at most ℓ outgoing

edges

�2.1

Γℓ(n) The set of all graphs with fanin and fanout ℓ and n nodes �2.1

Un Edge-universal graph for Γ1(n) �2.1

pi Distinguished nodes in Un,
alled poles, with fanin and fanout 1 �2.1

Superpole A pole that is obtained by merging two poles of the edge-universal

graph, with uni�ed in
oming and outgoing edge set

�2.1

Supernode A node that is obtained by merging two nodes as one in a graph,

with uni�ed in
oming and outgoing edge set

�2.1

G1, G2 Given G = (V,E) ∈ Γ2(n), G1 = (V,E1) and G2 = (V,E2) are
two Γ1(n) graphs with edge sets E1 and E2, where E = E1 ∪ E2

�2.1

Un,1, Un,2 Un,1 = (V1, E1) and Un,2 = (V2, E2) are two edge-universal graphs

for Γ1(n), that build up and edge-universal graph U
(2)
n = (V,E)

for Γ2(n) by merging their poles, i.e. {p0, p1, . . . , pn} ⊆ {V1∩V2},
E1 ∩ E2 = ∅ and V = V1 ∪ V2 and E = E1 ∪ E2

�2.1

u Number of inputs in simulated
ir
uit C �2.1

v Number of outputs in simulated
ir
uit C �2.1

k Number of gates in simulated
ir
uit C �2.1

k∗ Number of gates in fanout-2
ir
uit equivalent to simulated
ir-

uit C, k ≤ k∗ ≤ 2k + v

�2.1

GC
Graph of
ir
uit C �2.1

23

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

Universal gate U A gate that
omputes any fun
tion with two inputs and one out-

put, using four
ontrol bits c0, c1, c2, c3 as in Equation 1

�2.1

X gate A two-output universal swit
h, that returns its two input values

either in the same or in reversed order depending on
ontrol bit c

�2.1

Y gate A one-output universal swit
h, that returns one of the two input

values depending on
ontrol bit c

�4.1

Su
v Sele
tion blo
k from [KS08b℄, di�erent
onstru
tions are given

depending on if u ≥ v, v ≥ u or v = 2u
�2.2

TP
u≥v
v Trun
ated permutation blo
k from [KS08b℄ �2.2

UBk Universal blo
k from [KS08b℄ �2.2

size of graph Number of nodes �3

depth of graph Number of nodes in the longest path �3

size of
ir
uit Number of gates in total �3

depth of
ir
uit Maximum number of gates between any input and output �3

ANDsize Number of AND gates �3

ANDdepth Maximum number of AND gates between any input and output �3

Exa
t(n) Number of nodes other than poles in Un edge-universal graph �3.1

size(X) Size of the universal swit
h, in our
ase the ANDsize, where

ANDsize(X) = ANDsize(Y) = 1
�3.2

size(U) Size of the universal gate, in our
ase the ANDsize, where

ANDsize(U) = 3 for the GMW proto
ol [GMW87℄, and

ANDsize(U) = 1 for Yao's proto
ol [Yao86℄

�3.2

depth(X) Depth of the universal swit
h, in our
ase the ANDdepth, where

ANDdepth(X) = ANDdepth(Y) = 1
�3.2

depth(U) Depth of the universal gate, in our
ase the ANDdepth, where

ANDdepth(U) = 2 for the GMW proto
ol [GMW87℄, and

ANDdepth(U) = 1 for Yao's proto
ol [Yao86℄

�3.2

UC
Valiant

u,v,k∗ Valiant's universal
ir
uit for
ir
uits with u inputs, v outputs

and k∗ gates

�3.2

UC
many I

k∗,c,k∗ Our many input hybrid
onstru
tion with Valiant's UC and input

sele
tion blo
k from [KS08b℄

�3.2

UC
max I/O

2k∗,k∗,k∗ Our maximal I/O hybrid
onstru
tion with Valiant's UC, input

sele
tion blo
k and output permutation blo
k from [KS08b℄

�3.2

SHDL Se
ure Hardware Des
ription Language: the
ir
uit des
ription

language of the Fairplay
ompiler [MNPS04℄

B K®nig-Hall Theorem Example

In Figure 7, we give an example partitioning using the K®nig-Hall theorem [K®31,LP09b℄. This algorithm is

used for the edge-embedding of any graph into Valiant's edge-universal graph when
reating a supergraph

(
f. Algorithm 1).

C Size of the Universal Cir
uit Constru
tion in [KS08b℄

The universal
ir
uit
onstru
tion in [KS08b℄ is built up of one-output universal swit
hes, so-
alled Y gates

and of two-output universal swit
hes, X gates. In [KS08b℄, the size of the
onstru
tion was
al
ulated

assuming size(X) = 2, but due to the results of [KS08a℄, size(X) = 1. The depth of the building blo
ks

remain as
al
ulated in [KS08b℄. Sin
e the
onstru
tion uses large blo
ks built up of X gates, this result

has a signi�
ant e�e
t when
ounting the size of the
onstru
tion. Throughout the
al
ulation, we use the

notations introdu
ed in [KS08b℄, and for the detailed des
ription of the building blo
ks, the reader is referred

24

1

6 12

11

2

3

7

810

4

9

(a) Example G = (V,E).

1

6 12

11

2

3

7

810

4

9

(b) Result G1 = (V,E1).

1

6 12

11

2

3

7

810

4

9

(
) Result G2 = (V,E2).

4th 3rd 8th7th2nd 1st 2nd 9th 6th 5th 10th 11th

PSfrag repla
ements

m′
6 m′

12 m′
11m′

3m′
7 m′

8 m′
10 m′

9

m1 m3 m4 m2 m6 m7 m8

(d) Bipartite G = (V ,E) with random order of
oloring.

Fig. 7: An example partitioning using K®nig-Hall theorem with randomly
hosen edges.

to [KS08b℄. The size of the so-
alled mixing blo
k remains the same as in [KS08b℄, sin
e it is built only from

Y gates, i.e., size(Mk) = k · size(Y) = k. A permutation blo
k Pu
u is built from X gates and is thus half the

size as was proposed in [KS08b℄, size(Pu
u) = u logu− u+ 1. Su

1 sele
tion blo
k is implemented as (u− 1) Y
blo
ks and thus, its size be
omes u−1. The rest of the building blo
ks of the
onstru
tion rely on these small

building blo
ks and thus be
ome smaller than the original
al
ulation by around a fa
tor of two. TP
u≥v
v

denotes the trun
ated permutation blo
k that permutes a subset of v ≤ u of the inputs to the v outputs.

EP
u
v≥u denotes the expanded permutation blo
k that permutes the u inputs to a subset of u of the v ≥ u

outputs.

size(TPu≥v
v) = v · size(S

u/v
1) +

log v−1
∑

i=0

2i
(u

2i+1
+

v

2i+1
− 1

)

· size(X) = 0.5(u+ v) log v − 2v + u+ 1. (23)

size(EPu
v≥u) =

log u−1
∑

i=0

2i
(u

2i+1
+

v

2i+1
− 1

)

= 0.5(u+ v) log u− u+ 1. (24)

size(Su≥v
v) = size(TPu≥v

v) + (v − 1) + size(P v
v) = 0.5(u+ 3v) log v − 2v + u+ 1. (25)

size(Su
v≥u) = size(EPu

v≥u) + (v − 1) + size(P v
v) = 0.5(u+ v) log u+ v log v − u+ 1. (26)

size(Su
2u) = size(Pu

u) + (2u− 1) + size(P 2u
2u) = 3u logu+ u+ 1. (27)

size(UBk) = 2size(UBk/2) + size(S
k/2
k) + size(Mk)

= k · size(U) +

log k−1
∑

i=0

2i(size(S
k/2i+1

k/2i) + size(Mk/2i))

25

in1, in2, . . . , inu

Su
2k≥u

O(k log k)

UBk

O(k log2 k)

TP k≥v
v

O(k log v)

out1, out2, . . . , outv

O
(k

lo
g
k
)

O
(k
)

O
(l
o
g
k
)

(a) [KS08b℄ UC

in1, in2, . . . , inu

Su
2k≥u

O(k log k)

UCValiant

k∗

O(k log k)

TP k≥v
v

O(k log v)

out1, out2, . . . , outv

O
(k
)

O
(k
)

O
(l
o
g
k
)

(b) Hybrid, maximal I/O

in1, in2, . . . , inu

Su
2k≥u

O(k log k)

UCValiant

v+k∗

O(k log k)

out1, out2, . . . , outv
O
(k
)

O
(k
)

(
) Hybrid, many inputs

in1, in2, . . . , inu

UCValiant

u+v+k∗

O(k log k)

out1, out2, . . . , outv

O
(k
)

(d) Valiant UC

Fig. 8: Stru
ture of the di�erent UC
onstru
tions with their respe
tive asymptoti
 sizes (horizontal) and

depths (verti
al).

= k +

log k−1
∑

i=0

2i
(

3k

2i+1
log

(

k

2i+1

)

+
k

2i+1
+ 1 +

k

2i

)

= 0.75k log2 k + 0.75k log k + 2k − 1. (28)

size(UBk)opt = size(UBk)−∆size(UBk)

= 0.75k log2 k + 0.75k log k + 2k − 1− 0.5(k log k − 2k + 2)

= 0.75k log2 k + 0.25k log k + 3k − 2. (29)

We observe that ea
h output of a gate that is simulated in the UC
an o

ur at most on
e as output of

the
ir
uit. Hen
e, one
an use a more e�
ient trun
ated permutation blo
k instead of a sele
tion blo
k for

the outputs (
f. Figure 8a). Therefore, we get

size(UC
[KS08b℄

u,v ,k) = size(UBk)opt + size(Su
2k≥u) + size(TPk≥v

v)

=
(

0.75k log2 k + 0.25k log k + 3k − 2
)

+ (0.5(u+ 2k) log u+ 2k log k + 2k − u+ 1)

+ (0.5(k + v) log v − 2v + k + 1)

= 0.75k log2 k + 2.25k log k + (0.5u+ k) log u+ (0.5k + 0.5v) log v + 6k − u− 2v. (30)

depth(UC
[KS08b℄

u,v ,k) = depth(UBk)opt + depth(Su
2k≥u) + depth(TPk≥v

v)

= (k log2 k + 4 log2 k − 12) + (2 log2 u+ 2 log2 k + 2k − 1) + (log2 k + log2 v − 1)

= k log2 k + 2k + 7 log2 k + 2 log2 u+ log2 v − 14. (31)

D Comparison of Universal Cir
uit Constru
tions

Figure 9 shows a
omparison of the di�erent UC
onstru
tions for the
ase with the maximum number of

opy gates, i.e., k∗ = 2k + v in the three s
enarios dis
ussed in �3.2. However, this is the absolute maximal

26

0

5 · 106

1 · 107

1.5 · 107

2 · 107

0 10000 20000 30000 40000 50000

2.23 · 107

1.07 · 107

7.12 · 106

1.27 · 107
1.23 · 107
1.20 · 107

2.11 · 107

S

i

z

e

o

f

t

h

e

u

n

i

v

e

r

s

a

l

i

r

u

i

t

U
u
,v

,k
∗

Number of fanin-fanout-2 gates k∗ = 2k + v

Valiant's UC, maximal I/O

Valiant's UC, many inputs

Valiant's UC,
onstant I/O

[KS08b℄ UC, maximal I/O

[KS08b℄ UC, many inputs

[KS08b℄ UC,
onstant I/O

Hybrid, maximal I/O

Hybrid, many inputs

Fig. 9: Comparison between the sizes of the UC
onstru
tions for k∗ = 2k + v ∈ {0, . . . , 50 000} gates,

onsidering the three s
enarios:
onstant I/O with
onstant number of inputs and outputs, many inputs

with ∼ k inputs and
onstant outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs.

value and as shown in Table 1, the fa
tor is in many pra
ti
al
ir
uits well below 2. In this
ase we
an see

that neither of our hybrid methods are bene�
ial to use: for the maximal I/O
ase, the best
hoi
e is the

UC
onstru
tion from [KS08b℄ for
ir
uits with reasonable sizes, while for the many inputs and
onstant I/O

ases, Valiant's
onstru
tion performs best. The reason for this is that the size of the input sele
tion blo
k

in [KS08b℄ depends on the number of gates as well and is
onstru
ted for 2k∗, resulting in a larger overhead

when k∗ = 2k + v. However, in the maximal I/O
ase we
an see that Valiant's UC, though asymptoti
ally

smaller, performs worse than the
onstru
tion from [KS08b℄. This is due to the fa
t that when v ∼ k the

k∗ ∼ 3k and we have u ∼ 2k, so we
onstru
t an edge-universal graph with ∼ 5k poles. Therefore, we

on
lude that when designing appli
ations using universal
ir
uits, one needs to
al
ulate whi
h
onstru
tion

is the most bene�
ial for the given s
enario. As a guideline, we depi
t the stru
ture of the di�erent UC

onstru
tions in Figure 8 along with their asymptoti
al sizes and depths.

size(UCmany I

u,v,k∗) ≈ size(UC opt

0 ,v ,k∗) + size(Su
2k∗+2v≥u)

≈ [(5(v + k∗) log2(v + k∗)− 17k∗ − 19v + 7.5 log2(v + k∗) + 24)

+ ((0.5u+ k∗ + v) log2 u+ (2k∗ + 2v) log2(2k
∗ + 2v)− u+ 1)] · size(X) + k∗ · size(U). (32)

depth(UCmany I

u,v,k∗) ≈ depth(UC opt

0 ,v ,k∗) + depth(Su
2k∗+2v≥u)

≈ [(u + 2k∗ + 3) + (2 log2 u+ 2 log2(2k
∗ + 2v) + (2k∗ + 2v)− 2)] · depth(X)

+ k∗ · depth(U). (33)

27

Cir
uit u k v k∗ − k (

k∗

k
) [KS08b℄ Maximal I/O Many Inputs Valiant

AES-non-exp 256 31 924 128 15 312 (1.48) 6.994 · 106 3.899 · 106 3.698 · 106 3.022 · 106

AES-exp 1 536 25 765 128 11 794 (1.46) 5.515 · 106 3.052 · 106 2.893 · 106 2.422 · 106

DES-non-exp 128 19 464 64 10 871 (1.56) 3.899 · 106 2.380 · 106 2.264 · 106 1.847 · 106

DES-exp 832 19 526 64 10 361 (1.53) 3.966 · 106 2.355 · 106 2.241 · 106 1.860 · 106

md5 512 43 234 128 31 083 (1.72) 9.987 · 106 6.431 · 106 6.108 · 106 5.003 · 106

sha-1 512 61 466 160 45 977 (1.75) 1.501 · 107 9.681 · 106 9.196 · 106 7.534 · 106

sha-256 512 132 854 256 87 814 (1.66) 3.647 · 107 2.133 · 107 2.026 · 107 1.658 · 107

add_32 64 188 33 123 (1.65) 13 929 12 528 13 005 11864

add_64 128 380 65 237 (1.62) 34 284 29 006 29 930 27452

omp_32 64 150 1 60 (1.4) 10 056 7 547 7 384 7030

mult_32x32 64 6 995 64 5 678 (1.81) 1.162 · 106 896 949 851 440 693356

Bran
hing_18 72 121 4 3 (1.02) 7 749 4 347 4 253.23 4576

CreditChe
king 25 50 1 6 (1.12) 2 337 1 438 1 414 1376

MobileCode 80 64 16 0 (1) 3 432 2 380 2 713 3260

Table 4: Comparison between the
ir
uit sizes for a sample of real-life
ir
uits [TS15℄,
onsidering all the UC

onstru
tions in
luding our hybrid methods.

size(UC
max I/O

u,v,k∗) ≈ size(UC opt

0 ,0 ,k∗) + size(Su
2k∗≥u) + size(TPk∗≥v

v)

≈ [(5k∗ log2 k
∗ − 17k∗ + 7.5 log2(k

∗) + 24)

+ ((0.5u+ k∗) log2 u+ (2k∗) log2(2k
∗)− u+ 1)

+ (0.5(k∗ + v) log2 v − 2v + k∗ + 1)] · size(X) + k∗ · size(U). (34)

depth(UCmany I

u,v,k∗) ≈ depth(UC opt

0 ,0 ,k∗) + depth(Su
2k∗≥u) + depth(TPk∗≥v

v)

≈ [(2k∗ + 3) + (2 log2 u+ 2 log2(2k
∗) + (2k∗)− 2)

+ (log2 k
∗ + log2 v − 1)] · depth(X) + k∗ · depth(U). (35)

E End Cases for Edge-Embedding Γ1 Graphs into Un

The embedding of (i, j) is ready in one of the following three s
enarios:

1. Leaf: there are no subgraphs in G anymore,

2. Superpole: ⌈ j
2⌉ − 1 < ⌈ i

2⌉, and therefore (⌈ i
2⌉, ⌈

j
2⌉ − 1)
annot be found in any of the supergraphs

anymore, in whi
h
ase i is odd and j = i + 1, and the path between pi and pi+1 in the skeleton as in

Figures 1a�1b goes dire
tly through one swit
hing node without entering a subgraph, or

3. Subpole: ⌈ j
2⌉− 1 = ⌈ i

2⌉ and therefore is represented by a loop in a subgraph, in whi
h
ase i is even and

j = i+ 1, and the path between pi and pi+1 as in Figures 1a�1b goes dire
tly through one subpole and

two to four swit
hing nodes. In this
ase, whi
h subpole is used is de�ned by the supergraph G.

Figure 10 shows the one-to-one
orresponden
e between the subgraphs in the supergraph SuperGraph(n)
and in the edge-universal graph Un and examples for all the three end
ases.

28

Γ1(n)

Γ1⌈
n−2

2
⌉

Γ1⌈
⌈n−2

2
⌉−2

2
⌉

.

.

.

Γ1⌈
n

2log2 n ⌉

.

.

.

Γ1⌊
⌈n−2

2
⌉−2

2
⌋

.

.

.

.

.

.

Γ1⌊
n−2

2
⌋

Γ1⌈
⌊n−2

2
⌋−2

2
⌉

.

.

.

.

.

.

Γ1⌊
⌊n−2

2
⌋−2

2
⌋

.

.

.

.

.

.

Γ1⌊
n

2log2 n ⌋· · ·

Fig. 10: End
ases for the edge-embedding of Γ1 graphs into Valiant's edge-universal graph Un

29

	Valiant's Universal Circuit is Practical

