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Abstract. An accumulator is a function that hashes a set of inputs into
a short, constant-size string while preserving the ability to efficiently
prove the inclusion of a specific input element in the hashed set. It has
proved useful in the design of numerous privacy-enhancing protocols,
in order to handle revocation or simply prove set membership. In the
lattice setting, currently known instantiations of the primitive are based
on Merkle trees, which do not interact well with zero-knowledge proofs.
In order to efficiently prove the membership of some element in a zero-
knowledge manner, the prover has to demonstrate knowledge of a hash
chain without revealing it, which is not known to be efficiently possible
under well-studied hardness assumptions. In this paper, we provide an
efficient method of proving such statements using involved extensions
of Stern’s protocol. Under the Small Integer Solution assumption, we
provide zero-knowledge arguments showing possession of a hash chain. As
an application, we describe new lattice-based group and ring signatures
in the random oracle model. In particular, we obtain: (i) The first lattice-
based ring signatures with logarithmic size in the cardinality of the ring;
(ii) The first lattice-based group signature that does not require any GPV
trapdoor and thus allows for a much more efficient choice of parameters.

1 Introduction

Cryptographic accumulators were introduced by Benaloh and de Mare [I0] as
alternative to digital signatures in the design of distributed protocols. While
initially used in time-stamping and membership testing mechanisms [I0], they
found numerous applications in the context of fail-stop signatures [7], anony-
mous credentials [20/T9/TI44], group signatures [68], anonymous ad hoc authenti-
cation [28], digital cash [6l22I54], set membership proofs [69J63] or authenticated
data structures [60/59] (see [27] for further examples).

In a nutshell, an accumulator is a sort of algebraic hash function that maps a
large set R of inputs into a short, constant-size accumulator value u such that an
efficiently computable short witness w provides evidence that a given input was



indeed incorporated into the hashed set. In order to be useful, the size of the wit-
ness should be much smaller than the cardinality of the input set. An extension,
suggested by Camenisch and Lysyanskaya [20], allows the accumulator value to
be updated over time, by adding or deleting elements of the hashed set while
preserving the ability to efficiently update witnesses. For most applications, the
usual security requirement mandates the infeasibility of computing an accumu-
lator value uw and a valid witness w for an element x outside the set of hashed
inputs. This is made possible by public-key techniques like the existence of a
trapdoor (e.g., the factorization of an RSA modulus or the discrete logarithm of
some public group element) hidden behind public parameters.

So far, number theoretic realizations have been divided into two main families.
The first one relies on groups of hidden order [TOI7/47IT5] and includes proposals
based on the Strong RSA assumption [7/43]. The second main family [57J19]
was first explored by Nguyen [57] and appeals to bilinear maps (a.k.a. pairings)
and assumptions of variabe size like the Strong Diffie-Hellman assumption [I4].
Strong-RSA-based candidates enjoy the advantage of short public parameters
and they easily extend into universal accumulators [43] (where non-membership
witnesses can show that a given input was not accumulated). While pairing-
based schemes [5719] usually require linear-size public parameters in the num-
ber of elements to be hashed, they are useful in applications [6122] where we
want to limit the number of elements to be hashed. A third family (e.g., [59]) of
constructions relies on Merkle trees [50] rather than number theoretic assump-
tions. Its main disadvantage is that the use of hash trees makes it hardly com-
patible with efficient zero-knowledge proofs, which are inevitable ingredients of
privacy-preserving protocols [20J68JT9/1]. In fact, currently known methods [I59]
for reconciling Merkle trees and zero-knowledge proofs require non-standard as-
sumptions in groups of hidden order [I5] or the machinery of SNARKs, which
inherently rely on non-falsifiable [55] knowledge assumptions [35].

Despite its wide range of applications, the accumulator primitive still has a
relatively small number of efficient realizations. For the time being, most known
solutions require non-standard ad hoc assumptions like Strong RSA or Strong
Diffie-Hellman. To our knowledge, the only exception is a generic construction
from vector commitments [24], which leaves open the problem of candidates
based on the standard Computational Diffie-Hellman assumption (in groups
without a bilinear map) or zero-knowledge-friendly lattice-based schemes. In
this paper, we describe a new construction based on standard lattice assump-
tions which interacts nicely with zero-knowledge proofs despite the use of Merkle
trees. We show that this new construction enables new, unexpected applications
to the design of lattice-based ring signatures and group signatures.

OUR CONTRIBUTIONS. We describe a lattice-based accumulatolf’] that enables
short zero-knowledge arguments of membership. Our construction relies on a
Merkle hash tree which is computed in a special way that makes it compatible

3 A lattice-based accumulator was previously claimed in [38]. However, the generation
of witnesses can only be performed using the secret key of the system. Moreover,
their scheme is seemingly not compact due to the required choice of parameters.



with efficient protocols for proving possession of a secret value (i.e., a leaf of
the tree) that is properly accumulated in the root of the tree. More specifically,
our system allows demonstrating the knowledge of a hash chain from the con-
sidered secret leaf to the root in a zero-knowledge manner. This building block
enables many interesting applications. In particular, we use it to design lattice-
based ring and group signatures with dramatic improvements over the existing
constructions. In the random oracle model, we obtain:

— The first lattice-based ring signature with logarithmic signature size in the
cardinality of the ring. So far, all suggested proposals have linear size in the
number of ring members.

— A lattice-based group signature with much shorter public key, signature
length, and weaker hardness assumptions than all earlier realizations.

Our ring signature does not require any other setup assumption than having
all users agree on a modulus ¢, a lattice dimension n and a random matrix
A € Zy*™ (which can be derived from a random oracle). It provably satisfies
the strong security definitions put forth by Bender, Katz and Morselli [11].
Our group signature is analyzed in the setting of static groups using the defini-
tions of Bellare, Micciancio and Warinschi [8]. Tts salient feature (which it shares
with our ring signature) is that, unlike all earlier candidates [334TI42/46I58], it
does not require the use of a trapdoor (as defined by Gentry, Peikert and Vaikun-
tanathan [31]) consisting of a short basis of some lattice. It thus eliminates one
of the frequently cited reasons [49] for which lattice-based signatures tend to be
impractical. In fact, our group signature departs from previously used design
principles — which are all inspired in some way by the general construction of [§]
— in that, surprisingly, it does not even require an ordinary digital signature
to begin with. All we need is a lattice-based accumulator with a compatible
zero-knowledge argument system for arguing knowledge of a hash chain.

OURrR TECHNIQUES. Our accumulator proceeds by computing a Merkle tree us-
ing a hash function based on the Small Integer Solution (SIS) problem, which
is a variant of the hash functions considered in [4I32l53] previously considered
by Papamanthou et al. [59]. Instead of hashing a vector x € {0,1}™ by com-
puting its syndrome A - x € Zy via a random matrix A € ng’”, it outputs
the coordinate-wise binary decomposition bin(A - x mod ¢) € {0,1}"/2 of the
syndrome to obtain the two-fold compression factor that is needed for iteratively
applying the function in a Merkle tree. However, Papamanthou et al. [59] did not
consider the problem of proving knowledge of a hash chain in a zero-knowledge
fashion. The main technical novelty that we introduce is thus a method for
demonstrating knowledge of a Merkle-tree hash chain using the framework of
Stern’s protocol [67].

Using this method, we build ring and group signatures with logarithmic size
in the number of ring or group members involved. Our constructions are concep-
tually simple. Each user’s private key is a random m-bit vector x € {0,1}™ and
the matching public key is the binary expansion d = bin(A-x mod q) € {0,1}™/2
of the corresponding syndrome. In order to sign a message, the user considers



an accumulation u € {0,1}"/2 of all users’ public keys R = (do,...,dy_1) —
which is obtained by dynamically forming the ring R in the ring signature and
simply consists of the group public key in the group signature — and generates
a Stern-type argument that: (i) His public key d; belongs to the hashed set
R; (ii) He knows the underlying secret d; = bin(A - x; mod ¢); (iii — for the
group signature) He has honestly encrypted the binary representation of the
integer j determining his position in the tree to a ciphertext attached in the
signature. In order to acquire anonymity in the strongest sense (i.e., where the
adversary is granted access to a signature opening oracle), we apply the Naor-
Yung paradigm [56] to Regev’s cryptosystem [64], as was previously considered
n [12]. As pointed out earlier, the advantage of not relying on an ordinary dig-
ital signatureﬂ lies in that it does not require any party (i.e., neither the group
manager nor the group members in the case of group signatures) to have a
GPV trapdoor [31] consisting of a short lattice basis. As emphasized by Lyuba-
shevsky [49], explicitly avoiding the use of such trapdoors allows for drastically
more efficient choices of parameters. As by-products, our scheme features much
smaller group public key and users’ secret keys, produces shorter signatures,
and relies on weaker hardness assumptions than all of the existing lattice-based
group signature schemes [332T4T46158] in the BMW model [§].

In the following, we give an estimated efficiency comparison among our group
signature and the previous 2 most efficient schemes with CCA-anonymity, by
Ling et al. [40] and Nguyen et al. [58]. The estimations are done with parameter
n = 28, group size N = 1024, and soundness error 273 for the NIZKs.

— Ling et al’s scheme requires ¢ = O(log N - n?), m > 2nlogq, so we set
q = 2'® and m = 2° - 18. The infinity norm bound for discrete Gaussian
samples is 2°. The scheme produces group public key size 65.8 MB; user’s
secret key size 13.5 KB (a Boyen signature [17]); and signature size 1.20 GB.

— Nguyen et al.’s scheme requires ¢ > m®?, m > 2nloggq, so we set ¢ = 2142
and m = 29-142. The scheme produces group public key size 2.15 GB; user’s
secret key size 90 GB (a trapdoor in Z3™*3™ with (logm)-bit entries); and
signature size 500 MB.

— Our scheme works with ¢ = 28, m = 298, and parameters p = 32719, mg =
7980 for the encryption layer. The scheme features public key size 4.9 MB;
user’s secret key size 3.25 KB; and it produces signatures of size 61.5 MB.

RELATED WORK. While originally suggested as a 3-move code-based identifica-
tion scheme, Stern’s protocol was adapted to the lattice setting by Kawachi et
al. [40] and extended by Ling et al. [45] into an argument system for the Inhomo-
geneous Small Integer Solution (ISIS) problem. In particular, Ling et al. gave a
method, called decomposition-extension framework, which allows arguing knowl-
edge of an integer vector x € Z™ of norm [[x|o < /3 such that A -x =u € Z
without leaving any gap between the vector computed by the knowledge extrac-
tor and the actual witness x. As shown in [46], the technique of Ling et al. [45]

4 Recall that all O(log N)-size group signatures employ a signature scheme in the stan-
dard model (for which all known constructions use trapdoors) in order to smoothly
interact with zero-knowledge proofs.



can be used to prove more involved statements such as the possession of a Boyen
signature [I7] on a message encrypted by a dual Regev ciphertext [3I]. Here,
we take one step further and develop a zero-knowledge argument of knowledge
(ZKAoK) that a specific element of some universe belongs to a hashed set.

Ring signatures were introduced by Rivest, Shamir and Tauman-Kalai [65]
with the motivation of hiding the identity of a source (e.g., a whistleblower in
a political scandal) while providing guarantees of trustworthiness. Bender, Katz
and Morselli [I1] gave stringent security definitions while constructions with
sub-linear signature size were given by Chandran, Groth and Sahai [25]. The
celebrated results of Gentry, Peikert and Vaikuntanathan [31] inspired a num-
ber of lattice-based ring signatures. The state-of-the-art construction probably
stems from the framework of Brakerski and Tauman-Kalai [18], which results in
linear-size in the number of ring members. The same holds for all known Fiat-
Shamir-like lattice-based ring signatures (e.g., [40l2]), although some of them
do not require a trapdoor. Thus far, the only logarithmic-size ring signatures
[36116] arise from the results of Groth and Kohlweiss [30] and it is not clear how
to extend them to the lattice setting.

The notion of group signatures dates back to Chaum and Van Heyst [26].
While viable constructions were given in the seminal paper by Ateniese, Ca-
menisch, Joye and Tsudik [5], their security notions remained poorly understood
until the work of Bellare, Micciancio and Warinschi [8]. The first lattice-based
proposal came out with the results of Gordon, Katz and Vaikuntanathan [33],
which inspired a number of follow-up works describing new systems with a better
asymptotic efficiency [41I58/46] or additional properties [21[42]. For the time be-
ing, the most efficient candidates are the recent concurrent proposals of Nguyen
et al. and Ling et al. [58/46]. As it turns out, except for one scheme [12] that mixes
lattice-based and discrete-logarithm-related assumptions, all currently available
candidates [A1I584621142] utilize a GPV trapdoor, either to perform the setup
of the system or to trace signatures (or both). Our results thus provide the first
system that completely eliminates GPV trapdoors.

At a high level, our ZKAoK system is partially inspired by the way Langlois
et al. [42] made use of the Bonsai tree technique [23] since it proves knowledge of
a solution to a SIS problem determined by the user’s position in a tree. However,
there are fundamental differences since our tree is built in a bottom-up (rather
than top-down) manner and we do not perform any trapdoor delegation.

2 Preliminaries

NoOTATIONS. We assume that all vectors are column vectors. The concatenation
of matrices A € Z¥*', B € Z"*J is denoted by [A|B] € Z**(+9) For b € {0,1},
we denote the bit 1 —b € {0, 1} by b. For a positive integer i, we let [i] be the set

{1,...,i}. If S is a finite set, & S means that z is chosen uniformly at random
from S. All logarithms are of base 2. The addition in Zs is denoted by .

In this section, we first recall the average-case lattice problems SIS and LWE,
together with their hardness results; and the notion of statistical zero-knowledge



arguments of knowledge. The definitions and security requirements of crypto-
graphic accumulators, ring signatures, and group signatures are deferred to their
respective Sections and

2.1 Average-case Lattice Problems

Definition 1 ([3J31]). The SIS;",, . 5 problem is as follows: Given uniformly
random matrix A € Zg*™, find a non-zero vector x € Z™ such that [|x[[o < 3

and A -x = 0 mod q.
If m, 8 = poly(n), and ¢ > S - (5(\/5), then the SISS® problem is at least

n,m,q,p
as hard as the worst-case lattice problem SIVP, for some v = 3 - O(y/nm) (see
[B152]). Specifically, when g = 1, ¢ = (5(n), m = 2n[logq], the SIS}®, 4
problem is at least as hard as SIVP@(n).
In the last decade, numerous SIS-based cryptographic primitives have been
proposed. In this work, we will extensively employ 2 such constructions:

— Our Merkle tree accumulator is built upon a specific family of collision-resistant
hash functions, which is a syntactic modification (i.e., it takes two inputs,
instead of one) of the one presented in [3J53]. A similar scheme that works
with larger SIS norm bound § was proposed in [59].

— Our zero-knowledge argument systems use the statistically hiding and compu-
tationally binding string commitment scheme from [40].

For appropriate setting of parameters, the security of the above two constructions
can be based on the worst-case hardness of SIVPé(n).

In the group signature in Section [5] we will employ the multi-bit version of
Regev’s encryption scheme [64], presented in [39][62]. The scheme is based on
the hardness of the LWE problem.

Definition 2 ([64]). Let n,mg > 1, p > 2, and let x be a probability distribu-

tion on Z. For s € Zy, let As \ be the distribution obtained by sampling a & Ly
and e « ¥, and outputting (a,s’ -a+e) € Zy x Zyp. The LWE,, ; \ problem

asks to distinguish mg samples chosen according to As, (for s & Zy) and mp
samples chosen according to the uniform distribution over Zy x Z,.

If p is a prime power, yx is the discrete Gaussian distribution Dy 4, where ap >
2y/n, then LWE,, ;, , is as least as hard as SIVP5, .\ (see [6406TI51)52]).

2.2 Zero-Knowledge Arguments of Knowledge

We will work with statistical zero-knowledge argument systems, namely, inter-
active protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally
bounded cheating provers. More formally, let the set of statements-witnesses
R = {(y,w)} € {0,1}* x {0,1}* be an NP relation. A two-party game (P,V) is
called an interactive argument system for the relation R with soundness error e
if the following two conditions hold:



— Completeness. If (y,w) € R then Pr[(P(y,w),V(y)) = 1] = 1.
— Soundness. If (y,w) € R, then ¥ PPT P: Pr[(P(y, w),V(y)) = 1] < e.

An argument system is called statistical zero-knowledge if for any lj(y), there
exists a PPT simulator S(y) producing a simulated transcript that is statistically
close to the one of the real interaction between P(y, w) and ?(y) A related notion
is argument of knowledge, which requires the witness-extended emulation prop-
erty. For protocols consisting of 3 moves (i.e., commitment-challenge-response),
witness-extended emulation is implied by special soundness [34], where the lat-
ter assumes that there exists a PPT extractor which takes as input a set of
valid transcripts with respect to all possible values of the ‘challenge’ to the same
‘commitment’, and outputs w’ such that (y,w’) € R.

The statistical zero-knowledge arguments of knowledge (sZKAoK) presented
in this work are Stern-type [67]. In particular, they are YX-protocols in the gener-
alized sense defined in [3712] (where 3 valid transcripts are needed for extraction,
instead of just 2). Several recent works rely on Stern-type protocols to design
lattice-based [45/42J46] and code-based [37J29] constructions.

3 A Lattice-Based Accumulator with Supporting
Zero-Knowledge Argument of Knowledge

Throughout the paper, we will work with positive integers n, g, k, m, where: n is
the security parameter; ¢ = O(n); k = [log¢]; and m = 2nk. We identify Z, by
the set {0,...,q — 1}. We define the “powers-of-2” matrix

124 ... 2k1
k—1
G- 124 ...2 e <k,

124 ... 2kt

Note that for every v € Z?, we have v = G - bin(v), where bin(v) € {0,1}"*

denotes the binary representation of v.

3.1 Cryptographic Accumulators

An accumulator scheme is a tuple of algorithms (TSetup, TAcc, TWitness, T Verify)
defined as follows:

TSetup(n) On input security parameter n, output the public parameter pp.

TAcc,, On input a set R = {do,...,dn_1} of N data values, output an accu-
mulator value u.

TWitness,, On input a data set R and a value d, output L if d € R; otherwise
output a witness w for the fact that d is accumulated in TAcc(R). (Typically,
the size of w should be short (e.g., constant or logarithmic in V) to be useful.)

TVerify,,, On input accumulator value u and a value-witness pair (d,w), out-
put 1 (which indicates that (d,w) is valid for the accumulator u) or 0.



An accumulator scheme is called correct if for all pp < TSetup(n), we have
TVerify,,, (TAccy, (R), d, TWitness,,(R,d)) = 1 for all d € R.

The security of an accumulator scheme, as defined in [7I20], says that it is
infeasible to prove that a value d* was accumulated in a value u if it was not.
This property is formalized as follows.

Definition 3. An accumulator scheme (TSetup, TAcc, TWitness, TVerify) is called
secure if for all PPT adversaries A:

Pr[pp + TSetup(n); (R, d*, w*) + A(pp) :
d* & R A TVerify,, (TAccy,(R),d*, w*) = 1] = negl(n).

3.2 A Family of Lattice-Based Collision-Resistant Hash Functions

We now describe the specific family of lattice-based collision-resistant hash func-
tions, upon which our Merkle hash tree will be built.

Definition 4. The function family H mapping {0,1}"F x {0, 1}"* to {0,1}"F is
defined as H = {ha | A € Z}*™}, where for A = [Ao|A1] with Ag, Ay € Z2*"F,
and for any (ug,uy) € {0, 1} x {0,1}"*, we have:

ha(ug,uy) = bin(AO ~up+ A - u; mod q) € {0, 1},
Note that ha(up,u;) =u< Ag-up+ A;-u; = G- umod g.
Lemma 1. The function family H, defined in[4 is collision-resistant, assuming

the hardness of the SIVP@W) problem.

Proof. Given A = [Ag|A4] & Zy*™, if one can find two distinct pairs (1o, uy) €
({0, 1}”’“)2 and (vo,v1) € ({0, 1}”"3)2 such that ha (ug,u1) = ha (v, vi) mod g,

then one can obtain a non-zero vector z = EO B XO € {—1,0,1}™ such that
1= V1

A-z=Ay (ug—vo)+A1-(u1—vy) = G-ha(ug,u;)—G-ha(vg,v1) =0 mod q.

In other words, z is a valid solution to the SIS;",, | problem associated with
matrix A. The lemma then follows from the worst-case to average-case reduction

from SIVPé(n). O

3.3 Owur Merkle-Tree Accumulator

We now give the construction of a Merkle tree with N = 2¢ leaves, where £ is
a positive integer, based on the family of lattice-based hash function H defined
above.

TSetup(n). Sample A & Zy*™, and output pp = A.



TAcca (R = {do € {0,1}"*,... ., dx_1 € {0,1}"¥}). For every j € [0, N — 1], let
(j1,---,7e) € {0,1}¢ be the binary representation of j, and let d; = u;, __j,.

yeus

as follows: '
1. At depth i € [£], the node uy, ., € {0,1}"*, for all (b1,...,b;) € {0,1}%,
is defined as ha (s, b;,00 Uby,... 0;,1)-

2. At depth 0: The root u € {0,1}" is defined as ha (19, uy).
The algorithm outputs the accumulator value u.

TWitnessa (R,d). If d € R, return L. Otherwise, d = d; for some j € [0, N —1]
with binary representation (ji,...,j¢). Output the witness w defined as:

) . k2
w= (100 (W e g Wi 1)) € {0, 13 ({0,137)7,

for u; u: computed by algorithm TAcca (R).

J1yede—1,d00 0 1,920 S
TVerify 5 (u,d, w). Let the given witness w be of the form:

w= (11 4e)s (Wey . w1)) € {0, 1} x ({0, 1}™)".

The algorithm recursively computes the path vy, ve_1,...,vy,vg € {0,1}7*
as follows: vy = d and

Vie{t—1,...,1,0}: vi:{

,u

ha(Vig1, Wiy1), if jip1 = 0;
ha(Wiy1,Vigr), if jig1 = 1.

Then it returns 1 if vy = u. Otherwise, it returns 0.

In Figure [1} we give an illustrative example of a tree with 23 = 8 leaves.

Fig.1: A Merkle tree with 23 = 8 leaves, which accumulates the data blocks
do, . ..,d; into the value u at the root. The bit string (101) and the gray nodes
form a witness to the fact that dy is accumulated in u.

One can check that the above Merkle-tree accumulator scheme is correct.
Furthermore, its security is based on the collision-resistance of the hash function
family H, which in turn is based on the hardness of SIVPé(n).




Theorem 1. The given accumulator scheme is secure in the sense of Defini-
tion@ assuming the hardness of the SIVP6(n) problem.

Proof. Assuming that there exists a PPT adversary B who has non-negligible
success probability in the security experiment of Definition [3} It receives a
uniformly random matrix A € Zp*™ generated by TSetup(n), and returns
(R = (do,...,dny—_1),d*,w*) such that d* ¢ R and TVerify, (u*,d*,w*) = 1,
where u* = TAcca (R).

Parse w* = ((57,...,4;), (w},...,w})). Let j*€ [0, N—1] be the integer having

binary representation (ji,... ,jz‘) and let s e = dj*aujl*w,je*,lv oy Wy, u*
be the path from the leave d;« to the root of the tree generated by TAcca (R).
On the other hand, let v; = d*,v;_;,...,v], vy = u”* be the path computed

by algorithm TVerify (u*,d*, w*). Note that d* # d;- since d* ¢ R. Thus,
comparing the two paths, we can find the smallest integer k € [¢], such that
vi # e We then obtain a collision for ha at the parent node of jr g
The theorem then follows from Lemma [l a

3.4 Zero-Knowledge AoK of an Accumulated Value

Our goal in this section is to construct a zero-knowledge argument system that
allows prover P to convince verifier } that P knows a secret value that is properly
accumulated into the root of the lattice-based Merkle tree described above. More
formally, in our protocol, P convinces V on input (A, u) that P possesses a value-
witness pair (d, w) such that TVerify o (u, d, w) = 1. The associated relation R,
is defined as follows.

Definition 5.
Race = { (A1) € Z5™ x {0, 1}"5d € {0,1}"%,w € {0,1}" x ({0,1}")") -

TVerify 5 (u, d, w) = 1}.

Before going into the details, we first introduce several supporting notations
and techniques.

— We denote by B"* the set of all vectors in {0, 1}™ that have Hamming weight
nk; and by S, the set of all permutations of m elements.

— For i € {nk,m}, for b € {0,1} and for v € {0,1}?, we let ext(b, v) denote

b-v

b-v /)’

— For b € {0,1}, for m € S,,, we define the permutation F; , that transforms
z = (ZO> € ng consisting of 2 blocks of size m into Fj (z) = (W(zb) >

7 , ~(2)

Namely, F} , first rearranges the blocks of z according to b (it keeps the
arrangement of blocks if b = 0, or swaps them if b = 1), then it permutes
each block according to .

the vector z € {0,1}?* of the form z = (



Our strategy to achieve zero-knowledgeness will crucially rely on the following
observation: For all ¢,b € {0,1}, all 7,¢ € S,,,, and all v,w € {0,1}™, we have
the equivalences

(1)

z =ext(c,v) A vEBY < F .(z)=Ext(c®b,n(v)) A 7(v) € B';
y =ext(c,w) A w e B < F;_(y) = Ext(c®b,m(w)) A m(w) € BEF.

Warm-up step. Now, let (d,w) be such that ((A,u),d,w) € Racc, where w is
of the form w = ((jl, cesde)y (Wey . ,wl)), and let vy =d,vy_1,...,v1, Vg be
the path computed by TVerify 5 (u7 d, w) Note that vog = u and:

ha(Vit1, Wiy1), if jip1 = 0;
ha(Wit1,Vig1), if jiy1 = 1.

We{ﬁ—l,...71,0}:vi:{ (2)

We observe that relation can be equivalently rewritten in a more compact
form: Vie {{—-1,...,1,0},

Vi = Jit1 - ha(Vig1, Wig1) + Jit1 - ha(Wig1, Vigr). (3)
Equation (3)) then can be interpreted as:
Jit1- (Ao vigr + A1 - Wig1) + jis1- (Ao - Wiy1 + Ay - vig1) = G- v, mod ¢
o A (Ji+1 -V¢+1> +A- <‘Z.i+1 ~Wi+1) =G -v; mod g
Ji+1 - Vit1 Jit+1l - Wit1
< A ext(ji_H, V1j+1) + A - eXt(jH_l, Wi+1) = G- v; mod q.

Therefore, to achieve our goal, it is necessary and sufficient to construct an
argument system in which P convinces V in ZK that P knows jy, ..., j, € {0,1}*
and vi,...,ve, Wi,...,wp € {0,1}"% satisfying

(4)

A - ext(j1,v1) + A - ext(j1,w1) = G - umod g;
Vie[l—1]: A-ext(jir1,Vir1) + A - ext(jir1, wit1) = G - v; mod q.

To this end, we develop a Stern-type protocol [67], in which we adapt the
extension technique from [45]. Specifically, we perform the following extensions:

Extend matrix A = [Ag|A1] to matrix A* = [Ag|0"*"F|A,[0"*"k] € Z7>2™.
Extend matrix G to matrix G* = [G|0"*"*] € Z*™.

Extend vi,..., vy, Wi,...,Wg into vi,..., v}, Wi,..., W, € B"k. respectively.
This is done by appending a length-nk vector of suitable Hamming weight to
each of these vectors.

*

Let z; = ext(j;,v]) and y; = ext(ji;, w}) for each i € [f]. Note that now the
conditions in can be equivalently rewritten as:

{A*~z1+A*-y1:G'umodq; (5)

Vie[l—1]: A* 211+ A% yip1 = G* - v mod q.



The Interactive Protocol. Having performed the above preparation and trans-
formation steps, we now give a summary and sketch the main ideas of our
interactive protocol, before formally describing it. The public parameters are
n,q,k,m, £, the “powers-of-2” matrix G and its extension G*.

Common inputs: (A, u). Both parties extend A to A*.
P’s inputs: ((jl, o de)s (Vi v ) (WY wy), (21, -0 20), (Y- ,yg)).

P’s goal: Prove in ZK that v}, w} € B"* z, = ext(j;,v}), yi = ext(j;, w}) for
all i € [¢], and that (5] holds.

To achieve its goal, P employs the following strategies:

1. To prove in ZK that v}, w} € B"F and z; = ext(j;, v}) and y; = ext(j;, w}) for
all i € [¢], the equivalences observed in are exploited. Specifically, for each

i € [¢], P samples 7;, ¢; & S and b; & {0, 1}, then it demonstrates to V that:
mi(vi) € B A Fy, 5. (2z:) = ext(ji © by, mi(v))); (6)
Gi(wy) € B A Fy, o (yi) = ext(ji ® by, ¢s(W))).

Seeing @, V should be convinced of the facts P wants to prove, while learning
no additional information, thanks to the randomness of m;, ¢; and b;.

2. To prove in ZK that the ¢ equations in hold, P samples uniformly random
masking vectors rs,l), ey rs,g_l) & Lq'; rg), ey rg), rg,l), . ,ry) & ng, and
then it shows V that

A" (z1 + rgl)) +A* - (y1 + rg,l)) —G-u=A*. }";1) +A". rg,l) mod.q;
Vi€ ll—1]: A% (zip +r5) + A (yi +0fTY) = G (v )
= A*. rSJrl) + A*. r§’z+1) - G*- rg) mod q.

Let COM : {0,1}*x{0, 1}™ — Z' be the string commitment scheme from [40],
which is statistically hiding and computationally binding if the SIVPé(n) prob-
lem is hard. The interaction between prover P and verifier V is described in

Figure

3.5 Analysis of the Interactive Protocol
The properties of the given protocol are summarized in the following theorem.

Theorem 2. The given interactive protocol has perfect completeness and com-
munication cost O(C - n). If COM is a statistically hiding and computationally
binding string commitment scheme, then it is a statistical zero-knowledge argu-
ment of knowledge for the relation Racc-

Completeness and Communication Cost. Based on the discussion given
in the previous section, it can be checked that the described protocol has per-
fect completeness, i.e., if P is honest and follows the protocol, then V always



1. Commitment. P samples randomness p1, p2, p3 for COM and

biyeo by S {0,1); T, Tl DLy ey b € S

rs,n,..., s,é 1)<—Zm, rgm,.. r; , (1), ..,rg,e) ing.

It then sends V commitment CMT = (C4, C2, Cs), where

C1 = COM( {bi; mi; pi}izy; A” o) A (Y,
{A* . (i+1)+A* . (i+1) —_QG*. E/Z) f*117 pl)
Cz = COM({ (E})) i= 1; {Fb“m(rzl)) Fy, ¢1( (1))}1 1 P2)
Cs = COM( {ms(vi +rW) Y2l {Foym, (it 1s)); By, o, (vitry))Hoss ps).

2. Challenge. Receiving CMT, V sends a challenge Ch & {1,2,3} to P.
3. Response. Depending on Ch, P sends the response RSP computed as follows:
— Case Ch = 1: For each i € [ — 1], let ) = mi(rd >) For each i € [¢], let:
ai = ji ® by s = mi(vi); sG) = du(wi); 6 = Fo,m, (ef); 67 = By, ().
Then let RSP = ({6 }i215 {as; sU; 67 sWs t§}imes pasps). (7)
— Case Ch = 2: For each i € [( — 1], let e} = v} +r{). For each i € [(], let:

ci = by T =i by = ¢i; ) =z; + 10 ()—y +r()
Then let RSP = ({e{"}=1; {ei; 74 di; e e} L1s pu;pa). ®)
— Case Ch = 3: For each i € [¢ — 1], let p) =1l For each i € [4], let:
di =bi; 7 = mi; ¢ = ¢i; pY) =135 pY =1l
Then let RSP = ({p{)}21; {di; Ti; i Y PS Hemrs pu;p2).- 9)

Verification. Receiving RSP, V proceeds as follows.

— Case Ch = 1: Parse RSP as in (7). Check that s{,s{) ¢ B"k for all i € [£]. Next,
for each i € [€], let si” = ext(a;,s\”) and let s{) = ext(a;,s{)). Then check that:

Cy = COM({t(Z)}Z 5 {tz 7t<1)}7, 13 P2) (10)
03 COM({S()+t( >}z 17 {SZ)-'-tZ),S;)"_t(l)}z 15 p3)

— Case Ch = 2: Parse RSP as in and check that:

C1 = COM( {ci; 7s; di}imr; A™ etV +A* o) —G-y;
(Al A" e @}Z ) (11)

Cs = COM({Ri(el)}Tls {Fum (e); Fy, 5, (€F)) s po).
— Case C'’h = 3: Parse RSP as in @D and check that:

Ch = COM( {d; ;s i }imr; A"-pi)+A"p
{A* (i+1)—|—A*- (i+1) _G*. ()}Z L pl) (12)
Co = COM( {7 (pV)}iZt; {Fu, 7 (08); Fy, 5. (PY)}mas p2).-

In each case, V outputs 1 if all the conditions hold. Otherwise, it outputs 0.

Fig. 2: A zero-knowledge argument of knowledge for the relation R,cc.




outputs 1. It can also be seen that the communication cost of the protocol is
O -m-logq) = Ol - n) bits.

In order to prove that the protocol is a ZKAoK for the relation Rg.., we
will employ the standard simulation and extraction techniques for Stern-type
protocols (see, e.g., [40/45]/46]).

Lemma 2 (Zero-Knowledge Property). If COM is statistically hiding, then
the interactive protocol in Figure[d is a statistical zero-knowledge argument.

Proof. We construct a PPT simulator S interacting with a (possibly dishonest)
verifier 17, such that, given only the public input, & outputs with probability
negligibly close to 2/3 a simulated transcript that is statistically close to the one
produced by the honest prover in the real interaction. The simulator S begins
by selecting a random Ch € {1,2,3}. This is a prediction of the challenge value
that V will not choose.

Case Ch = 1: Using linear algebra, S computes z, ...,z,,y1,...,y) € ng and
Vi, Vy_y € Zy* such that

A"zl + A"y =G -umod ¢;

Vie[l,—1]: A"z +A* y;,, =G"-v;modgq.

Then it samples randomness p1, p2, ps for COM and

3 $
b17---7b€ — {051}7 7T17-"a7rfa¢1a"'7¢l <_va
O E g D0 D08 gem,

Tz Ty, ... T
It then sends V commitment CMT = (C}, C4, C}), where
= COM( {bs; mi; ¢itiey; ri) + A*. rg,l),
(a-x ”” + A -G VY )

:COM({”‘( (l)) i= 17 {Foimi (T ()) F, ¢l(r§,)) f 15 P2)
O = COM( {m; (Vi eV Yo ks {Foy s (2 420)); By g, (yi4Ty )Y 15 pa).

(13)

Receiving a challenge C'h from 17, the simulator responds as follows:

If Ch = 1: Output L and abort
If Ch = 2: Send RSP = ({v —l—rv i 1, {bi; 7 ¢Z, z! —I—rg), yl—&—ry)}l 1 pl,p3).
If Ch = 3: Send RSP = ({r‘f)}l 15 {bis ms @ ri; ry)}l 15 P1ip2)-

Case Ch = 2: S samples

. ., 8 $
/ / - / / / k.
Jis s dp < {0,1}; Vi,V WL Wy <= B

$ $
bl,...,bg% {0 1}' Wl,...,ﬂg,¢1,...,¢((—8m;

T T S L



It then computes z; = ext(j/,v}), y. = ext(jl, w!) for each i € [¢], and sends the
commitment CMT computed in the same manner as in .
Receiving a challenge C'h from V), it responds as follows:

— If Ch =1: Send

RSP:({Wi(I'Ef)) {Jz@bza mi(v ) Fy, m( ) ¢i(w )5 b; q&l( )}5:1% P2;P3)~

— If Ch = 2: Output L and abort. L
— If Ch = 3: Send RSP computed as in the case (Ch =1,Ch = 3).

Case Ch = 3: The simulator proceeds with the preparation as in the case Ch = 2
above. Then it sends the commitment CMT := (C}, C4, C}), where C4, C} are
computed as in , while

= COM( {bs; mis diYys A - (zh + 1)) + A" - (v + 1)) - G- w;
(A" (Z g + i) + A (vl +18)) = G (vi+ ) FIL o).

Receiving a challenge C'h from ﬁ, it responds as follows:

— If Ch = 1: Send RSP computed as in the case (Ch = 2,Ch = 1).
— If Ch = 2: Send RSP computed as in the case (Ch =1,Ch = 2).
— If Ch = 3: Output L and abort.

We observe that, in every case we have considered above, since COM is statis-
tically hiding, the distribution of the commitment CMT and the distribution of
the challenge Ch from V are statistically close to those in the real interaction.
Hence, the probability that the simulator outputs L is negligibly close to 1/3.
Moreover, one can check that whenever the simulator does not halt, it will pro-
vide an accepted transcript, the distribution of which is statistically close to
that of the prover in the real interaction. In other words, we have constructed a
simulator that can successfully impersonate the honest prover with probability
negligibly close to 2/3. O

To prove that our protocol is an argument of knowledge for the relation R,
it suffices to demonstrate that the protocol has the special soundness prop-
erty [34].

Lemma 3 (Argument of Knowledge Property). If COM is computation-
ally binding, then there exists an efficient knowledge extractor IC that, on input
3 walid responses (RSP1, RSP, RSP3) to the same commitment CMT, outputs
a pair (d' € {0,1}"F w’ € {0,1}¢ x ({0, 1}"%)*) such that

((Av u); d/, w/) € Race-
Proof. Let the 3 valid responses to CMT = (C1, Cs,Cs) be
RSPI ({t )}1 17 {a/lv SV ) tZ’L)a SW7 t( )}z 13 P2>P3)

SP = ({ ()}z 17 {Cl’ T3 ¢’Lv eZ a ey) =11 PlaPB)
RSP3 = ({pV }z 17 {dlv T3 ¢Za pZ ; py)}l 17 P17P2)



The validity of RSP, implies that Vi € [(] : SE,),SSN) e Bnk. Furthermore it

'HL

follows from the verification conditions given in , , , and from the
computational binding property of COM that:

A eV + A" el) —G-u=A" p + A" p{!) mod g,
and for all i € [1,¢ — 1]: ) = %i(pg)); s? 4+t = Wl(es,z)) and
A* et 4 A" el _ @Y e = A* - p{tD + A% pl*tD) — G* - p mod g,
and for all ¢ € [{]:
ci = diy T = Ty 6 = i;

65" = Fu, 7 (p); ext(ai,sV)) +t5) = F,, 7 (e);
ty) = F; 5 (0Y)); ext(ai, W) +t5) = F, 5 (el)).

The knowledge extractor K now proceeds as follows. For each ¢ € [¢], let:
Ji=ai@ e vi =7 60) wi =6, (50) =) —ps yi =) —p{.

Note that 7;(v}) = s € B, and thus v} € B2* (by (1)). Similarly, w} € B7%,
Furthermore, one has that:

F., 7, (z;) = ext(a;, sf,i)) = ext(jiDe;, 7rl( ). By 1') this implies z; = ext(j;, v}).
F, 3 (y:) = ext(ai7s£,3)) = ext(ji@ci, qbl( 1)) 1" this implies y; = ext(j;, w}).
Moreover, the following relations hold:
A" z1+ A" y1 =G -umod ¢
Vie[l,0—1]: A* - zi11+ A" yi11 = G* - v mod g
{A* ext(j1,vi) + A* - ext(j;, w}) = G -umod q

Vie[1,0—1]: A% ext(jiz1, Vi) + A - ext(jip1, Wiyq) = G* - vy mod ¢.
Now, by dropping the last nk coordinates from vi,...,v;, wi,..., w;, the knowl-
edge extractor K obtains v/,...,v), wi,...,w} € {0,1}"* respectively. These

vectors satisfy:

A - ext(j1,v)) + A - ext(j1,w)) = G-umod ¢
Vie[1,0—1]: A-ext(fiq1, Vip,) + A - ext(jit1, Wi y) = G- v, mod ¢

vp=1u
{W €0,0—1]: vi= ji+1 : hA(V;HaW;H) + Jit1- hA(W§+1aV§+1)-

Let d’ = v and w’ = ((j1,..-, ), (W} ., w})), then TVerify, (u,d’,w’) = 1.
In other words, (d’,w’) satisfies ((A,u);d’,w’) € Racc. This concludes the proof.
O



4 A Logarithmic-Size Ring Signature from Lattices

In this section, we construct a ring signature scheme [65] with signature size

O(log N - n), where N is the size of the ring, based on the hardness of lattice
problem SIVPa(n). We use the ZKAoK given in Section [3| as the building block.

4.1 Definitions

We recall the standard definitions and security requirements for ring signa-
tures [I1I36]. A ring signature scheme consists of a tuple of efficient algorithms
(RSetup, RKgen, RSign, RVerify) for generating a public parameter, generating
keys for users, signing messages, and verifying ring signatures, respectively.

RSetup(n): Generates public parameters pp which are made available to all users.

RKgen(pp): Generates a public key pk and the corresponding secret key sk.

RSign,,,(sk, M, R): Outputs a signature X' on the message M € {0,1}* with
respect to the ring R = (pko,...,pkny—1). It is required that (pk, sk) be a
valid key pair produced by RKgen(pp) and that pk € R.

RVerify,,, (M, R, X): Given a candidate signature X' on a message M with respect
to the ring of public keys R, this algorithm outputs 1 if X' is deemed valid
or 0 otherwise.

We next describe the following requirements for ring signatures: correctness,
unforgeability with respect to insider corruption, and statistical anonymity.

The correctness requirement says that a user can always sign any message on
behalf of a ring he belongs to. This is formalized as follows.

Definition 6 (Correctness). A ring signature (RSetup, RKgen, RSign, RVerify)
is correct if for any pp < RSetup(n), any (pk, sk) < RKgen(pp), any R such that
pk € R, any M € {0,1}*, we have RVerifypp(M, R, RSign,,,(sk, M, R)) =1.

A ring signature is unforgeable with respect to insider corruption if it is infeasible
to forge a ring signature without controlling one of the ring members.

Definition 7 (Unforgeability w.r.t. insider corruption). A ring signature
scheme (RSetup, RKgen, RSign, RVerify) is unforgeable w.r.t. insider corruption if
for all PPT adversaries A,

Pr[pp « RSetup(l”); (M*,R*, 2*) — APKGen,Sign,Corrupt(pp) .
RVerify,,(M*, R*, X*) = 1] € negl(n),

where:

— PKGen on the j-th query runs (pkj, sk;) < RKgen(pp) and returns pk;.

— Sign(j, M, R) returns the output of RSign,,(sk;, M, R) provided: (i) (pk;, sk;)
has been generated by PKGen; (ii) pk; € R. Otherwise, it returns L.

— Corrupt(j) returns sk;, provided that (pk;, sk;) has been generated by PKGen.



— A outputs (M*, R*, X*) such that Sign(-, M*, R*) has not been queried. More-
over, R* is non-empty and only contains public keys pk; generated by PKGen
for which j has not been corrupted.

Definition 8. A ring signature scheme (RSetup, RKgen, RSign, RVerify) pro-

vides statistical anonymity if, for any (possibly unbounded) adversary A,

pp < RSetup(1™); (M*, jo, j1, R*) < ARKe=(#P) (pp)
b & {0,1}; X% « RSign,, (sk;,, M*, R*)

= 1/2 + negl(n),

T

CAZT) =0

where pk;,, pk;, € R*.

Remark: Anonymity under full key exposure [I1] requires that the randomness
used by KeyGen be revealed to the adversary. In our construction, it does not
make a difference since we assume computationally unbounded adversaries. A
c-user ring signature scheme is a variant of ring signatures, that only supports
rings of fixed size c. Here, we do not assume any upper bound on the size of a
ring. Similarly to [36], we only assume that all users agree on pre-existing public
parameters pp. In our scheme, these public parameters consist of a modulus ¢
and a random matrix A € ZZ“”’“ which can be derived from a random oracle.
In this case, we only need all users to agree on the parameters ¢ and n.

4.2 The Underlying Zero-Knowledge Protocol

The ring signature scheme that we will present next relies on a simple extension
of the ZKAoK in Section [3] Specifically, one more layer is added: apart from
proving that it has a secret value d that was properly accumulated to the root
of the tree, P has to convince V that it knows a vector x € {0,1}"™ such that
bin(A-x mod ¢) = d, or equivalently, A-x = G-d mod ¢. The associated relation
Riing is defined as follows.

Definition 9. Define the relation
Reing = { (A, w) € 2277 x {0,1}"%3d € 0,1}, w € {0,1}" x ({0,1}"%)",
x € {0,1}™) : TVerify (u,d,w) =1 A A-x=G-dmod q}.

A ZKAoK for Rying can be obtained from the one in Section [3}, where the new
layer is handled by the same “extend-then-permute” technique. As before, the
protocol relies on the string commitment scheme from [40], which is statistically
hiding and computationally binding if the SIVPé(n) problem is hard.

Lemma 4. Let us assume that the SIVPé(n) problem is hard. Then, there exists
a statistical ZKAoK for the relation Rying with perfect completeness and commu-
nication cost O(¢ - n). In particular:



— There exists an efficient simulator that, on input (A, u), outputs an accepted
transcript which is statistically close to that produced by the real prover.

— There exists an efficient knowledge extractor that, on input 3 valid responses
(RSP, RSP2, RSP3) to the same commitment CMT, outputs (d',w’,x’) such
that

(A u),d’,w',x') € Rying-

The full description and analysis of the argument system are given in the full
version of the paper.

4.3 Description of the Ring Signature Scheme

We now will construct a ring signature scheme for rings of N = 2¢ users based
on the Merkle-tree accumulator presented in Section [3] Our ring signature can
be easily adapted for the case when the size of the ring is not a power of 2
(see Remark . The scheme uses parameters n,m, g defined as in Section
parameter k£ = w(logn) that determines the number of protocol repetitions, and
a random oracle Hrs : {0,1}* — {1,2,3}".

RSetup(n) : Sample A & Zy*™, and output pp = A.

RKgen(pp = A) : Pick x & {0,1}™, compute d = bin(A - x mod q) € {0,1}"*,
and output (sk,pk) = (x,d).

RSign,, (sk, M, R) : Given a ring R = (do,...,dy_1), where d; € {0,1}"* for
every i € [0, N—1], and sk = x € {0,1}™ such that d = bin(Ax mod ¢) € R,
this algorithm generates a ring signature X on M € {0,1}* as follows:

1. Run algorithm TAcca (R) to build the Merkle tree based on R and the hash
function ha, and obtain the root u € {0, 1}"*.
2. Run algorithm TWitnessa (R, d) to get a witness

w = ((jlv“’ajf) € {071}67(Wf7~"awl) € ({0’]‘}nk)é)

to the fact that d was properly accumulated in u.

3. Generate a NIZKAoK Il,; to demonstrate the possession of a valid pair
(sk,pk) = (x,d) such that d is properly accumulated in u. This is done by
running the protocol in Section with public input (A,u) and prover’s
witness (x,d,w). The protocol is repeated £ = w(logn) times to achieve
negligible soundness error and made non-interactive via the Fiat-Shamir
heuristic as a triple ITiing = ({CMT,}¥_,, CH,{RSP}{_,), where

CH = Hes (M, ({CMT;}_, A, u, R) € {1,2,3}".

4. Let X = Iing.
RVerify,, (M, R, ) : Given pp = A, a message M, a ring R = (do,...,dn-1),
and a signature X, this algorithm proceeds as follows:

1. Run algorithm TAcca (R) to compute the root u of the tree.



2. Parse X as ¥ = ({CMT;},,(Chy,...,Chy),{RSP}% ;). Return 0 if
(Chl, ey Chﬁ) # HFS (]\/[7 ({CMTZ}IZ{:U A, u, R)

3. For each i = 1 to k, run the verification phase of the protocol from
Section with public input (A, u) to check the validity of RSP; with
respect to CMT,; and Ch;. If any of the conditions does not hold, then
return 0. Otherwise, return 1.

4.4 Analysis of the Ring Signature Scheme

We first summarize the properties of the given ring signature scheme in the
following theorem.

Theorem 3. The ring signature scheme described in Section[{.3 is correct, and
produces signatures of bit-size O(n - log N). In the random oracle model, the
scheme is unforgeable w.r.t. insider corruption based on the worst-case hardness
of the SIVP5(n) problem, and it is statistically anonymous.

Correctness. The correctness of the ring signature scheme directly follows
from the correctness of the accumulator scheme in Section [3] and the perfect
completeness of the argument system in Section A member of a ring can
always obtain a tuple (x,d,w) such that ((A7 u),d, w,x) € Ruing, and thus, his
signature on any message always get accepted by the verification algorithm.

Efficiency. Since the underlying protocol has communication cost (5(€ -m), the

signatures produced by the scheme has bit-size O(k - £-n) = O(log N - n).

Unforgeability with respect to insider corruption. For simplicity, the

proof of unforgeability assumes that the cardinality of each ring R* is a power

of 2. However, this restriction can be easily eliminated, as we will see later on.
The proof of unforgeability relies on the following Lemma from [4§].

Lemma 5 ([48],Lemma 8). For any matriz A € Zy*™ and a uniformly ran-
dom x € {0,1}™, the probability that there exists another x’ € {0,1}™\ {x} such
that A -x = A -x’ mod q is at least 1 — 2™1oga—m

With m = 2nk and x < {0,1}™, there exists x' € {0,1} \ {x} such that
A -x = A -x mod ¢ with overwhelming probability 1 — 27"*.

Theorem 4. The scheme provides unforgeability w.r.t. insider corruption in the
random oracle model if the SIVPa(n) problem is hard. (The proof is available in

the full version of the paper.)

Statistical anonymity. The proof of the following theorem relies on the statis-
tical witness indistinguishability of the argument system of Lemma {4l The proof
is straightforward and omitted.

Theorem 5. The scheme provides statistical anonymaity in the random oracle
model.



Remark 1. As already mentioned, we can handle arbitrary ring sizes. To this
end, one option is to add dummy ring members dfke,1, - - - ; dfake,r, Whose public
keys are sampled obliviously of their private keys, by deriving them as dfake,; =
bin(Go(4)) € {0, 1}"* for each j € {1,...,70}, where Gy : N — Z? is an additional
random oracle. A simpler solution is to duplicate one of the actual ring members
until reaching a multi-set whose cardinality is a power of two.

5 A Lattice-Based Group Signature without Trapdoors

This section shows how to use our accumulator and argument systems to build a
lattice-based group signature which is dramatically more efficient than previous
proposals as it does not use any trapdoor. Indeed, surprisingly, the scheme does
not rely on a standard digital signature to generate group members’ private keys.

5.1 Definitions

We recall the standard definitions and security requirements for static group sig-
natures [8]. A group signature scheme is a tuple of 4 polynomial-time algorithms
(GKeygen, GSign, GVerify, GOpen) defined as follows:

— GKeygen: This is a probabilistic algorithm that takes as input 17,1V, where
n € N is the security parameter and N € N is the number of group users, and
outputs a triple (gpk, gmsk, gsk), where gpk is the group public key; gmsk is
the group manager’s secret key; and gsk = (gsk[0],...,gsk[N — 1]), where for
j€{0,...,N —1}, gsk[j] is the secret key for the group user of index j.

— GSign: is a randomized algorithm that inputs gpk, a secret key gsk|[j] for some
j€{0,...,N —1}, and a message M. It returns a group signature X on M.

— GVerify: This deterministic algorithm takes as input the group public key gpk,
a message M, a purported signature X on M, and returns either 1 or 0.

— GOpen: This deterministic algorithm takes as input the group public key gpk,
the group manager’s secret key gmsk, a message M, a signature X' on M, and
returns an index j € {0,...,N — 1}, or L (to indicate failure).

Correctness. The correctness requirement is stated as follows. For all n, N € N,
all (gpk, gmsk, gsk) produced by GKeygen(17,1V), all j € {0,..., N — 1}, and
any message M € {0,1}*, we have GVerify(gpk, M, GSign(gpk, gsk[j], M)) = 1
and GOpen (gpk, gmsk, M, GSign(gsk[j], M)) = j.

In static groups, the security model of Bellare, Micciancio and Warinschi
subsumes the desirable security properties of group signatures using two security
notions called full anonymity and full traceability.



Expgsia(n, N)

(gpk, gmsk, gsk) «+ GKeygen(1™,1%V)
st < (gmsk, gpk)

C+0; K<+ ¢e; Cont « true
while (Cont = true) do

anonch (Cont,st, j) —

EngS,A(n7 N) A(I_JSGSign(gpk,gsk[»];)(St, K)
(gpk, gmsk, gsk) if Cont = true then C + CU{j};

— GKeyGen(1™,1V) K « gsk[j]
(st, jo, j1, M™) end if

— ./4f$.GOpen(gp|»<,msk,4,4)(gpk7 gSk) end Wh||e7
2* + GSign(gpk, gsk[js], M™*) (M*, Z%) « AgS.GSign(ng,gsk[']v‘)(St)
b Ags‘GOpe"(gpk’mSk’‘")’ﬁ(M*’2*)(st7 X*) if GVerify(gpk, M*, X*) = 0, Return 0
Return b’ if GOpen(gpk, gmsk, M*, X*) =1,

Return 1

if GOpen(gpk,gmsk, M*, X*) = 5*
A(G*ef0,....,N—-1}\C)
A (no signing query involved(j5*, M*))
then Return 1 else Return 0

Fig. 3: Experiments for the definitions of anonymity and full traceability

Full anonymity. Full anonymity requires that, without the group manager’s
secret key, no efficient adversary can infer the identity of a user from its sig-
natures. The adversary should even be unable to distinguish signatures from
two distinct users jo, j1, even knowing their private keys gsk[jol, gsk[j1]. More-
over, this should remain true even when the adversary is granted access to an
oracle that opens arbitrary message-signature pairs (M, X) # (M*, X*), where
(M™*, X*) is the challenge pair generated by the challenger on behalf of user jp,
for some b € {0,1}. Formally, the attacker, modeled as a two-stage adversary
A = (Ay, Az), is run in the first experiment depicted in Figure The adversary’s
advantage is defined as

Advag'E?A(n,N) = |Pr[Expag'1§’f‘j(n, N)=1] - Pr[Exp%’??f(n, N) = 1]| .

Definition 10 (Full anonymity, [8]). A group signature is fully anonymous
anon

if, for any polynomial N and any PPT adversary A, Advgs 4(n,N) is a negli-
gible function in the security parameter n.

Full traceability. Full traceability mandates that all signatures, even those cre-
ated by colluding users and the group manager who pool their secrets together,
be traceable to a member of the coalition. The attacker is modeled as a two-
stage adversary A = (A1, A2) which is run in the second experiment of Figure
where it is further granted access to an oracle GS.GSign(gpk, gsk[-],-) that re-
turns signatures on behalf of any honest group member. Its success probability




against GS is measured as
Succgfgfa(n, N) = Pr[Exptgrgfa(n, N)=1].

Definition 11 (Full traceability, [8]). A group signature scheme GS is fully
traceable if for any polynomial N and any PPT adversariy A, the probabil-

ity Sucegsy(n, N) is negligible in the security parameter n.

5.2 The Underlying Zero-Knowledge Protocol

The group signature scheme that we will present in Section [5.3 relies on an
extension of the ZKAoK in Section 2} An encryption layer is added, and the
prover additionally has to prove that the given 2 Regev ciphertexts both encrypt
the same (j1,...,j¢) " that was included in w. The associated relation is defined
as follows.
Definition 12. Define Rgroup = {(A,u,B,Pl,Pg,cl,CQ),d,w,x,rl,rg} as a
relation where

A € Zy*™; u e {0, 13" B ¢ Ly me;

Vi € {1,2} :P; e Zﬁme, C; = (Ciyl,Ciyg) S Z; X Zﬁ,

d € {0,1}"; w=((j1,..-,Je), (We, ..., w1)) € {0,1}° x ({0,1}"%)%;

x € {0,1}™; r1,ry € {0,1}™E

satisfy

TVerifyA(u,d,w) =1ANA-x=G-dmodgq
Vi € {1,2} G :B'I‘Z‘ HlOdp A Ci,2 ZPZ"I‘Z‘—F Lg—‘ '(jh...,jg)—r modp.

To prove in ZK that the vector (j1, ..., j¢)T involved in the new layer is the same

(j1,-..,7¢)" that was included in w, we introduce the following technique.

— For each ¢ € {0, 1}, let extbit(c) = (Z) € {0,1}2.

— For each b € {0,1}, we define the permutation T} that transforms vector

[ %0 2 . I 2
z = (21) € Z,, into vector Ty(z) = (Zb)-

Observe that the following equivalence holds: For all b € {0,1} and all z € ZZ,
z = extbit(j;) < Tp(z) = extbit(j; B b). (14)

In Stern’s framework, this equivalence allows us to prove in ZK the possession of
the bit j;, for every i € [¢], by extending j; to extbit(j;) and then, by permuting
it with a one-time pad b;. Furthermore, to prove that the same j; is involved in
both layers, we will use the same one-time pad in both layers of the protocol.

Embedding this new technique into the protocol in Section we obtain
an argument system for the relation Rgoup. As for the previous two protocols,
they also rely on the string commitment scheme from [40], which is statistically
hiding and computationally binding if the SIVPé(n) problem is hard.



Lemma 6. Assume that the SIVPé(n) problem is hard. Then, there exists a
statistical ZKAoK for the relation Rgroup with perfect completeness and commu-
nication cost O(L-n) + O((mg + £) - logp). In particular:

— There exists an efficient simulator that, on input (A,u,B,P1, Py, c1,c2), out-
puts an accepted transcript which is statistically close to that produced by the
real prover.

— There exists an efficient knowledge extractor that, on input 3 valid responses
(RSP, RSPy, RSP3) to the same commitment CMT, outputs (d',w’,x', 1}, r})
such that

/ / ! / /
((A7u7B7P17P27C17C2>7d , W, X ,1‘171'2) S Rgroup-

The full description and analysis of the argument system are given in the full
version of the paper.

5.3 Our Construction

Let n be the security parameter, and N = 2¢ = poly(n) be the maximum ex-
pected number of group users. Parameters m, ¢, k, k and the random oracle Hs
are defined as in the ring signature scheme in Section[£.3] To employ the (-bit ver-
sion of Regev’s encryption scheme, we will also need prime modulus p = O(n'?),
parameter mp = 2(n + £)[log p|, and an LWE error distribution x = Dy, 5 /.

GKeygen(1",1%") : This algorithm begins by sampling a uniformly random ma-
trix A & Zy*™. Then, it performs the following steps:

1. For each j € [0, N — 1], sample a random binary vector x; & {0,1}™
and compute d; = bin(A - x; mod ¢) € {0,1}"*. In the unlikely event that
{d; };_\7:—01 are not pairwise distinct, restart the process. Otherwise, define the
set R = (do, cee ;dN—l)-

2. Run algorithm TAcca (R) to build the Merkle tree based on R and the hash
function ha, and obtain the root u € {0, 1}"*.

3. For each j € [0, N —1], run algorithm TWitnessa (R, d;) to output a witness

w = (G, je) € (0,11, (wi”, ... wi) € ({0, 1))

to the fact that d; was accumulated in u. (Note that (ji,...,j¢) is the
binary representation of j.) Then define gsk[j] = (x;,d;,w®).

4. Sample B & Zp*me . For i € {1,2}, sample S; & ZZX{ E; < ™= and
compute P; = S;B +E € Zf;XmE.

5. Output

gpk := {A,u,B,P,Py}; gmsk:=S;; gsk:= (gsk[0],...,gsk[N —1]).
GSign(gpk, gsk[j], M): To sign M € {0,1}* using gsk[j] = (x;,d;,w?)), where

w) = ((jl, cees o)y (Wéj), .. ,W%j))), the user conducts the following steps:



1. Encrypt (ji,---.,j¢) € {0, 1}* twice using Regev’s encryption scheme. Namely,
for each i € {1,2}, sample r; & {0,1}™= and compute

C; = (Ci,la Ci,2)

= (B-rimodp, Pi-ri—&—[gJ-(jl,...,jg)Tmodp) EZZXZf;'

2. Generate a NIZKAoK Ilgy,, in order to demonstrate the possession of a valid

tuple 7 = (x;j,d;j, w1y, 15), where w9 = ((ji,...,je), (wéj), . ,w(j))),

such that:
(a) A-x; =G -d; mod q and TVerify, (u,d;,w) = 1.
(b) €1 and co are both correct encryptions of (j1,...,j¢) with randomness

r; and ry, respectively.
This is done by running the protocol in Section [5.2] with public input
(A,u,B,P;,Ps cy,ca) and prover’s witness 7 defined above. The proto-
col is repeated k = w(logn) times to achieve negligible soundness error
and made non-interactive via the Fiat-Shamir heuristic as a triple Ilgroup =
({CMT;}r_,,CH, {RSP}{ ), where

CH = Hes (M, ({CMT;}_ ), A, u, B, Py, Py, c1,¢2) € {1,2,3}".

3. Output the group signature X' = (IIgroup, €1, C2)-

GVerify(gpk, M, X)) : This algorithm proceeds as follows:

1. Parse X as X = ({CMTi}le, (Chi,...,Chy),{RSP}F_,, cq, c2).

If (Chy,...,Chy) # Hes (M, ({CMT;}f 1,A,u,B,Py,Py,cy, C2)7 then re-
turn 0.

2. For each i = 1 to k, run the verification phase of the protocol in Section [5.2
with public input (A, u, B, P, Py, cq, cs) to check the validity of RSP; w.r.t.
CMT; and Ch;. If any of the conditions does not hold, then return 0.

3. Return 1.

GOpen(gpk, gmsk, X', M): On input gmsk = S; and a group signature ¥ =
(group, €1, C2) on message M, this algorithm decrypts ¢; = (c1,1,¢1,2) and
returns an index j € [0, N — 1], as follows:

1. Compute (ji,...,j;) =c12—S] c11 € Zf).

2. For each i € [¢], if j; is closer to 0 than to [£] modulo p, then let j; = 0;
otherwise, let j; = 1.

3. Output index j € [0, N — 1] that has binary representation (ji,...,J¢).

Efficiency. The public key consists of a constant number of matrices over
Zq and Z,, where ¢ and p are small moduli. The group signature has bit-size

K- ((5(€n) +O((mg+¢)-logp)) = O(log N -n). The scheme is dramatically more
efficient than previous lattice-based realizations of group signatures. Indeed, its
most important advantage is that it does not require any party to hold a GPV
trapdoor. As observed by Lyubashevsky [49], lattice-based signatures without



trapdoor can be made significantly more efficient.

Correctness. The correctness of algorithm GVerify follows directly from the
correctness of the accumulator scheme in Section [3] and the completeness of the
argument system in Section As for the correctness of algorithm GOpen, it
suffices to note that

CLQ—SI'CLl:(SI'B+E1)‘I‘1+IV]%J‘(j17...,j@)T—SI'B'r1

p . .
=E; r; + [ij ~(]1,...,]Z)T mod p,
and |Eq - r1]|eo < p/4 with overwhelming probability, for the given setting of
parameters, and the decryption algorithm should return (ji,...,j¢)".

Security. The full traceability property of our scheme is stated in Theorem 6] In
the proof, which is given in the full version of the paper we prove that any adver-
sary with noticeable probability of evading traceability implies an algorithm for
either breaking the security of the underlying accumulator of Section [3] breaking
the computational soundness of the argument system in Section [5.2] or solving
an instance of the SIS;®,  ; problem.

Theorem 6. The scheme provides full traceability in the random oracle model
if the SIVP@(n) problem is hard.

The proof of full anonymity relies on the fact that applying the Naor-Yung
paradigm [56] to Regev’s cryptosystem yields an IND-CCA2 secure cryptosys-
tem. (A similar argument was used by Benhamouda et al. [12] for an NTRU-like
encryption scheme.) Indeed, the argument system of Definition [12| implies that
c1 and co encrypt the same message. In the random oracle model, it was already
observed by Fouque and Pointcheval [30] (see [I3] for a more general treat-
ment) that applying the Fiat-Shamir heuristic to X-protocols gives simulation-
sound proofs [66]. Similarly to [30/I3], the proof of Theorem [7] relies on the
fact that applying Fiat-Shamir to the argument system of Definition [12] yields a
simulation-sound NIZK argument in the random oracle model if the underlying
commitment is computationally binding. This holds even though this argument
system does not have the standard special soundness property (i.e., three ac-
cepting conversations for distinct challenges are necessary to extract a witness).
Simulation-soundness is actually implied by Lemma [6} suppose that c¢; and co
encrypt distinct £-bit strings. This means that there exists no vector (r? | r1)T

such that
B - B ) 1‘71 _ |€1,1 —¢C21
P, | -P; rs C2,1 — C22 '
Now, recall that the computational soundness of all Stern-type protocols is

proved by showing that the knowledge extractor obtains either a set of valid wit-
nesses or breaks the binding property of the underlying commitment. Given that



the witnesses do not exist if the statement is false, by rewinding a simulation-
soundness adversary sufficiently many times, the knowledge extractor necessarily
extracts two openings of a given commitment.

The proof of Theorem [7]is similar to [66] and given in the full version of the

paper.

Theorem 7. The scheme provides full anonymity if the LWE, , , problem is
hard, and if the argument system is simulation-sound.
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