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Abstract. In this paper, we present two new adaptively secure identity-
based encryption (IBE) schemes from lattices. The size of the public pa-
rameters, ciphertexts, and private keys are Õ(n2κ1/d), Õ(n), and Õ(n)
respectively. Here, n is the security parameter, κ is the length of the
identity, and d ∈ N is a flexible constant that can be set arbitrary (but
will affect the reduction cost). Ignoring the poly-logarithmic factors hid-
den in the asymptotic notation, our schemes achieve the best efficiency
among existing adaptively secure IBE schemes from lattices. In more de-
tail, our first scheme is anonymous, but proven secure under the LWE
assumption with approximation factor nω(1). Our second scheme is not
anonymous, but proven adaptively secure assuming the LWE assumption
for all polynomial approximation factors.
As a side result, based on a similar idea, we construct an attribute-
based encryption scheme for branching programs that simultaneously
satisfies the following properties for the first time: Our scheme achieves
compact secret keys, the security is proven under the LWE assumption
with polynomial approximation factors, and the scheme can deal with
unbounded length branching programs.

1 Introduction

Background. Identity-based encryption (IBE) is an advanced form of public
key encryption (PKE) where any string such as an email address can be used as a
public key. The notion of IBE was proposed by Shamir in 1984 [42]. Since then, it
took nearly 20 years for the first realizations of IBE [41,10,18] to appear. Boneh
and Franklin [10] and Sakai, Ohgishi, and Kasahara [41] used groups equipped
with efficiently computable bilinear maps to construct the first IBE. On the
other hand, Cocks [18] used quadratic residue for a composite modulus. These
constructions are only proven secure in the random oracle model. In subsequent
works, pairing-based schemes in the standard model appeared [15,8,9,47,48].
While earlier works [15,8] focus on the constructions that are only selectively
secure, later works [9,47,48] focus on a much more realistic security, i.e., adaptive
security.

Another important line of research is construction of IBE from lattices. The
first lattice-based IBE was proposed in the seminal work by Gentry, Peikert,
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and Vaikuntanathan [25] in the random oracle model. Later, constructions in
the standard model were proposed [1,16,12]. To achieve adaptive security in
the lattice-based settings, we have to either rely on an analogue of Waters’
hash [47] or an admissible hash [9,16]. In any case, we require O(κ) number of
basic matrices in the public parameters (master public key), where κ is the bit
length of the identities. This results in very large public parameters with size
Õ(n2κ). Here, n is the security parameter (dimension of the lattices). On the
other hand, in the selectively secure variant of lattice IBE in [1], we only require
small constant number of basic matrices in the public parameters. This stands
in sharp contrast to pairing-based settings, in which we have adaptively secure
IBE schemes [17,31] that are as efficient as selectively secure ones [8], up to only
small constant factors. A natural important question is:

Can we construct adaptively secure IBE schemes from lattices, which is
as efficient as selectively secure ones? In particular, can we reduce the
size of the public parameters?

Difficulties. A natural approach to achieve short public parameters in lattice
based IBE schemes would be to mimic the technique for pairing based IBE
schemes. However, all IBE schemes with short public parameters based on pair-
ings are constructed using dual system encryption methodology [48], for which
there is still no lattice analogue. The realization of the dual system encryption
methodology in the lattice settings is an important open problem [38]. Another
possible approach would be to use a technique from Naccache’s IBE scheme [36],
as is done in [44]. Using this approach, we can obtain a scheme with the public
parameters shorter by a factor of u, at the cost of 2u-loss in security. Therefore,
using this approach, we are only allowed to reduce the size of public parameters
up to logarithmic factor.

Our Contribution. Instead of taking the above approaches, we use a technique
unique to the lattice setting. Namely, we use the fully homomorphic computation
of trapdoors, which is recently devised in [11] to reduce the size of the public
parameters. We obtain the following two different IBE schemes with trade-off
between the security, efficiency, and underlying hardness assumptions. See Table
1 in Section 6 for the overview.

– We propose an adaptively secure and anonymous IBE with asymptotically
short parameters. In particular, the size of the public parameters, cipher-
texts, and private keys are Õ(n2κ1/d), Õ(n), and Õ(n) respectively. Here,
d ∈ N is a flexible constant which can be set arbitrary. Ignoring poly-
logarithmic factors hidden in the asymptotic notation, our scheme achieves
the best efficiency among all previous adaptively secure IBE schemes from
lattices. The security of the scheme is proven under the LWE assumption
with super-polynomial approximation factors.

– We propose an adaptively secure IBE (without anonymity) that achieves
asymptotically the same efficiency as the above scheme. The difference from
the above scheme is that our scheme can be proven secure assuming the
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LWE assumption with all polynomial approximation factor. The assumption
is weaker than the one used in the above scheme, but the sizes of the public
parameters, ciphertexts, and private keys are larger than the above scheme
by a super-constant factor.

In the second construction, different from lattice IBE schemes in the literature
[1,16,2,12], we have to rely on the LWE assumption for all polynomial approx-
imation factors, rather than some fixed polynomial approximation factor (e.g.,
O(n3)). The interesting feature of the reduction is that the problem we reduce the
security to varies according to the power of the adversary. More specifically, as
the number of key extraction queries grows or as the advantage of the adversary
drops, we would need the LWE assumption with larger approximation factor.
This is somewhat similar to the security proof based on the q-type assumptions
(e.g., [24]), in which the problem that the reduction algorithm solves depends on
the number of key extraction queries made by the adversary. However, unlike the
q-type assumptions, our assumptions enjoy reduction to the worst case lattice
problems [40,37,13].

To present our schemes in a unified manner, we define the new notion of
parametrized IBE (PIBE). The syntax of PIBE is the same as that of ordinary
IBE except that it is parametrized by a variable c. As for the security, roughly
speaking, we require the advantage of any adversary to be at most 1/nc if the
number of key extraction queries is bounded by nc. In the case of c is a super-
constant function, the notion of PIBE corresponds to that of (ordinary) IBE. We
then construct a specific PIBE scheme from the LWE assumption. By setting c
to be a super-constant function, we obtain our first IBE scheme. Our second IBE
scheme is obtained by running several instances of the PIBE scheme in parallel
with different values of c. This is captured as a generic conversion from PIBE to
(ordinary) IBE.

We note that our IBE schemes might not be as efficient as previous adaptively
secure lattice IBE schemes [1,12] for a practical choice of parameters, due to the
super-constant factors hidden in the asymptotic notation. However, we believe
that our technique would be of theoretical interest. In particular, the security
proof of our PIBE scheme is based on the traditional partitioning technique [47]
with some novel ideas. In addition, our technique used in the generic construction
of IBE from PIBE, inspired by [7], would be useful for other settings.

Other Application of Our Technique. As a side result, we show an appli-
cation of our technique to attribute-based encryption (ABE). In particular, we
obtain the first ABE scheme that simultaneously satisfies the following proper-
ties: an unbounded length branching program is usable as an attribute, the sizes
of the private keys are compact, the security is proven under the LWE problem
for all polynomial approximation factors. We obtain such a scheme by applying
a simple conversion to the recent ABE scheme for branching programs by Gor-
bunov and Vinayagamurthy [28]. The idea for the conversion is similar in spirit
to our PIBE-to-IBE conversion. We note that the original ABE scheme of [28] is
either based on the super-polynomial LWE while dealing with unbounded length
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branching programs or based on the polynomial LWE while only dealing with
bounded length branching programs. The details appear in the full version [50].

Related Works. We can obtain efficient PKE as well as IBE schemes over ideal
lattices [45,22]. By switching to the ring setting, we can generally reduce the size
of the public parameters by an factor of O(n). However, we have to rely on the
ring LWE (RLWE) assumption [33,34], which is a stronger assumption than the
LWE assumption.

The techniques for constructing IBE and signatures are somewhat similar
and related. Indeed, we can obtain secure signature from (adaptively) secure
IBE, via the Naor transformation [10]. A construction of short signature with
short public parameters from weak assumptions has been an important research
topic. This problem has been addressed by several previous works [32,30,7,23,4].
However, their techniques heavily depend on the fact that we can convert a
non-adaptively secure signature scheme into adaptively secure (or equivalently,
EUF-CMA secure) one by using chameleon hash functions [43]. There is no
known analogue of the conversion in the setting of IBE. We also note that our
technique of converting PIBE into IBE is similar to the “on the fly adaptation
technique” in [21], which was used to improve the efficiency and the reduction
cost of the Naor-Reingold PRF.

2 Overview of Our Technique

2.1 Overview of the Construction

We follow the general framework for constructing lattice-based IBE schemes,
which is an abstraction of many existing schemes [16,1,2]. In the template, we
associate each identity ID with the following matrix:

(A|H(ID)) ∈ Zn×(m+m′)
q

where A ∈ Zn×mq and H(·) is a function that maps an identity to a matrix in

Zn×m′

q for some n,m,m′ ∈ N and some prime number q. A ciphertext for an
identity ID includes a vector of the following form:

s>(A|H(ID)) + (x>1 |x>2 )

where s is a random vector in Znq and x1 ∈ Zmq and x2 ∈ Zm′

q are small error

terms. A private key is a short vector e ∈ Zm+m′
that satisfies

(A|H(ID))e = u mod q

for some fixed u ∈ Znq . In the adaptively secure variant of the IBE scheme in [1],
the function H(ID) is defined as

H(ID) = B0 +
∑

{i∈[1,κ] | IDi=1}

Bi
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where B0,B1, . . . ,Bκ ∈ Zn×mq are matrices that are included in the public pa-
rameters and IDi is the i-th bit of the bit string ID ∈ {0, 1}κ. We typically set
κ = O(n) and require rather long public parameters B0,B1, . . . ,Bκ.

Our first idea is to use the technique called fully homomorphic trapdoor com-
putation, which is introduced in [11], to reduce the size of the public parameters.
Namely, we set ` = d

√
κe and the public parameters as matrices B1,1 . . . ,B1,`,

B2,1 . . . ,B2,` ∈ Zn×mq . We also introduce an injective map S : {0, 1}κ → 2[`]×[`]

that maps an identity to a subset of the set [`]× [`]. Then, we change the defi-
nition of the function as

H(ID) = B0 +
∑

(i,j)∈S(ID)

B1,i ·G−1(B2,j),

where G is a gadget matrix whose trapdoor is publicly known [35] and G−1

is a deterministic function? that maps a matrix in U = Zn×mq to a matrix in
V = {0, 1}m×m such that GV = U. By this change, we are able to reduce the
number of basic matrices from O(κ) to O(

√
κ). ??

2.2 Overview of the Security Proof

We prove the security of the scheme under the LWE assumption. Let the input
to the reduction algorithm be A ∈ Zn×mq and v ∈ Zmq . The task of the algo-

rithm is to distinguish whether v> = s>A + x> mod q for some s ∈ Znq and
small x ∈ Zm, or, v is a random vector. In the security proof, we pick random
y0, y1,1, . . . , y1,`, y2,1, . . . , y2,` ∈ Zq from certain domains, whose sizes grow pro-
portion to the number of key extraction queries Q that the adversary makes
(similarly to in [47]). Since we assume that Q is much smaller than q, these
random values are bounded by some “small” polynomial. Then, the reduction
algorithm picks R0,Ri,j

$← {−1, 1}m×m and embeds these values into the public
parameters as

B0 = AR0 + y0G, Bi,j = ARi,j + yi,jG

for (i, j) ∈ {1, 2} × [1, `]. Then, we have

H(ID) = (AR0 + y0G) +
∑

(i,j)∈S(ID)

(AR1,i + y1,iG) ·G−1(B2,j)

= (AR0 + y0G) +
∑

(i,j)∈S(ID)

(AR1,iG
−1(B2,j) + y1,iB2,j)

? Note that we are abusing the notation here. G−1 is not an inverse matrix of G, but
a function.

?? For the sake of simplicity, we present a scheme that is a special case of our scheme in
Section 5. More generally, we can further reduce the number of basic matrices from
O(
√
κ) to be O(κ1/d) for any constant d ∈ N.
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= A

R0 +
∑

(i,j)∈S(ID)

(
R1,iG

−1(B2,j) + y1,iR2,j

)
︸ ︷︷ ︸

:=RID, which is “small”

+

y0 +
∑

(i,j)∈S(ID)

y1,iy2,j


︸ ︷︷ ︸

:=Fy(ID)

·G

= ARID + Fy(ID)G.

The reduction algorithm has a trapdoor for the matrix (A‖H(ID)) if Fy(ID) 6= 0
mod q and thus can simulate a private key for such an identity ID. (RID corre-
sponds to the G-trapdoor [35] of (A‖H(ID)).) On the other hand, the reduction
algorithm expects the challenge identity ID? to satisfy Fy(ID?) = 0, for which it
does not know the trapdoor. If these conditions are not satisfied, the reduction
fails. We have to estimate the probability that it does not abort. In particular,
we have to show that

Pr[Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 . . . ∧ Fy(IDQ) 6= 0] (1)

is noticeable. Here, ID1, . . . , IDQ are identities for which key extraction queries
are made. By a similar analysis to [47,6], to show a lower bound for the proba-
bility of (1), it suffices to show an upper bound for the following probability

Pr[Fy(ID?) = 0 ∧ Fy(IDi) = 0] (2)

for identities ID? and IDi where ID? 6= IDi. To show an upper bound for (2), we
first observe that

Fy(ID?) = 0 ∧ Fy(IDi) = 0

⇔ Fy(ID?) = 0 ∧ Fy(IDi)− Fy(ID?) = 0

⇔

y0 +
∑

(j,k)∈S(ID?)

y1,jy2,k = 0


︸ ︷︷ ︸

Event (A)

∧

 ∑
(j,k)∈S(IDi)

y1,jy2,k −
∑

(j,k)∈S(ID?)

y1,jy2,k = 0


︸ ︷︷ ︸

Event (B)

.

The value of y0 is clearly independent of the Event (B). Therefore, we can easily
estimate the probability of Event (A) occurring, conditioned on that Event (B)
occurs. Thus, it suffices to show an upper bound on the probability of Event (B)
occurring. This can be accomplished by using the Schwartz-Zippel lemma.
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Proof Continued. Based on the idea we have explained above, we can simulate
key extraction queries with sufficiently high success probability. However, two
problems remain in order to complete the security proof.

(C) In the above discussion, we assumed that q is much larger than Q. Therefore,
if q is bounded by some polynomial, so is Q. In such a setting, we can only
prove “bounded” security, where the number of key extraction queries is
bounded by a predetermined polynomial.

(D) Furthermore, we are not able to generate a properly distributed challenge
ciphertext, as we explain below.

Let us explain the problem (D). Assume that for the challenge identity ID?,
we have Fy(ID?) = 0 and thus H(ID?) = ARID? . To prove security, we have to
embed the LWE problem instance A and v into the challenge ciphertext, where
v> = s>A + x> or v a random vector. A natural way to do this is to implicitly
set x1 = x and x2 = R>ID?x and compute the challenge ciphertext as

s>(A|H(ID)) + (x1|x2) = (v>|v>RID?).

The problem with this approach is that the vector x2 is highly correlated to the
value of RID? , which includes the information of y = (y0, {yi,j}(i,j)∈[1,2]×[1,`])
and additionally R0,R1,1 . . . ,R1,`,R2,1 . . . ,R2,`. While a similar (but simpler)
problem is resolved in a previous work [1] using a generalized form of the leftover
hash lemma [20], we are not able to do the same argument due to the additional
correlation to y.

We can resolve the problem by a standard technique. Namely, we “smudge
out” or “eat” the problematic term R>ID?x by adding a large enough term x′ ∈ Zmq
to it. This makes the error terms essentially statistically independent from RID? .
The size of the term x′ should be super-polynomially larger than the size of
R>ID?x, but it should be polynomially smaller than q. Therefore, the size of q
should be super-polynomially large, which also resolves the problem (C) at the
same time. Appropriately setting the parameters, we obtain our new adaptively
secure and anonymous IBE scheme.

2.3 An Additional Idea

However, making q super-polynomially large is not quite desirable because of the
following two reasons. Firstly, this would negatively impact the performance of
the system. Secondly, since the error term (in our case x) is super-polynomially
smaller compared to q, the corresponding LWE problem becomes easier. While
we are not able to resolve the first problem, we present an idea to avoid the
second problem.

Our first observation is that for any constant c ∈ N, by making q and x′

sufficiently large (but polynomial size), we can show that any PPT adversary
whose number of key extraction queries is bounded by nc cannot break the
security of IBE with advantage non-negligibly larger than 1/nc. Of course, this
is not sufficient because we need the adversary to have only negligible (rather
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than inverse of polynomial) advantage, even if the number of key extraction
queries is unbounded.

In order to accomplish this, we prepare several instances of IBE scheme with
different size of q. We call each instance of the IBE scheme as a sub-scheme.
The number of sub-schemes is super-constant (rather than super-polynomial)
and therefore the resulting scheme is still efficient. The size of q varies from
very small polynomial to super-polynomial. Furthermore, we “glue” them so
that an adversary must break the security of all of the sub-schemes, in order to
break the resulting IBE scheme. This can easily be accomplished by splitting the
message by k-out-of-k secret sharing scheme, and then encrypt them by each of
the sub-schemes.

In the security proof, we assume an PPT adversary A that breaks the result-
ing IBE scheme. Since A is polynomial time and has non-negligible advantage,
there exists some constant c ∈ N such that the number of the key extraction
queries that A makes is smaller than nc and A’s advantage is non-negligibly
larger than 1/nc. Thus, there exists at least one sub-scheme whose size of q fits
for A, and q is polynomial size. We transform the adversary A into another ad-
versary B that breaks the sub-scheme. Since q is polynomial size, we can reduce
the security to the LWE assumption with polynomial approximation factor. Note
that similar technique is used in [21] to improve the efficiency and the reduction
cost of the Naor-Reingold PRF. There, the reduction algorithm chooses the tar-
get sub-scheme based on the number of queries that the adversary makes. In our
reduction, we choose the target depending on the advantage of the adversary in
addition to the number of key extraction queries.

To present our results in a unified and modular manner, we introduce the
notion of PIBE. Roughly speaking, PIBE is an IBE scheme that is parametrized
by a variable c. Our technique to avoid super-polynomial factor we discussed
above can be generalized to be a generic conversion from PIBE to IBE. Further-
more, our scheme we discussed in the previous subsection also can be captured
as a special case of PIBE, in that c is set to be a super-constant.

3 Preliminaries

Notation. We denote by [n] a set {1, 2, . . . , n} for any integer n ∈ N. We treat a
vector as a column vector. If A1 is n×m and A2 is n×m′ matrix, then (A1|A2)
denotes the n× (m+m′) matrix formed by concatenating A1 and A2. We use
similar notation for vectors. A function f : N → R≥0 is said to be negligible,
if for all c, there exists N such that f(n) < 1/nc for all n > N . We denote by

negl(n) a negligible function. We denote by x
$← X the process of sampling a

value x according to the distribution X. Similarly, for a finite set S, we denote by
x

$← S the process of sampling a value x according to the uniform distribution
over S. Statistical distance between two random variables X and Y with support
Ω is defined as ∆(X;Y ) = 1

2

∑
s∈Ω |Pr[X = s] − Pr[Y = s]|. For ensembles of

random variable {X(n)}n∈N and {Y (n)}n∈N, we say that they are negl(n)-close
if ∆(X(n);Y (n)) = negl(n).
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3.1 Identity-Based Encryption

Syntax. Let ID be the ID space of the scheme. If a collision resistant hash
function CRH : {0, 1}∗ → ID is available, one can use an arbitrary string as an
identity. An IBE scheme is defined by the following four algorithms.

Setup(1n)→ (mpk,msk): The setup algorithm takes as input a security param-
eter 1n and outputs a master public key mpk and a master secret key msk.

KeyGen(mpk,msk, ID)→ skID: The key generation algorithm takes as input the
master public key mpk, the master secret key msk, and an identity ID ∈ ID.
It outputs a private key skID. We assume that ID is implicitly included in
skID.

Encrypt(mpk, ID,M)→ C: The encryption algorithm takes as input a master
public key mpk, an identity ID ∈ ID, and a message M, It outputs a ci-
phertext C.

Decrypt(mpk, skID, C)→ M or ⊥: The decryption algorithm takes as input the
master public key mpk, a private key skID, and a ciphertext C. It outputs
the message M or ⊥, which means that the ciphertext is not in a valid form.

Correctness. We require correctness of decryption: that is, for all n, all ID ∈
ID, and all M in the specified message space, Pr[Decrypt(mpk, skID,Encrypt(mpk,
ID,M)) = M] = 1 − negl(n) holds, where the probability is taken over the ran-

domness used in (mpk,msk)
$← Setup(1n), skID

$← KeyGen(mpk,msk, ID), and
Encrypt(mpk, ID,M).

Security. We now define the security for an IBE scheme Π. This security notion
is defined by the following game between a challenger and an adversary A.

- Setup. At the outset of the game, the challenger runs Setup(1n)→ (mpk,msk)
and gives mpk to A.

- Phase 1. Amay adaptively make key-extraction queries. If A submits ID ∈ ID
to the challenger, the challenger returns skID ← KeyGen(mpk,msk, ID).

- Challenge Phase. At some point, A outputs a message M and an identity
ID? ∈ ID, on which it wishes to be challenged. Then, the challenger picks a
random coin coin

$← {0, 1} and a random ciphertext C
$← C from the ciphertext

space. If coin = 0, it runs Encrypt(mpk, ID?,M) → C? and gives the challenge
ciphertext C? to A. If coin = 1, it sets the challenge ciphertext as C? = C and
gives it to A.

- Phase 2. After the challenge query, A may continue to make key-extraction
queries, with the added restriction that ID 6= ID?.

- Guess. Finally, A outputs guess a ĉoin for coin. The advantage of A is defined

as AdvIBEA,Π =
∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣ . We say that Π is adaptively anonymous, if

the advantage of any PPT A is negligible.

We also define adaptive security (without anonymity) for Π via a similar
game to the above. To define adaptive security, we change the challenge phase
as follows.
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- Challenge Phase. A outputs two messages M0, M1 and an identity ID? ∈
ID, on which it wishes to be challenged. Then, the challenger picks a random
coin coin

$← {0, 1}, runs Encrypt(mpk, ID?,Mcoin) → C?, and gives the challenge
ciphertext C? to A.

We also say that Π is adaptively secure, if the advantage of any PPT A is
negligible. We note that the adaptive anonymity implies the adaptive security.
Namely, the former is a stronger security notion.

3.2 Lattice Preliminaries

For positive integers q, m, n, a matrix A ∈ Zn×mq , and a vector u ∈ Zmq , the
m-dimensional integer lattice Λu

q (A) is defined as Λu
q (A) = {e ∈ Zm : Ae = u

mod q}. Λ⊥q (A) denotes Λ0
q (A). Let DΛ,c,σ denote the discrete Gaussian dis-

tribution over Λ with center c and parameter γ. When c is omitted, we set
c = 0.

Matrix Norms. For a vector u, we let ‖u‖ and ‖u‖∞ denote its `2 and `∞
norm respectively. For a matrix R ≤ Zk×m we denote three matrix norms:

‖R‖ denotes the `2 length of the longest column of R.
‖R‖GS denotes ‖R̃‖ where R̃ is the result of applying Gram-Schmidt to the
columns of R.
‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

We have that the following lemma holds [1].

Lemma 1. Let m, n, q be positive integers with m > n, A ∈ Zn×mq be a matrix,

u ∈ Znq be a vector, TA be a basis for Λ⊥q (A), and σ > ‖TA‖GS · ω(
√

logm).

Then we have Pr[x
$← DΛu

q (A),σ : ‖x‖ >
√
mσ] < negl(n).

Trapdoor Generators and Related Operations.

Lemma 2. Let n,m, q > 0 be integers with q prime. There are polynomial time
algorithms such that

1. ([3,5]): TrapGen(1n, 1m, q)→ (A,TA)
a randomized algorithm that, when m ≥ 6ndlog qe, outputs a full rank matrix
A ∈ Zn×mq and a basis TA ∈ Zm×m for Λ⊥q (A) such that A is negl(n)-close

to uniform and ‖TA‖GS = O(
√
n log q) with all but negligible probability in

n.
2. ([16]): SampleLeft(A,F,u,TA, σ)→ e

a randomized algorithm that, given a full rank matrix A ∈ Zn×mq , a matrix

F ∈ Zn×mq , a vector u ∈ Znq , a basis TA for Λ⊥q (A), and a Gaussian pa-

rameter σ > ‖TA‖GS · ω(
√

logm), outputs a vector e ∈ Z2m sampled from a
distribution which is negl(n)-close to DΛu

q (A|F),σ.

3. ([1]): SampleRight(A,G,R, y,u,TG, σ)→ e where F = AR + yG
a randomized algorithm that, given a full rank matrix A,G ∈ Zn×mq , y ∈
Zq\{0}, a matrix R ∈ Zm×m, a vector u ∈ Znq , a basis TG for Λ⊥q (G),

and a Gaussian parameter σ > ‖TG‖GS · ‖R‖2 · ω(
√

logm) outputs a vector
e ∈ Z2m sampled from a distribution which is negl(n)-close to DΛu

q (A|F),σ.
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4. ([35]): Let m > ndlog qe. Then there is a fixed full-rank matrix G ∈ Zn×mq

such that the lattice Λ⊥q (G) has a publicly known basis TG ∈ Zm×m with

‖TG‖GS ≤
√

5. Furthermore, there exists a deterministic polynomial-time
algorithm G−1 which takes the input U ∈ Zn×mq and outputs R = G−1(U)
such that R ∈ {0, 1}m×m and GR = U.

Note that in the above, we are abusing notation and G−1 is not a matrix but
rather a function. Namely, for any U there are many choices of R such that
GR = U , and G−1(U) deterministically outputs a particular short matrix from
this set. Since we have ‖R‖2 ≤ m for any R ∈ {−1, 0, 1}m×m, ‖G−1(U)‖2 ≤ m
holds for any U ∈ Zn×mq .

Learning with Errors. The learning with errors (LWE) problem was intro-
duced by Regev who showed that solving it on the average is as hard as (quan-
tumly) solving several standard lattice problems in the worst case.

Definition 1 (LWE). For an integers n, m = m(n), a prime integer q =
q(n) > 2, an error distribution χ = χ(n) over Zq, and an PPT algorithm A, an
advantage for the learning with errors problem dLWEn,m,q,χ of A is defined as
follows:

Adv
dLWEn,m,q,χ
A = |Pr[A(A, s>A + x>)→ 1]− Pr[A(A,v>)→ 1]|

where A
$← Zn×mq , s

$← Znq , x
$← χm, v

$← Zmq . We say that dLWEn,m,q,χ

assumption holds if Adv
dLWEn,m,q,χ
A is negligible for all PPT A.

Let B = B(n) ∈ N. A family of distributions χ = {χn} is called B-bounded if
Pr[χ ∈ [−B,B]] = 1. For any constant d > 0 and sufficiently large q, Regev [40]
through a quantum reduction showed that taking χ as a q/nd-bounded (trun-
cated) discretized Gaussian distribution, the dLWEn,m,q,χ problem is as hard
as approximating the worst-case GapSVP to nO(d) factors, which is believed to
be hard. In subsequent works, (partial) dequantization of the Regev’s reduction
were achieved [37,13]. More generally, let χmax < q be the bound on the noise
distribution. The difficulty of the problem is measured by the ratio q/χmax. This
ratio is always bigger than 1 and the smaller it is the harder the problem. The
problem appears to remain hard even when q/χmax < 2n

ε

for some fixed ε that
is 0 < ε < 1/2.

3.3 Basic Facts

Injective map. Let d and κ be some integers. Furthermore, let ` be ` = dκ1/de.
Then, an element of [1, κ] can be written as an element of [1, `]d using some
canonical map. Furthermore, it is also possible to write a subset of [1, κ] as a
subset of [1, `]d, by naturally extending the canonical map. By identifying a bit
string in {0, 1}κ with a subset of [1, κ] (for example, by regarding the former as
the indicator vector of a subset of [1, κ]), we can define an efficiently computable
injective map S that maps a bit string ID ∈ {0, 1}κ to a subset S(ID) of [1, `]d.

The following lemma can be shown by a simple calculation.
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Lemma 3. (Smudging out Lemma.) Let x0 ∈ Zm be a (fixed) vector such that

‖x0‖∞ ≤ δ and let x ∈ Zm be a random vector that is chosen as x
$← [−B′, B′]m.

Then, two distributions x0 + x and x are within statistical distance mδ/B′.

As observed in [40,1], the following lemma is obtained as a corollary to the
(general) leftover hash lemma.

Lemma 4. (Leftover Hash Lemma.) Let q ∈ N be an odd prime and let m >

(n+ 1) log q + ω(log n). Let R
$← {−1, 1}m×m and A,A′

$← Zn×mq be uniformly
random matrices. Then the distribution of (A,AR) is negl(n)-close to the dis-
tribution of (A,A′).

The following lemma is implicitly shown in [6].

Lemma 5. Let a1, . . . , an ∈ R be real numbers such that |
∑n
i=1 ai| = ε and∑n

i=1 |ai| ≤ 1/2. Furthermore, let γ1, . . . , γn ∈ R be real numbers such that
0 < γmin ≤ γi ≤ γmax for i ∈ [n]. Then, we have |

∑n
i=1 γiai| ≥ γminε− (γmax −

γmin)/2.

4 Parametrized IBE

In this section, we introduce the notion of parametrized IBE (PIBE), which is
an slight extension of the ordinary notion of IBE. The syntax and the security
notion for PIBE is almost the same, except that it is parametrized by an inte-
ger c. Roughly speaking, the larger c becomes, the more secure PIBE becomes.
In particular, when c is super-constant in n, the security notion for PIBE cor-
responds to that for ordinary IBE. However, in our construction of PIBE in
Section 5, in order to prove the security of the scheme for super-constant c, we
need to assume super-polynomial LWE, which is a stronger assumption than the
assumption that is needed for constant c. In this section, to base the scheme on
a weaker assumption, we provide generic construction of adaptively secure IBE
scheme from PIBE scheme that is secure only for constant c.

4.1 Definition of Parametrized IBE

Here, we define PIBE. The syntax of PIBE is the same as ordinary IBE except
that the Setup algorithm is parametrized by an integer c = c(n). Namely, Setup
takes as inputs 1n and 1c and outputs a master public key mpk and a master
secret key msk. Other algorithms, KeyGen, Encrypt, and Decrypt are defined as
in ordinary IBE. We require that these algorithms work within a time that is
polynomial in n and c.

As for the security, we define advantage AdvPIBEA,Π of an adversary A for a
PIBE scheme Π via a game that is almost the same as that of an ordinary IBE
scheme. The only difference is that mpk and msk are generated by Setup(1n, 1c)
at the beginning of the game. The rest of the game is the same. We say that
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the scheme is c-adaptively anonymous, if for any PPT adversary A such that
Q(n) ≤ nc/2− 1,

AdvPIBEA,Π

Q+ 1
<

1

nc
+ negl(n) (3)

holds for some negligible function negl(n). Here Q = Q(n) is the upper bound
for the number of key extraction queries made by A during the game.

When c(n) is a constant, the c-adaptive anonymity is an weaker security
notion than the adaptive anonymity for IBE, since it allows an adversary to have
non-negligible advantage. Furthermore, there is a bound on the number of key
extraction queries. On the other hand, when c(n) is super-constant, the security
definition of c-adaptive anonymity corresponds to that of adaptive anonymity
for (ordinary) IBE. More precisely, we have the following theorem.

Theorem 1. If Π = (Setup,KeyGen,Encrypt,Decrypt) is c′-adaptively anony-
mous for some super constant function c′(n) = ω(1) such that c′(n) < poly(n),
Π ′ = (Setup′,KeyGen,Encrypt,Decrypt) is adaptively anonymous (as an ordinary
IBE) if we set Setup′(1n) = Setup(1n, 1c

′(n)).

Proof. Since c′(n) < poly(n), Setup′, KeyGen, Encrypt, and Decrypt run in poly-
nomial time. In addition, since c′(n) = ω(1) and thus nc

′
is super-polynomial,

there is no bound on the number of key extraction queries for the adversary in the
c′-adaptive anonymity game. Furthermore, since 1/nc

′
is a negligible function,

by Equation (3), we have

AdvPIBEA,Π < (Q+ 1)

(
1

nc′
+ negl(n)

)
= negl(n)

for any adversary A. Thus, Π ′ defined as above is adaptively anonymous.

Comparison with Bounded Collusion IBE. Our notion of PIBE is similar
to the notion of bounded collusion IBE [19] (also called k-resilient IBE [29]),
in that adversaries only learn private keys of an a-priori bounded number of
identities. The security requirement for the former is weaker than that for the
latter, because we allow adversaries to have non-negligible advantages (in the
case of c is a constant). On the other hand, we pose more severe requirement
on the efficiency for the former. We require the algorithms of PIBE to work
in polynomial time in c, rather than in nc. Because of this, existing bounded
collusion IBE schemes [19,29,49,26,46] do not satisfy the requirement of PIBE.

4.2 IBE from PIBE

In this section, we show a conversion from a PIBE scheme Π = (PIBE.Setup,
PIBE.KeyGen,PIBE.Encrypt,PIBE.Decrypt) to an (ordinary) IBE scheme Π ′ =
(IBE.Setup, IBE.KeyGen, IBE.Encrypt, IBE.Decrypt). In the following, let η(n) be
any function such that η(n) = ω(1) (e.g., η(n) = log log(n)). We also let the
message space of Π and Π ′ be {0, 1}`M for some `M ∈ N.
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IBE.Setup(1n) : It runs PIBE.Setup(1n, 1i)→ (mpk(i),msk(i)) for i = 1, . . . , η. It
outputs

mpk = (mpk(1),mpk(2), . . . ,mpk(η)) and msk = (msk(1),msk(2), . . . ,msk(η)).

IBE.KeyGen(mpk,msk, ID) : It runs PIBE.KeyGen(mpk(i),msk(i), ID) → sk
(i)
ID for

i = 1, . . . , η. It outputs

skID = (sk
(1)
ID , sk

(2)
ID , . . . , sk

(η)
ID ).

Encrypt(mpk, ID,M) : To encrypt M = {0, 1}`M , it picks random M(i) ∈ {0, 1}`M
for i ∈ [η] subject to constraint that M =

⊕η
i=1 M

(i), where
⊕

denotes
bitwise exclusive or. Then it runs

PIBE.Encrypt(mpk(i), ID,M(i))→ C(i) for i = 1, . . . , η.

Finally, it outputs the ciphertext C = (C(1), . . . , C(η)).
Decrypt(mpk, skID, C) : It first parses the ciphertext and the private key as C →

(C(1), . . . , C(η)) and skID → (sk
(1)
ID , . . . , sk

(η)
ID ). Then, it runs

PIBE.Decrypt(mpk(i), sk
(i)
ID , C

(i))→ M(i) for i = 1, . . . , η.

Finally, it outputs M =
⊕η

i=1 M
(i).

Correctness of the scheme can be shown very easily. The following theorem
addresses the security of the scheme. Note that the resulting IBE scheme is not
anonymous even if the original PIBE scheme is anonymous.

Theorem 2. Assume that PIBE Π is secure for all (constant) c ∈ N. Then, Π ′

is adaptively secure as an (ordinary, not parametrized) IBE scheme.

Proof. Assume an adversary A that breaks Π ′ with non-negligible probability.
Since A is a PPT algorithm, there exist constants c′ ∈ N and c′′ ∈ N such that

– The advantage ε(n) of A is greater than 2/nc
′

for infinitely many n.
– The number Q(n) of key extraction queries that A makes is bounded by
nc

′′
/2− 1.

Let i? be i? = c′ + c′′. Then, we have

ε(n)

2(Q(n) + 1)
− 1

ni?
≥ 2

nc′+c′′
− 1

ni?
=

1

ni?
(4)

for infinitely many n. In particular, ε/2(Q+1)−1/ni
?

cannot be bounded by any
negligible function. To show the theorem, we construct an adversary B against
i?-adaptive anonymity of PIBE Π from A. In the following, we assume η ≥ i?.
Since η(n) = ω(1), this holds for sufficiently large n.

Setup. First, PIBE.Setup(1n, 1i
?

)→ (mpk(i
?),msk(i

?)) is run and mpk(i
?) is given

to B. Then, A runs PIBE.Setup(1n, 1i)→ (mpk(i),msk(i)) for i = [1, η]\{i?} and
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sets mpk = (mpk(1),mpk(2), . . . ,mpk(η)). B keeps msk(i) for i ∈ [1, η]\{i?} secret,
and returns mpk to A.

Phase 1 and 2. When A makes a key extraction query for an identity ID, B
queries a private key for the same ID to its challenger. Then, PIBE.KeyGen(mpk(i

?),

msk(i
?), ID) → sk

(i?)
ID is run and sk

(i?)
ID is given to B. Then B runs PIBE.KeyGen(

mpk(i),msk(i
?), ID)→ sk

(i)
ID for i ∈ [1, η]\{i?} and returns skID = (sk

(1)
ID , . . . , sk

(η)
ID )

to A.

Challenge. When A makes a challenge query for (ID?,M0,M1), B first picks

random M(i) $← {0, 1}`M for i ∈ [1, η]\{i?}. Then, it sets

M
(i?)
b = Mb ⊕

 ⊕
i∈[1,η]\{i?}

M(i)

 for b ∈ {0, 1}

and runs PIBE.Encrypt(mpk(i), ID,M(i))→ C(i) for i ∈ [1, η]\{i?}. Then, it picks

random coin coin′
$← {0, 1} and makes the challenge query for (ID?,M

(i?)
coin′) to

its challenger. Then, the challenger picks a coin coin
$← {0, 1} and returns C? to

B. If coin = 0, we have PIBE.Encrypt(mpk(i
?), ID?,M

(i?)
coin′) → C?. Otherwise, C?

is a random element of the ciphertext space. Given C?, B returns the challenge
ciphertext

(C(1), . . . , C(i?−1), C?, C(i?+1), . . . , C(η))

to A.

Guess. Finally, A outputs a guess ĉoin for coin′. If ĉoin = coin′, B outputs 0 as
its guess for coin and outputs 1 otherwise.

Analysis. We can see that B is a valid adversary for the parametrized IBE Π
since A does not make a key extraction query for ID?. Furthermore, B makes
the same number of key extraction queries as A and in particular, we have
Q(n) < ni

?

/2− 1. It is easy to see that the view of the adversary A corresponds
to that in adaptive security game for IBE Π ′ when coin = 0. It can also be seen
that the view of the adversary is independent of coin′ when coin = 1. Therefore,
we have

AdvPIBEB,Π =

∣∣∣∣12 Pr[ĉoin = coin′|coin = 0] +
1

2
Pr[ĉoin 6= coin′|coin = 1]− 1

2

∣∣∣∣
=

1

2

∣∣∣∣Pr[ĉoin = coin′|coin = 0]− 1

2

∣∣∣∣ =
1

2
ε(n).

Thus, by Equation (4), B is a successful attacker against the i?-adaptive anonymity
of Π.

More Efficient Conversion. In the above conversion, we run η instances of
PIBE scheme in parallel. The number of instances can be reduced to O(log η).
We briefly sketch the construction and the security proof for it. Let us as-
sume that η is a power of 2. In the setup algorithm of the variant, we run
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PIBE.Setup(1n, 1i) → (mpk(i),msk(i)) for i = 1, 2, 4, . . . , 2i, . . . , 2log η(= η), in-
stead of i = 1, 2, . . . , η. Other algorithms are defined similarly to the above. In
the security proof, the target of the reduction algorithm is set to be i? such that
2i
?−1 ≤ c′ + c′′ < 2i

?

.

5 Our Construction of PIBE from Lattices

Here, we show our constructions of PIBE from lattices. By setting the parame-
ter c super-constant or applying the conversions in Section 4.2, we obtain IBE
schemes that provide trade-off between the efficiency, security, and the under-
lying assumptions. (See Section 6 for the overview). In this section, we first in-
troduce some functions that will be needed to describe our construction. Then,
we show our construction of PIBE scheme for single-bit message space. We then
prove the security of the scheme. Finally, we discuss extension of the scheme to
the multi-bit variant.

5.1 Homomorphic Computation

Let d be a natural number. We introduce a function PubEvald : (Zn×mq )d → Zn×mq

which takes a set of matrices B1,B2, . . . ,Bd ∈ Zn×mq as inputs and outputs a
matrix in Zn×mq . The function is defined recursively as follows:

PubEvald(B1, . . . ,Bd) =

{
B1 if d = 1

B1 ·G−1
(
PubEvald−1(B2, . . . ,Bd)

)
if d ≥ 2.

We have that the following lemma holds. The proof appears in the full version.

Lemma 6. Let A, B1, . . . ,Bd be matrices in Zn×mq and R1, . . . ,Rd be matrices
in Zm×m such that Bi = ARi + yiG for i ∈ [d]. Furthermore, we assume that
‖Ri‖2 ≤ m, |yi| ≤ δ for i ∈ [d], and δ > m. Then, there exists an efficient
algorithm TrapEvald that takes R1, . . . ,Rd, y1, . . . , yd as inputs and outputs R′

such that

PubEvald(B1, . . . ,Bd) = AR′ + y1 · · · yd ·G (5)

and ‖R′‖2 ≤ mdδd−1.

5.2 Our Construction

In the following, we present our PIBE scheme. Let d be a (flexible) constant. In
addition, let the identity space of the scheme be ID = {0, 1}κ for some κ ∈ N
and the message space be {0, 1}. For our construction, we consider an efficiently
computable injective map S that maps an identity ID ∈ {0, 1}κ to a subset S(ID)
of [1, `]d, where ` = dκ1/de. Such a map can be constructed easily as we explained
in Section 3.3. We would typically set κ = O(n), and thus ` = O(n1/d) in such
a case.
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Setup(1n, 1c) : On input 1n and 1c, it sets the parameters q, m, σ, B, B′, and a
distribution χ as specified in Section 5.3, where q is a prime number. Then,
it picks random matrices B0

$← Zn×mq , Bi,j
$← Zn×mq for (i, j) ∈ [d, `] and a

vector u
$← Znq . It also picks TrapGen(1n, 1m, q)→ (A,TA) ∈ Zn×mq ×Zm×m

such that ‖TA‖GS = O(
√
n log q). It finally outputs

mpk = (A,B0, {Bi,j}(i,j)∈[d,`],u) and msk = TA.

In the following, we use a deterministic function H : ID → Zn×mq that is
defined as follows.

H(ID) = B0 +
∑

(j1,...,jd)∈S(ID)

PubEvald(B1,j1 ,B2,j2 , . . . ,Bd,jd) ∈ Zn×mq .

KeyGen(mpk,msk, ID) : It first computes H(ID) and picks e ∈ Z2m such that(
A|H(ID)

)
· e = u

by running SampleLeft(A,H(ID),u,TA, σ)→ e. It returns skID = e.

Encrypt(mpk, ID, b) : To encrypt a message b ∈ {0, 1}, it picks s
$← Znq , x0

$← χ,

x1
$← χm, x2

$← [−B′, B′]m and computes

c0 = s>u + x0 + b · dq/2e, c>1 = s>(A|H(ID)) + (x>1 |x>2 ).

Finally, it returns the ciphertext C = (c0, c1).
Decrypt(mpk, skID, C) : To decrypt a ciphertext C = (c0, c1) using a private key

skID := e, it first computes

w = c0 − c>1 · e ∈ Zq.

Then it returns 1 if |w − dq/2e| < dq/4e and 0 otherwise.

5.3 Correctness and Parameter Selection

When the cryptosystem is operated as specified, we have during decryption,

w = c0 − c>1 · e = b · dq/2e+ x0 − (x>1 |x>2 ) · e︸ ︷︷ ︸
error term

.

Lemma 7. Assuming B′ > B, the error term is bounded by O(B′σm) with
overwhelming probability.

Proof. Since χ is B-bounded distribution, with overwhelming probability, we
have

|x0 − (x>1 |x>2 ) · e| ≤ |x0|+ |(x>1 |x>2 ) · e| ≤ |x0|+ ‖(x>1 |x>2 )‖ · ‖e‖
≤ B + max{B,B′} ·

√
2m · σ

√
2m = O(B′σm).

The second inequality above follows from Cauchy-Schwartz and the third in-
equality follows from Lemma 1.
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Parameter selection. Now, to satisfy the correctness requirement and make
the security proof work, we need that

− the error term is less than q/5 with overwhelming probability (i.e.,Ω(B′σm) <
q),

− that q is sufficiently large so that the simulation works (i.e., q > Θ(κ(dnc)d)),
− that TrapGen can operate (i.e., m ≥ 6ndlog qe),
− that the leftover hash lemma (Lemma 4) can be applied in the security proof

(i.e., m = (n+ 1) log q + ω(log n)),
− that σ is sufficiently large so that SampleLeft and SampleRight work, (i.e.,
σ > O(

√
n log q) · ω(

√
logm) and σ > m(1 + κddnc(d−1)) · ω(

√
logm), where

the latter condition turns out to be more restrictive),
− that the “noise smudging step” in the security proof works (i.e., m5/2(1 +
κddnc(d−1))B/B′ ≤ d/(κ+ 1)(dnc)d+1. See Equation (11). )

To satisfy the above requirements, we set the parameters as follows:

m = O(n log q), q = O(n3c(d−1)+3c′+6), χ = DZ,
√
n,

σ = mκnc(d−1) · ω(
√

logm), B = O(n), B′ = O(m5/2κ2n2cd+1),

where c′ is a constant such that κ = O(nc
′
). Typically, we would set c′ = 1.

5.4 Security Proof

The following theorem addresses the security of the scheme. The proof is based
on the partitioning technique, similarly to [47,6,1,12]. For simplicity, we opt to
use the framework of [6] in our analysis, which does not require the artificial
abort step [47]. The analysis with the artificial abort step is also possible, and it
might lead to a scheme with slightly better efficiency (up to constant factors).

Theorem 3. The above scheme is c-adaptive anonymous assuming dLWEn,m+1,q,χ

is hard, where the ciphertext space is C = Zq × Z2m
q .

Proof. Let A be a PPT adversary that breaks c-adaptive anonymity of the
scheme. In addition, let ε = ε(n) and Q = Q(n) be its advantage and the
upper bound of the number of key extraction queries, respectively. Without loss
of generality, we assume that A always makes exactly Q key extraction queries.
Let us define c̃ as a constant that satisfies

Q ≤ nc̃

2
− 1 and

ε

Q+ 1
− 1

nc̃
= nonneg(n) (6)

where nonneg(n) is some non-negligible function. We explain such c̃ always exist.
In the case of c = c(n) is a constant, we simply let c̃ = c. Let us consider the
case of c(n) = ω(1). Since A is a PPT algorithm, there exists a constant c′ such
that Q(n) ≤ nc

′
/2 − 1. Furthermore, since A breaks c-adaptive anonymity of

the scheme and 1/nc is negligible, ε/(Q + 1) is non-negligible. Therefore, there
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exists a constant c′′ such that ε/(Q + 1) > 2/nc
′′

holds for infinitely many n.
By setting c̃ = max{c′, c′′}, we are done. We note that in any case, c̃(n) ≤ c(n)
holds for sufficiently large n.

We show the security of the scheme via the following games. In each game,
a value coin′ ∈ {0, 1} is defined. While it is set coin′ = ĉoin in the first game,
these values might be different in the later games. In the following, we define Xi

be the event that coin′ = coin.

Game0 : This is the real security game. Recall that since the ciphertext space
is C = Zq × Z2m

q , in the challenge phase, the challenge ciphertext is set as

C? = (c0, c1)
$← Zq × Z2m

q if coin = 1. At the end of the game, A outputs a

guess ĉoin for coin. Finally, the challenger sets coin′ = ĉoin. By the definition,
we have∣∣∣∣Pr[X0]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ε.

Game1 : In this game, we change Game0 so that the challenger performs the
following additional step at the end of the game. First, the challenger picks
y = (y0, {yi,j}(i,j)∈[d,`]) as

y0
$← [−(κ+ 1)(dnc̃)d + 1, 0] and yi,j

$← [1, dnc̃] for (i, j) ∈ [d]× [`].

We define a function Fy : ID → Zq as follows:

Fy(ID) = y0 +
∑

(j1,...,jd)∈S(ID)

y1,j1 · · · yd,jd .

Then the challenger checks whether the following condition holds:

Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 ∧ Fy(ID2) 6= 0 ∧ · · · ∧ Fy(IDQ) 6= 0 (7)

where ID? is the challenge identity, and ID1, . . . , IDQ are identities for which
A has made key extraction queries. If it does not hold, the challenger ignores
the output ĉoin of A, and sets coin′

$← {0, 1}. In this case, we say that the

challenger aborts. If condition (7) holds, the challenger sets coin′ = ĉoin. As
we will show in Lemma 8, we have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(
ε− Q

nc̃

)
.

So as not to interrupt the proof of Theorem 3, we intentionally skip the proof
for the time being.

Game2 : In this game, we change the way B0 and Bi,j are chosen. At the

beginning of the game, the challenger picks R0,Ri,j
$← {−1, 1}m×m for

(i, j) ∈ [d] × [`]. It also picks y as in Game1. Then, A, B0, and Bi,j are
defined as

B0 = AR0 + y0G, Bi,j = ARi,j + yi,jG (8)
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for (i, j) ∈ [d]× [`]. The rest of the game is the same as in Game1.
Then, we bound |Pr[X2]− Pr[X1]|. By Lemma 4, the distributions(

A, AR0 + y0G, {ARi,j + yi,jG}
)

and
(

A, B0, {Bi,j}
)

are negl(n)-close, where B0,Bi,j
$← Zn×mq . Therefore, we have |Pr[X1] −

Pr[X2]| = negl(n).

Before describing the next game, we define RID for an identity ID ∈ ID as

RID = R0 +
∑

(j1,...,jd)∈S(ID)

TrapEval(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd). (9)

Note that by Lemma 6, we have

‖R>ID‖2 = ‖RID‖2
≤ ‖R0‖2 +

∑
(j1,...,jd)∈S(ID)

‖TrapEval(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)‖2

≤
(
m+ κ(md · (dnc̃)d−1)

)
≤ m(1 + κddnc(d−1)) (10)

for any ID ∈ ID. The last inequality above follows from c̃ ≤ c.

Game3 : In this game, we change the way the challenge ciphertext is created
when coin = 0. If coin = 0, to create the challenge ciphertext Game3 chal-
lenger first picks s

$← Znq , x0
$← χ, x1

$← χm, x2
$← [−B′, B′]m and computes

RID? . Then, the challenge ciphertext C? = (c0, c1) is computed as

c0 = s>u + x0 + b · dq/2e, c>1 = s>(A|H(ID?)) + (x>1 |x>1 RID? + x>2 )

where b ∈ {0, 1} is the message chosen by A.
We then proceed to bound |Pr[X3] − Pr[X2]|. Since x1 is chosen from a
B-bounded distribution, we have

‖R>ID?x1‖∞ ≤ ‖R>ID?x1‖2 ≤ ‖R>ID?‖2 · ‖x1‖ ≤ m3/2(1 + κddnc(d−1))B.

When all randomness other than x2 in this game is fixed, the distributions
x2 and R>ID? · x1 + x2 are within statistical distance

m‖R>ID?x1‖∞/B′ = m5/2(1 + κddnc(d−1))B/B′ ≤ d

κ+ 1
·
(

1

dnc

)d+1

(11)

by Lemma 3. Averaging over all other randomness, we have that the distribu-
tion of the challenge ciphertext is within statistical distance d/(κ+1)(dnc)d+1

from the previous game, when coin = 0. In the case of coin = 1, the view of
A is unchanged. Therefore, we conclude that the view of A in this game is
within statistical distance d/(κ+ 1)(dnc)d+1 from the previous game. Thus,
we have

|Pr[X2]− Pr[X3]| ≤ d

κ+ 1
·
(

1

dnc

)d+1

.



21

Game4 Recall that in the previous game, the challenger aborts at the end of the
game, if the condition (7) is not satisfied. In this game, we change the game
so that the challenger aborts as soon as the abort condition becomes true.
Since this is only a conceptual change, we have Pr[X3] = Pr[X4].

Game5 In this game, we change the way the matrix A is sampled. Namely,
Game5 challenger picks A

$← Zn×mq instead of generating it with a trapdoor.
By Lemma 2, this makes only negligible difference. Furthermore, we also
change the way the key extraction queries are answered. When A makes a
key extraction query for an identity ID, the challenger first computes RID as
in Equation (9). By the definition of RID, it holds that

H(ID) = A · (RID + Fy(ID)G) .

If Fy(ID) = 0, it aborts, as the previous game. Otherwise, it runs

SampleRight(A,G,RID,Fy(ID),u,TG, σ)→ e,

and returns e to A. Note that the private key was sampled as

SampleLeft(A,H(ID),u,TA, σ)→ e

in the previous game. By Equation (10) and the choice of σ, the output
distribution of SampleRight is negl(n)-close to DΛu

q (A|H(ID)),σ. Similarly, by

the choice of σ, the output distribution of SampleLeft is also negl(n)-close to
DΛu

q (A|H(ID)),σ. Therefore, the above change alters the view of the adversary

only negligibly. Thus, we have |Pr[X4]− Pr[X5]| = negl(n).
Game6 In this game, we change the way the challenge ciphertext is created

when coin = 0. If coin = 0, to create the challenge ciphertext for the identity
ID? and the message b, Game6 challenger first picks v0

$← Zq, v1
$← Zmq ,

x2
$← [−B′, B′]m and computes RID? . Then, it sets the challenge ciphertext

C? = (c0, c1) as

c0 = v0 + b · dq/2e, c>1 = (v>1 |v>1 RID?) + (0>m|x>2 ).

As we will show in Lemma 9, assuming dLWEn,m+1,q,χ is hard, we have
|Pr[X5]− Pr[X6]| = negl(n).

Game7 In this game, we change the challenge ciphertext to be a random vec-
tor, regardless of whether coin = 0 or coin = 1. Namely, Game7 challenger
generates the challenge ciphertext (c0, c1) as c0

$← Zq and c1
$← Zmq .

We now proceed to bound |Pr[X7]−Pr[X6]|. Since Game6 and Game7 differ
only in the creation of the challenge ciphertext when coin = 0, we focus
on this case. First, it is easy to see that c0 is uniformly random over Zq
in both of Game6 and Game7. We also have to show that the distribution
of c1 is negl(n)-close to the uniform distribution over Z2m

q . To see this, it

suffices to show that (v>1 |v>1 RID?) is distributed statistically close to uniform
distribution over Z2m

q . Observe that the following distributions are negl(n)-
close:

(A,AR0,v
>
1 ,v

>
1 R0) ≈ (A,A′,v>1 ,v

′
1
>

) ≈ (A,AR0,v
>
1 ,v

′
1
>

), (12)
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where A,A′
$← Zn×mq , R0

$← {−1, 1}m×m, v1,v
′
1

$← Zmq . It can be seen that
the first and the second distributions are negl(n)-close, by applying Lemma
4 for (A>|v)> ∈ Z(n+1)×m and R0. It can also be seen that the second
and the third distributions are negl(n)-close, by applying the same lemma
for A and R0. From the above, we have that the following distributions are
statistically close:

(A,AR0,v1,v
>
1 R?

ID)

=

A,AR0,v1,v
>
1

R0 +
∑

(j1,...,jd)
∈S(ID)

TrapEval(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)




≈

A,AR0,v1,v
′
1
>

+ v>1

 ∑
(j1,...,jd)
∈S(ID)

TrapEval(R1,j1 , . . . ,Rd,jd , y1,j1 , . . . , yd,jd)




≈ (A,AR0,v1,v
′
1
>

)

where A,A′
$← Zn×mq , R0

$← {−1, 1}m×m, v1,v
′
1

$← Zmq . The second and
the third distributions above are negl(n)-close by Equation (12). Therefore,
we may conclude that |Pr[X6]− Pr[X7]| = negl(n).

Analysis. From the above, we have∣∣∣∣Pr[X7]− 1

2

∣∣∣∣ =

∣∣∣∣∣Pr[X1]− 1

2
+

6∑
i=1

Pr[Xi+1]− Pr[Xi]

∣∣∣∣∣
≥
∣∣∣∣Pr[X1]− 1

2

∣∣∣∣− 6∑
i=1

|Pr[Xi+1]− Pr[Xi]|

≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(
ε− Q

nc̃

)
− d

κ+ 1
·
(

1

dnc

)d+1

− negl(n)

≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(
ε− Q

nc̃

)
− d

κ+ 1
·
(

1

dnc̃

)d+1

− negl(n)

=
1

κ+ 1
·
(

1

dnc̃

)d
· (Q+ 1) ·

(
ε

Q+ 1
− 1

nc̃

)
− negl(n)

=
1

poly(n)
·
(

ε

Q+ 1
− 1

nc̃

)
− negl(n). (13)

The third inequality above follows from c ≥ c̃. Since the challenge ciphertext is
independent from the value of coin in Game7, we have Pr[X7] = 1/2 and thus
|Pr[X7]− 1/2| = 0. Therefore, from inequality (13), ε/(Q+ 1) < 1/nc̃ + negl(n)
follows. However, this contradicts to Equation (6).

To complete the proof of Theorem 3, it remains to show Lemma 8 and 9.
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Lemma 8. For any PPT adversary A, we have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(
ε− Q

nc̃

)
.

Proof. For a sequence of identities ID = (ID?, ID1, . . . , IDQ) ∈ IDQ+1, we define
γ(ID) as

γ(ID) = Pr
y

[Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 ∧ Fy(ID2) 6= 0 ∧ · · · ∧ Fy(IDQ) 6= 0]

where the probability is taken over y = (y0, {yi,j}(i,j)∈[d,`]), which is chosen as
specified in Game1. To show the lemma, we first show the following claim, which
gives an upper and lower bounds for γ(ID).

Claim. For any ID = (ID?, ID1, . . . , IDQ) such that ID? 6= IDi for all i ∈ [Q],

1

κ+ 1
·
(

1

dnc̃

)d
·
(

1− Q

nc̃

)
≤ γ(ID) ≤ 1

κ+ 1
·
(

1

dnc̃

)d
.

Proof. Showing the upper bound of the probability is very easy. For any {yi,j},
there exists exactly one y0 ∈ [−(κ+ 1)(dnc̃)d + 1, 0] such that Fy(ID?) = 0, since
for any {yi,j}(i,j)∈[d]×[`] and ID, we have

0 ≤
∑

(j1,...,jd)∈S(ID)

y1,j1 · · · yd,jd ≤
∑

(j1,...,jd)∈S(ID)

(dnc̃)d < (κ+ 1)(dnc̃)d

Therefore, we have

γ(ID) ≤ Pr
y

[Fy(ID?) = 0] =
1

κ+ 1
·
(

1

dnc̃

)d
.

We then proceed to show the lower bound.

γ(ID) = Pr
y

[Fy(ID?) = 0 ∧ Fy(ID1) 6= 0 ∧ Fy(ID2) 6= 0 ∧ · · · ∧ Fy(IDQ) 6= 0]

≥ Pr
y

[Fy(ID?) = 0]−
∑
i∈[Q]

Pr
y

[Fy(ID?) = 0 ∧ Fy(IDi) = 0]

=
1

κ+ 1
·
(

1

dnc̃

)d
−
∑
i∈[Q]

Pr
y

[Fy(ID?) = 0 ∧ Fy(IDi) = 0]. (14)

It suffices to show an upper bound for Pr[Fy(ID?) = 0∧Fy(IDi) = 0]. For i ∈ [Q],
we have

Pr
y

[Fy(ID?) = 0 ∧ Fy(IDi) = 0]

= Pr
y

[Fy(ID?) = 0 ∧ Fy(ID?)− Fy(IDi) = 0]
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= Pr
y

[Fy(ID?) = 0 | F′y(ID?, IDi) = 0] · Pr
y

[F′y(ID?, IDi) = 0]

= Pr
y

y0 = −
∑

(j1,...,jd)
∈S(ID?)

y1,j1 · · · yd,jd

∣∣∣∣∣∣∣∣ F
′
y(ID?, IDi) = 0

 · Pr
y

[F′y(ID?, IDi) = 0]

=
1

κ+ 1
·
(

1

dnc̃

)d
· Pr

y
[F′y(ID?, IDi) = 0]. (15)

In the above, we defined F′y(ID?, IDi) as

F′y(ID?, IDi) := Fy(ID?)− Fy(IDi)

=
∑

(j1,...,jd)∈S(ID?)

y1,j1 · · · yd,jd −
∑

(j1,...,jd)∈S(IDi)

y1,j1 · · · yd,jd .

The last equation in Equation (15) follows since y0 is independent from F′y(ID?,
IDi). (Observe that y0 does not appear in the definition of F′y(ID?, IDi).)

We then finally bound Pry[F′y(ID?, IDi) = 0]. Since ID? 6= IDi and S is an in-

jective map, we have S(ID?) 6= S(IDi). Therefore, there exists (j?1 , . . . , j
?
d) ∈ [`]d

such that (j?1 , . . . , j
?
d) ∈ S(ID?) 4 S(IDi), where S(ID?) 4 S(IDi) denotes the

symmetric difference of S(ID?) and S(IDi). Thus, F′y(ID?, IDi) is not a zero-
polynomial when we regard it as a polynomial in indeterminates {yj,k}(j,k)∈[d]×[`].
Since each yj,k is uniformly random over [1, dnc̃] and F′y(ID?, IDi) is a polynomial
with degree d, by the Schwartz-Zippel lemma, it follows that

Pr
y

[F′y(ID?, IDi) = 0] ≤ d

dnc̃
≤ 1

nc̃
.

By combining this with Equation (14) and (15), the claim follows.

We then proceed to show a lower bound for |Pr[X1]−1/2|. For ID = (ID?, ID1, . . . ,
IDQ) such that ID? 6= IDi for all i ∈ [Q], we define γmax and γmin as the largest
and the smallest value of γ(ID) taken over all such ID, respectively. We define
Q(ID) as the event that A chooses ID? as its challenge identity and it makes key
extraction queries for ID1, . . . , IDQ. We also define Abort as the event that the
challenger aborts. Then, we have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ =

∣∣∣∣Pr[coin′ = coin]− 1

2

∣∣∣∣
=

∣∣∣∣∣∑
ID

Pr[Q(ID)] · Pr[coin′ = coin|Q(ID)]− 1

2

∣∣∣∣∣
=

∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(

Pr[coin′ = coin ∧ ¬Abort|Q(ID)]

+ Pr[coin′ = coin ∧ Abort|Q(ID)]− 1

2

)∣∣∣∣
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=

∣∣∣∣∣∑
ID

Pr[Q(ID)] ·
(

Pr[ĉoin = coin|Q(ID)] · γ(ID) +
1

2
·
(
1− γ(ID)

)
− 1

2

)∣∣∣∣∣
=

∣∣∣∣∣∑
ID
γ(ID) · Pr[Q(ID)] ·

(
Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣
≥ γmin · ε−

γmax − γmin

2
.

In the third equation above, we used the fact
∑

ID Pr[Q(ID)] = 1. The fourth
equation above follows from the fact that the probability of the abort is γ(ID),

when conditioned on Q(ID) (regardless of the value of ĉoin). The last inequality
above follows by Lemma 5, since we have∣∣∣∣∣∑

ID
Pr[Q(ID)]

(
Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣∣
=

∣∣∣∣∣∑
ID

Pr[ĉoin = coin ∧ Q(ID)]− 1

2

∣∣∣∣∣ =

∣∣∣∣Pr[ĉoin = coin]− 1

2

∣∣∣∣ = ε

and∑
ID

∣∣∣∣Pr[Q(ID)] ·
(

Pr[ĉoin = coin|Q(ID)]− 1

2

)∣∣∣∣ ≤∑
ID

Pr[Q(ID)] · 1

2
=

1

2
.

We complete the proof of Lemma 8 by observing

γmin · ε−
γmax − γmin

2

≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(

1− Q

nc̃

)
· ε− 1

2(κ+ 1)
·
(

1

dnc̃

)d
·
(

1−
(

1− Q

nc̃

))
≥ 1

κ+ 1
·
(

1

dnc̃

)d
·
(
ε− Q

nc̃

)
.

The last inequality follows from ε ≤ 1/2.

Lemma 9. For any PPT adversary A, there exists another PPT adversary B
such that

|Pr[X5]− Pr[X6]| ≤ Adv
dLWEn,m+1,q,χ

B .

In particular, under the dLWEn,m+1,q,χ assumption, we have |Pr[X5]−Pr[X6]| =
negl(n).

Proof. Suppose an adversary A that has non-negligible advantage in distinguish-
ing Game5 and Game6. We use A to construct an LWE algorithm denoted B,
which proceeds as follows.
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Instance. B is given the problem instance of LWE (A′,v′) ∈ Zn×(m+1)
q ×Zm+1

q .
Let the first column of A′ be u ∈ Znq and the last m column be A ∈ Zn×mq . It
also sets the first coefficient of v′ be v0 and the last m coefficients be v1.

Setup. To construct master public key mpk, B first picks y as in Game1. It also
picks R0,Ri,j

$← {−1, 1}m×m and sets B0 and Bi,j as Equation (8). Finally,
it returns mpk = (A,B0, {Bi,j}(i,j)∈[d,`],u) to A. B also picks a random bit

coin
$← {0, 1} and keeps it secret.

Phase 1 and Phase 2. When A makes a key extraction query for ID, B first
computes Fy(ID). It aborts and sets coin′

$← {0, 1} if Fy(ID) = 0. Otherwise, B
generates the private key as in Game5.

Challenge Query. WhenAmakes the challenge query for the challenge identity
ID? and the message b, B first computes Fy(ID?). Then, it aborts and sets coin′

$←
{0, 1} if Fy(ID?) 6= 0. Otherwise, it proceeds as follows. If coin = 0, it computes

RID? and picks x2
$← [−B′, B′]m. Then, it sets the challenge ciphertext as

c0 = v0 + b · dq/2e, c>1 = (v>1 |v>1 RID?) + (0>m|x>2 )

and returns C? = (c0, c1) to A. In the case of coin = 1, B picks c0
$← Zq,

c1
$← Z2m

q and returns the challenge ciphertext C? = (c0, c1) to A.

Guess. At last, A outputs its guess ĉoin (if the abort condition has not been

satisfied). Then, B sets coin′ = ĉoin. Finally, B outputs 1 if coin′ = coin and 0
otherwise.

Analysis. We now show that B perfectly simulates the view of A in Game5
if (A′,v′) is a valid LWE sample (i.e., v′

>
= s>A′ + x> for s

$← Znq and

x
$← χm+1), and Game6 if v′

$← Zm+1
q . Note that these games differ only in the

generation of the challenge ciphertext in the case of coin = 0. Furthermore, it
is easy to see that the simulation of the master public key, Phase 1, Phase 2,
and the challenge ciphertext for the case of coin = 1 are perfect. Therefore, in
the following, we focus on the generation of the challenge ciphertext in the case
of coin = 0.

We first show that if (A′,v′) is a valid LWE sample, i.e., v′
>

= s>A′+x> for

s
$← Znq and x

$← χm+1, the distribution of the challenge ciphertext corresponds

to that of Game5. Let us denote x> = (x0,x
>
1 ) and assume that Fy(ID?) = 0

holds. Then, we have

c0 = v0 + b · dq/2e = (u>s + x0) + b · dq/2e and

c1 = (v>1 |v>1 RID?) + (0>m|x>2 )

=
(
s>A + x>1 |(s>A + x>1 )RID?

)
+ (0>m|x>2 )

= s>
(
A|ARID?

)
+ (x>1 |x>1 RID? + x>2 )

= s>
(
A|H(ID?)

)
+ (x>1 |x>1 RID? + x>2 ).

The last equation follows because Fy(ID?) = 0. Therefore, the challenge cipher-
text is distributed as in Game5 in this case. It is easy to see that the challenge
ciphertext is distributed as in Game6, if v′

$← Zm+1
q .
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Therefore, we have Adv
dLWEn,m+1,q,χ

B = |Pr[X5]− Pr[X6]| as desired.

5.5 Multi-bit Encryption

Here, we explain that our scheme can be extended to deal with multi-bit messages
without much increasing the sizes of public parameters and ciphertexts, similarly
to [39,1]. To modify the scheme so that it can encrypt messages with N -bit, we
replace u ∈ Znq in mpk with u1, . . . ,uN ∈ Znq . The component c0 = 〈u, s〉+ x0 +

bd q2e in the ciphertext is replaced with c0 = {〈ui, s〉 + x0,i + bid q2e}
N
i=1 where

x0,i
$← χ and bi ∈ {0, 1} is the i-th bit of the message. Furthermore, the private

key is changed to be short vectors e1, . . . , eN ∈ Zm such that (A|H(ID))ei = ui
for i = 1, . . . , N . We can prove the security for the variant from dLWEn,m+N,q,χ

by naturally extending the proof of Theorem 3.
As for the efficiency, the size of the master public key and the ciphertexts

become O((`m + N)n log q) and O((m + N) log q) respectively, and these are
asymptotically the same as the case of single-bit encryption when N < O(m).
The case of N > O(m) can also be handled without increasing the size of pa-
rameters, by employing the KEM-DEM approach. Namely, we encrypt a random
ephemeral key of sufficient length (e.g., O(n)) by IBE and then encrypt the mes-
sage by the ephemeral key using a symmetric cipher.

6 Comparisons and Discussions

From the PIBE scheme in Section 5, we can obtain the following new IBE
schemes:

– By setting c = ω(1), we obtain adaptively anonymous IBE by Theorem 1.
However, we have to rely on super-polynomial LWE assumption, namely,
dLWEn,m,q,χ with q/χmax = nω(1).

– By applying PIBE-to-IBE conversion in Section 4.2 to our PIBE in Sec-
tion 5, we obtain (non-anonymous) adaptively secure IBE from polynomial
LWE. More precisely, the security of the scheme can be proven under the
assumption that dLWEn,m,q,χ is hard for all q/χmax = poly(n).

For concreteness, we would set c(n) = O(log log n) in the first construction,
and c(n) = log log n and η(n) = log log n for the second construction. Ignor-
ing poly-logarithmic factors hidden in the asymptotic notation Õ(·), both of
our schemes achieve the best efficiency among existing adaptively secure IBE
schemes. See Table 1 for the comparison. Comparing in more details, ciphertexts
and private keys of both of our schemes are longer than [1,12] by a super-constant
factor. This is because we need to use super polynomially large q. On the other
hand, in both of our schemes, the sizes of master public keys are asymptotically
smaller than [1,12], even though we have to use larger q. This is because we
require smaller number of basic matrices in the master public keys. Our first
scheme is more efficient than our second scheme by super-constant factors, be-
cause the conversion in Section 4.2 incurs super-constant efficiency loss. We also
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note that our security reduction is very loose even compared to non-tight re-
duction of [1,12]. The security degrades exponentially as d grows. Therefore, in
order to have polynomial reduction, we have to set d to be a (possibly small)
constant.

Table 1. Comparison of IBE from the LWE assumption in the Standard Model.

Schemes |mpk| |C| |skID| Anon? Selective q/χmax for
or Adaptive LWE Assumption

[1] Õ(n2) Õ(n) Õ(n) Yes Selective Fixed poly(n)

[16] Õ(n2κ) Õ(nκ) Õ(n2) Yes Adaptive Fixed poly(n)

[1]+[12]∗ Õ(n2κ) Õ(n) Õ(n) Yes Adaptive Fixed poly(n)

Ours: Sec. 5 + Th. 1. Õ(n2κ1/d) Õ(n) Õ(n) Yes Adaptive nω(1)

Ours: Sec. 5 + Th. 2. Õ(n2κ1/d) Õ(n) Õ(n) No Adaptive All poly(n)

We compare IBE schemes from the LWE assumption in the standard model. |mpk|,
|C|, and |skID| show the size of the master public keys, ciphertexts, and private keys,
respectively. In the table, κ denotes the length of the identity (which corresponds
to the output length of the collision resistant hash if we first hash the bit string
representing identity in the scheme). d ∈ N is a flexible constant, which can be set to
be any value. “Anon?” shows whether the scheme is anonymous. “Selective/Adaptive”
shows whether the scheme is selectively secure or adaptively secure. “q/χmax” for
LWE assumption refers to the ratio of the modulus to the error size of the underlying
LWE assumption used in the security reduction. “Fixed poly(n)” means that the
corresponding scheme is proven secure under the LWE assumption with q/χmax being
some fixed polynomial (e.g., n3). “All poly(n)” mean that we have to assume the LWE
assumption for all polynomial q/χmax.
∗ In the security proof for the adaptively secure variant of IBE in [1], we have a

restriction that q > Q. Namely, only bounded form of the security is proven. This
restriction is removed in the refined analysis due to Boyen [12].
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