
Complete addition formulas for prime order
elliptic curves

Joost Renes1, Craig Costello2, and Lejla Batina1

1 Radboud University, Digital Security, Nijmegen, The Netherlands
{j.renes, lejla}@cs.ru.nl

2 Microsoft Research, Redmond, USA
craigco@microsoft.com

Abstract. An elliptic curve addition law is said to be complete if it cor-
rectly computes the sum of any two points in the elliptic curve group.
One of the main reasons for the increased popularity of Edwards curves
in the ECC community is that they can allow a complete group law that
is also relatively efficient (e.g., when compared to all known addition
laws on Edwards curves). Such complete addition formulas can simplify
the task of an ECC implementer and, at the same time, can greatly re-
duce the potential vulnerabilities of a cryptosystem. Unfortunately, until
now, complete addition laws that are relatively efficient have only been
proposed on curves of composite order and have thus been incompatible
with all of the currently standardized prime order curves.
In this paper we present optimized addition formulas that are complete
on every prime order short Weierstrass curve defined over a field k with
char(k) 6= 2, 3. Compared to their incomplete counterparts, these formu-
las require a larger number of field additions, but interestingly require
fewer field multiplications. We discuss how these formulas can be used to
achieve secure, exception-free implementations on all of the prime order
curves in the NIST (and many other) standards.

1 Introduction

Extending the works of Lange–Ruppert [48] and Bosma–Lenstra [19],
Arène, Kohel and Ritzenthaler [4] showed that, under any projective em-
bedding of an elliptic curve E/k, every addition law has pairs of excep-
tional points in (E×E)(k̄). That is, over the algebraic closure of k, there
are always pairs of points for which a given elliptic curve addition law
does not work.

Fortunately, in elliptic curve cryptography (ECC), we are most often
only concerned with the k-rational points on E. In this case it is possible
to have a single addition law that is well-defined on all pairs of k-rational

This work was supported in part by the Technology Foundation STW (project 13499
- TYPHOON), from the Dutch government.



2 Joost Renes, Craig Costello, and Lejla Batina

points, because its exceptional pairs are found in (E × E)(k̄), but not
in (E × E)(k). A celebrated example of this is the Edwards model [31];
when suitably chosen [12], an Edwards curve has a simple addition law
that works for all pairs of k-rational points. This phenomenon was char-
acterized more generally over elliptic curves by Kohel [47], and further
generalized to arbitrary abelian varieties in [4]. For our purposes it suf-
fices to state a special case of the more general results in [47, 4]: namely,
that every elliptic curve E over a finite field Fq (with q ≥ 5) has an Fq-
complete addition law corresponding to the short Weierstrass model in
P2(Fq).

Addition laws that are Fq-complete are highly desirable in ECC. They
can significantly simplify the task of an implementer and greatly reduce
the potential vulnerabilities of a cryptosystem. We elaborate on this be-
low.

Our contributions. In Algorithm 1 we present optimized point addition
formulas that correctly compute the sum of any two points on any odd or-
der elliptic curve E/Fq : y2 = x3+ax+b with q ≥ 5. We do not claim credit
for the complete formulas themselves, as these are exactly the formulas
given by Bosma and Lenstra two decades ago [19]. What is novel in this
paper is optimizing the explicit computation of these formulas for cryp-
tographic application. In particular, Table 1 shows that the computation
of the Bosma–Lenstra complete additions can be performed using fewer
general field multiplications than the best known (incomplete!) addition
formulas on short Weierstrass curves: excluding multiplications by curve
constants and field additions, the explicit formulas in this paper com-
pute additions in 12 field multiplications (12M), while the fastest known
addition formulas in homogeneous coordinates require 14 field multipli-
cations (12M+ 2S) and the fastest known addition formulas in Jacobian
coordinates require 16 field multiplications (11M+ 5S). We immediately
note, however, that our explicit formulas incur a much larger number of
field additions than their incomplete counterparts. Thus, as is discussed
at length below, the relative performance of the complete additions will
be highly dependent on the platform and/or scenario. However, we stress
that outperforming the incomplete addition formulas is not the point of
this paper: our aim is to provide the fastest possible complete formulas
for prime order curves.

Wide applicability. While the existence of an Fq-complete addition law
for prime order Weierstrass curves is not news to mathematicians (or to



Complete addition formulas for prime order elliptic curves 3

addition excep. ADD(P ,Q) excep. DBL(P )

formulas a Q in in ref.

ADD(P,Q) M S ma mb a DBL(P ) M S ma mb a

complete
any

none

12 0 3 2 23

none

8 3 3 2 15
this

homog.
−3 12 0 0 2 29 8 3 0 2 21

work
0 12 0 0 2 19 6 2 0 1 9

incomplete
any

±P , O
12 2 0 0 7

O
5 6 1 0 12 [27, 15]

homog.
−3 12 2 0 0 7 7 3 0 0 11 [27, 15]

0 - - -

incomplete
any

±P , O
12 4 0 0 7

none

3 6 1 0 13 [27]

Jacobian
−3 12 4 0 0 7 4 4 0 0 8 [27, 51]

0 12 4 0 0 7 3 4 0 0 7 [27, 42]

Table 1. Summary of explicit formulas for the addition law on prime order short
Weierstrass elliptic curves E/k : y2 = x3 + ax + b in either homogeneous (homog.)
coordinates or Jacobian coordinates, and the corresponding exceptions (excep.) in both
points doublings (DBL) and point additions (ADD). Here the operation counts include
multiplications (M), squarings (S), multiplications by a (ma), multiplications by (small
multiples of) b (mb), and additions (a), all in the ground field k. We note that various
trade-offs exist with several of the above formulas, in particular for point doublings in
Jacobian coordinates – see [15].

anyone that has read, e.g., [19, 4]), we hope it might be a pleasant surprise
to ECC practitioners. In particular, the benefits of completeness are now
accessible to anyone whose task it is to securely implement the prime
order curves in the standards. These include:

– The example curves originally specified in the working drafts of the
American National Standards Institute (ANSI), versions X9.62 and
X9.63 [1, 2].

– The five NIST prime curves specified in the current USA digital sig-
nature standard (DSS), i.e., FIPS 186-4 – see [55, 56]. This includes
Curve P-384, which is the National Security Agency (NSA) recom-
mended curve in the most recent Suite B fact sheet for both key ex-
change and digital signatures [60, 28]; Curve P-256, which is the most
widely supported curve in the Secure Shell (SSH) and Transport Layer
Security (TLS) protocol [17, §3.2-3.3]; and Curve P-192, which is the
most common elliptic curve used in Austria’s national e-ID cards [17,
§3.4].

– The seven curves specified in the German brainpool standard [30], i.e.,
brainpoolPXXXr1, where XXX ∈ {160, 192, 224, 256, 320, 384, 512}.

– The eight curves specified by the UK-based company Certivox [23],
i.e., ssc-XXX, where XXX ∈ {160, 192, 224, 256, 288, 320, 384, 512}.



4 Joost Renes, Craig Costello, and Lejla Batina

– The curve FRP256v1 recommended by the French Agence nationale
de la sécurité des systèmes d’information (ANSSI) [3].

– The three curves specified (in addition to the above NIST prime
curves) in the Certicom SEC 2 standard [22]. This includes secp256k1,
which is the curve used in the Bitcoin protocol.

– The recommended curve in the Chinese SM2 digital signature algo-
rithm [25].

– The example curve in the Russian GOST R 34.10 standard [35].

In particular, implementers can now write secure, exception-free code
that supports all of the above curves without ever having to look further
than Algorithm 1 for curve arithmetic. Moreover, in §5.2 we show how
Algorithm 1 can easily be used to securely implement the two composite
order curves, Curve25519 [7] and Ed448-Goldilocks [39], recently recom-
mended for inclusion in future versions of TLS by the Internet Research
Task Force Crypto Forum Research Group (IRTF CFRG).

Side-channel protection. Real-world implementations of ECC have a num-
ber of potential side-channel vulnerabilities that can fall victim to simple
timing attacks [46] or exceptional point attacks [43, 32]. One of the main
reasons these attacks pose a threat is the branching that is inherent in the
schoolbook short Weierstrass elliptic curve addition operation. For exam-
ple, among the dozens of if statements in OpenSSL’s3 standard addition
function “ec GFp simple add”, the initial three that check whether the
input points are equal, opposite, or at infinity can cause timing variabil-
ity (and therefore leak secret data) in ECDH or ECDSA. The complete
formulas in this paper remove these vulnerabilities and significantly de-
crease the attack surface of a cryptosystem. As Bernstein and Lange point
out [13], completeness “eases implementations” and “avoids simple side-
channel attacks”.

Although it is possible to use incomplete formulas safely, e.g., by care-
fully deriving uniform scalar multiplication algorithms that avoid excep-
tional pairs of inputs, implementing these routines in constant-time and in
a provably correct way can be a cumbersome and painstaking process [16,
§4]. Constant-time ECC implementations typically recode scalars from
their binary encoding to some other form that allows a uniform execution
path (cf. Okeya-Tagaki [57] and Joye-Tunstall [44]), and these recodings
can complicate the analysis of exceptional inputs to the point addition
functions. For example, it can be difficult to prove that the running value

3 See ec smpl.c in crypto/ec/ in the latest release at http://openssl.org/source/.



Complete addition formulas for prime order elliptic curves 5

in a scalar multiplication is never equal to (or the inverse of) elements in
the lookup table; if this equality occurs before an addition, the incomplete
addition function is likely to fail. Furthermore, guaranteeing exception-
free, constant-time implementations of more exotic scalar multiplication
routines, e.g., multiscalar multiplication for ECDSA verification, fixed-
base scalar multiplications [49], scalar multiplications exploiting endo-
morphisms [34], or scalar multiplications using common power analysis
countermeasures [29, 33], is even more difficult; that is, unless the routine
can call complete addition formulas.

Performance considerations. While the wide applicability and correctness
of Algorithm 1 is at the heart of this paper, we have also aimed to cater to
implementers that do not want to sacrifice free performance gains, partic-
ularly those concerned with supporting a special curve or special family
of curves. To that end, Algorithms 2-9 give faster complete addition for-
mulas in the special (and standardized) cases that the Weierstrass curve
constant a is a = −3 or a = 0, and in the special cases of point doublings;
Table 1 summarizes the operation counts for all of these scenarios.

As we mentioned above, outperforming the (previously deployed) in-
complete addition formulas is not the point of this paper. Indeed, the high
number of field additions present in our complete addition algorithms are
likely to introduce an overall slowdown in many scenarios. To give an idea
of this performance hit in a common software scenario, we plugged our
complete addition algorithms into OpenSSL’s implementation of the five
NIST prime curves. Using the openssl speed function to benchmark the
performance of the existing incomplete formulas and the new complete
formulas shows that the latter incurs between a 1.34x and 1.44x slowdown
in an average run of the elliptic curve Diffie-Hellman (ECDH) protocol
(see Table 2 for the full details). As we discuss below, and in detail in §5.3,
this factor slowdown should be considered an upper bound on the differ-
ence in performance between the fastest incomplete algorithms and our
complete ones.

On the contrary, there are example scenarios where plugging in the
complete formulas will result in an unnoticeable performance difference,
or possibly even a speedup. For example, compared to the incomplete
addition function secp256k1 gej add var used in the Bitcoin code4, our
complete addition function in Algorithm 7 saves 4S at the cost of 8a +

4 See https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1.



6 Joost Renes, Craig Costello, and Lejla Batina

1mul int5; compared to Bitcoin’s incomplete mixed addition function
secp256k1 gej add ge var, our complete mixed addition saves 3S at the
cost of 3M+2a+1mul int; and, compared to Bitcoin’s doubling function
secp256k1 gej double var, our formulas save 2S+ 5mul int at the cost
of 3M+3a. In this case it is unclear which set of formulas would perform
faster, but it is likely to be relatively close and to depend on the underlying
field arithmetic and/or target platform. Furthermore, the overall speed
is not just dependent on the formulas: the if statements present in the
Bitcoin code also hamper performance. On the contrary, the complete
algorithms in this paper have no if statements.

There are a number of additional real-world scenarios where the per-
formance gap between the incomplete and the complete formulas will not
be as drastic as the OpenSSL example above. The operation counts in
Table 1 and Table 3 suggest that this will occur when the cost of field
multiplications and squarings heavily outweighs the cost of field addi-
tions. The benchmarks above were obtained on a 64-bit processor, where
the M/a ratio tends to be much lower than that of low-end (e.g., 8-, 16-,
and 32-bit) architectures. For example, field multiplications on wireless
sensor nodes commonly require over 10 times more clock cycles than a
field addition (e.g., see [50, Table 1] and [59, Table 1]), and in those cases
the complete formulas in this paper are likely to be very competitive in
terms of raw performance.

In any case, we believe that many practitioners will agree that a small
performance difference is a worthwhile cost to pay for branch-free point
addition formulas that culminate in much simpler and more compact
code, which guarantees correctness of the outputs and eliminates several
side-channel vulnerabilities. We also note that the Bitcoin curve is not an
isolated example of the more favorable formula comparison above: all of
the most popular pairing-friendly curves, including Barreto-Naehrig (BN)
curves [5] which have appeared in recent IETF drafts6, also have a = 0. In
those cases, our specialized, exception-free formulas give implementers an
easy way to correctly implement curve arithmetic in both G1 and G2 in
the setting of cryptographic pairings. On a related note, we point that the
word “prime” in our title can be relaxed to “odd”; the completeness of the
Bosma–Lenstra formulas only requires the non-existence of rational two-
torsion points (see Sections 2 and 3), i.e., that the group order #E(Fq) is
not even. BN curves define G2 as (being isomorphic to) a proper subgroup

5 mul int denotes the cost of Bitcoin’s specialized function that multiplies field ele-
ments by small integers.

6 See http://datatracker.ietf.org/doc/draft-kasamatsu-bncurves-01.



Complete addition formulas for prime order elliptic curves 7

of a curve E′/Fp2 , whose group order #E′(Fp2) is the product of a large
prime with odd integers [5, §3], meaning that our explicit formulas are
not only complete in G2 ⊂ E′(Fp2), but also in E′(Fp2).

Related work. Complete addition laws have been found and studied
on non-Weierstrass models of elliptic curves, e.g., on the (twisted) Ed-
wards [12, 8] and (twisted) Hessian models [9]. Unfortunately, in all of
those scenarios, the models are not compatible with prime order curves
and therefore all of the standardized curves mentioned above.

In terms of obtaining a complete and computationally efficient addi-
tion algorithm for prime order curves, there has been little success to date.
Bernstein and Lange [13] found complete formulas on a non-Weierstrass
model that would be compatible with, e.g., the NIST curves, reporting
explicit formulas that (ignoring additions and multiplications by curve
constants) cost 26M + 8S. Bos et al. [16] considered applying the set
of two Bosma–Lenstra addition laws to certain prime order Weierstrass
curves, missing the observation (cf. [4, Remark 4.4]) that one of the ad-
dition laws is enough, and abandoning the high cost of computing both
addition laws for an alternative but more complicated approach towards
side-channel protection [16, Appendix C]. Brier and Joye [20] developed
unified formulas7 for general Weierstrass curves, but these formulas still
have exceptions and (again, ignoring additions and multiplications by
curve constants) require 11M+ 6S, which is significantly slower than our
complete algorithms.

Prime order curves can be safe. Several of the standardized prime
order curves mentioned above have recently been critiqued in [14], where
they were deemed not to meet (some or all of) the four “ECC security”
requirements: (i) Ladder, (ii) Twists, (iii) Completeness, and (iv) Indis-
tinguishability.

On the contrary, this paper shows that prime order curves have com-
plete formulas that are comparably efficient. In addition, Brier and Joye [20,
§4] extended the Montgomery ladder to all short Weierstrass curves.
In particular, when E/Fq : y2 = x3 + ax + b is a prime order curve,
their formulas give rise to a function ladder that computes x([m]P ) =
ladder(x(P ),m, a, b) for the points P ∈ E(Fq2) with (x, y) ∈ Fq × Fq2 ,
that is, a function that works for all x ∈ Fq and that does not distinguish
whether x corresponds to a point on the curve E, or to a point on its

7 These are addition formulas that also work for point doublings.



8 Joost Renes, Craig Costello, and Lejla Batina

quadratic twist E′ : dy2 = x3 + ax+ b, where d is non-square in Fq. If E
is chosen to be twist-secure (this presents no problem in the prime order
setting), then for all x ∈ Fq, the function ladder(x,m, a, b) returns an in-
stance of the discrete logarithm problem (whose solution is m) on a cryp-
tographically strong curve, just like the analogous function on twist-secure
Montgomery curves [7]. Finally, we note that Tibouchi [61] presented a
prime-order analogue of the encoding given for certain composite-order
curves in [11], showing that the indistinguishability property can also be
achieved on prime order curves.

As is discussed in [14], adopting the Brier-Joye ladder (or, in our case,
the complete formulas) in place of the fastest formulas presents imple-
menters with a trade-off between “simplicity, security and speed”. How-
ever, these same trade-offs also exist on certain choices of Edwards curves,
where, for example, the fastest explicit formulas are also not complete:
the Curve41417 implementation chooses to sacrifice the fastest coordi-
nate system for the sake of completeness [10, §3.1], while the Goldilocks
implementation goes to more complicated lengths to use the fastest for-
mulas [37–39]. Furthermore, there is an additional category that is not
considered in [14], i.e., the non-trivial security issues related to having a
cofactor h greater than 1 [38, §1.1].

Given the complete explicit formulas in this paper, it is our opin-
ion that well-chosen prime order curves can be considered safe choices for
elliptic curve cryptography. It is well-known that curves with cofactors of-
fer efficiency benefits in certain scenarios, but to our knowledge, efficiency
and/or bandwidth issues are the only valid justifications for choosing a
curve with a cofactor h > 1.

Organization. Section 2 briefly gives some preliminaries and notation.
Section 3 presents the complete addition algorithms. In Section 4 we give
intuition as to why these explicit formulas are optimal, or close to optimal,
for prime order curves in short Weierstrass form. In Section 5 we discuss
how these formulas can be used in practice. For Magma [18] scripts that
can be used to verify our explicit algorithms and operation counts, we
point the reader to the full version of this paper [58].

2 Preliminaries

Let k be a field of characteristic not two or three, and P2(k) be the
homogeneous projective plane of dimension two. Two points (X1 : Y1 : Z1)



Complete addition formulas for prime order elliptic curves 9

and (X2 : Y2 : Z2) in P2(k) are equal if and only if there exist λ ∈ k×
such that (X1, Y1, Z1) = (λX2, λY2, λZ2).

Let E/k be an elliptic curve embedded in P2(k) as a Weierstrass model
E/k : Y 2Z = X3 + aXZ2 + bZ3. The points on E form an abelian group
with identity O = (0 : 1 : 0). An addition law on E is a triple of polyno-
mials (X3, Y3, Z3) such that the map

P,Q 7→ (X3(P,Q) : Y3(P,Q) : Z3(P,Q))

determines the group law + on an open subset of (E ×E)(k̄), where k̄ is
the algebraic closure of k. For an extension K of k, a set of such addition
laws is said to be K-complete if, for any pair of K-rational pair of points
(P,Q), at least one addition law in the set is defined at (P,Q).

Lange and Ruppert [48] proved that the space of all addition laws on
E has dimension 3, and Bosma and Lenstra [19] proved that a k̄-complete
set must contain (at least) two addition laws. In other words, Bosma and
Lenstra proved that every addition law on E has at least one exceptional
pair of inputs over the algebraic closure. More recent work by Arène,
Kohel and Ritzenthaler [4] showed that this is true without assuming a
Weierstrass embedding of E. That is, they showed that every elliptic curve
addition law has exceptional pairs over the algebraic closure, irrespective
of the projective embedding.

Following [19], for positive integers µ and ν, we define an addition law
of bidegree (µ, ν) to be a triple of polynomials

X3, Y3, Z3 ∈ k[X1, Y1, Z1, X2, Y2, Z2]

that satisfy the following two properties:

1. The polynomials X3, Y3 and Z3 are homogeneous of degree µ in X1,
Y1 and Z1, and are homogeneous of degree ν in X2 Y2 and Z2;

2. Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be in E(K), where
K is an extension of k. Then either X3, Y3 and Z3 are all zero at P
and Q, or else (X3 : Y3 : Z3) is an element of E(K) and is equal to
P +Q. If the first holds, we say that the pair (P,Q) is exceptional for
the addition law. If there are no exceptional pairs of points, we say
that the addition law is K-complete (note that this is in line with the
definition of a K-complete set of addition laws).

Hereafter, if a single addition law is k-complete, we simply call it complete.



10 Joost Renes, Craig Costello, and Lejla Batina

3 Complete addition formulas

Let E/k : Y 2Z = X3 + aXZ2 + bZ3 ⊂ P2 with char(k) 6= 2, 3. The com-
plete addition formulas optimized in this section follow from the theorem
of Bosma and Lenstra [19, Theorem 2], which states that, for any ex-
tension field K/k, there exists a 1-to-1 correspondence between lines in
P2(K) and addition laws of bidegree (2, 2) on E(K). Two points P and Q
in E(K) are then exceptional for an addition law if and only if P −Q lies
on the corresponding line. When K = k̄, the algebraic closure of k, every
line intersects E(K); thus, one consequence of this theorem is that every
addition law of bidegree (2, 2) has an exceptional pair over the algebraic
closure.

The addition law considered in this paper is the addition law cor-
responding to the line Y = 0 in P2 in [19], specialized to the short
Weierstrass embedding of E above. For two points P = (X1 : Y1 : Z1),
Q = (X2 : Y2 : Z2) on E, the sum (X3 : Y3 : Z3) = P +Q is given by

X3 = Y1Y2(X1Y2 +X2Y1)− aX1X2(Y1Z2 + Y2Z1)

− a(X1Y2 +X2Y1)(X1Z2 +X2Z1)− 3b(X1Y2 +X2Y1)Z1Z2

− 3b(X1Z2 +X2Z1)(Y1Z2 + Y2Z1) + a2(Y1Z2 + Y2Z1)Z1Z2,

Y3 = Y 2
1 Y

2
2 + 3aX2

1X
2
2 + 9bX1X2(X1Z2 +X2Z1)

− 2a2X1Z2(X1Z2 + 2X2Z1) + a2(X1Z2 +X2Z1)(X1Z2 −X2Z1)

− 3abX1Z1Z
2
2 − 3abX2Z

2
1Z2 − (a3 + 9b2)Z2

1Z
2
2 ,

Z3 = 3X1X2(X1Y2 +X2Y1) + Y1Y2(Y1Z2 + Y2Z1)

+ a(X1Y2 +X2Y1)Z1Z2 + a(X1Z2 +X2Z1)(Y1Z2 + Y2Z1)

+ 3b(Y1Z2 + Y2Z1)Z1Z2.

Bosma and Lenstra prove that a pair of points (P,Q) is exceptional for
this addition law if and only if P −Q is a point of order two.

Exceptions. Throughout this paper, we fix q ≥ 5 and assume through-
out that E(Fq) has prime order to exclude Fq-rational points of order
two, so that the above formulas are complete. However, we note that
the explicit algorithms that are derived in Section 3 will, firstly, be com-
plete for any short Weierstrass curves of odd order, and secondly, also be
exception-free for all pairs of points inside odd order subgroups on any
short Weierstrass curve. In particular, this means that they can also be
used to compute exception-free additions and scalar multiplications on
certain curves with an even order. We come back to this in §5.2.



Complete addition formulas for prime order elliptic curves 11

3.1 The general case

Despite the attractive properties that come with completeness, this addi-
tion law seems to have been overlooked due to its apparent inefficiency.
We now begin to show that these formulas are not as inefficient as they
seem, to the point where the performance will be competitive with the
fastest, incomplete addition laws in current implementations of prime or-
der curves.

We start by rewriting the above formulas as

X3 = (X1Y2 +X2Y1)(Y1Y2 − a(X1Z2 +X2Z1)− 3bZ1Z2)

− (Y1Z2 + Y2Z1)(aX1X2 + 3b(X1Z2 +X2Z1)− a2Z1Z2),

Y3 = (3X1X2 + aZ1Z2)(aX1X2 + 3b(X1Z2 +X2Z1)− a2Z1Z2)+

(Y1Y2 + a(X1Z2 +X2Z1) + 3bZ1Z2)(Y1Y2 − a(X1Z2 +X2Z1)− 3bZ1Z2),

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + a(X1Z2 +X2Z1) + 3bZ1Z2)

+ (X1Y2 +X2Y1)(3X1X2 + aZ1Z2). (1)

The rewritten formulas still appear somewhat cumbersome, but a closer
inspection of (1) reveals that several terms are repeated. In Algorithm 1,
we show that this can in fact be computed8 using 12M+ 3ma + 2m3b +
23a9.

Although Algorithm 1 is sufficient for cryptographic implementations,
performance gains can be obtained by specializing the point additions to
the useful scenarios of mixed additions10 (i.e., where Z2 = 1) and/or
point doublings (i.e., where P = Q). The mixed addition follows the
same formulas as for point addition; Algorithm 2 shows this can be done
in 11M + 3ma + 2m3b + 17a.

For a point P = (X : Y : Z), doubling is computed as

8 Notation here is the same as in Table 1, except for m3b which denotes multiplication
by the curve constant 3b.

9 We thank Emmanuel Thomé whose careful read-through resulted in a 1ma saving
in all three of the explicit formulas for the general case.

10 We note that it is not technically correct to call “mixed” additions complete, since
Z2 = 1 precludes the second point being the point at infinity. However, this is not
a problem in practice as the second point is typically taken from a precomputed
lookup table consisting of small multiples of the input point P 6= O. For prime order
curves, these small multiples can never be at infinity.



12 Joost Renes, Craig Costello, and Lejla Batina

Algorithm 1: Complete, projective point addition for arbitrary
prime order short Weierstrass curves E/Fq : y2 = x3 + ax+ b.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 + aXZ2 + bZ3,
and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 ·X2 2. t1 ← Y1 · Y2 3. t2 ← Z1 · Z2

4. t3 ← X1 + Y1 5. t4 ← X2 + Y2 6. t3 ← t3 · t4
7. t4 ← t0 + t1 8. t3 ← t3 − t4 9. t4 ← X1 + Z1

10. t5 ← X2 + Z2 11. t4 ← t4 · t5 12. t5 ← t0 + t2
13. t4 ← t4 − t5 14. t5 ← Y1 + Z1 15. X3 ← Y2 + Z2

16. t5 ← t5 ·X3 17. X3 ← t1 + t2 18. t5 ← t5 −X3

19. Z3 ← a · t4 20. X3 ← b3 · t2 21. Z3 ← X3 + Z3

22. X3 ← t1 − Z3 23. Z3 ← t1 + Z3 24. Y3 ← X3 · Z3

25. t1 ← t0 + t0 26. t1 ← t1 + t0 27. t2 ← a · t2
28. t4 ← b3 · t4 29. t1 ← t1 + t2 30. t2 ← t0 − t2
31. t2 ← a · t2 32. t4 ← t4 + t2 33. t0 ← t1 · t4
34. Y3 ← Y3 + t0 35. t0 ← t5 · t4 36. X3 ← t3 ·X3

37. X3 ← X3 − t0 38. t0 ← t3 · t1 39. Z3 ← t5 · Z3

40. Z3 ← Z3 + t0

Algorithm 2: Complete, mixed point addition for arbitrary prime
order short Weierstrass curves E/Fq : y2 = x3 + ax+ b.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : 1), E : Y 2Z = X3 + aXZ2 + bZ3,
and b3 = 3 · b.

Ensure: (X3 : Y3 : Z3) = P + Q.

1. t0 ← X1 ·X2 2. t1 ← Y1 · Y2 3. t3 ← X2 + Y2

4. t4 ← X1 + Y1 5. t3 ← t3 · t4 6. t4 ← t0 + t1
7. t3 ← t3 − t4 8. t4 ← X2 · Z1 9. t4 ← t4 + X1

10. t5 ← Y2 · Z1 11. t5 ← t5 + Y1 12. Z3 ← a · t4
13. X3 ← b3 · Z1 14. Z3 ← X3 + Z3 15. X3 ← t1 − Z3

16. Z3 ← t1 + Z3 17. Y3 ← X3 · Z3 18. t1 ← t0 + t0
19. t1 ← t1 + t0 20. t2 ← a · Z1 21. t4 ← b3 · t4
22. t1 ← t1 + t2 23. t2 ← t0 − t2 24. t2 ← a · t2
25. t4 ← t4 + t2 26. t0 ← t1 · t4 27. Y3 ← Y3 + t0
28. t0 ← t5 · t4 29. X3 ← t3 ·X3 30. X3 ← X3 − t0
31. t0 ← t3 · t1 32. Z3 ← t5 · Z3 33. Z3 ← Z3 + t0

X3 = 2XY (Y 2 − 2aXZ − 3bZ2)

− 2Y Z(aX2 + 6bXZ − a2Z2),

Y3 = (Y 2 + 2aXZ + 3bZ2)(Y 2 − 2aXZ − 3bZ2)

+ (3X2 + aZ2)(aX2 + 6bXZ − a2Z2),

Z3 = 8Y 3Z.



Complete addition formulas for prime order elliptic curves 13

Algorithm 3 shows that this can be computed in 8M+3S+3ma+2m3b+
15a.

Algorithm 3: Exception-free point doubling for arbitrary prime
order short Weierstrass curves E/Fq : y2 = x3 + ax+ b.

Require: P = (X : Y : Z) on E : Y 2Z = X3 + aXZ2 + bZ3, and b3 = 3 · b.
Ensure: (X3 : Y3 : Z3) = 2P .

1. t0 ← X ·X 2. t1 ← Y · Y 3. t2 ← Z · Z
4. t3 ← X · Y 5. t3 ← t3 + t3 6. Z3 ← X · Z
7. Z3 ← Z3 + Z3 8. X3 ← a · Z3 9. Y3 ← b3 · t2

10. Y3 ← X3 + Y3 11. X3 ← t1 − Y3 12. Y3 ← t1 + Y3

13. Y3 ← X3 · Y3 14. X3 ← t3 ·X3 15. Z3 ← b3 · Z3

16. t2 ← a · t2 17. t3 ← t0 − t2 18. t3 ← a · t3
19. t3 ← t3 + Z3 20. Z3 ← t0 + t0 21. t0 ← Z3 + t0
22. t0 ← t0 + t2 23. t0 ← t0 · t3 24. Y3 ← Y3 + t0
25. t2 ← Y · Z 26. t2 ← t2 + t2 27. t0 ← t2 · t3
28. X3 ← X3 − t0 29. Z3 ← t2 · t1 30. Z3 ← Z3 + Z3

31. Z3 ← Z3 + Z3

3.2 Special cases of interest

a = −3. Several standards (e.g., [23, 56, 60, 3, 22, 30]) adopt short Weier-
strass curves with the constant a being a = −3, which gives rise to faster
explicit formulas for point doubling11.

In this case, the complete formulas in (1) specialize to

X3 = (X1Y2 +X2Y1)(Y1Y2 + 3(X1Z2 +X2Z1 − bZ1Z2))

− 3(Y1Z2 + Y2Z1)(b(X1Z2 +X2Z1)−X1X2 − 3Z1Z2),

Y3 = 3(3X1X2 − 3Z1Z2)(b(X1Z2 +X2Z1)−X1X2 − 3Z1Z2)+

(Y1Y2 − 3(X1Z2 +X2Z1 − bZ1Z2))(Y1Y2 + 3(X1Z2 +X2Z1 − bZ1Z2)),

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 − 3(X1Z2 +X2Z1 − bZ1Z2))

+ (X1Y2 +X2Y1)(3X1X2 − 3Z1Z2).

These can be computed at a cost of 12M+2mb +29a using Algorithm 4.
The mixed addition can be done at a cost of 11M+ 2mb + 23a, as shown
in Algorithm 5.

11 When Fq is a large prime field, a = −3 covers 1/2 (resp. 1/4) of the isomorphism
classes for q ≡ 3 mod 4 (resp. q ≡ 1 mod 4) – see [21, §3].



14 Joost Renes, Craig Costello, and Lejla Batina

Algorithm 4: Complete, projective point addition for prime order
short Weierstrass curves E/Fq : y2 = x3 + ax+ b with a = −3.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2), E : Y 2Z = X3 − 3XZ2 + bZ3

Ensure: (X3 : Y3 : Z3) = P + Q;

1. t0 ← X1 ·X2 2. t1 ← Y1 · Y2 3. t2 ← Z1 · Z2

4. t3 ← X1 + Y1 5. t4 ← X2 + Y2 6. t3 ← t3 · t4
7. t4 ← t0 + t1 8. t3 ← t3 − t4 9. t4 ← Y1 + Z1

10. X3 ← Y2 + Z2 11. t4 ← t4 ·X3 12. X3 ← t1 + t2
13. t4 ← t4 −X3 14. X3 ← X1 + Z1 15. Y3 ← X2 + Z2

16. X3 ← X3 · Y3 17. Y3 ← t0 + t2 18. Y3 ← X3 − Y3

19. Z3 ← b · t2 20. X3 ← Y3 − Z3 21. Z3 ← X3 + X3

22. X3 ← X3 + Z3 23. Z3 ← t1 −X3 24. X3 ← t1 + X3

25. Y3 ← b · Y3 26. t1 ← t2 + t2 27. t2 ← t1 + t2
28. Y3 ← Y3 − t2 29. Y3 ← Y3 − t0 30. t1 ← Y3 + Y3

31. Y3 ← t1 + Y3 32. t1 ← t0 + t0 33. t0 ← t1 + t0
34. t0 ← t0 − t2 35. t1 ← t4 · Y3 36. t2 ← t0 · Y3

37. Y3 ← X3 · Z3 38. Y3 ← Y3 + t2 39. X3 ← t3 ·X3

40. X3 ← X3 − t1 41. Z3 ← t4 · Z3 42. t1 ← t3 · t0
43. Z3 ← Z3 + t1

Algorithm 5: Complete, mixed point addition for prime order short
Weierstrass curves E/Fq : y2 = x3 + ax+ b with a = −3.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : 1), E : Y 2Z = X3 − 3XZ2 + bZ3

Ensure: (X3 : Y3 : Z3) = P + Q;

1. t0 ← X1 ·X2 2. t1 ← Y1 · Y2 3. t3 ← X2 + Y2

4. t4 ← X1 + Y1 5. t3 ← t3 · t4 6. t4 ← t0 + t1
7. t3 ← t3 − t4 8. t4 ← Y2 · Z1 9. t4 ← t4 + Y1

10. Y3 ← X2 · Z1 11. Y3 ← Y3 + X1 12. Z3 ← b · Z1

13. X3 ← Y3 − Z3 14. Z3 ← X3 + X3 15. X3 ← X3 + Z3

16. Z3 ← t1 −X3 17. X3 ← t1 + X3 18. Y3 ← b · Y3

19. t1 ← Z1 + Z1 20. t2 ← t1 + Z1 21. Y3 ← Y3 − t2
22. Y3 ← Y3 − t0 23. t1 ← Y3 + Y3 24. Y3 ← t1 + Y3

25. t1 ← t0 + t0 26. t0 ← t1 + t0 27. t0 ← t0 − t2
28. t1 ← t4 · Y3 29. t2 ← t0 · Y3 30. Y3 ← X3 · Z3

31. Y3 ← Y3 + t2 32. X3 ← t3 ·X3 33. X3 ← X3 − t1
34. Z3 ← t4 · Z3 35. t1 ← t3 · t0 36. Z3 ← Z3 + t1

In this case, the doubling formulas become



Complete addition formulas for prime order elliptic curves 15

X3 = 2XY (Y 2 + 3(2XZ − bZ2))

− 6Y Z(2bXZ −X2 − 3Z2),

Y3 = (Y 2 − 3(2XZ − bZ2))(Y 2 + 3(2XZ − bZ2))

+ 3(3X2 − 3Z2)(2bXZ −X2 − 3Z2),

Z3 = 8Y 3Z,

which can be computed at a cost of 8M + 3S + 2mb + 21a using Algo-
rithm 6.

Algorithm 6: Exception-free point doubling for prime order short
Weierstrass curves E/Fq : y2 = x3 + ax+ b with a = −3.

Require: P = (X : Y : Z) on E : Y 2Z = X3 − 3XZ2 + bZ3.

Ensure: (X3 : Y3 : Z3) = 2P .

1. t0 ← X ·X 2. t1 ← Y · Y 3. t2 ← Z · Z
4. t3 ← X · Y 5. t3 ← t3 + t3 6. Z3 ← X · Z
7. Z3 ← Z3 + Z3 8. Y3 ← b · t2 9. Y3 ← Y3 − Z3

10. X3 ← Y3 + Y3 11. Y3 ← X3 + Y3 12. X3 ← t1 − Y3

13. Y3 ← t1 + Y3 14. Y3 ← X3 · Y3 15. X3 ← X3 · t3
16. t3 ← t2 + t2 17. t2 ← t2 + t3 18. Z3 ← b · Z3

19. Z3 ← Z3 − t2 20. Z3 ← Z3 − t0 21. t3 ← Z3 + Z3

22. Z3 ← Z3 + t3 23. t3 ← t0 + t0 24. t0 ← t3 + t0
25. t0 ← t0 − t2 26. t0 ← t0 · Z3 27. Y3 ← Y3 + t0
28. t0 ← Y · Z 29. t0 ← t0 + t0 30. Z3 ← t0 · Z3

31. X3 ← X3 − Z3 32. Z3 ← t0 · t1 33. Z3 ← Z3 + Z3

34. Z3 ← Z3 + Z3

a = 0. Short Weierstrass curves with a = 0, i.e., with j-invariant 0, have
also appeared in the standards. For example, Certicom’s SEC-2 stan-
dard [22] specifies three such curves; one of these is secp256k1, which
is the curve used in the Bitcoin protocol. In addition, in the case that
pairing-based cryptography becomes standardized, it is most likely that
the curve choices will be short Weierstrass curves with a = 0, e.g., BN
curves [5].

In this case, the complete additions simplify to



16 Joost Renes, Craig Costello, and Lejla Batina

X3 = (X1Y2 +X2Y1)(Y1Y2 − 3bZ1Z2)

− 3b(Y1Z2 + Y2Z1)(X1Z2 +X2Z1),

Y3 = (Y1Y2 + 3bZ1Z2)(Y1Y2 − 3bZ1Z2) + 9bX1X2(X1Z2 +X2Z1),

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2) + 3X1X2(X1Y2 +X2Y1),

which can be computed in 12M+2m3b+19a via Algorithm 7. The mixed
addition is computed in 11M + 2m3b + 13a via Algorithm 8.

Algorithm 7: Complete, projective point addition for prime order
j-invariant 0 short Weierstrass curves E/Fq : y2 = x3 + b.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) on E : Y 2Z = X3 + bZ3

and b3 = 3 · b.
Ensure: (X3 : Y3 : Z3) = P + Q;

1. t0 ← X1 ·X2 2. t1 ← Y1 · Y2 3. t2 ← Z1 · Z2

4. t3 ← X1 + Y1 5. t4 ← X2 + Y2 6. t3 ← t3 · t4
7. t4 ← t0 + t1 8. t3 ← t3 − t4 9. t4 ← Y1 + Z1

10. X3 ← Y2 + Z2 11. t4 ← t4 ·X3 12. X3 ← t1 + t2
13. t4 ← t4 −X3 14. X3 ← X1 + Z1 15. Y3 ← X2 + Z2

16. X3 ← X3 · Y3 17. Y3 ← t0 + t2 18. Y3 ← X3 − Y3

19. X3 ← t0 + t0 20. t0 ← X3 + t0 21. t2 ← b3 · t2
22. Z3 ← t1 + t2 23. t1 ← t1 − t2 24. Y3 ← b3 · Y3

25. X3 ← t4 · Y3 26. t2 ← t3 · t1 27. X3 ← t2 −X3

28. Y3 ← Y3 · t0 29. t1 ← t1 · Z3 30. Y3 ← t1 + Y3

31. t0 ← t0 · t3 32. Z3 ← Z3 · t4 33. Z3 ← Z3 + t0

The doubling formulas in this case are

X3 = 2XY (Y 2 − 9bZ2),

Y3 = (Y 2 − 9bZ2)(Y 2 + 3bZ2) + 24bY 2Z2,

Z3 = 8Y 3Z.

These can be computed in 6M + 2S + 1m3b + 9a via Algorithm 9.

4 Some intuition towards optimality

In this section we motivate the choice of the complete formulas in (1)
that were taken from Bosma and Lenstra [19], by providing reasoning as
to why, among the many possible complete addition laws on prime order
curves, we chose the set corresponding to the line Y = 0 in P2(k) under
the straightforward homogeneous projection.



Complete addition formulas for prime order elliptic curves 17

Algorithm 8: Complete, mixed point addition for prime order j-
invariant 0 short Weierstrass curves E/Fq : y2 = x3 + b.

Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : 1) on E : Y 2Z = X3 + bZ3

and b3 = 3 · b.
Ensure: (X3 : Y3 : Z3) = P + Q;

1. t0 ← X1 ·X2 2. t1 ← Y1 · Y2 3. t3 ← X2 + Y2

4. t4 ← X1 + Y1 5. t3 ← t3 · t4 6. t4 ← t0 + t1
7. t3 ← t3 − t4 8. t4 ← Y2 · Z1 9. t4 ← t4 + Y1

10. Y3 ← X2 · Z1 11. Y3 ← Y3 + X1 12. X3 ← t0 + t0
13. t0 ← X3 + t0 14. t2 ← b3 · Z1 15. Z3 ← t1 + t2
16. t1 ← t1 − t2 17. Y3 ← b3 · Y3 18. X3 ← t4 · Y3

19. t2 ← t3 · t1 20. X3 ← t2 −X3 21. Y3 ← Y3 · t0
22. t1 ← t1 · Z3 23. Y3 ← t1 + Y3 24. t0 ← t0 · t3
25. Z3 ← Z3 · t4 26. Z3 ← Z3 + t0

Algorithm 9: Exception-free point doubling for prime order j-
invariant 0 short Weierstrass curves E/Fq : y2 = x3 + b.

Require: P = (X : Y : Z) on E : Y 2Z = X3 + bZ3 and b3 = 3 · b.
Ensure: (X3 : Y3 : Z3) = 2P .

1. t0 ← Y · Y 2. Z3 ← t0 + t0 3. Z3 ← Z3 + Z3

4. Z3 ← Z3 + Z3 5. t1 ← Y · Z 6. t2 ← Z · Z
7. t2 ← b3 · t2 8. X3 ← t2 · Z3 9. Y3 ← t0 + t2

10. Z3 ← t1 · Z3 11. t1 ← t2 + t2 12. t2 ← t1 + t2
13. t0 ← t0 − t2 14. Y3 ← t0 · Y3 15. Y3 ← X3 + Y3

16. t1 ← X · Y 17. X3 ← t0 · t1 18. X3 ← X3 + X3

We do not claim that this choice is truly optimal, since proving that
a certain choice of projective embedding and/or complete addition law
for any particular prime order curve is faster than all of the other choices
for that curve seems extremely difficult, if not impossible. We merely
explain why, when aiming to write down explicit algorithms that will
simultaneously be complete on all prime order short Weierstrass curves,
choosing the Bosma–Lenstra formulas makes sense.

Furthermore, we also do not claim that our explicit algorithms to
compute the addition law in (1) are computationally optimal. It is likely
that trade-offs can be advantageously exploited on some platforms (cf. [41,



18 Joost Renes, Craig Costello, and Lejla Batina

§3.6]) or that alternative operation scheduling could reduce the number
of field additions12.

4.1 Choice of the line Y = 0 for bidegree (2, 2) addition laws

Let L(α,β,γ) denote the line given by αX + βY + γZ = 0 inside P2(Fq),
and, under the necessary assumption that L(α,β,γ) does not intersect the
curve E : Y 2Z = X3 + aXZ2 + bZ3 ⊂ P2(Fq), let A(α,β,γ) denote the
complete addition law of bidegree (2, 2) corresponding to L(α,β,γ) given
by [19, Theorem 2]. So far we have given optimizations for A(0,1,0), but
the question remains as to whether there are other lines L(α,β,γ) which
give rise to even faster addition laws A(α,β,γ).

We first point out that L(0,1,0) is the only line that does not intersect
E independently of a, b and q. It is easy to show that any other line in
P2(Fq) that does not intersect E will have a dependency on at least one of
a, b and q, and the resulting addition law will therefore only be complete
on a subset of prime order curves.

Nevertheless, it is possible that there is a better choice than A(0,1,0)

for a given short Weierstrass curve, or that there are special choices of
prime order curves that give rise to more efficient complete group laws.
We now sketch some intuition as to why this is unlikely. For A(α,β,γ) to
be complete, it is necessary that, in particular, L(α,β,γ) does not intersect
E at the point at infinity (0 : 1 : 0). This implies that β 6= 0. From [48,
19], we know that the space of all addition laws has dimension 3 and that

A(α,β,γ) = αA(1,0,0) + βA(0,1,0) + γA(0,0,1),

where A(1,0,0), A(0,1,0) and A(0,0,1) are the three addition laws given in [19,
pp. 236-239], specialized to short Weierstrass curves. Given that β 6=
0, our only hope of finding a more simple addition law than A(0,1,0) is
by choosing α and/or γ in a way that causes an advantageous cross-
cancellation of terms. Close inspection of the formulas in [19] strongly
suggests that no such cancellation exists.

Remark 1. Interestingly, both A(1,0,0) and A(0,0,1) vanish to zero when
specialized to doubling. This means that any doubling formula in bidegree
(2, 2) that is not exceptional at the point at infinity is a scalar multiple
of A(0,1,0), i.e., the formulas used in this paper.

12 Our experimentation did suggest that computing (1) in any reasonable way with
fewer than 12 generic multiplications appears to be difficult.



Complete addition formulas for prime order elliptic curves 19

Remark 2. Although a more efficient addition law might exist for larger
bidegrees, it is worth reporting that our experiments to find higher bide-
gree analogues of the Bosma and Lenstra formulas suggest that this, too,
is unlikely. The complexity (and computational cost) of the explicit for-
mulas grows rapidly as the bidegree increases, which is most commonly
the case across all models of elliptic curves and projective embeddings
(cf. [41]). We could hope for an addition law of bidegree lower than (2, 2),
but in [19, §3] Bosma and Lenstra prove that this is not possible under
the short Weierstrass embedding13 of E.

4.2 Jacobian coordinates

Since first suggested for short Weierstrass curves by Miller in his seminal
paper [52, p. 424], Jacobian coordinates have proven to offer significant
performance advantages over other coordinate systems. Given their ubiq-
uity in real-world ECC code, and the fact that their most commonly used
sets of efficient point doubling formulas turn out to be exception-free on
prime order curves (see Table 1), it is highly desirable to go searching for
a Jacobian coordinate analogue of the Bosma–Lenstra (homogeneous co-
ordinates) addition law. Unfortunately, we now show that such addition
formulas in Jacobian coordinates must have a higher bidegree, intuitively
making them slower to compute.

For the remainder of this section only, let E ⊂ P(2, 3, 1)(k) have odd
order. If an addition law f = (fX , fY , fZ) has fZ of bidegree (µ, ν), then
the bidegrees of fX and fY are (2µ, 2ν) and (3µ, 3ν), respectively. Below
we show that any complete formulas must have µ, ν ≥ 3.

Consider the addition of two points P = (X1 : Y1 : Z1) and Q = (X2 :
Y2 : Z2), using the addition law

f(P,Q) = (fX(P,Q) : fY (P,Q) : fZ(P,Q)),

with fZ of bidegree (µ, ν). Suppose that f is complete, and that µ < 3.
Then fZ , viewed as a polynomial in X1, Y1, Z1, has degree µ < 3, and in
particular cannot contain Y1. Now, since −P = (X1 : −Y1 : Z1) on E, it
follows that fZ(P,Q) = fZ(−P,Q) for all possible Q, and in particular
when Q = P . But in this case, and given that P cannot have order 2, we
have fZ(P,Q) 6= 0 and fZ(−P,Q) = 0, a contradiction. We conclude that
µ ≥ 3, and (by symmetry) that ν ≥ 3. It follows that fX and fY have
bidegrees at least (6, 6) and (9, 9), respectively, which destroys any hope
of comparable efficiency to the homogeneous Bosma–Lenstra formulas.

13 Lower bidegree addition laws are possible for other embeddings (i.e., models) of E
in the case where E has a k-rational torsion structure – see [47].



20 Joost Renes, Craig Costello, and Lejla Batina

5 Using these formulas in practice

In this section we discuss the practical application of the complete algo-
rithms in this paper. We discuss how they can be used for both the prime
order curves (§5.1) and composite order curves (§5.2) in the standards.
In §5.3, we give performance numbers that shed light on the expected
cost of completeness in certain software scenarios, before discussing why
this cost is likely to be significantly reduced in many other scenarios, e.g.,
in hardware.

5.1 Application to prime order curves (or, secure ECC for
noobs)

Using Algorithm 1 as a black-box point addition routine, non-experts now
have a straightforward way to implement the standardized prime order
elliptic curves. So long as scalars are recoded correctly, the subsequent
scalar multiplication routine will always compute the correct result.

Given the vulnerabilities exposed in already-deployed ECC implemen-
tations (see §1), we now provide some implementation recommendations,
e.g., for an implementer whose task it is to (re)write a simple and timing-
resistant scalar multiplication routine for prime order curves from scratch.
The main point is that branches (e.g., if statements) inside the elliptic
curve point addition algorithms can now be avoided entirely. Our main
recommendation is that more streamlined versions of Algorithm 1 should
only be introduced to an implementation if they are guaranteed to be
exception-free; subsequently, we stress that branching should never be
introduced into any point addition algorithms.

Assuming access to branch-free, constant-time field arithmetic in Fq,
a first step is to implement Algorithm 1 to be used for all point (dou-
bling and addition) operations, working entirely in homogeneous projec-
tive space. The natural next step is to implement a basic scalar recoding
(e.g., [57, 44]) that gives rise to a fixed, uniform, scalar-independent main
loop. This typically means that the main loop repeats the same pattern of
a fixed number of doublings followed by a single table lookup/extraction
and, subsequently, an addition. The important points are that this table
lookup must be done in a cache-timing resistant manner (cf. [45, §3.4]),
and that the basic scalar recoding must itself be performed in a uniform
manner.

Once the above routine is running correctly, an implementer that is
seeking further performance gains can start by viewing stages of the rou-
tine where Algorithm 1 can safely be replaced by its specialized, more



Complete addition formulas for prime order elliptic curves 21

efficient variants. If the code is intended to support only short Weier-
strass curves with either a = −3 or a = 0, then Algorithm 1 should be
replaced by (the faster and more compact) Algorithm 4 or Algorithm 7,
respectively. If the performance gains warrant the additional code, then
at all stages where the addition function is called to add a point to it-
self (i.e., the point doubling stages), the respective exception-free point
doubling routine(s) in Algorithms 3, 6 and 9 should be implemented and
called there instead.

Incomplete short Weierstrass addition routines (e.g., the prior works
summarized in Table 1) should only be introduced for further perfor-
mance gains if the implementer can guarantee that exceptional pairs of
points can never be input into the algorithms, and subsequently can im-
plement them without introducing any branches. For example, Bos et
al. [16, §4.1] proved that, under their particular choice of scalar multi-
plication algorithm, all-but-one of the point additions in a variable-base
scalar multiplication can be performed without exception using an in-
complete addition algorithm. The high-level argument used there was
that such additions almost always took place between elements of the
lookup table and a running value that had just been output from a point
doubling, the former being small odd multiples of the input point (e.g., P ,
[3]P , [5]P , etc.) and the latter being some even multiple. Subsequently,
they showed that the only possible time when the input points to the
addition algorithm could coincide with (or be inverses of) each other is in
the final addition, ruling out the exceptional points in all prior additions.
On the other hand, as we mentioned in §1 and as was encountered in [16,
§4.1], it can be significantly more complicated to rule out exceptional in-
put points in more exotic scalar multiplication scenarios like fixed-base
scalar multiplications, multiscalar multiplications, or those that exploit
endomorphisms. In those cases, it could be that the only option to rule
out any exceptional points is to always call complete addition algorithms.

Remark 3 (The best of both worlds?). We conclude this subsection by
mentioning one more option that may be of interest to implementers
who want to combine the fastest complete point addition algorithms with
the fastest exception-free point doubling algorithms. Recall from Table 1
that the fastest doubling algorithms for short Weierstrass curves work
in Jacobian coordinates and happen to be exception-free in the prime
order setting, but recall from §4.2 that there is little hope of obtaining
relatively efficient complete addition algorithms in Jacobian coordinates.
This prompts the question as to whether the doubling algorithms that
take place in P(2, 3, 1)(k) can be combined with our complete addition



22 Joost Renes, Craig Costello, and Lejla Batina

algorithms that take place in P2(k). Generically, we can map the elliptic
curve point (X : Y : Z) ∈ P(2, 3, 1)(k) to (XZ : Y : Z3) ∈ P2(k),
and conversely, we can map the point (X : Y : Z) ∈ P2(k) to (XZ :
Y Z2 : Z) ∈ P(2, 3, 1)(k); both maps cost 2M + 1S. We note that in the
first direction there are no exceptions: in particular, the point at infinity
(1 : 1 : 0) ∈ P(2, 3, 1)(k) correctly maps to (0 : 1 : 0) ∈ P2(k). However,
in the other direction, the point at infinity (0 : 1 : 0) ∈ P2(k) does
not correctly map to (1 : 1 : 0) ∈ P(2, 3, 1)(k), but rather to the point
(0 : 0 : 0) 6∈ P(2, 3, 1)(k).

For a variable-base scalar multiplication using a fixed window of width
w, one option would be to store the precomputed lookup table in P2(k)
(or in A2(k) if normalizing for the sake of complete mixed additions is
preferred), and to compute the main loop as follows. After computing
each of the w consecutive doublings in P(2, 3, 1)(k), the running value is
converted to P2(k) at a cost of 2M + 1S, then the result of a complete
addition (between the running value and a lookup table element) is con-
verted back to P(2, 3, 1)(k) at a cost of 2M + 1S. Even for small window
sizes that result in additions (and thus the back-and-forth conversions)
occurring relatively often, the operation counts in Table 1 suggest that
this trade-off will be favorable; and, for larger window sizes, the result-
ing scalar multiplication will be significantly faster than one that works
entirely in P2(k).

The only possible exception that could occur in the above routine is
when the result of an addition is the point at infinity (0 : 1 : 0) ∈ P2(k),
since the conversion back to P(2, 3, 1)(k) fails here. Thus, this strategy
should only be used if the scalar multiplication routine is such that the
running value is never the inverse of any element in the lookup table, or if
the conversion from P2(k) to P(2, 3, 1)(k) is written to handle this possible
exception in a constant-time fashion. In the former case, if (as in [16, §4.1])
this can only happen in the final addition, then the workaround is easy:
either guarantee that the scalars cannot be a multiple of the group order
(which rules out this possibility), or else do not apply the conversion back
to P(2, 3, 1)(k) after the final addition.

5.2 Interoperability with composite order curves

The IRTF CFRG recently selected two composite order curves as a rec-
ommendation to the TLS working group for inclusion in upcoming ver-
sions of TLS: Bernstein’s Curve25519 [7] and Hamburg’s Goldilocks [39].



Complete addition formulas for prime order elliptic curves 23

The current IETF internet draft14 specifies the wire format for these
curves to be the u-coordinate corresponding to a point (u, v) on the Mont-
gomery model of these curves EM/Fq : v2 = u3 + Au2 + u. Curve25519
has q = 2255− 19 with A = 486662 and Goldilocks has q = 2448− 2224− 1
with A = 156326.

Since our complete formulas are likely to be of interest to practitioners
concerned with global interoperability, e.g., those investing a significant
budget into one implementation that may be intended to support as many
standardized curves as possible, we now show that Algorithm 1 can be
adapted to interoperate with the composite order curves in upcoming TLS
ciphersuites. We make no attempt to disguise the fact that this will come
with a significant performance penalty over the Montgomery ladder, but
in this case we are assuming that top performance is not the priority.

A trivial map from the Montgomery curve to a short Weierstrass curve
is κ : EM → E, (u, v) 7→ (x, y) = (u− A/3, v); here the short Weierstrass
curve is E : y2 = x3 + ax+ b, with a = 1−A2/3 and b = A(2A2 − 9)/27.

Thus, a dedicated short Weierstrass implementation can interoper-
ate with Curve25519 (resp. Goldilocks) as follows. After receiving the
u-coordinate on the wire, set x = u − A/3 (i.e., add a fixed, global con-
stant), and decompress to compute the corresponding y-coordinate on E
via the square root y =

√
x3 + ax+ b as usual; the choice of square root

here does not matter. Setting P = (x, y) and validating that P ∈ E, we
can then call Algorithm 1 to compute 3 (resp. 2) successive doublings to
get Q. This is in accordance with the scalars being defined with 3 (resp. 2)
fixed zero bits to clear the cofactor [7]. The point Q is then multiplied by
the secret part of the scalar (using, e.g., the methods we just described
in §5.1), then normalized to give Q = (x′, y′), and the Montgomery u-
coordinate of the result is output as u′ = x′ +A/3.

Note that the above routine is exception free: Algorithm 1 only fails
to add the points P1 and P2 when P1 − P2 is a point of exact order 2.
Thus, it can be used for point doublings on all short Weierstrass curves
(including those of even order). Furthermore, the point Q is in the prime
order subgroup, so the subsequent scalar multiplication (which only en-
counters multiples of Q) cannot find a pair of points that are exceptional
to Algorithm 1.

Finally, we note that although neither Curve25519 or Goldilocks are
isomorphic to a Weierstrass curve with a = −3, both curves have simple
isomorphisms to Weierstrass curves with small a values, e.g., a = 2 and

14 See https://datatracker.ietf.org/doc/draft-irtf-cfrg-curves/.



24 Joost Renes, Craig Costello, and Lejla Batina

a = 1, respectively. Making use of this would noticeably decrease the
overhead of our complete formulas.

5.3 The cost of completeness

In Table 2 we report the factor slowdown obtained when substituting the
complete formulas in Algorithms 4–6 for OpenSSL’s “ec GFp simple add”
and “ec GFp simple dbl” functions inside the OpenSSL scalar multipli-
cation routine for the five NIST prime curves (which all have a = −3).

NIST no. of ECDH operations (per 10s) factor

curve complete incomplete slowdown

P-192 35274 47431 1.34x

P-224 24810 34313 1.38x

P-256 21853 30158 1.38x

P-384 10109 14252 1.41x

P-521 4580 6634 1.44x

Table 2. Number of ECDH operations in 10 seconds for the OpenSSL implementation
of the five NIST prime curves, using complete and incomplete addition formulas. Tim-
ings were obtained by running the “openssl speed ecdhpXXX” command on an Intel
Core i5-5300 CPU @ 2.30GHz, averaged over 100 trials of 10s each.

We intentionally left OpenSSL’s scalar multiplication routines unal-
tered in order to provide an unbiased upper bound on the performance
penalty that our complete algorithms will introduce. For the remainder
of this subsection, we discuss why the performance difference is unlikely
to be this large in many practical scenarios.

Referring to Table 3 (which, as well as the counts given in Table 1,
includes the operation counts for mixed additions), we see that the mixed
addition formulas in Jacobian coordinates are 4M + 1S faster than full
additions, while for our complete formulas the difference is only 1M+6a.
Thus, in Jacobian coordinates, it is often advantageous to normalize the
lookup table (using one shared inversion [54]) in order to save 4M + 1S
per addition. On the other hand, in the case of the complete formulas,
this will not be a favorable trade-off and (assuming there is ample cache
space) it is likely to be better to leave all of the lookup elements in P2.
The numbers reported in Table 2 use OpenSSL’s scalar multiplication
which does normalize the lookup table to use mixed additions, putting
the complete formulas at a disadvantage.



Complete addition formulas for prime order elliptic curves 25

addition a ADD(P ,Q) mADD(P ,Q) DBL(P )

formulas M S ma mb a M S ma mb a M S ma mb a

complete
any 12 0 3 2 23 11 0 3 2 17 8 3 3 2 15

homogeneous
−3 12 0 0 2 29 11 0 0 2 23 8 3 0 2 21

0 12 0 0 2 19 11 0 0 2 13 6 2 0 1 9

incomplete
any 12 2 0 0 7 9 2 0 0 7 5 6 1 0 12

homogeneous
−3 12 2 0 0 7 9 2 0 0 7 7 3 0 0 11

0 - - -

incomplete
any 12 4 0 0 7 8 3 0 0 7 3 6 1 0 13

Jacobian
−3 12 4 0 0 7 8 3 0 0 7 4 4 0 0 8

0 12 4 0 0 7 8 3 0 0 7 3 4 0 0 7

Table 3. Operation counts for the prior incomplete addition algorithms and our com-
plete ones, with the inclusion of mixed addition formulas. Credits for the incomplete
formulas are the same as in Table 1, except for the additional mixed formulas which
are, in homogeneous coordinates, due to Cohen, Miyaji and Ono [27], and in Jacobian
coordinates, due to Hankerson, Menezes and Vanstone [40, p. 91].

As we mentioned in §1, the slowdowns reported in Table 2 (which were
obtained on a 64-bit machine) are likely to be significantly less on low-end
architectures where the relative cost of field additions drops. Furthermore,
in embedded scenarios where implementations must be protected against
more than just timing attacks, a common countermeasure is to random-
ize the projective coordinates of intermediate points [29]. In these cases,
normalized lookup table elements could also give rise to side-channel vul-
nerabilities [33, §3.4–3.6], which would take mixed additions out of the
equation. As Table 3 suggests, when full additions are used throughout,
our complete algorithms will give much better performance relative to
their incomplete counterparts.

Hardware implementations of ECC typically rely on using general
field hardware multipliers that are often based on the algorithm of Mont-
gomery [53]. These types of hardware modules use a multiplier for both
multiplications and squarings [24, 36], meaning that the squarings our ad-
dition algorithms save (over the prior formulas) are full multiplications.
Moreover, hardware architectures that are based on Montgomery multi-
plication can benefit from modular additions/subtractions computed as
non-modular operations. The concept is explained in [6], which is a typi-
cal ECC hardware architecture using the “relaxed” Montgomery param-
eter such that the conditional subtraction (from the original algorithm of
Montgomery) can be omitted. In this way, the modular addition/subtrac-
tion is implemented not just very efficiently, but also as a time-constant



26 Joost Renes, Craig Costello, and Lejla Batina

operation. Using this approach implies the only cost to be taken into ac-
count is the one of modular multiplication, i.e., modular additions come
almost for free. Similar conclusions apply for multiplications with a con-
stant as they can be implemented very efficiently in hardware, assuming a
constant is predefined and hence “hardwired”. Again, viewing the opera-
tion counts in Table 3 suggests that such scenarios are, relatively speaking,
likely to give a greater benefit to our complete algorithms.

Finally, we remark that runtime is not the only metric of concern to
ECC practitioners; in fact, there was wide consensus (among both speak-
ers and panelists) at the recent NIST workshop15 that security and sim-
plicity are far more important in real-world ECC than raw performance.
While our complete algorithms are likely to be slower in some scenarios,
we reiterate that complete formulas reign supreme in all other aspects,
including total code size, ease of implementation, and issues relating to
side-channel resistance.

Acknowledgements. Special thanks to Emmanuel Thomé who man-
aged to save us 1ma in the explicit formulas in §3.1. We thank Joppe Bos
and Patrick Longa for their feedback on an earlier version of this paper,
and the anonymous Eurocrypt reviewers for their valuable comments.

References

1. Accredited Standards Committee X9. American National Standard X9.62-1999,
Public key cryptography for the financial services industry: the elliptic curve digital
signature algorithm (ECDSA). Draft at http://grouper.ieee.org/groups/1363/
Research/Other.html, 1999.

2. Accredited Standards Committee X9. American National Standard X9.63-2001,
Public key cryptography for the financial services industry: key agreement and key
transport using elliptic curve cryptography. Draft at http://grouper.ieee.org/

groups/1363/Research/Other.html, 1999.
3. Agence nationale de la sécurité des sysèmes d’information (ANSSI). Mécanismes

cryptographiques: Règles et recommandations concernant le choix et le dimension-
nement des mécanismes cryptographiques. http://www.ssi.gouv.fr/uploads/

2015/01/RGS_v-2-0_B1.pdf, 2014.
4. C. Arène, D. Kohel, and C. Ritzenthaler. Complete addition laws on abelian

varieties. LMS Journal of Computation and Mathematics, 15:308–316, 2012.
5. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime

order. In B. Preneel and S. E. Tavares, editors, Selected Areas in Cryptography,
12th International Workshop, SAC 2005, Kingston, ON, Canada, August 11-12,
2005, Revised Selected Papers, volume 3897 of Lecture Notes in Computer Science,
pages 319–331. Springer, 2005.

15 See http://www.nist.gov/itl/csd/ct/ecc-workshop.cfm.



Complete addition formulas for prime order elliptic curves 27

6. L. Batina, G. Bruin-Muurling, and S. B. Örs. Flexible hardware design for RSA
and elliptic curve cryptosystems. In Topics in Cryptology - CT-RSA 2004, The
Cryptographers’ Track at the RSA Conference 2004, San Francisco, CA, USA,
February 23-27, 2004, Proceedings, pages 250–263, 2004.

7. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography - PKC 2006,
9th International Conference on Theory and Practice of Public-Key Cryptography,
New York, NY, USA, April 24-26, 2006, Proceedings, volume 3958 of Lecture Notes
in Computer Science, pages 207–228. Springer, 2006.

8. D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
curves. In S. Vaudenay, editor, Progress in Cryptology - AFRICACRYPT 2008,
First International Conference on Cryptology in Africa, Casablanca, Morocco, June
11-14, 2008. Proceedings, volume 5023 of Lecture Notes in Computer Science, pages
389–405. Springer, 2008.

9. D. J. Bernstein, C. Chuengsatiansup, D. Kohel, and T. Lange. Twisted Hessian
curves. In K. E. Lauter and F. Rodŕıguez-Henŕıquez, editors, Progress in Cryp-
tology - LATINCRYPT 2015 - 4th International Conference on Cryptology and
Information Security in Latin America, Guadalajara, Mexico, August 23-26, 2015,
Proceedings, volume 9230 of Lecture Notes in Computer Science, pages 269–294.
Springer, 2015.

10. D. J. Bernstein, C. Chuengsatiansup, and T. Lange. Curve41417: Karatsuba re-
visited. In L. Batina and M. Robshaw, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2014 - 16th International Workshop, Busan, South Korea,
September 23-26, 2014. Proceedings, volume 8731 of Lecture Notes in Computer
Science, pages 316–334. Springer, 2014.

11. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: elliptic-
curve points indistinguishable from uniform random strings. In A. Sadeghi, V. D.
Gligor, and M. Yung, editors, 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
967–980. ACM, 2013.

12. D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In
K. Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, volume 4833 of
Lecture Notes in Computer Science, pages 29–50. Springer, 2007.

13. D. J. Bernstein and T. Lange. Complete addition laws for elliptic curves. Talk at
Algebra and Number Theory Seminar (Universidad Autonomo de Madrid). Slides
at http://cr.yp.to/talks/2009.04.17/slides.pdf, 2009.

14. D. J. Bernstein and T. Lange. Safecurves: choosing safe curves for elliptic-curve
cryptography. URL: http://safecurves.cr.yp.to/, Accessed 5 October 2015.

15. D. J. Bernstein and T. Lange. Explicit-Formulas Database. http://

hyperelliptic.org/EFD/index.html, Date accessed: October 3, 2015.
16. J. W. Bos, C. Costello, P. Longa, and M. Naehrig. Selecting elliptic curves for

cryptography: An efficiency and security analysis. J. Cryptographic Engineering,
2015. http://dx.doi.org/10.1007/s13389-015-0097-y.

17. J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow.
Elliptic curve cryptography in practice. In Christin and Safavi-Naini [26], pages
157–175.

18. W. Bosma, J. J. Cannon, and C. Playoust. The Magma algebra system I: the user
language. J. Symb. Comput., 24(3/4):235–265, 1997.



28 Joost Renes, Craig Costello, and Lejla Batina

19. W. Bosma and H. W. Lenstra. Complete systems of two addition laws for elliptic
curves. Journal of Number theory, 53(2):229–240, 1995.

20. E. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. In
D. Naccache and P. Paillier, editors, Public Key Cryptography, 5th International
Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2002, Paris,
France, February 12-14, 2002, Proceedings, volume 2274 of Lecture Notes in Com-
puter Science, pages 335–345. Springer, 2002.

21. E. Brier and M. Joye. Fast point multiplication on elliptic curves through isogenies.
In M. P. C. Fossorier, T. Høholdt, and A. Poli, editors, Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes, 15th International Symposium, AAECC-
15, Toulouse, France, May 12-16, 2003, Proceedings, volume 2643 of Lecture Notes
in Computer Science, pages 43–50. Springer, 2003.

22. Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters,
Version 2.0. http://www.secg.org/sec2-v2.pdf, 2010.

23. Certivox UK, Ltd. CertiVox Standard Curves. http://docs.certivox.com/docs/
miracl/certivox-standard-curves, Date accessed: September 9, 2015.

24. G. Chen, G. Bai, and H. Chen. A high-performance elliptic curve cryptographic
processor for general curves over GF(p) based on a systolic arithmetic unit. Circuits
and Systems II: Express Briefs, IEEE Transactions on, 54(5):412–416, May 2007.

25. Chinese Commerical Cryptography Administration Office. SM2 Digital Signature
Algorithm. See http://www.oscca.gov.cn/UpFile/2010122214836668.pdf and
http://tools.ietf.org/html/draft-shen-sm2-ecdsa-02, 2010.

26. N. Christin and R. Safavi-Naini, editors. Financial Cryptography and Data Security
- 18th International Conference, FC 2014, Christ Church, Barbados, March 3-7,
2014, Revised Selected Papers, volume 8437 of Lecture Notes in Computer Science.
Springer, 2014.

27. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using
mixed coordinates. In K. Ohta and D. Pei, editors, Advances in Cryptology - ASI-
ACRYPT ’98, International Conference on the Theory and Applications of Cryp-
tology and Information Security, Beijing, China, October 18-22, 1998, Proceedings,
volume 1514 of Lecture Notes in Computer Science, pages 51–65. Springer, 1998.

28. Committee on National Security Systems (CNSS). Advisory Memorandum: Use of
Public Standards for the Secure Sharing of Information Among National Security
Systems. https://www.cnss.gov/CNSS/openDoc.cfm?Q5ww0Xu+7kg/OpTB/R2/MQ=

=, 2015.
29. J. Coron. Resistance against differential power analysis for elliptic curve cryp-

tosystems. In Çetin K. Koç and C. Paar, editors, Cryptographic Hardware and
Embedded Systems – CHES’99, volume 1717 of LNCS, pages 292–302. SV, 1999.

30. ECC Brainpool. ECC Brainpool Standard Curves and Curve Generation. http:

//www.ecc-brainpool.org/download/Domain-parameters.pdf, 2005.
31. H. Edwards. A normal form for elliptic curves. Bulletin of the American Mathe-

matical Society, 44(3):393–422, 2007.
32. J. Fan, B. Gierlichs, and F. Vercauteren. To infinity and beyond: Combined attack

on ECC using points of low order. In Cryptographic Hardware and Embedded
Systems–CHES 2011, pages 143–159. Springer, 2011.

33. J. Fan and I. Verbauwhede. An updated survey on secure ECC implementations:
Attacks, countermeasures and cost. In D. Naccache, editor, Cryptography and Se-
curity: From Theory to Applications - Essays Dedicated to Jean-Jacques Quisquater
on the Occasion of His 65th Birthday, volume 6805 of Lecture Notes in Computer
Science, pages 265–282. Springer, 2012.



Complete addition formulas for prime order elliptic curves 29

34. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication
on elliptic curves with efficient endomorphisms. In J. Kilian, editor, Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume 2139 of
Lecture Notes in Computer Science, pages 190–200. Springer, 2001.

35. Government Committee of Russia for Standards. Information technology. Cryp-
tographic data security. Signature and verification processes of [electronic] digital
signature. See https://tools.ietf.org/html/rfc5832, 2001.

36. T. Guneysu and C. Paar. Ultra High Performance ECC over NIST Primes on
Commercial FPGAs. In Cryptographic Hardware and Embedded Systems/93 CHES
2008, volume 5154 of Lecture Notes in Computer Science, pages 62–78. Springer
Berlin Heidelberg, 2008.

37. M. Hamburg. Twisting Edwards curves with isogenies. Cryptology ePrint Archive,
Report 2014/027, 2014. http://eprint.iacr.org/.

38. M. Hamburg. Decaf: Eliminating cofactors through point compression. In R. Gen-
naro and M. Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
705–723. Springer, 2015.

39. M. Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,
Report 2015/625, 2015. http://eprint.iacr.org/.

40. D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to elliptic curve cryptogra-
phy. Springer Science & Business Media, 2006.

41. H. Hisil. Elliptic curves, group law, and efficient computation. PhD thesis, Queens-
land University of Technology, URL: http://eprints.qut.edu.au/33233/, 2010.

42. Z. Hu, P. Longa, and M. Xu. Implementing the 4-dimensional GLV method on
GLS elliptic curves with j-invariant 0. Des. Codes Cryptography, 63(3):331–343,
2012.

43. T. Izu and T. Takagi. Exceptional procedure attack on elliptic curve cryptosys-
tems. In Y. Desmedt, editor, Public Key Cryptography - PKC 2003, 6th Interna-
tional Workshop on Theory and Practice in Public Key Cryptography, Miami, FL,
USA, January 6-8, 2003, Proceedings, volume 2567 of Lecture Notes in Computer
Science, pages 224–239. Springer, 2003.

44. M. Joye and M. Tunstall. Exponent recoding and regular exponentiation algo-
rithms. In B. Preneel, editor, Progress in Cryptology - AFRICACRYPT 2009,
Second International Conference on Cryptology in Africa, Gammarth, Tunisia,
June 21-25, 2009. Proceedings, volume 5580 of Lecture Notes in Computer Sci-
ence, pages 334–349. Springer, 2009.

45. E. Käsper. Fast elliptic curve cryptography in OpenSSL. In G. Danezis, S. Dietrich,
and K. Sako, editors, Financial Cryptography and Data Security - FC 2011 Work-
shops, RLCPS and WECSR 2011, Rodney Bay, St. Lucia, February 28 - March 4,
2011, Revised Selected Papers, volume 7126 of Lecture Notes in Computer Science,
pages 27–39. Springer, 2011.

46. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In N. Koblitz, editor, Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer
Science, pages 104–113. Springer, 1996.

47. D. Kohel. Addition law structure of elliptic curves. Journal of Number Theory,
131(5):894–919, 2011.



30 Joost Renes, Craig Costello, and Lejla Batina

48. H. Lange and W. Ruppert. Complete systems of addition laws on abelian varieties.
Inventiones mathematicae, 79(3):603–610, 1985.

49. C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In
Y. Desmedt, editor, Advances in Cryptology - CRYPTO ’94, 14th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 21-25,
1994, Proceedings, volume 839 of Lecture Notes in Computer Science, pages 95–107.
Springer, 1994.

50. Z. Liu, H. Seo, J. Großschädl, and H. Kim. Efficient implementation of NIST-
compliant elliptic curve cryptography for sensor nodes. In S. Qing, J. Zhou, and
D. Liu, editors, Information and Communications Security - 15th International
Conference, ICICS 2013, Beijing, China, November 20-22, 2013. Proceedings, vol-
ume 8233 of Lecture Notes in Computer Science, pages 302–317. Springer, 2013.

51. P. Longa and C. H. Gebotys. Efficient techniques for high-speed elliptic curve
cryptography. In S. Mangard and F. Standaert, editors, Cryptographic Hardware
and Embedded Systems, CHES 2010, 12th International Workshop, Santa Bar-
bara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in
Computer Science, pages 80–94. Springer, 2010.

52. V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptolo-
gy/97CRYPTO/9285 Proceedings, pages 417–426. Springer, 1986.

53. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, 1985.

54. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987.

55. National Institute for Standards and Technology (NIST). Digital Signature Stan-
dard. Federal Information Processing Standards Publication 186-2. http://csrc.
nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf, 2000.

56. National Institute for Standards and Technology (NIST). Digital Signature
Standard. Federal Information Processing Standards Publication 186-4. http:

//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf, 2013.
57. K. Okeya and T. Takagi. The width-w NAF method provides small memory and

fast elliptic scalar multiplications secure against side channel attacks. In M. Joye,
editor, Topics in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the
RSA Conference 2003, San Francisco, CA, USA, April 13-17, 2003, Proceedings,
volume 2612 of Lecture Notes in Computer Science, pages 328–342. Springer, 2003.

58. J. Renes, C. Costello, and L. Batina. Complete addition formulas for prime order
elliptic curves. Cryptology ePrint Archive, Report 2015/1060, 2015. http://

eprint.iacr.org/.
59. P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC:

testing the limits of elliptic curve cryptography in sensor networks. In R. Verdone,
editor, Wireless Sensor Networks, 5th European Conference, EWSN 2008, Bologna,
Italy, January 30-February 1, 2008, Proceedings, volume 4913 of Lecture Notes in
Computer Science, pages 305–320. Springer, 2008.

60. The National Security Agency. Suite B Cryptography (fact sheet). https://www.
nsa.gov/ia/programs/suiteb_cryptography/, 2015.

61. M. Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order
as uniform random strings. In Christin and Safavi-Naini [26], pages 139–156.


