
Valiant's Universal Ciruit is Pratial

(Full Version)

*

Ágnes Kiss, Thomas Shneider

TU Darmstadt, Darmstadt, Germany

{agnes.kiss, thomas.shneider}�risp-da.de

Abstrat. Universal iruits (UCs) an be programmed to evaluate any iruit of a given size k. They

provide elegant solutions in various appliation senarios, e.g. for private funtion evaluation (PFE)

and for improving the �exibility of attribute-based enryption (ABE) shemes. The optimal size of a

universal iruit is proven to be Ω(k log k). Valiant (STOC'76) proposed a size-optimized UC onstru-

tion, whih has not been put in pratie ever sine. The only implementation of universal iruits was

provided by Kolesnikov and Shneider (FC'08), with size O(k log2 k).
In this paper, we re�ne the size of Valiant's UC and further improve the onstrution by (at least) 2k.
We show that due to reent optimizations and our improvements, it is the best solution to apply in the

ase for iruits with a onstant number of inputs and outputs. When the number of inputs or outputs

is linear in the number of gates, we propose a more e�ient hybrid solution based on the two existing

onstrutions. We validate the pratiality of Valiant's UC, by giving an example implementation for

PFE using these size-optimized UCs.

Keywords: Universal iruit, size-optimization, private funtion evaluation

1 Introdution

Any omputable funtion f(x) an be represented as a Boolean iruit with input bits x = (x1, . . . , xu).
Universal iruits (UCs) are programmable iruits, whih means that beyond the true u inputs, they reeive

p = (p1, . . . , pm) program bits as further inputs. By means of these program bits, the universal iruit is

programmed to evaluate the funtion, suh that UC (x, p) = f(x). The advantage of universal iruits in

general is that one an apply the same UC for omputing di�erent funtions of the same size. An analogy

between universal iruits and a universal Turing mahine allows to turn any funtion into data in the form

of a program desription. Thus, the size-depth problem of UCs an be related to the time-spae problem for

Turing mahines [Val76℄.

E�ient onstrutions onsidering both the size and the depth of the UC were proposed. The �rst ap-

proah was the optimization of the size by Valiant [Val76℄, resulting in a onstrution with asymptotially

optimal size O(k log k) and depth O(k), where k denotes the size of the simulated iruits. The seond opti-

mization was proposed with respet to the UC depth in [CH85℄, where a onstrution with linear depth O(d)

in the simulated iruit depth d and size O(k3d
log k) was designed. In this paper, due to the appliations that

we revisit in �1.2, e.g., diagnosti programs, blinded poliies and database queries, we onentrate on the

existing size-optimized UCs and note, that the asymptotially optimal size is Ω(k log k) [Val76,Weg87℄.

The most prominent appliation of universal iruits is the evaluation of private funtions based on seure

funtion evaluation (SFE) or seure two-party omputation. SFE enables two parties P1 and P2 to evaluate a

publily known funtion f(x, y) on their private inputs x and y, ensuring that none of the partiipants learns

anything about the other partiipant's input. SFE ensures that both P1 and P2 learn the orret result of the

evaluation. Many seure omputation protools use Boolean iruits for representing the desired funtionality,

suh as Yao's garbled iruit protool [Yao82, Yao86, LP09a℄ and the GMW protool [GMW87℄. In some

appliations the funtion itself should be kept seret. This setting is alled private funtion evaluation (PFE),

*

Please ite the onferene version of this work published at Eurorypt'16 [KS16℄.

mailto:agnes.kiss@crisp-da.de
mailto:thomas.schneider.crisp-da.de

where we assume that only one of the parties P1 knows the funtion f(x), whereas the other party P2 provides

the input to the private funtion. P2 learns no information about f besides the size of the iruit de�ning

the funtion and the number of inputs and outputs.

PFE an be redued to SFE [AF90,SYY99,Pin02,KS08b℄ by seurely evaluating a UC that is programmed

by P1 to evaluate the funtion f on P2's input x. Thus, P1 provides the program bits for the UC and P2

provides his private input x into an SFE protool that omputes a UC. The omplexity of PFE in this

ase is determined mainly by the omplexity of the UC onstrution. The seurity follows from that of the

SFE protool that is used to evaluate the UC. If the SFE protool is seure against semi-honest, overt or

maliious adversaries, then the PFE protool is seure in the same adversarial setting.

1.1 Related Work on Universal Ciruits and Private Funtion Evaluation

Universal Ciruits. Valiant presented an asymptotially optimal universal iruit onstrution with size

≈ 4.75(u + v + k∗) log2(u + v + k∗) [Val76℄, relying on edge-universal graphs. u, k and v denote the re-

spetive number of inputs, gates and outputs in the simulated iruit, and k∗ is the number of gates in

the equivalent fanout-2 iruit, with k ≤ k∗ ≤ 2k + v. Valiant's size-optimized UC onstrution was re-

apitulated in [Weg87, �4.8℄. However, Valiant's onstrution has been onsidered to be mostly a proof of

existene of a universal iruit, whereas details needed for the pratial realization, e.g., how to derive

the program for the UC are left open. Kolesnikov and Shneider proposed a UC onstrution with size

≈ 0.75k log22 k + 2.25k log2 k + k log2 u + (0.5k + 0.5v) log2 v [KS08b, Sh08℄. They present the �rst imple-

mentation of PFE using UCs by extending the Fairplay seure omputation framework [MNPS04℄. Some

building bloks of this onstrution are of interest, but due to its asymptotially non-optimal size, we show

in �3.2 that Valiant's UC onstrution results in smaller UCs for iruits in the most general ase. The UC

onstrutions from [Val76,KS08b℄ were generalized for iruits onsisting of gates with more than two inputs

in [SS08℄. In this paper, we show the pratiality of Valiant's UC onstrution.

In onurrent and independent work [LMS16℄, Lipmaa et al. also bring the same UC onstrution to

pratie. They detail a k-way reursive onstrution for UCs, instantiate it for k ∈ {2, 4} as in [Val76℄, and

desrease its total number of gates ompared to that of Valiant's onstrution. However, in ontrast to our

optimizations, their number of AND gates is exatly the same and therefore their improvement does not

a�et PFE with UC, when XOR gates are evaluated for free [KS08a℄. Currently their implementation for

generating and programming UCs supports the 2-way reursive onstrution, the same onstrution that we

study and realize in pratie in this work.

Private Funtion Evaluation. In [KM11℄, Katz and Malka presented an approah for PFE that does not rely

on UCs. They use (singly) homomorphi publi-key enryption as well as a symmetri-key enryption sheme

and ahieve onstant-round PFE with linear ommuniation omplexity. However, the number of publi-key

operations is linear in the iruit size and due to the gap between the e�ieny of publi-key and symmetri-

key operations, this results in a less e�ient protool for iruits with reasonable size. Their protool is seure

against semi-honest adversaries and uses Yao's garbled iruit tehnique [Yao86℄. Mohassel and Sadeghian

onsider PFE with semi-honest adversaries in [MS13℄. Their generi PFE framework an be instantiated

with di�erent seure omputation protools. The �rst version uses homomorphi enryption with whih they

ahieve linear omplexity in the iruit size and the seond alternative relies solely on oblivious transfers (OT),

that results in a method with O(k log k) symmetri-key operations, where k denotes the iruit size. The

OT-based onstrution is more desirable in pratie, sine using OT extension, the number of expensive

publi-key operations an signi�antly be redued, s.t. it is independent of the number of OTs [IKNP03,

ALSZ13℄. The asymptotial omplexity of the OT-based onstrution of [MS13℄ and Valiant's UCs for PFE

is the same, and therefore we ompare these solutions for PFE in more detail in �4.2. Mohassel et al. extend

the framework from [MS13℄ to maliious adversaries in [MSS14℄ and show that an atively seure PFE

framework with linear omplexity O(k) is feasible, using singly homomorphi enryption.

1.2 Appliations of Universal Ciruits

Universal iruits have several appliations, whih we summarize in this setion.

2

Private Funtion Evaluation. As mentioned before, UCs an be used to seurely evaluate a private funtion

using a generi seure omputation protool. [CCKM00℄ shows an appliation for seure omputation, where

evaluating UCs or other PFE protools would ensure privay: when autonomous mobile agents migrate

between several distrusting hosts, the privay of the inputs of the hosts is ahieved using SFE, while privay

of the mobile agent's ode an be guaranteed with PFE. Privay-preserving redit heking using garbled

iruits is desribed in [FAZ05℄. Their original sheme annot represent any poliy, though by evaluating

a UC, their sheme an be extended to more ompliated redit heking poliies. [OI05℄ show a method

to �lter remote streaming data obliviously, using seret keywords and their ombinations. Their sheme an

additionally preserve data privay by using PFE to searh the mathing data with a private searh funtion.

Privay-preserving evaluation of diagnosti programs was onsidered in [BPSW07℄, where the owner of the

program does not want to reveal the diagnosti method and the user does not want to reveal his data. Example

appliations for suh programs inlude medial systems [BFK

+
09℄ and remote software fault diagnosis, where

in both ases the funtion and the user's input are desired to be handled privately. In the protool presented

in [BPSW07℄, the diagnosti programs are represented as binary deision trees or branhing programs whih

an easily be onverted into a Boolean iruit representation and evaluated using PFE based on universal

iruits. Besides, PFE an be applied to reate blinded poliy evaluation protools [FAL06,FLA06℄. [FAL06℄

utilizes UCs for so-alled oblivious iruit poliies and [DDKZ13℄ for hiding the iruit topology in order to

reate one-time programs. Further appliations of PFE given in [MS13℄ are evaluation of branhing programs

on enrypted data [IP07℄ and privay-preserving intrusion detetion [NSMS14℄. Sine PFE using UCs utilizes

general seure omputation protools, it is possible to outsoure the funtion and the data to two or multiple

servers (using XOR seret sharing) and then run private queries on these. This is not diretly possible with

other PFE protools, e.g., with the protool presented in [KM11℄ or the homomorphi enryption-based

protools from [MS13,MSS14℄.

Beyond Private Funtion Evaluation. Besides being used for PFE, universal iruits an be applied in vari-

ous other senarios. The e�ient veri�ability of omputation on enrypted data was studied in [FGP14℄. A

veri�able omputation sheme was proposed for arbitrary omputations and a UC is required to hide the

funtion. [GGPR13℄ make use of universal iruits for reduing the veri�er's preproessing step. In [GHV10℄,

a multi-hop homomorphi enryption sheme is proposed that also uses a universal iruit evaluator to

ahieve the privay of the funtion. When the ommon referene string is dependent on a funtion that the

veri�er is interested in outsouring, then the funtion desription an be provided as input to a UC of ap-

propriate size. In [PKV

+
14,FVK

+
15℄, universal iruits are used for hiding queries in database management

systems (DBMSs). The Blind Seer DBMS was improved in [PKV

+
14℄ by making use of a simpler UC for

evaluating queries, whih does not hide the iruit topology. The authors mention that in ase the topology

of the SQL formula and the iruit have to be kept private, a UC an be utilized. As desribed in [Att14℄,

the Attribute-Based Enryption (ABE) shemes for any polynomial-size iruits of [GGH

+
13℄ and [GVW13℄

an be turned into iphertext-poliy ABE by using universal iruits. The ABE sheme of [GGHZ14℄ also

uses UCs.

Implied Theoretial Results. We mention two theoretial results relying on UCs. Both the depth-optimized

UC onstrution from [CH85℄ and Valiant's size-optimized method were adapted in [BFGH10℄ to onstrut

universal quantum iruits. The design of universal parallel omputers were inspired by Valiant's universal

iruit onstrution as well [GP81,Mey83℄.

1.3 Outline and Our Contributions

In �2, we revisit the two existing size-optimized UC onstrutions of [Val76,KS08b℄. We put an emphasis on

the asymptotially size-optimal method proposed by Valiant in [Val76℄. This omplex onstrution makes

use of an internal graph representation and programs a so-alled edge-universal graph. However, the algo-

rithm for programming a universal iruit is not expliitly desribed and in the presene of the inluded

optimizations is not straightforwardly appliable. In �2.1, we reapitulate Valiant's reursive edge-universal

graph onstrution and desribe how the onstrution of UCs an be redued to this problem. In �2.2, we

3

brie�y summarize the main building bloks of the UC onstrution of [KS08b℄. To help understanding the

onstrution, we reapitulate our notations in Appendix A.

Optimized Size and Depth of Valiant's UC Constrution: In �3, we elaborate on the onrete size of Valiant's

UC onstrution. We re�ne upper and lower bounds for the size of the edge-universal graph and approximate

a losed formula with ≤ 2% deviation from the atual size in �3.1. We inlude two optimizations detailed in

�3.2, ahieving altogether a linear improvement of at least 4u + 4v + 2k. We give hybrid onstrutions for

ases with many inputs and outputs in the same setion. In �3.2, we ompare the re�ned onrete size and

the depth of Valiant's onstrution with that of [KS08b℄ and onlude the advantage of Valiant's method

(potentially using building bloks from [KS08b℄).

Valiant's Size-Optimized UC Constrution in Pratie: In �4, we detail the steps of our algorithm for a pra-

tial realization of Valiant's UC onstrution and provide an example appliation for PFE. We desribe the

internal representations and the algorithms in our UC ompiler in �4.1, along with detailed implementations

of universal gates and swithes. We ompare our resulting PFE with the OT-based protool from [MS13℄ in

�4.2. We show onrete example iruits and elaborate on the number of symmetri-key operations and the

performane of our UC ompiler.

2 Existing Universal Ciruit Construtions

In this setion, we summarize the two size-optimized universal iruit onstrutions: of [Val76℄ in �2.1 and

of [KS08b℄ in �2.2.

2.1 Valiant's Universal Ciruit Constrution

In this setion, we desribe Valiant's edge-universal graph onstrution for graphs for whih all nodes have

at most one inoming and at most one outgoing edge and detail how two suh graphs an be used for

onstruting universal iruits [Val76℄.

Edge-Universal Graphs. G = (V,E) is a direted graph with the set of nodes V = {1, . . . , n} and the set

of edges E ⊆ V ×V . A direted graph has fanin or fanout ℓ if eah of its nodes has at most ℓ edges direted

into or out of it, respetively. Γℓ(n) denotes the set of all ayli direted graphs with n nodes and fanin

and fanout ℓ. Further on, we require a labelling of the nodes in a topologial order, i.e., i > j implies that

there is no direted path from i to j. In a graph in Γℓ(n) , a topologial ordering an always be found with

omputational omplexity O(n+ ℓn).

An edge-embedding of graph G = (V,E) into G′ = (V ′, E′) is a mapping that maps V into V ′
one-

to-one, with possible additional nodes in V ′
, and E into direted paths in E′

, suh that they are pairwise

edge-disjoint, i.e., an edge an be used only in one path. A graph G′
is edge-universal for Γℓ(n) if it has

distinguished poles {p1, . . . , pn} ⊆ V ′
and every graph G ∈ Γℓ(n) with node set V = {1, . . . , n} an be

edge-embedded into G′
by a mapping ϕG

suh that ϕG : i 7→ pi and ϕG : (i, j) 7→ {path from pole pi to

pole pj} for eah i, j ∈ V .

Here, we reapitulate Valiant's onstrution for ayli edge-universal graph for Γ1(n), denoted by Un,

that has fewer than 2.5n log2 n nodes, fanin and fanout 2 and poles with fanin and fanout 1. Valiant presents

another edge-universal graph onstrution with a lower multipliative onstant 2.375n log2 n. We omit that

version of the algorithm for two reasons: �rstly, our aim is to show the pratiality of Valiant's approah and

seondly, inluding all the optimizations even in the simpler onstrution is a hallenging task in pratie. The

more e�ient algorithm uses four subgraphs instead of two at eah reursion and utilizes a skeleton with a

more omplex struture. For more details on this improved algorithm, the reader is referred to [Val76,LMS16℄.

We leave showing the pratiality of the improved method as future work.

4

n2

n3

n4

n5

n6
PSfrag replaements

p1

p2

p3

p4

pn−1

pn

q1

q2

qn−2
2

r1

r2

rn−2
2

B

A

(a) Un, n even

n2

n3

n4

n5

n6

PSfrag replaements

p1

p2

p3

p4

pn−2

pn−1

pn

q1

q2

qn−3
2

qn−1
2

r1

r2

rn−3
2

B

A

(b) Un, n odd

PSfrag replaements

p1

p2

p3

p4

B

() U4

PSfrag replaements

p1

p2

p3

p4

p5

B

B

(d) U5

PSfrag replaements

p1

p2

p3

p4

p5

p6

B

B

(e) U6

Fig. 1: Skeleton of Valiant's edge-universal graph and optimized ases.

5

Valiant's Edge-Universal Graph Constrution of Size 2.5n log2 n for Γ1(n) Graphs: The edge-universal graph
for Γ1(n), denoted by Un, is onstruted with poles {p1, . . . , pn} with fanin and fanout 1, whih are onneted
aording to the skeleton shown in Figures 1a�1b. The poles are emphasized as speial nodes with squares, and

the additional nodes are shown as irles. The reursive onstrution works as follows: the nodes denoted

by {q1, . . . , q⌈n−2
2

⌉} and {r1, . . . , r⌊n−2
2

⌋} are onsidered as the poles of two smaller edge-universal graphs

alled subgraphs Q⌈n−2
2

⌉ and R⌊n−2
2

⌋, respetively, that are otherwise not shown. Sine they are poles of the

two subgraphs with suh a skeleton but not of Un, they will have at most the allowed fanin and fanout 2:

they inherit one inoming and one outgoing edge from the outer skeleton, and at most one inoming and

one outgoing edge from the subgraph. Q⌈n−2
2

⌉ (and R⌊n−2
2

⌋) is then onstruted similarly: the skeleton is

ompleted and two smaller graphs with sizes ⌈
⌈n−2

2
⌉−2

2 ⌉ and ⌊
⌈n−2

2
⌉−2

2 ⌋ (and sizes ⌈
⌊n−2

2
⌋−2

2 ⌉ and ⌊
⌊n−2

2
⌋−2

2 ⌋)
are onstruted. For starting o� the reursion, U1 is a graph with a single pole while U2 and U3 are graphs

with two and three onneted poles, respetively. Valiant gives speial onstrutions for U4, U5 and U6 and

shows that it is possible to obtain the respetive edge-universal graphs with altogether 3, 7 and 9 additional

nodes, respetively, as shown in Figures 1�1e.

We reapitulate the proof from [Val76℄ that Un is edge-universal for Γ1(n), suh that any graph with

n nodes and fanin and fanout 1 an be edge-embedded into Un. Aording to the de�nition of edge-embedding,

it has to be shown that given any Γ1(n) graph G with set of edges E, for any (i, j) ∈ E and (k, l) ∈ E we

an �nd pairwise edge-disjoint paths from pi to pj and from pk to pl in Un. As before, the labelling of nodes

V = {1, . . . , n} in the Γ1(n) graph is aording to a topologial order of the nodes.

Firstly, eah two neighbouring poles of the edge-universal graph, p2s and p2s+1 for s ∈ {1, . . . , ⌈n
2 ⌉}, are

thought of as merged superpoles, with their fanin and fanout beoming 2. In a similar manner, any G ∈ Γ1(n)
graph an be regarded as a Γ2(⌈

n
2 ⌉) graph with supernodes, i.e. eah pair (2s, 2s+1) will be merged into one

node in a Γ2(⌈
n
2 ⌉) graph G′ = (V ′, E′). If there are edges between the nodes in G, they are simulated with

loops.

1

The set of edges of this graph G is partitioned to sets E1 and E2, s.t. G1 = (V,E1) and G2 = (V,E2)
are instanes of Γ1(⌈

n
2 ⌉) and Γ1(⌊

n
2 ⌋), respetively. This an be done e�iently, as shown later in this setion.

The edges in E1 are embedded as direted paths in Q, and the edges in E2 as direted paths in R. Both E1

and E2 have at most one edge direted into and at most one direted out of any supernode and therefore,

there is only one edge from E1 and one from E2 to be simulated going through any superpole in Un as well.

Thus, the edge oming into a superpole (p2s, p2s+1) in E1 is embedded as a path through qs−1, while the

edge going out of the pole in E1 is embedded as a path through qs in the appropriate subgraph. Similarly,

the edges in E2 are simulated as edges through rs−1 and rs. These paths an be hosen disjoint aording to

the indution hypothesis. Finally, the paths from qs−1 and rs−1 to superpole (p2s−1, p2s) as well as the paths
from (p2s−1, p2s) to qs and rs an be hosen edge-disjoint due to the skeleton shown in Figures 1a�1b. With

this, Valiant's graph onstrution is a valid edge-universal graph onstrution with asymptotially optimal

size O(n log n), and depth O(n) [Val76℄.

Valiant's Edge-Universal Graph Constrution for Γ2(n) Graphs: Given a direted ayli graph G ∈ Γ2(n),
the set of edges E an be separated into two distint sets E1 and E2, suh that graphs G1 = (V,E1) and
G2 = (V,E2) are instanes of Γ1(n), having fanin and fanout 1 for eah node [Val76℄. Given the set of nodes

V = {1, . . . , n}, one onstruts a bipartite graph G = (V ,E) with nodes V = {m1, . . . ,mn,m
′
1, . . . ,m

′
n} and

edges E suh that (mi,m
′
j) ∈ E if and only if (i, j) ∈ E. The edges of G and thus the orresponding edges

of G an be olored in a way that the result is a valid two-oloring. Having fanin and fanout at most 2,

suh oloring an be found diretly with the following method, used in the proof of K®nig-Hall theorem

in [K®31,LP09b℄:

1: while There are unolored edges in G do

2: Choose an unolored edge e = (mi,m
′
j) randomly and olor the path or yle that ontains it in an

alternating manner: the neighbouring edge(s) of an edge of the �rst olor will be olored with the seond

olor and vie versa.

1

We note that these G′
graphs are onstruted from the original Γ1(n) graph G in order to de�ne the orret

embedding. Therefore, they are not required to be ayli.

6

3: end while

This oloring an be performed in O(n) steps and it de�nes the edges in E1 and E2, s.t. E1 ontains the

edges olored with olor one and E2 the ones with olor two and G1 = (V,E1) and G2 = (V,E2) (f. example

in Figure 7 in Appendix B).

With this method, the problem of onstruting edge-universal graphs for Γ2(n) an be redued to

the Γ1(n) onstrution. After onstruting two edge-universal graphs for Γ1(n) (i.e. Un,1 and Un,2), their

poles are merged and an edge-universal graph for Γ2(n) is obtained. The merged poles now have fanin and

fanout 2, sine the poles of Un,1 and Un,2 previously had fanin and fanout 1. E1 an then be edge-embedded

using the edges of Un,1 and E2 using the edges of Un,2.

Universal Ciruits. We now desribe how to onstrut UCs by means of Valiant's edge-universal graph

onstrution for Γ2(n) graphs [Val76℄. Our goal is to obtain an ayli iruit built from speial gates that

simulate any ayli Boolean iruit with u inputs, v outputs and k gates. In the iruit, the inputs of the

gates are either onneted to an input variable, to the output of another gate or are assigned a �xed onstant.

Due to the nature of Valiant's edge-universal graph onstrution, we have two restritions on the original

iruit. Firstly, all the gates must have at most two inputs and seondly, the fanout of inputs and gates must

be at most 2, i.e., eah input of the iruit and eah output of any gate an only be the input of at most

two later gates. This is neessary in order to guarantee that the graph of the original iruit has fanin and

fanout 2. We note that the �rst restrition was present in ase of the onstrution in [KS08b℄ as well, but

the output of any input or any gate ould be used multiple times. However, it was proven in [Val76℄ that the

general ase, where the fanout of the iruit an be any integer m ≥ 2, an be transformed to the speial ase

when m ≤ 2 by introduing opy gates, where the resulting iruit will have k∗ gates with k ≤ k∗ ≤ 2k + v,

where k denotes the number of gates and v the number of outputs in the iruit. We detail how this an be

done in �4.1.

After this transformation, given a iruit C with u inputs, v outputs and k∗ gates with fanin and fanout 2,

the graph of C, denoted by GC
onsists of a node for eah gate, input and output variable and thus is in

Γ2(u + v + k∗). The wires of iruit C are represented by edges in GC
. A topologial ordering of the gates

is hosen, whih ensures that gate gi has no inputs that are outputs of a later gate gj, where j > i. The

inputs and the outputs an be ordered arbitrarily within themselves as long as the inputs are kept before the

topologially ordered gates and the outputs after them. Even though the output nodes ause an overhead

in Valiant's UC, they are required to fully hide the topology of the iruit in the orresponding universal

iruit. If, in the fanout-2 iruit, one an observe whih gates provide the output of the omputation, it

might reveal information about the struture of the iruit, e.g. how many times is the result of an output

gate used after being alulated. We ensure by adding nodes orresponding to the outputs that the last v

nodes in Uu+v+k∗
are the ones providing the outputs. We note that our understanding of universal iruits

here slightly di�ers from Valiant's, sine he onstruts Uu+k∗
[Val76℄.

Therefore, after obtaining GC
a Γ2 edge-universal graph Uu+v+k∗

is onstruted, into whih GC
is edge-

embedded. Valiant shows in [Val76℄ how to obtain the universal iruit orresponding to Uu+v+k∗
and how

to program it aording to the edge-embedding of GC
. Firstly, the �rst u poles beome inputs, the next

k∗ poles are so-alled universal gates, and the last v poles are outputs in the universal iruit. A universal

gate denoted by U(in1, in2; c0, c1, c2, c3), an ompute any funtion with two inputs in1 and in2 and four

ontrol bits c0, c1, c2 and c3 as in Equation 1.

out1 = U(in1, in2; c0, c1, c2, c3) = c0in1in2 ⊕ c1in1in2 ⊕ c2in1in2 ⊕ c3in1in2. (1)

The rest of the nodes of the edge-universal graph are translated into universal swithes or X gates,

denoted by (out1, out2) = X(in1, in2; c) that are de�ned by one ontrol bit c and return the two input values

either in the same or in reversed order as in Equation 2.

out1 = c in1 ⊕ c in2, out2 = c in1 ⊕ c in2. (2)

The programming of the universal iruit means speifying the ontrol bit of eah universal swith and the

four ontrol bits of eah universal gate. The universal gates are programmed aording to the simulated

7

gates in C and the universal swithes aording to the paths de�ned by the edge-embedding of the graph

of the iruit GC
in the edge-universal graph Uu+v+k∗

. Depending on if the path takes the same diretion

during the embedding (e.g. arrives from the left and ontinues on the left) or hanges its diretion at a given

node (e.g. arrives from the left and ontinues on the right), the ontrol bit of the universal swith an be

programmed aordingly. In �4.1, we detail our onrete method for programming the universal iruit and

disuss e�ient implementations of universal gates and swithes.

2.2 Universal Ciruit Constrution from [KS08b℄

The universal iruit onstrution from [KS08b℄ is built from three main building bloks (for the struture

f. Figure 8a in Appendix D) that we summarize in this setion. The onstrution uses e�ient building

bloks for hiding the wiring of the u inputs and v outputs, using the fat that the maximum number of

inputs to a iruit with k gates is 2k and the maximum number of outputs is k. A reursive building blok

with size O(k log2 k) is onstruted for hiding the wiring between the gates.

For hiding the input wiring, a seletion blok Su
2k≥u is used, i.e., a programmable blok that selets

for 2k outputs one of u ≤ 2k inputs. This means that with the u inputs of iruit C, it an be programmed

to assign the output wires aording to the original struture of C and assign dupliates to the rest of the

wires. The authors show an e�ient implementation of seletion bloks with size O(k log k) and depth O(k)
with a small onstant fator [KS08b℄.

For hiding the output wiring, the authors use a smaller seletion blok. We note that the usage of

their so-alled trunated permutation blok is enough to program the output wires aording to the original

topology of C as no dupliates an our. This trunated permutation blok TP
k≥v
v permutes a subset of

the maximal k inputs to the v ≤ k outputs. An e�ient onstrution of size O(k log v) and depth O(log k)
is given in [KS08b℄.

A universal blok UBk is plaed between the input seletion blok and the output permutation blok. It

takes are of the simulation of the gates using universal gates and ensures that every possible wiring an be

implemented in the UC. The universal blok onstrution is reursive, makes use of two universal bloks of

smaller size with a seletion blok and a so-alled mixing blok (essentially a layer of universal swithes with

one output) in between them. The O(k log2 k) size of this universal blok is asymptotially not optimal and

its O(k log k) depth is also a fator of log k larger than Valiant's UC's. Thus, despite the e�ieny of the

other two building bloks, the onstrution from [KS08b℄ results in larger iruits than Valiant's UC in most

ases. However, we note that using some of its building bloks an be bene�ial in some senarios (f. �3.2).

3 The Size and the Depth of Valiant's Constrution

In this setion, we obtain new formulae for the size and the depth of Valiant's onstrution: the Γ1 edge-

universal graph onstrution is desribed in �3.1 and the universal iruit onstrution in �3.2. The size

of the edge-universal graph is the number of nodes, ounting all the poles and nodes reated while using

Valiant's onstrution. The depth of the edge-universal graph is the number of nodes on the longest path

between any two nodes. When onsidering UCs and the PFE appliation, sine XOR gates an be evaluated

for free in seure omputation [KS08a℄, the ANDsize of the universal iruit is the number of AND gates

that are needed to realize the UC in total. The ANDdepth of the universal iruit in this senario is the

maximum number of AND gates between any input and output. For the sake of generality, we give the total

size and depth of Valiant's UC onstrution with respet to both the AND and XOR gates that are used.

Our implementation of universal gates and swithes is optimized for PFE (f. �4.1) and therefore uses the

fewest AND gates possible. However, the total size and depth an be relevant when optimizing for other

appliations, in whih ase our implementation gives an upper bound that an be improved. For instane,

when XOR and AND gates have the same osts, one needs to minimize the total number of gates instead of

the number of AND gates as in [LMS16℄.

8

0

1 · 106

2 · 106

3 · 106

4 · 106

5 · 106

0 20 000 40 000 60 000 80 000 100 000

4.15 · 106

3.75 · 106

3.39 · 106

3.25 · 106

S

i

z

e

o

f

t

h

e

e

d

g

e

-

u

n

i

v

e

r

s

a

l

g

r

a

p

h

U
n

Size n of embedded graph

Valiant's upper bound (2.5n log2 n)
Our upper bound (Equation 5)

Exat size (Equations 3-4)

Our lower bound (Equation 6)

Fig. 2: Our upper and lower bounds for the size of Valiant's edge-universal graph onstrution for Γ1(n)
graphs, along with Valiant's upper bound on the same onstrution and the exat size Exat(n), onsidering
the size of the embedded graph n ∈ {1, . . . , 100 000}.

3.1 The Size and the Depth of the Γ1 Edge-Universal Graph

In the skeleton, node A in Figure 1a is redundant, sine one an hoose to embed the edge (y, n − 1) as
(py, pn−1) through Q, and (z, n) as (pz, pn) through R for any y and z nodes [Val76℄. Thus, the number of

nodes other than poles Exat(n), for even n beomes

Exat(n) = 2 · Exat

(

n− 2

2

)

+ 5 ·
n− 2

2
. (3)

For odd n, the onstrution makes use of

n−1
2 poles in Q and

n−3
2 poles in R. Then, edge (y, n) is embedded

as (py, pn) through Q for any y node, and node A is again redundant. Thus,

Exat(n) = Exat

(

n− 1

2

)

+Exat

(

n− 3

2

)

+ 5 ·
n− 3

2
+ 3. (4)

Using these reursive formulae, given the value n, it is possible to obtain the exat number of nodes other

than poles in Un. Valiant inludes optimizations for starting o� the reursion: for 1, 2, 3, 4, 5 and 6 nodes; the
respetive number of additional nodes are 0, 0, 0, 3, 7 and 9 (f. Figures 1�1e). Thus, a simple algorithm using

dynami programming based on the reursion relations of Equations 3-4 yields the exat number of nodes

other than the original n poles that are reated during the edge-universal graph onstrution. It depends on

the parity of the input n at eah iteration and unfortunately does not yield a losed formula for the size of

Valiant's edge-universal graph onstrution, whih is n+Exat(n).
Valiant states that using his method, an edge-universal graph for Γ1(n) an be found �with fewer than

19
8 n log2 n nodes, and fanin and fanout 2 � [Val76℄. As mentioned in �2.1, we onsider the more detailed

algorithm that yields the result with a slightly larger prefator of 2.5n log2 n instead of 2.375n log2 n. In this

setion, we sharpen this bound and give an approximate losed formula for the size of the onstrution. We

�rst give upper and lower bounds, and then derive an approximation for a losed formula. For our lower

bound, we onsider the ase when only the formula for even numbers, i.e., Equation 3, is onsidered. This

yields our lower bound of

n+ 5

log2 n−1
∑

i=0

2i
(

n

2i+1
−

2(2i+1 − 1)

2i+1

)

 = 2.5n log2 n− 9n+ 5 log2 n+ 10. (5)

9

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 20 000 40 000 60 000 80 000 100 000

D

e

v

i

a

t

i

o

n

ε

i

n

p

e

r

e

n

t

a

g

e

Size n of embedded graph

Fig. 3: The deviation of the mean of our upper and lower bounds (Equation 5 and Equation 6) from the

exat size of the edge-universal graph Exat(n) + n, onsidering the size of the embedded graph n ∈
{1, . . . , 100 000}.

The upper bound an be obtained similarly, onsidering the ase when only the formula for odd numbers

with 5 ·
(

n−1
2

)

is onsidered

n+ 5

log2 n−1
∑

i=0

2i
(

n

2i+1
−

2i+1 − 1

2i+1

)

 = 2.5n log2 n− 4n+ 2.5 log2 n+ 5. (6)

Figure 2 depits our upper and lower bounds along with Valiant's upper bound on the same onstrution

for up to 100 000 nodes. We observe that the mean of our bounds is very lose to the exat number of nodes.

Figure 3 shows that already after a ouple of hundreds of poles, it only slightly deviates from the exat

number of nodes Exat(n). Thus, we aept

size(Un) ≈ 2.5n log2 n− 6.5n+ 3.75 log2 n+ 7.5 (7)

as a good approximation of the losed formula for the size of the onstrution, noting that an estimated

deviation of at most 2% ompared to the exat number of nodes, i.e., ε ≤ 0.02 · size(Un) may our.

The depth of the edge-universal graph, i.e., the maximum number of nodes between any two nodes is

de�ned by the number of nodes between p1 and pn in the skeleton (f. Figures 1a�1b). Thus, depth(Un) =
3n− 3 for even n and depth(Un) = 3n− 2 for odd n.

3.2 The Size and the Depth of Valiant's Universal Ciruit

As desribed in �2.1, a universal iruit is onstruted by means of an edge-universal graph for graphs with

fanin and fanout 2, whih is in turn onstruted from two Γ1 edge-universal graphs with poles merged

together and thus taken only one into onsideration. When onstruting a UC, the number of inputs u,

the number of outputs v and the number of gates k is publi. We set k∗ as the number of gates in the

equivalent fanout-2 iruit, where k ≤ k∗ ≤ 2k + v, in order to be able to later fairly ompare with the UC

onstrution of [KS08b℄. We onsider k∗ as the publi parameter instead of k, sine without the knowledge

of the original number of simulated gates, it does not reveal information about the simulated iruit. If the

original k is publi, one an hide k∗ by setting it to its maximal value 2k + v. Thus, using Valiant's UC

onstrution, a Γ2 edge-universal graph with u + v + k∗ poles is onstruted and thus, our approximative

formula for the size of the Γ2 edge-universal graph orresponding to the graph of the iruit would beome

2 · size(Uu+v+k∗)− (u+ v+ k∗) and the exat number would be u+ v+ k∗ + 2 ·Exat(u+ v+ k∗), i.e., the

10

u+ v + k∗ merged poles of the two edge-universal graphs plus the exat number of nodes other than poles.

Therefore, the size of Valiant's UC is

size(UCValiant

u,v,k∗) ≈ [5(u+ v + k∗) log2(u+ v + k∗)− 15(u+ v + k∗)

+ 7.5 log2(u + v + k∗) + 15] · size(X) + k∗ · size(U) (8)

and the depth stays

depth(UCValiant

u,v,k∗) ≈ [2(u+ v + k∗)− 2] · depth(X) + k∗ · depth(U). (9)

When transforming the Γ2 edge-universal graph into a UC, the �rst u poles are assoiated with inputs,

the last v poles with outputs, and the k∗ poles between are realized with universal gates (f. Equation 1)

and their programming is de�ned by the orresponding gates in the simulated iruit. The rest of the nodes

of the edge-universal graph are translated into universal swithes (f. Equation 2), whose programming is

de�ned by the edge-embedding of the graph of the iruit into the Γ2 edge-universal graph. Thus, the size

and depth of Valiant's UC an be diretly derived from the size of the Γ2 edge-universal graph. However, we

inlude two optimizations to obtain a smaller size of the UC. The �rst optimization improves already the

size of the edge-universal graph and the seond optimization is applied when translating the edge-universal

graph into a UC desription (f. �4.1).

1. Optimization for Input and Output Nodes: We observe that obviously iruit inputs need no ingo-

ing edges and iruit outputs need no outgoing edges. Therefore, sine u, v and k∗ are publily known, we

optimize by deleting nodes that beome redundant while aneling the edges going to the �rst u (input)

and oming from the last v (output) nodes. Depending on the parity of u, v and u+ v + k∗, the number

of redundant swithing nodes is u+ v − 3± 1 in both Γ1 edge-universal graphs that build up the graph

of the UC. Therefore, we have, on average, 2(u + v − 3) redundant nodes, whih number we use in our

alulations further on. This optimization also a�ets the depth by, on average, u+ v − 3.
2. Optimization for Fanin-1 Nodes: We observe that in the skeleton of the Γ1 edge-universal graph

onstrution there is a fanin-1 node (denoted with B in Figures 1a�1b). Suh fanin-1 nodes exist in the

base-ases for a small number of poles as well (f. Figures 1�1e). These nodes are important to ahieve

fanin and fanout 2 of eah nodes in the graph, but an be ignored and replaed with wires when translated

into a iruit desription, essentially resulting in the same UC. Aording to Valiant's onstrution, these

gates would translate into universal swithes with one real input (and an other arbitrary one). Instead,

we translate eah of them into two wires and therefore set the seond input to the same as the �rst one.

Sine at least one suh node an be ignored in eah subgraph when nodes are translated into gates, this

results in altogether around

2 ·

log2(u+v+k∗)−1
∑

i=0

2i

− 1 = 2(u+ v + k∗)− 3 (10)

less gates for the two Γ1 edge-universal graphs. This improvement has no e�et on the depth of the

onstrution.

Sine both the size and the depth are dependent on the underlying representation of the iruit building

bloks (of the universal gate U and of the universal swith or X gate), and the seure omputation protool,

we express the size of the universal iruit with the size and depth of U and of X as parameters. Inluding

the above optimizations of altogether 4(u + v) + 2k∗ − 9, the approximate formula for the size of Valiant's

optimized UC onstrution beomes

size(UC opt

u,v,k∗) ≈ [5(u+ v + k∗) log2(u+ v + k∗)− 17k∗ − 19(u+ v)

+ 7.5 log2(u+ v + k∗) + 24] · size(X) + k∗ · size(U). (11)

11

To obtain the exat size of the UC, we use the reursive relations depited in Equations 3-4 and inlude our

optimizations. Thus, we obtain

size

exat

(UC opt

u,v,k∗) = [2 · Exat(u+ v + k∗)− 4(u+ v)− 2k∗ + 9] · size(X) + k∗ · size(U). (12)

From the depth of the edge-universal graph, the depth of the UC beomes

depth(UC opt

u,v,k∗) ≈ [u+ v + 2k∗ + 3] · depth(X) + k∗ · depth(U). (13)

Depending on the appliation, size(X) and size(U) as well as depth(X) and depth(U) an be optimized.

Due to the PFE appliation, where XOR gates an be evaluated for free, we assess the ANDsize and AND-

depth of our AND-optimized implementations of universal gates and swithes (f. �4.1). In general, a universal

gate an be realized with 3 AND gates (and 6 XOR gates), and ANDdepth of 2 (total depth of 6). Universal

swithes an be realized with only one AND gate (and 3 XOR gates), and ANDdepth of 1 (total depth

of 3) [KS08a℄.

For private funtion evaluation, the size and the depth of U an be further optimized depending on

the underlying seure omputation protool. In ase the SFE implementation uses Yao's garbled iruit

protool [Yao86℄, both ANDsize(U) and ANDdepth(U) an be minimized to 1, due to the fat that in some

garbling shemes the evaluator does not learn the type of the evaluated gate suh as in ase of garbled 3-row-

redution [NPS99℄. Therefore, a universal gate an be implemented with one 2-input non-XOR gate [PSS09℄.

Optimized Hybrid Universal Ciruit Constrution: We investigate if hybrid methods utilizing building

bloks of both UC onstrutions, i.e., of both [Val76℄ summarized in �2.1 and [KS08b℄ in �2.2, ould yield

better size. The simulation of the k gates of the original iruit is asymptotially more e�ient using Valiant's

UC onstrution due to the logarithmi fator, despite the overhead aused by taking the equivalent fanout-2

iruit with k∗ gates, where k ≤ k∗ ≤ 2k + v. However, we alulate if the modular approah of [KS08b℄

using a seletion blok Su
m≥u for seleting the input variables or a trunated permutation blok TP

k∗≥v
v for

the output variables would result in a smaller size.

Plaing a seletion blok on top of Valiant's UC withm universal gates would imply a seletion blok Su
m≥u

whih is then programmed to diret the u inputs of the iruit to the proper inputs of the m universal gates.

Depending on how the output nodes are represented, m is either 2(k∗ + v) for the ase when inluding the

outputs in Valiant's onstrution or 2k∗ for the onstrution with a trunated permutation blok. In the latter
ase, TP

k∗≥v
v takes are of permuting a subset of the outputs of the k∗ gates, resulting in the v outputs of the

UC. A seletion blok Su
m≥u has size

u+m
2 log2 u+m log2 m−u+1 and depth 2 log2 u+2 log2 m+m−2, and a

trunated permutation blok TP
k∗≥v
v has size

k∗+v
2 log2 v−2v+k∗+1 and depth log2 k

∗+log2 v−1 [KS08b℄
(f. Appendix C).

Let us take three senarios into onsideration, depending on the number of inputs u and the number of

outputs v. The number of gates in the iruit to be simulated is k and the number of gates in the equivalent

fanout-2 iruit is k∗ with k ≤ k∗ ≤ 2k + v.

1. Constant I/O Case: u = c1 onstant, v = c2 onstant: If both u and v are onstant values c1 and c2
respetively, as is the ase in many appliations that ompute a non-trivial funtion with relatively few

inputs and outputs, the size of the seletion blok beomes ≈ 2k∗ log2 k
∗+(2+ log2 c1)k

∗
and the size of

the trunated permutation blok is ≈ (0.5 log2 c2 + 1) k∗. With Valiant's UC onstrution, the overhead

aused by a onstant number of inputs and outputs is around 5(c1 + c2) log2 k
∗
. The depth of Valiant's

UC is only a�eted with onstant overhead, while the depth of the seletion and permutation bloks are

≈ 2k∗ + 2 log2 k
∗
and ≈ log2 k, respetively. Thus, both for the inputs and the outputs, Valiant's UC is

an asymptotially better solution in the ase with a onstant number of inputs and outputs.

2. Many Inputs: u ∼ k, v = c onstant: For many inputs where u is around the number of gates k and

we have a onstant number of c outputs, we inlude these c nodes in Valiant's UC instead of using a

trunated permutation blok due to the same reasoning as in the previous ase. However, a seletion blok

an be onstruted to diret k inputs to k∗ + c universal gates. Thus, its size beomes ≈ 2k∗ log2 k
∗ +

12

0

2 · 106

4 · 106

6 · 106

8 · 106

1 · 107

1.2 · 107

1.4 · 107

0 10 000 20 000 30 000 40 000 50 000

1.44 · 107

6.72 · 106

3.34 · 106

1.27 · 107
1.23 · 107
1.20 · 107

7.15 · 106

6.12 · 106

S

i

z

e

o

f

t

h

e

u

n

i

v

e

r

s

a

l

i

r

u

i

t

U
C

u
,v

,k
∗

Number of fanin-fanout-2 gates k∗ = k

Valiant's UC, maximal I/O

Valiant's UC, many inputs

Valiant's UC, onstant I/O

[KS08b℄ UC, maximal I/O

[KS08b℄ UC, many inputs

[KS08b℄ UC, onstant I/O

Hybrid, maximal I/O

Hybrid, many inputs

Fig. 4: Comparison between the sizes of the UC onstrutions for k∗ = k ∈ {0, . . . , 50 000} gates, onsidering
the three senarios: onstant I/O with onstant number of inputs and outputs, many inputs with ∼ k inputs

and onstant outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs.

k∗ log2 k+0.5k log2 k+2k∗− k+3c log2 k
∗
and its depth ≈ 2k∗+2 log2 k

∗+2 log2 k. In ase of Valiant's

UC onstrution, k inputs result in an overhead of ≈ 5k log2 k−9k+5c log2 k for the size and ≈ k for the

depth, sine a large part (up to a half) of the iruit is built in order to hide the input wiring. Therefore,

in this senario it is often worth to use a hybrid method, utilizing the seletion blok from [KS08b℄ for

input seletion. Our many inputs hybrid onstrution plaes a seletion blok on top of a UC with k∗+ c

universal gates and has approximate size when u ∼ k and v is onstant c

size(UCmany I

k,c,k∗) ≈ [7k∗ log2 k
∗ + k∗ log2 k + 0.5k log2 k − k − 15k∗

+ (7.5 + 5c) log2 k
∗ + 3c log2 k

∗ +O(1)] · size(X) + k∗ · size(U) (14)

and approximate depth

depth(UCmany I

k,c,k∗) ≈ [4k∗ + 2 log2 k
∗ + 2 log2 k +O(1)] · depth(X) + k∗ · depth(U). (15)

3. Maximal I/O Case: u ∼ 2k, v ∼ k: For iruits with u ∼ 2k inputs and v ∼ k outputs, we disuss

the possibility of using both an input seletion blok and an output permutation blok. The size of the

seletion blok is ≈ 2k∗ log2 k
∗+k∗ log2 k+k log2 k+3k∗−k and its depth is ≈ 2k∗+2 log2 k

∗+2 log2 k,
whih is more bene�ial (when it omes to the size) than the ≈ 10k log2 k − 12k size overhead and

≈ 2k depth overhead in Valiant's onstrution aused by 2k inputs (up to half of the UC is onstruted

for inputs only). The trunated permutation blok has size ≈ 0.5k∗ log2 k + 0.5k log2 k + k∗ − 2k and

depth ≈ log2 k
∗ + log2 k, while the same amount of outputs in Valiant's onstrution introdues at

least 5k log2 k−9k new swithes with depth of ≈ k. Thus, for the ase when the maximal 2k inputs and k

outputs are onsidered, we onlude that it is advantageous to use our maximal I/O hybrid onstrution,

utilizing Valiant's graph onstrution for the k∗ gates [Val76℄, a seletion blok for the inputs and a

trunated permutation blok for the outputs [KS08b℄. This yields an approximate size when u ∼ 2k and

v ∼ k

size(UC
max I/O

2k,k∗,k) ≈ [7k∗ log2 k
∗ + 1.5k∗ log2 k + 1.5k log2 k − 13k∗ − 3k

+ 7.5 log2 k
∗ +O(1)] · size(X) + k∗ · size(U) (16)

13

0

2 · 105

4 · 105

6 · 105

8 · 105

1 · 106

0 10000 20000 30000 40000 50000

3.50 · 105

2.51 · 105

2.02 · 105

9.81 · 105

3.01 · 105

D

e

p

t

h

o

f

t

h

e

u

n

i

v

e

r

s

a

l

i

r

u

i

t

U
u
,v

,k
∗

Number of fanin-fanout-2 gates k∗ = k

Valiant's UC, maximal I/O

Valiant's UC, many inputs

Valiant's UC, onstant I/O

[KS08b℄ UC, maximal I/O

[KS08b℄ UC, many inputs

[KS08b℄ UC, onstant I/O

Hybrid, maximal I/O

Hybrid, many inputs

Fig. 5: Comparison between the depths of the UC onstrutions for k∗ = k ∈ {0, . . . , 50 000} gates, onsidering
the three senarios: onstant I/O with onstant number of inputs and outputs, many inputs with ∼ k inputs

and onstant outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs.

and an approximate depth

depth(UC
max I/O

2k,k∗,k) ≈ [4k∗ + 3 log2 k
∗ + 3 log2 k +O(1)] · depth(X) + k∗ · depth(U). (17)

We onlude that in ase of a large number of inputs and outputs it is bene�ial to onstrut a hybrid UC,

making use of both existing onstrutions (f. �2.1 and �2.2). Most pratial appliations have input and

output with onstant size and only some spei� appliations use input size linear in the number of gates (e.g.

simple omputations on large databases). Thus, we onsider Valiant's onstrution as the most bene�ial

for general purposes, however we have shown, that one an optimize the onstrution for many inputs or

outputs by adding seletion or trunated permutation bloks from [KS08b℄.

Comparison with the Universal Ciruit Constrution from [KS08b℄. In [KS08b℄, a universal ir-

uit onstrution was proposed with approximate size 1.5k log22 k + 2.5k log2 k. This was alulated with

the doubled size of the universal swithes, not yet onsidering the free-XOR optimizations of [KS08a℄. We

realulated the size of the onstrution with our additional optimization for the outputs desribed in �2.2.

We give our detailed alulations in Appendix C, and summarize its exat size here as

size(UC
[KS08b℄

u,v,k) = [0.75k log22 k + 2.25k log2 k + (0.5 + k) log u+

(0.5k + 0.5v) log v + 5k − u− 2v] · size(X) + k · size(U), (18)

and from [KS08b℄ we know that its depth is

depth(UC
[KS08b℄

u,v,k) = [k log2 k + 2k + 7 log2 k + 2 log2 u+ log2 v − 14] · depth(X) + k · depth(U). (19)

It was onluded in [KS08b℄ that this onstrution outperforms Valiant's onstrution for iruits with up

to 5 000 gates. However, this was ahieved using the assumption that Valiant's universal iruit has size

≈ 9.5(u+ 2v + 2k) log2(u+ 2v + 2k), whih an vary between two to four times its atual size. On the one

hand, a fator of two of this di�erene is due to the free-XOR optimizations in [KS08a℄. On the other

14

hand, [KS08b℄ used the maximal k∗ = 2k + v in their approximation. In �4.2, we show on onrete example

iruits that k∗ stays signi�antly below this upper bound. The onstrution desribed in detail in �2.1 has

a larger onstant fator 5, but due to the logarithmi fator it outperforms the onstrution from [KS08b℄

(�2.2) already for a few hundred gates in the onstant I/O ase. Figure 4 and Figure 5 ompare the sizes

and depth of the di�erent UC onstrutions, respetively in the three senarios desribed above, with the

lowest possible gate number k∗ = k. When onsidering the hybrid approah, the method orresponding to

the given senario is indeed always the most e�ient onstrution for many inputs and/or outputs. We give

a omparison for the upper bound ase k∗ = 2k + v as well in Figure 9 in Appendix D.

4 Implementing Valiant's Universal Ciruit in Pratie

In this setion, we detail the hallenges that we faed while demonstrating the pratiality of Valiant's univer-

sal iruit onstrution. We show how to onstrut a universal iruit from a standard iruit desription and

how to program it aordingly. We validate our results with an implementation, reating a novel toolhain

for private funtion evaluation, using two existing frameworks as frontend and bakend of our appliation.

We emphasize that our tool for onstruting and programming UC is generi and an easily be adapted to

other seure omputation frameworks or other appliations of UCs listed in �1.2.

4.1 Our Tool for Universal Ciruit Constrution and Toolhain for Private Funtion

Evaluation

The arhiteture of our toolhain for PFE using UCs is shown in Figure 6. In this setion, we desribe its

di�erent artifats and its use of the Fairplay [MNPS04℄ and ABY [DSZ15℄ frameworks. Our implementation

is available online at http://enrypto.de/ode/UC.

Step 1. Compiling Input Ciruits from High-Level Funtionality: Due to its easy adoptability, we

deided to use the Fairplay ompiler [MNPS04,BNP08℄ with the FairplayPF extension [KS08b℄ to translate

the funtionality desribed in the high-level SFDL format to the Fairplay iruit desription alled Seure

Hardware De�nition Language (SHDL). The FairplayPF extension already onverts iruits with gates of

an arbitrary fanin into gates with at most two inputs, whih is required for Valiant's onstrution as well.

However, in ase of Valiant's UC onstrution, there is another restrition on the input iruit. It has to have

fanout 2, i.e., the outputs of all the gates and inputs an only be used as the input of at most two later gates.

In ase the input iruit does not follow this restrition, an algorithm plaes a binary tree in plae of eah

gate with fanout larger than 2, following Valiant's proposition: �Any gate with fanout x+ 2 an be replaed

by a binary fanout tree with x+ 1 gates� [Val76, Corollary 3.1℄. This is done using so-alled opy gates, i.e.,

identity gates, eah of them eliminating one from the extra fanout of the original gate. An upper bound

an be given on the number of opy gates. The lass of Boolean funtions with u inputs and v outputs that

an be realized by ayli iruits with k gates and arbitrary fanout, an also be realized with an ayli

fanout-2 iruit with k ≤ k∗ ≤ 2k+ v gates [Val76, Corollary 3.1℄. We give onrete examples in �4.2 on how

this onversion hanges the input iruit size for pratial iruits and show that in most ases, the resulting

number of gates remains signi�antly below the upper bound 2k + v.

Step 2. Obtaining the Γ2 Graph of the Ciruit: From the SHDL desription of a C iruit with fanin

and fanout 2, the Γ2 graph GC
of the iruit C an be diretly generated as desribed in �2.1: with the

number of inputs u, the number of outputs v and the number of gates k∗ in iruit C, GC
has u + v + k∗

nodes and the wires are represented as edges in the graph. Then, the �rst u nodes in the topologial order

orrespond to the inputs, the last v nodes to the outputs and the nodes in between them to the k∗ ordered

gates. We note that sine C had fanin and fanout 2, the resulting GC
graph is in Γ2(u+ v + k∗).

Therefore in GC
, eah node an have at most two inoming edges, one de�ned to be the �rst and the

other the seond. It is possible in the modi�ed SHDL iruit desription that an internal value beomes two

times the �rst or two times the seond input of gates. This is due to the fat that in the original SHDL

15

http://encrypto.de/code/UC

Ciruit Desription Cf

(SHDL)

1. Modi�ed Ciruit C

(SHDL)

Ciruit Compiler

(Fairplay)

Funtionality f

(SFDL)

P1

2. Γ2 Graph

Representation GC

4. Embedding of GC

into Uu+v+k∗

5. Program Bits

Input p

3. Edge-Universal

Graph Uu+v+k∗

Publi

5. Universal Ciruit

Desription UC

6. SFE Framework

(ABY)

P2

Input x

Output UC (x, p)

Our UC Compiler

Fig. 6: Our toolhain for universal iruits and private funtion evaluation.

iruit with arbitrary fanout, a value ould be the input of arbitrary number of later gates. Transforming

the iruit to a fanout-2 iruit by adding opy gates allows a value to be an input only two times, but the

order of the inputs is �xed. Therefore, in suh a ase when a value is the seond time the same input to a

gate (i.e., �rst or seond), besides the two inputs, the two middle bits of the funtion table of the gate must

be reversed as well (i.e., to ompute f(in1, in2) instead of f(in2, in1)) for the orret programming of the

universal iruit in Step 5.

Step 3. Generating Γ2 Edge-Universal Graph Un: Knowing the number of input bits u, the number

of gates k∗ and the number of output bits v one an onstrut the orresponding edge-universal graph Un,

where n = u+v+k∗, with out input-output optimization from �3.2. We note that no knowledge is neessary

about the topology or the gate tables in iruit C for this step. As we desribed in �2.1, two edge-universal

graphs for Γ1(n), i.e. Un,1 and Un,2, are merged in order to obtain an edge-universal graph for Γ2(n), suh
that the poles are merged and the edges oming into and going out from them beome as follows: the edges

in Un,1 will be the �rst input and output for eah pole, the edges in Un,2 will be the seond input and output.

For e�ieny reasons, we diretly generate the merged edge-universal graph, i.e., an edge-universal graph

for Γ2(n), with the poles as ommon nodes.

We inlude our optimization for the input and output nodes from �3.2 and Valiant's optimizations

for n ∈ {2, 3}, but do not onsider Valiant's optimizations for n ∈ {4, 5, 6} (f. Figures 1-1e). These speial
ases lead to a spei� edge-embedding for the nodes and result in linear improvement only in very rare

16

Algorithm 1 Supergraph(G)

Input: Γ1(n) graph G with set of nodes V = {1, . . . , n}
Output: Γ1(n) supergraph

1: Create a graph H with ⌈n
2
⌉ − 1 nodes ⊲ H Γ2 graph (with possible loops)

2: if there exist an edge (i, j) in G and ⌈ j

2
⌉ − 1 ≥ ⌈ i

2
⌉ then

3: Add edge

(

⌈ i
2
⌉, ⌈ j

2
⌉ − 1

)

in H ⊲ eah pair of nodes in G is one node in H

4: end if

5: Partition H into two Γ1 graphs G1 of size ⌈n
2
⌉ − 1 and G2 of size ⌊n

2
⌋ − 1 using K®nig's theorem as in �2.1

⊲ in odd ase, the (e, ⌈n
2
⌉ − 1) edge in H for arbitrary e will be added in G1

6: if size(G1) 6= 0 then
7: Supergraph(G1)
8: Store G1 as the left subgraph of G

9: end if

10: if size(G2) 6= 0 then
11: Supergraph(G2)
12: Store G2 as the right subgraph of G

13: end if

14: delete H

15: return G

ases. Moreover, with our seond optimization from �3.2, we ignore most of the extra nodes when the graph

is translated into a universal iruit desription, i.e., we have for n = {4, 5, 6} only {3, 5, 8} additional nodes
other than poles, respetively, in our implementation whih is already an improvement over Valiant's original

optimizations.

We note that the edge-universal graph (with unde�ned funtion tables and ontrol bits for the universal

swithes) an be publily generated. However, the party programming it has to either generate or reeive

a opy of it for programming the ontrol bits aording to the topology of the simulated iruit (i.e., to

edge-embed GC
into Un).

Step 4. Programming Un Aording to an Arbitrary Γ2(n) Graph: The Γ2 graph of the iruit GC

with n nodes is partitioned into two Γ1(n) graphs GC
1 and GC

2 whih are embedded into the two edge-

universal graphs for Γ1(n) that build up Un. Valiant proved in [Val76℄ that for any topologially ordered

Γ1(n) graph, for any (i, j) ∈ E and (k, l) ∈ E edges there exist edge-disjoint paths in Un between the ith

and the jth poles and between the kth and the lth poles. We desribed Valiant's method in �2.1 and here we

show the algorithm that uniquely de�nes these paths in Un.

For the desription of our algorithm, we �rst de�ne a Γ1(n) supergraph, whih is a Γ1(n) graph with

additionally a binary tree of Γ1 graphs of dereasing size. These Γ1 graphs uniquely de�ne the embedding

of the edges into Un. When embedding an edge (i, j) of the topologially ordered graph G into the edge-

universal graph, one needs to onstrut the supergraph of G as desribed in Algorithm 1 and then look at

the binary tree in the supergraph. The path of the edge (i, j) de�nes the edge-embedding uniquely. This

means that if edge (⌈ i
2⌉, ⌈

j
2⌉ − 1) is in the left subgraph of G, then it an be embedded through subgraph Q

in Un, otherwise it is in the right subgraph of G and an be embedded through subgraph R in Un. The

unique embedding happens through {r⌈ i
2
⌉, r⌈ j

2
⌉−1} or through {q⌈ i

2
⌉, q⌈ j

2
⌉−1}, utilizing the unique shortest

path between them, through subpoles further identi�ed by smaller subgraphs of G.

When the embedding is done (f. Appendix E), for de�ning the ontrol bits, eah node x has at most

two nodes that have ingoing edges to x, one is represented as the left parent and one as the right parent of x

in the edge-universal graph. The two onseutive nodes are also saved as left and right hildren of x. Now,

when x is a swithing node and we take edges (v, x) and (x,w) in the path, we save for x if parent v and

hild w are on the same or on the opposite side in the edge-universal graph. This de�nes the ontrol bit of

17

eah universal swith in the translated universal iruit, where left and right parent and hild translate to

�rst and seond input and output, respetively. We note that in order to program Un orretly, we require

that if x is the left (right) parent of v in the edge-universal graph, then v is the left (right) hild of x as well.

Step 5. Generating the Output Ciruit Desription and the Programming of the Universal

Ciruit: After embedding the graph of the simulated iruit into the edge-universal graph Un, we write

the resulting iruit in a �le using our own iruit desription. In the edge-universal graph, eah node stores

the program bit resulting from the edge-embedding (ontrol bit c of the orresponding universal swith in

Equation 2) and eah pole stores four bits orresponding to the simulated iruit (the four ontrol bits of the

funtion table, c0, c1, c2, c3 in Equation 1, their order possibly hanged in Step 2). Thus, after topologially

ordering Un, one an diretly write out the gate identi�ers into a iruit �le and the program bits to a

programming �le.

Our iruit desription format starts with enumerating the inputs and ends with enumerating the outputs.

We have universal gates denoted by U , universal swithes denoted by X or Y depending on the number of

outputs (X with two outputs and Y with one). We note that we replae any gates that have only one input

by wires in the UC, thus ahieving our fanin-1 node optimization from �3.2. The wires are represented in

the following manner:

U in1 in2 out1

X in1 in2 out1 out2 (20)

Y in1 in2 out1

denotes that wire out1 (and possibly out2) is oming from a gate with input wires in1 and in2. The program

bits are not represented in the iruit format, but in a separate �le, for eah universal gate we save a four-bit

number representing the ontrol bits and for eah universal swith we store the ontrol bit. The output nodes

are outputs of Y universal swithes and are marked in the end of the �le as O o1 o2 . . . ov. The iruit

and its programming are given in plain text �les.

Step 6. Evaluating Universal Ciruits for PFE in ABY: As an example appliation of UCs, we

implement PFE using SFE of a universal iruit. We adapted the ABY seure two-party omputation frame-

work [DSZ15℄ for this purpose. Firstly, sine ABY uses the free-XOR optimization from [KS08a℄, we onstrut

universal gates and swithes with low ANDsize and ANDdepth given in �3.2. With the ost metri we on-

sider, X and Y gates have the same AND omplexity, optimized in [KS08a℄ and are obtained as

out1 = Y (in1, in2; c) = (in1 ⊕ in2)c⊕ in1

(out1, out2) = X(in1, in2; c) = (e⊕ in1, e⊕ in2) with e = (in1 ⊕ in2)c (21)

with ANDsize and ANDdepth of 1 for both universal swithes. X gates are realized with one additional XOR

gate ompared to Y gates.

Our e�ient implementation of generi universal gates uses Y gates yielding

out1 = U(in1, in2; c0, c1, c2, c3) = Y [Y (c0, c1; in2), Y (c2, c3; in2); in1] (22)

with ANDsize(U) = 3 and ANDdepth(U) = 2. This universal gate implementation is generi and works in

all seure omputation protools. However, for Yao's garbled iruits protool, one an further optimize it

to ANDsize=ANDdepth= 1, as in some garbling shemes suh as the garbled 3-row-redution [NPS99℄ the

gate being evaluated remains oblivious to the evaluator.

After onstruting the e�ient building bloks, the output iruit �le of our UC ompiler is parsed, a

iruit is generated aordingly and programmed with the input program bits. We onlude that our toolhain

is the �rst implementation of Valiant's size-optimized universal iruit that supports e�ient private funtion

evaluation.

18

Ciruit u k v k∗ − k (

k∗

k
) Valiant [KS08b℄ OT-based [MS13℄

AES-non-exp 256 31 924 128 15 312 (1.48) 1.171 · 107 2.797 · 107 6.243 · 106

AES-expanded 1 536 25 765 128 11 794 (1.46) 9.388 · 106 2.206 · 107 4.942 · 106

DES-non-exp 128 19 464 64 10 871 (1.56) 7.146 · 106 1.560 · 107 3.639 · 106

md5 512 43 234 128 31 083 (1.72) 1.942 · 107 3.995 · 107 8.681 · 106

add_32 64 188 33 123 (1.65) 44 968 55 717 20 064
omp_32 64 150 1 60 (1.4) 26 440 40 222 15 424
mult_32x32 64 6 995 64 5 678 (1.81) 2.672 · 106 4.647 · 106 1.184 · 106

Branhing_18 72 121 4 3 (1.02) 17 312 30 994 11 995
CreditChek 25 50 1 6 (1.12) 5 056 9 348 4 199
MobileCode 80 64 16 0 (1) 12 528 13 727 5 644

Table 1: The number of symmetri-key operations using di�erent PFE protools: Valiant's UC with SFE,

the universal iruit onstrution from [KS08b℄ or Mohassel et al.'s OT-based method from [MS13℄. u, v and

k denote the number of inputs, outputs and gates in the simulated iruit, and k∗ denotes the number of

gates in the equivalent fanout-2 iruit.

4.2 Comparison of Our PFE-Toolhain with Other PFE Protools

Mohassel et al. in [MS13℄ design a generi framework for PFE and apply it to three di�erent senarios: to

the m-party GMW protool [GMW87℄, to Yao's garbled iruits [Yao86℄ and to arithmeti iruits using

homomorphi enryption [CDN01℄. Both the two-party version of their framework with the GMW protool

and the solution with Yao's garbled iruit protool has two alternatives: using homomorphi enryption

they ahieve linear omplexity O(k) in the iruit size k and when using a solution solely based on obliv-

ious transfers (OTs), they obtain a onstrution with O(k log k) symmetri-key operations. The OT-based

onstrution in both ases is more desirable in pratie, sine using OT extension the number of publi-key

operations an be redued signi�antly [IKNP03,ALSZ13℄.

Sine the asymptotial omplexity of this onstrution and using Valiant's UC for PFE is the same, we

ompare these methods for PFE. We revisit the formulas provided in [MS13℄ for the PFE protool based

on Yao's garbled iruits and elaborate on the number of symmetri-key operations when the di�erent PFE

protools are used. Mohassel et al. show that the total number of swithes in their framework is 4k log2(2k)+1
that are evaluated using OT extension, for whih they alulate 8k log2(2k) + 8 symmetri-key operations

together with 5k operations for evaluating the universal gates with Yao's protool. We ount only the work

of the party that performs most of the work, i.e., 4k symmetri-key operations for reating a garbled iruit

with k gates and 3 symmetri-key operations (two alls to a hash funtion and one all to a pseudorandom

funtion (PRF)) for eah OT using today's most e�ient OT extension of [ALSZ13℄. Hene, aording to

our estimations, the protool of [MS13℄ requires 12 log2(2k) + 4k + 12 symmetri-key operations.

In the same way, we assume that in our ase, for evaluating both the universal gates and swithes, the

garbler needs 4k symmetri-key operations. Thus, for a fair omparison, we essentially update Table 4 from

the full version of [MS13, Appendix J.1℄, where Valiant's UC size was alulated with assumed k∗ = 2k+ v,

without alulating 4 operations for the garbling.

We took our example iruit �les of varying size in Table 1 from two di�erent soures and elaborate on

the resulting number of symmetri-key operations using the di�erent onstrutions. The �rst 7 iruits we

obtained from the funtion set of [TS15℄ and the last three from the FairplayPF extension of the Fairplay

ompiler [MNPS04,KS08b℄. The example iruits that we took from [TS15℄ had to be onverted to our desired

SHDL format, whih was a neessary step in order to be able to elaborate on the performane of these more

ompliated iruits as well. We inluded the NOT gates in the funtion table of the onseutive gate and

therefore, resulted in smaller gate numbers k for the equivalent SHDL iruits with arbitrary fanout. Then,

these SHDL iruits were onsidered as input iruits for our tool.

We now ompare the size of the three two-party PFE protools: the two UC-based PFE with seure

omputation and the OT-based method of [MS13℄. We assess our �ndings in Table 1. We note that our

numbers are estimations, i.e., we do not onsider that [MS13℄ works with iruits made up solely of NAND

19

Ciruit

UC Compile GMW Yao

Time (ms) Time (ms) Comm. (bytes) Time (ms) Comm. (bytes)

AES-non-exp 39.49 5 522.08 140 862 594 2 349.35 90 539 632
AES-expanded 37.34 4 136.72 111 650 604 1 878.75 71 779 824
DES-non-exp 22.48 2 695.51 78 483 846 1 310.52 49 337 024
md5 73.28 7 041.12 173 628 240 3 547.68 112 684 640

add_32 0.13 31.97 468 760 26.49 230 160
omp_32 0.13 29.94 348 400 8.90 163 560
mult_32x32 8.32 1 092.46 31 798 816 539.98 19 191 656

Branhing_18 0.088 26.23 315 161 17.34 149 371
CreditChek 0.036 26.25 116 066 5.67 46 230
MobileCode 0.065 25.71 207 362 28.16 105 934

Table 2: Running time and ommuniation for our UC-based PFE implementation with ABY. We inlude

the ompile time of the UC ompiler in milliseonds and the evaluation time and the total ommuniation

between the parties in GMW as well as in Yao sharing.

gates. Sine Valiant's UC onstrution depends also on the number of gates with fanout more than 2 in the

original iruit, we inlude the number of opy gates, (k∗ − k) in the table. We emphasize the ratio between

the new number of gates k∗ and the original number of gates k and onlude that in general iruits, it is

well below the maximal

k∗

k ∼ 2. The size of the UC onstrution from [KS08b℄ obviously makes their method

less e�ient, in our examples using more than twie as many symmetri-key operations as the method with

Valiant's UC and four times as many as Mohassel et al.'s e�ient OT-based method [MS13℄. We onlude

that universal iruits are not the most e�ient solution to perform PFE, however, we show the feasibility

of generating and evaluating UCs simulating large iruits. We emphasize that even though the PFE-spei�

protool from [MS13℄ ahieves better results for PFE, universal iruits are generi and an be applied for

various other senarios (f. �1.2), and the most e�ient UC onstrution is Valiant's onstrution.

Our Experimental Results. We validated the pratiality of Valiant's universal iruit onstrution with

an e�ient implementation. We ran our experiments on two Desktop PCs, eah equipped with an Intel

Haswell i7-4770K CPU with 3.5 GHz and 16 GB RAM, that are onneted via Gigabit-LAN and give our

benhmarks in Table 2. We are able to generate UCs up to around 300 000 gates of the simulated iruit,

i.e., whih results in billions of gates in the UC. Until now, the only implementation of universal iruits

was given in [KS08b℄, whih is outperformed by Valiant's onstrution already for a ouple of hundred gates

(f. Figures 4-5) due to its asymptotially larger omplexity. We show the real pratiality of UCs through

experimental results proving the e�ieny of our implementation of PFE with the ABY framework [DSZ15℄.

Furthermore, due to its asymptotially smaller depth, we are also able to evaluate our generated UCs with

the GMW protool [GMW87℄, whereas the onstrution from [KS08b℄ was only evaluated with Yao's garbled

iruit protool. We do not diretly ompare our runtimes with the method of [MS13℄, sine to the best of

our knowledge, their framework has not yet been implemented.

Converting from iruit desriptions and writing into and reading out from �les slows down the pro-

gram signi�antly, but it still ahieves good performane for pratial iruits suh as AES and DES. Our

implementation in ABY an evaluate most of the iruits in both the GMW and Yao's protools, but for

some examples it runs out of memory (e.g. SHA-256). However, improvements on SFE protools imply im-

provements on UC-based PFE frameworks as well. As an be seen in Table 2, the evaluation time and the

ommuniation in ase of Yao's garbled iruit protool is about a fator of two smaller than that of the

GMW protool. This di�erene is due to the more e�ient universal gate onstrution with only one gate for

the ase of Yao's protool in ontrast to the universal gates used in the GMW protool with ANDsize = 3
and ANDdepth = 2.

20

Aknowledgements. This work has been o-funded by the European Union's 7th Framework Program

(FP7/2007-2013) under grant agreement n. 609611 (PRACTICE), by the German Federal Ministry of Ed-

uation and Researh (BMBF) within CRISP, by the DFG as part of projet E3 within the CRC 1119

CROSSING, and by the Hessian LOEWE exellene initiative within CASED. We thank Mihael Zohner

and Daniel Demmler for helping with the implementation in ABY.

Referenes

AF90. Martín Abadi and Joan Feigenbaum. Seure iruit evaluation. J. Cryptology, 2(1):1�12, 1990.

ALSZ13. Gilad Asharov, Yehuda Lindell, Thomas Shneider, and Mihael Zohner. More e�ient oblivious transfer

and extensions for faster seure omputation. In ACM CCS'13, pages 535�548. ACM, 2013.

Att14. Nuttapong Attrapadung. Fully seure and suint attribute based enryption for iruits from multi-

linear maps. IACR Cryptology ePrint Arhive, 2014:772, 2014.

BFGH10. Debajyoti Bera, Stephen A. Fenner, Frederi Green, and Steven Homer. E�ient universal quantum

iruits. Quantum Information and Computation, 10(1�2):16�27, 2010.

BFK

+
09. Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riardo Lazzeretti, Ahmad-Reza Sadeghi, and

Thomas Shneider. Seure evaluation of private linear branhing programs with medial appliations.

In European Symposium on Researh in Computer Seurity � ESORICS'09, volume 5789 of LNCS, pages

424�439. Springer, 2009.

BNP08. Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for seure multi-party ompu-

tation. In ACM CCS'08, pages 257�266. ACM, 2008.

BPSW07. Justin Brikell, Donald E. Porter, Vitaly Shmatikov, and Emmett Withel. Privay-preserving remote

diagnostis. In ACM CCS'07, pages 498�507. ACM, 2007.

CCKM00. Christian Cahin, Jan Camenish, Joe Kilian, and Joy Müller. One-round seure omputation and se-

ure autonomous mobile agents. In International Colloquium on Automata, Languages and Program-

ming (ICALP'00), volume 1853 of LNCS, pages 512�523. Springer, 2000.

CDN01. Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty omputation from threshold ho-

momorphi enryption. In Advanes in Cryptology � EUROCRYPT'01, volume 2045 of LNCS, pages

280�299. Springer, 2001.

CH85. Stephen A. Cook and H. James Hoover. A depth-universal iruit. SIAM J. Computing, 14(4):833�839,

1985.

DDKZ13. Konrad Durnoga, Stefan Dziembowski, Tomasz Kazana, and Mihal Zaja. One-time programs with

limited memory. In Information Seurity and Cryptology (INSCRYPT'13), volume 8567 of LNCS, pages

377�394. Springer, 2013.

DSZ15. Daniel Demmler, Thomas Shneider, and Mihael Zohner. ABY � a framework for e�ient mixed-protool

seure two-party omputation. In Network and Distributed System Seurity (NDSS'15). The Internet

Soiety, 2015. Code: http://enrypto.de/ode/ABY.

FAL06. Keith B. Frikken, Mikhail J. Atallah, and Jiangtao Li. Attribute-based aess ontrol with hidden poliies

and hidden redentials. IEEE Transations on Computers, 55(10):1259�1270, 2006.

FAZ05. Keith B. Frikken, Mikhail J. Atallah, and Chen Zhang. Privay-preserving redit heking. In ACM

Eletroni Commere (EC'05), pages 147�154. ACM, 2005.

FGP14. Dario Fiore, Rosario Gennaro, and Valerio Pastro. E�iently veri�able omputation on enrypted data.

In ACM CCS'15, pages 844�855. ACM, 2014.

FLA06. Keith B. Frikken, Jiangtao Li, and Mikhail J. Atallah. Trust negotiation with hidden redentials, hidden

poliies, and poliy yles. In Network and Distributed System Seurity (NDSS'06), pages 157�172. The

Internet Soiety, 2006.

FVK

+
15. Ben Fish, Binh Vo, Fernando Krell, Abishek Kumarasubramanian, Vladimir Kolesnikov, Tal Malkin, and

Steven M. Bellovin. Maliious-lient seurity in Blind Seer: A salable private DBMS. In IEEE Symposium

on Seurity and Privay (S&P'15), pages 395�410. IEEE, 2015.

GGH

+
13. Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based enryption for

iruits from multilinear maps. In Advanes in Cryptology � CRYPTO'13, volume 8043 of LNCS, pages

479�499. Springer, 2013.

GGHZ14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully seure attribute based enryption

from multilinear maps. IACR Cryptology ePrint Arhive, 2014:622, 2014.

21

http://encrypto.de/code/ABY

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadrati span programs and

suint NIZKs without PCPs. In Advanes in Cryptology � EUROCRYPT'13, volume 7881 of LNCS,

pages 626�645. Springer, 2013.

GHV10. Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphi enryption and rerandomizable

Yao iruits. In Advanes in Cryptology � CRYPTO'10, volume 6223 of LNCS, pages 155�172. Springer,

2010.

GMW87. Oded Goldreih, Silvio Miali, and Avi Wigderson. How to play any mental game or a ompleteness

theorem for protools with honest majority. In ACM Symposium on Theory of Computing (STOC'87),

pages 218�229. ACM, 1987.

GP81. Zvi Galil and Wolfgang J. Paul. An e�ient general purpose parallel omputer. In ACM Symposium on

Theory of Computing (STOC'81). ACM, 1981.

GVW13. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoetek Wee. Attribute-based enryption for iruits. In

ACM Symposium on Theory of Computing (STOC'13), pages 545�554. ACM, 2013.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers e�iently. In

Advanes in Cryptology � CRYPTO'03, volume 2729 of LNCS, pages 145�161. Springer, 2003.

IP07. Yuval Ishai and Anat Paskin. Evaluating branhing programs on enrypted data. In Theory of Cryptog-

raphy Conferene (TCC'07), volume 4392 of LNCS, pages 575�594. Springer, 2007.

K®31. Dénes K®nig. Gráfok és mátrixok. In Matematikai és Fizikai Lapok, volume 38, pages 116�119, 1931.

KM11. Jonathan Katz and Lior Malka. Constant-round private funtion evaluation with linear omplexity. In

Advanes in Cryptology � ASIACRYPT'11, volume 7073 of LNCS, pages 556�571. Springer, 2011.

KS08a. Vladimir Kolesnikov and Thomas Shneider. Improved garbled iruit: Free XOR gates and appliations.

In International Colloquium on Automata, Languages and Programming (ICALP'08), volume 5126 of

LNCS, pages 486�498. Springer, 2008.

KS08b. Vladimir Kolesnikov and Thomas Shneider. A pratial universal iruit onstrution and seure evalu-

ation of private funtions. In Finanial Cryptography and Data Seurity (FC'08), volume 5143 of LNCS,

pages 83�97. Springer, 2008. Code: http://enrypto.de/ode/FairplayPF.

KS16. Ágnes Kiss and Thomas Shneider. Valiant's universal iruit is pratial. In Advanes in Cryptology �

EUROCRYPT'16, LNCS. Springer, 2016.

LMS16. Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant's universal iruit: Improve-

ments, implementation, and appliations. Cryptology ePrint Arhive, Report 2016/017, 2016.

http://eprint.iar.org/2016/017.

LP09a. Yehuda Lindell and Benny Pinkas. A proof of seurity of Yao's protool for two-party omputation.

J. Cryptology, 22(2):161�188, 2009.

LP09b. L. Lovász and M.D. Plummer. Mathing Theory. AMS Chelsea Publishing Series. Amerian Mathematial

So., 2009.

Mey83. Friedhelm Meyer auf der Heide. E�ieny of universal parallel omputers. In Theoretial Computer

Siene, volume 145 of LNCS, pages 221�241. Springer, 1983.

MNPS04. Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - seure two-party omputation

system. In USENIX Seurity Symposium 2004, pages 287�302. USENIX, 2004.

MS13. Payman Mohassel and Seyed Saeed Sadeghian. How to hide iruits in MPC an e�ient framework for

private funtion evaluation. In Advanes in Cryptology � EUROCRYPT'13, volume 7881 of LNCS, pages

557�574. Springer, 2013.

MSS14. PaymanMohassel, Seyed Saeed Sadeghian, and Nigel P. Smart. Atively seure private funtion evaluation.

In Advanes in Cryptology � ASIACRYPT'14, volume 8874 of LNCS, pages 486�505. Springer, 2014.

NPS99. Moni Naor, Benny Pinkas, and Reuban Sumner. Privay preserving autions and mehanism design. In

ACM Eletroni Commere (EC'99, pages 129�139, 1999.

NSMS14. Salman Niksefat, Babak Sadeghiyan, Payman Mohassel, and Seyed Saeed Sadeghian. ZIDS: A privay-

preserving intrusion detetion system using seure two-party omputation protools. Comput. J.,

57(4):494�509, 2014.

OI05. Rafail Ostrovsky and William E. Skeith III. Private searhing on streaming data. In Advanes in Cryp-

tology � CRYPTO'05, volume 3621 of LNCS, pages 223�240. Springer, 2005.

Pin02. Benny Pinkas. Cryptographi tehniques for privay-preserving data mining. SIGKDD Explorations,

4(2):12�19, 2002.

PKV

+
14. Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Seung Geol Choi, Wesley

George, Angelos D. Keromytis, and Steve Bellovin. Blind Seer: A salable private DBMS. In IEEE

Symposium on Seurity and Privay (S&P'14), pages 359�374. IEEE, 2014.

22

http://encrypto.de/code/FairplayPF
http://eprint.iacr.org/2016/017

PSS09. Annika Paus, Ahmad-Reza Sadeghi, and Thomas Shneider. Pratial seure evaluation of semi-private

funtions. In Applied Cryptography and Network Seurity (ACNS'09), volume 5536 of LNCS, pages 89�106.

Springer, 2009.

Sh08. Thomas Shneider. Pratial seure funtion evaluation. Master's thesis, University Erlangen-Nürnberg,

Germany, February 27, 2008.

SS08. Ahmad-Reza Sadeghi and Thomas Shneider. Generalized universal iruits for seure evaluation of private

funtions with appliation to data lassi�ation. In Information Seurity and Cryptology (ICISC'08),

volume 5461 of LNCS, pages 336�353. Springer, 2008.

SYY99. Tomas Sander, Adam L. Young, and Moti Yung. Non-interative ryptoomputing for NC

1
. In Foundations

of Computer Siene (FOCS'99), pages 554�567. IEEE, 1999.

TS15. Stefan Tillih and Nigel Smart, 2015. http://www.s.bris.a.uk/Researh/CryptographySeurity/MPC/.

Val76. Leslie G. Valiant. Universal iruits (preliminary report). In ACM Symposium on Theory of Comput-

ing (STOC'76), pages 196�203. ACM, 1976.

Weg87. Ingo Wegener. The omplexity of Boolean funtions. Wiley-Teubner, 1987.

Yao82. Andrew Chi-Chih Yao. Protools for seure omputations (extended abstrat). In Foundations of Com-

puter Siene (FOCS'82), pages 160�164. IEEE, 1982.

Yao86. Andrew Chi-Chih Yao. How to generate and exhange serets (extended abstrat). In Foundations of

Computer Siene (FOCS'86), pages 162�167. IEEE, 1986.

A Glossary

UC Universal iruit, a iruit that an be programmed to evaluate

any iruit up to a given size

�1

SFE Seure funtion evaluation �1

PFE Private funtion evaluation �1

OT Oblivious Transfer �1.1

G = (V,E) G graph with node set V = {1, . . . , n} and set of edges E ⊆ V ×V �2.1

n Size of graph G, the number of nodes in graph G �2.1

Fanin A graph has fanin ℓ if eah of its nodes has at most ℓ ingoing

edges

�2.1

Fanout A graph has fanout ℓ if eah of its nodes has at most ℓ outgoing

edges

�2.1

Γℓ(n) The set of all graphs with fanin and fanout ℓ and n nodes �2.1

Un Edge-universal graph for Γ1(n) �2.1

pi Distinguished nodes in Un, alled poles, with fanin and fanout 1 �2.1

Superpole A pole that is obtained by merging two poles of the edge-universal

graph, with uni�ed inoming and outgoing edge set

�2.1

Supernode A node that is obtained by merging two nodes as one in a graph,

with uni�ed inoming and outgoing edge set

�2.1

G1, G2 Given G = (V,E) ∈ Γ2(n), G1 = (V,E1) and G2 = (V,E2) are
two Γ1(n) graphs with edge sets E1 and E2, where E = E1 ∪ E2

�2.1

Un,1, Un,2 Un,1 = (V1, E1) and Un,2 = (V2, E2) are two edge-universal graphs

for Γ1(n), that build up and edge-universal graph U
(2)
n = (V,E)

for Γ2(n) by merging their poles, i.e. {p0, p1, . . . , pn} ⊆ {V1∩V2},
E1 ∩ E2 = ∅ and V = V1 ∪ V2 and E = E1 ∪ E2

�2.1

u Number of inputs in simulated iruit C �2.1

v Number of outputs in simulated iruit C �2.1

k Number of gates in simulated iruit C �2.1

k∗ Number of gates in fanout-2 iruit equivalent to simulated ir-

uit C, k ≤ k∗ ≤ 2k + v

�2.1

GC
Graph of iruit C �2.1

23

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

Universal gate U A gate that omputes any funtion with two inputs and one out-

put, using four ontrol bits c0, c1, c2, c3 as in Equation 1

�2.1

X gate A two-output universal swith, that returns its two input values

either in the same or in reversed order depending on ontrol bit c

�2.1

Y gate A one-output universal swith, that returns one of the two input

values depending on ontrol bit c

�4.1

Su
v Seletion blok from [KS08b℄, di�erent onstrutions are given

depending on if u ≥ v, v ≥ u or v = 2u
�2.2

TP
u≥v
v Trunated permutation blok from [KS08b℄ �2.2

UBk Universal blok from [KS08b℄ �2.2

size of graph Number of nodes �3

depth of graph Number of nodes in the longest path �3

size of iruit Number of gates in total �3

depth of iruit Maximum number of gates between any input and output �3

ANDsize Number of AND gates �3

ANDdepth Maximum number of AND gates between any input and output �3

Exat(n) Number of nodes other than poles in Un edge-universal graph �3.1

size(X) Size of the universal swith, in our ase the ANDsize, where

ANDsize(X) = ANDsize(Y) = 1
�3.2

size(U) Size of the universal gate, in our ase the ANDsize, where

ANDsize(U) = 3 for the GMW protool [GMW87℄, and

ANDsize(U) = 1 for Yao's protool [Yao86℄

�3.2

depth(X) Depth of the universal swith, in our ase the ANDdepth, where

ANDdepth(X) = ANDdepth(Y) = 1
�3.2

depth(U) Depth of the universal gate, in our ase the ANDdepth, where

ANDdepth(U) = 2 for the GMW protool [GMW87℄, and

ANDdepth(U) = 1 for Yao's protool [Yao86℄

�3.2

UC
Valiant

u,v,k∗ Valiant's universal iruit for iruits with u inputs, v outputs

and k∗ gates

�3.2

UC
many I

k∗,c,k∗ Our many input hybrid onstrution with Valiant's UC and input

seletion blok from [KS08b℄

�3.2

UC
max I/O

2k∗,k∗,k∗ Our maximal I/O hybrid onstrution with Valiant's UC, input

seletion blok and output permutation blok from [KS08b℄

�3.2

SHDL Seure Hardware Desription Language: the iruit desription

language of the Fairplay ompiler [MNPS04℄

B K®nig-Hall Theorem Example

In Figure 7, we give an example partitioning using the K®nig-Hall theorem [K®31,LP09b℄. This algorithm is

used for the edge-embedding of any graph into Valiant's edge-universal graph when reating a supergraph

(f. Algorithm 1).

C Size of the Universal Ciruit Constrution in [KS08b℄

The universal iruit onstrution in [KS08b℄ is built up of one-output universal swithes, so-alled Y gates

and of two-output universal swithes, X gates. In [KS08b℄, the size of the onstrution was alulated

assuming size(X) = 2, but due to the results of [KS08a℄, size(X) = 1. The depth of the building bloks

remain as alulated in [KS08b℄. Sine the onstrution uses large bloks built up of X gates, this result

has a signi�ant e�et when ounting the size of the onstrution. Throughout the alulation, we use the

notations introdued in [KS08b℄, and for the detailed desription of the building bloks, the reader is referred

24

1

6 12

11

2

3

7

810

4

9

(a) Example G = (V,E).

1

6 12

11

2

3

7

810

4

9

(b) Result G1 = (V,E1).

1

6 12

11

2

3

7

810

4

9

() Result G2 = (V,E2).

4th 3rd 8th7th2nd 1st 2nd 9th 6th 5th 10th 11th

PSfrag replaements

m′
6 m′

12 m′
11m′

3m′
7 m′

8 m′
10 m′

9

m1 m3 m4 m2 m6 m7 m8

(d) Bipartite G = (V ,E) with random order of oloring.

Fig. 7: An example partitioning using K®nig-Hall theorem with randomly hosen edges.

to [KS08b℄. The size of the so-alled mixing blok remains the same as in [KS08b℄, sine it is built only from

Y gates, i.e., size(Mk) = k · size(Y) = k. A permutation blok Pu
u is built from X gates and is thus half the

size as was proposed in [KS08b℄, size(Pu
u) = u logu− u+ 1. Su

1 seletion blok is implemented as (u− 1) Y
bloks and thus, its size beomes u−1. The rest of the building bloks of the onstrution rely on these small

building bloks and thus beome smaller than the original alulation by around a fator of two. TP
u≥v
v

denotes the trunated permutation blok that permutes a subset of v ≤ u of the inputs to the v outputs.

EP
u
v≥u denotes the expanded permutation blok that permutes the u inputs to a subset of u of the v ≥ u

outputs.

size(TPu≥v
v) = v · size(S

u/v
1) +

log v−1
∑

i=0

2i
(u

2i+1
+

v

2i+1
− 1

)

· size(X) = 0.5(u+ v) log v − 2v + u+ 1. (23)

size(EPu
v≥u) =

log u−1
∑

i=0

2i
(u

2i+1
+

v

2i+1
− 1

)

= 0.5(u+ v) log u− u+ 1. (24)

size(Su≥v
v) = size(TPu≥v

v) + (v − 1) + size(P v
v) = 0.5(u+ 3v) log v − 2v + u+ 1. (25)

size(Su
v≥u) = size(EPu

v≥u) + (v − 1) + size(P v
v) = 0.5(u+ v) log u+ v log v − u+ 1. (26)

size(Su
2u) = size(Pu

u) + (2u− 1) + size(P 2u
2u) = 3u logu+ u+ 1. (27)

size(UBk) = 2size(UBk/2) + size(S
k/2
k) + size(Mk)

= k · size(U) +

log k−1
∑

i=0

2i(size(S
k/2i+1

k/2i) + size(Mk/2i))

25

in1, in2, . . . , inu

Su
2k≥u

O(k log k)

UBk

O(k log2 k)

TP k≥v
v

O(k log v)

out1, out2, . . . , outv

O
(k

lo
g
k
)

O
(k
)

O
(l
o
g
k
)

(a) [KS08b℄ UC

in1, in2, . . . , inu

Su
2k≥u

O(k log k)

UCValiant

k∗

O(k log k)

TP k≥v
v

O(k log v)

out1, out2, . . . , outv

O
(k
)

O
(k
)

O
(l
o
g
k
)

(b) Hybrid, maximal I/O

in1, in2, . . . , inu

Su
2k≥u

O(k log k)

UCValiant

v+k∗

O(k log k)

out1, out2, . . . , outv
O
(k
)

O
(k
)

() Hybrid, many inputs

in1, in2, . . . , inu

UCValiant

u+v+k∗

O(k log k)

out1, out2, . . . , outv

O
(k
)

(d) Valiant UC

Fig. 8: Struture of the di�erent UC onstrutions with their respetive asymptoti sizes (horizontal) and

depths (vertial).

= k +

log k−1
∑

i=0

2i
(

3k

2i+1
log

(

k

2i+1

)

+
k

2i+1
+ 1 +

k

2i

)

= 0.75k log2 k + 0.75k log k + 2k − 1. (28)

size(UBk)opt = size(UBk)−∆size(UBk)

= 0.75k log2 k + 0.75k log k + 2k − 1− 0.5(k log k − 2k + 2)

= 0.75k log2 k + 0.25k log k + 3k − 2. (29)

We observe that eah output of a gate that is simulated in the UC an our at most one as output of

the iruit. Hene, one an use a more e�ient trunated permutation blok instead of a seletion blok for

the outputs (f. Figure 8a). Therefore, we get

size(UC
[KS08b℄

u,v ,k) = size(UBk)opt + size(Su
2k≥u) + size(TPk≥v

v)

=
(

0.75k log2 k + 0.25k log k + 3k − 2
)

+ (0.5(u+ 2k) log u+ 2k log k + 2k − u+ 1)

+ (0.5(k + v) log v − 2v + k + 1)

= 0.75k log2 k + 2.25k log k + (0.5u+ k) log u+ (0.5k + 0.5v) log v + 6k − u− 2v. (30)

depth(UC
[KS08b℄

u,v ,k) = depth(UBk)opt + depth(Su
2k≥u) + depth(TPk≥v

v)

= (k log2 k + 4 log2 k − 12) + (2 log2 u+ 2 log2 k + 2k − 1) + (log2 k + log2 v − 1)

= k log2 k + 2k + 7 log2 k + 2 log2 u+ log2 v − 14. (31)

D Comparison of Universal Ciruit Construtions

Figure 9 shows a omparison of the di�erent UC onstrutions for the ase with the maximum number of

opy gates, i.e., k∗ = 2k + v in the three senarios disussed in �3.2. However, this is the absolute maximal

26

0

5 · 106

1 · 107

1.5 · 107

2 · 107

0 10000 20000 30000 40000 50000

2.23 · 107

1.07 · 107

7.12 · 106

1.27 · 107
1.23 · 107
1.20 · 107

2.11 · 107

S

i

z

e

o

f

t

h

e

u

n

i

v

e

r

s

a

l

i

r

u

i

t

U
u
,v

,k
∗

Number of fanin-fanout-2 gates k∗ = 2k + v

Valiant's UC, maximal I/O

Valiant's UC, many inputs

Valiant's UC, onstant I/O

[KS08b℄ UC, maximal I/O

[KS08b℄ UC, many inputs

[KS08b℄ UC, onstant I/O

Hybrid, maximal I/O

Hybrid, many inputs

Fig. 9: Comparison between the sizes of the UC onstrutions for k∗ = 2k + v ∈ {0, . . . , 50 000} gates,

onsidering the three senarios: onstant I/O with onstant number of inputs and outputs, many inputs

with ∼ k inputs and onstant outputs and maximal I/O with ∼ 2k inputs and ∼ k outputs.

value and as shown in Table 1, the fator is in many pratial iruits well below 2. In this ase we an see

that neither of our hybrid methods are bene�ial to use: for the maximal I/O ase, the best hoie is the

UC onstrution from [KS08b℄ for iruits with reasonable sizes, while for the many inputs and onstant I/O

ases, Valiant's onstrution performs best. The reason for this is that the size of the input seletion blok

in [KS08b℄ depends on the number of gates as well and is onstruted for 2k∗, resulting in a larger overhead

when k∗ = 2k + v. However, in the maximal I/O ase we an see that Valiant's UC, though asymptotially

smaller, performs worse than the onstrution from [KS08b℄. This is due to the fat that when v ∼ k the

k∗ ∼ 3k and we have u ∼ 2k, so we onstrut an edge-universal graph with ∼ 5k poles. Therefore, we

onlude that when designing appliations using universal iruits, one needs to alulate whih onstrution

is the most bene�ial for the given senario. As a guideline, we depit the struture of the di�erent UC

onstrutions in Figure 8 along with their asymptotial sizes and depths.

size(UCmany I

u,v,k∗) ≈ size(UC opt

0 ,v ,k∗) + size(Su
2k∗+2v≥u)

≈ [(5(v + k∗) log2(v + k∗)− 17k∗ − 19v + 7.5 log2(v + k∗) + 24)

+ ((0.5u+ k∗ + v) log2 u+ (2k∗ + 2v) log2(2k
∗ + 2v)− u+ 1)] · size(X) + k∗ · size(U). (32)

depth(UCmany I

u,v,k∗) ≈ depth(UC opt

0 ,v ,k∗) + depth(Su
2k∗+2v≥u)

≈ [(u + 2k∗ + 3) + (2 log2 u+ 2 log2(2k
∗ + 2v) + (2k∗ + 2v)− 2)] · depth(X)

+ k∗ · depth(U). (33)

27

Ciruit u k v k∗ − k (

k∗

k
) [KS08b℄ Maximal I/O Many Inputs Valiant

AES-non-exp 256 31 924 128 15 312 (1.48) 6.994 · 106 3.899 · 106 3.698 · 106 3.022 · 106

AES-exp 1 536 25 765 128 11 794 (1.46) 5.515 · 106 3.052 · 106 2.893 · 106 2.422 · 106

DES-non-exp 128 19 464 64 10 871 (1.56) 3.899 · 106 2.380 · 106 2.264 · 106 1.847 · 106

DES-exp 832 19 526 64 10 361 (1.53) 3.966 · 106 2.355 · 106 2.241 · 106 1.860 · 106

md5 512 43 234 128 31 083 (1.72) 9.987 · 106 6.431 · 106 6.108 · 106 5.003 · 106

sha-1 512 61 466 160 45 977 (1.75) 1.501 · 107 9.681 · 106 9.196 · 106 7.534 · 106

sha-256 512 132 854 256 87 814 (1.66) 3.647 · 107 2.133 · 107 2.026 · 107 1.658 · 107

add_32 64 188 33 123 (1.65) 13 929 12 528 13 005 11864

add_64 128 380 65 237 (1.62) 34 284 29 006 29 930 27452

omp_32 64 150 1 60 (1.4) 10 056 7 547 7 384 7030

mult_32x32 64 6 995 64 5 678 (1.81) 1.162 · 106 896 949 851 440 693356

Branhing_18 72 121 4 3 (1.02) 7 749 4 347 4 253.23 4576

CreditCheking 25 50 1 6 (1.12) 2 337 1 438 1 414 1376

MobileCode 80 64 16 0 (1) 3 432 2 380 2 713 3260

Table 4: Comparison between the iruit sizes for a sample of real-life iruits [TS15℄, onsidering all the UC

onstrutions inluding our hybrid methods.

size(UC
max I/O

u,v,k∗) ≈ size(UC opt

0 ,0 ,k∗) + size(Su
2k∗≥u) + size(TPk∗≥v

v)

≈ [(5k∗ log2 k
∗ − 17k∗ + 7.5 log2(k

∗) + 24)

+ ((0.5u+ k∗) log2 u+ (2k∗) log2(2k
∗)− u+ 1)

+ (0.5(k∗ + v) log2 v − 2v + k∗ + 1)] · size(X) + k∗ · size(U). (34)

depth(UCmany I

u,v,k∗) ≈ depth(UC opt

0 ,0 ,k∗) + depth(Su
2k∗≥u) + depth(TPk∗≥v

v)

≈ [(2k∗ + 3) + (2 log2 u+ 2 log2(2k
∗) + (2k∗)− 2)

+ (log2 k
∗ + log2 v − 1)] · depth(X) + k∗ · depth(U). (35)

E End Cases for Edge-Embedding Γ1 Graphs into Un

The embedding of (i, j) is ready in one of the following three senarios:

1. Leaf: there are no subgraphs in G anymore,

2. Superpole: ⌈ j
2⌉ − 1 < ⌈ i

2⌉, and therefore (⌈ i
2⌉, ⌈

j
2⌉ − 1) annot be found in any of the supergraphs

anymore, in whih ase i is odd and j = i + 1, and the path between pi and pi+1 in the skeleton as in

Figures 1a�1b goes diretly through one swithing node without entering a subgraph, or

3. Subpole: ⌈ j
2⌉− 1 = ⌈ i

2⌉ and therefore is represented by a loop in a subgraph, in whih ase i is even and

j = i+ 1, and the path between pi and pi+1 as in Figures 1a�1b goes diretly through one subpole and

two to four swithing nodes. In this ase, whih subpole is used is de�ned by the supergraph G.

Figure 10 shows the one-to-one orrespondene between the subgraphs in the supergraph SuperGraph(n)
and in the edge-universal graph Un and examples for all the three end ases.

28

Γ1(n)

Γ1⌈
n−2

2
⌉

Γ1⌈
⌈n−2

2
⌉−2

2
⌉

.

.

.

Γ1⌈
n

2log2 n ⌉

.

.

.

Γ1⌊
⌈n−2

2
⌉−2

2
⌋

.

.

.

.

.

.

Γ1⌊
n−2

2
⌋

Γ1⌈
⌊n−2

2
⌋−2

2
⌉

.

.

.

.

.

.

Γ1⌊
⌊n−2

2
⌋−2

2
⌋

.

.

.

.

.

.

Γ1⌊
n

2log2 n ⌋· · ·

Fig. 10: End ases for the edge-embedding of Γ1 graphs into Valiant's edge-universal graph Un

29

	Valiant's Universal Circuit is Practical

