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Abstract. A constrained pseudo random function (PRF) behaves like a
standard PRF, but with the added feature that the (master) secret key
holder, having secret key K, can produce a constrained key, K{f}, that
allows for the evaluation of the PRF on all inputs satisfied by the con-
straint f . Most existing constrained PRF constructions can handle only
bounded length inputs. In a recent work, Abusalah et al. [1] constructed
a constrained PRF scheme where constraints can be represented as Tur-
ing machines with unbounded inputs. Their proof of security, however,
requires risky “knowledge type” assumptions such as differing inputs ob-
fuscation for circuits and SNARKs.
In this work, we construct a constrained PRF scheme for Turing ma-
chines with unbounded inputs under weaker assumptions, namely, the
existence of indistinguishability obfuscation for circuits (and injective
pseudorandom generators).

1 Introduction

Constrained pseudorandom functions (PRFs), as introduced by [7, 9, 23], are a
useful extension of standard PRFs [18]. A constrained PRF system is defined
with respect to a family of constraint functions, and has an additional algorithm
Constrain. This algorithm allows a (master) PRF key holder, having PRF key K,
to produce a constrained PRF key K{f} corresponding to a constraint f . This
constrained key K{f} can be used to evaluate the PRF at all points x accepted
by f (that is, f(x) = 1). The security notion ensures that even when given
multiple constrained keys K{f1}, . . ., K{fQ}, PRF evaluation at a point not ac-
cepted by any of the functions fi ‘looks’ uniformly random to a computationally
bounded adversary. Since their inception, constrained PRFs have found several
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applications such as broadcast encryption, identity-based key exchange, policy-
based key distribution[7] and multi-party key exchange [8]. In particular, even
the most basic class of constrained PRFs called puncturable PRFs has found
immense application in the area of program obfuscation through the ‘punctured
programming’ technique introduced by [25]. The initial works of [7, 9, 23] showed
that the [18] PRF construction can be modified to construct a basic class of con-
strained PRFs called prefix-constrained PRFs (which also includes puncturable
PRFs). Boneh and Waters [7] also showed a construction for the richer class of
circuit-constrained PRFs 3 using multilinear maps [14]. Since then, we have seen
great progress in this area, leading to constructions from different cryptographic
assumptions [8, 10, 4] and constructions with additional properties [12, 1, 10, 4].
However, all the above mentioned works have a common limitation: the corre-
sponding PRF can handle only bounded length inputs.

The problem of constructing constrained PRFs with unbounded length was
studied in a recent work by Abusalah, Fuchsbauer and Pietrzak [1], who also
showed motivating applications such as broadcast encryption with unbounded
recipients and multi-party identity based non-interactive key exchange with no
apriori bound on number of parties. Abusalah et al. construct a constrained
PRF scheme where the constraint functions are represented as Turing machines
with unbounded inputs. The scheme is proven secure under the assumption that
differing input obfuscation (diO) for circuits exists. Informally, this assumption
states that there exists an ‘obfuscation’ program O that takes as input a circuit
C, and outputs another circuit O(C) with the following security guarantee: if an
efficient adversary can distinguish between O(C1) and O(C2), then there exists
an efficient extraction algorithm that can find an input x such that C1(x) 6=
C2(x). However, the diO assumption is believed to be a risky one due to its
‘extractability nature’. Furthermore, the work of [16] conjectures that there exist
certain function classes for which diO is impossible to achieve.

A natural direction then is to try to base the security on the relatively weaker
assumption of indistinguishability obfuscation (iO) for circuits. An obfuscator
O is an indistinguishability obfuscator for circuits if for any two circuits C1 and
C2 that have identical functionality, their obfuscations O(C1) and O(C2) are
computationally indistinguishable. Unlike diO, there are no known impossibility
results for iO, and moreover, there has been recent progress [17, 2, 6] towards
the goal of constructing iO from standard assumptions. This brings us to the
central question of our work:

Can we construct constrained PRFs for Turing machines under the
assumptions that indistinguishability obfuscation and one-way functions exist?

Our starting point is three recent works that build indistinguishability ob-
fuscation for Turing Machines with bounded length inputs using iO for circuits
[5, 11, 24]. The works of [5, 11] show how to do this where the encoding time
and size of the obfuscated program grows with the maximum space used by
the underlying program, whereas the work of [24] achieves this with no such

3 Where the constraints can be any boolean circuit
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restriction. An immediate question is whether we can use a Turing machine ob-
fuscator for constructing constrained PRFs for Turing machines, similar to the
circuit-constrained PRF construction of [8]. However, as mentioned above the
Turing machine obfuscator constructions are restricted to Turing Machines with
bounded size inputs4. Thus, we are unable to use the Turning Machine obfus-
cation scheme in a black box manner and have to introduce new techniques to
construct constrained PRFs for unbounded sized inputs.

Our Results: The main result of our work is as follows.

Theorem 1 (informal). Assuming the existence of secure indistinguishability
obfuscators and injective pseudorandom generators, there exists a constrained
PRF scheme that is selectively secure.

Selective Security vs Adaptive Security: Selective security is a security notion
where the adversary must specify the ‘challenge input’ before receiving con-
strained keys. A stronger notion, called adaptive security, allows the adversary
to query for constrained keys before choosing the challenge input. While adap-
tive security should be the ideal target, achieving adaptive security with only
polynomial factor security loss (i.e. without ‘complexity leveraging’ ) has been
challenging, even for circuit based constrained PRFs. Currently, the best known
results for adaptive security either require superpolynomial security loss [13],
or work for very restricted functionalities [20], or achieve non-collusion based
security [10] or achieve it in the random oracle mode [19].

Moreover, for many applications, it turns out that selective security is suf-
ficient. For example, the widely used punctured programming technique of [25]
only requires selectively secure puncturable PRFs. Similarly, as discussed in [1],
selectively secure constrained PRFs with unbounded inputs can be used to con-
struct broadcast encryption schemes with unbounded recipients and identity
based non-interactive key exchange (ID-NIKE) protocol with no apriori bound
on number of parties. Therefore, as a corollary of Theorem 1, we get both these
applications using only indistinguishability obfuscation and injective pseudoran-
dom generators. Interestingly, two recent works have shown direct constructions
for both these problems using iO. Zhandry [26] showed a broadcast encryption
scheme with unbounded recipients, while Khurana et al. [22] showed an ID-NIKE
scheme with unbounded number of parties.

We also show how our construction above can be easily adapted to get selectively
secure attribute based encryption for Turing machines with unbounded inputs,
which illustrates the versatility of our techniques above.

4 The restriction to bounded length inputs is due to the fact that their iO analysis
requires a hybrid over all possible inputs. They absorb this loss by growing the size of
the obfuscated program polynomially in the input size using complexity leveraging
and a sub-exponential hardness assumption on the underlying circuit iO. Currently,
there is no known way to avoid this.
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Theorem 2 (informal). Assuming the existence of secure indistinguishability
obfuscators and injective pseudorandom generators, there exists an ABE scheme
for Turing machines that is selectively secure.

Recently, Ananth and Sahai [3] had an exciting result where they show adap-
tively secure functional encryption for Turing machines with unbounded inputs.
While our adaptation is limited to ABE, we believe that the relative simplicity
of our construction is an interesting feature. In addition, we were able to apply
our tail-hybrid approach to get an end-to-end polynomial time reduction.

1.1 Overview of our constrained PRF construction

To begin, let us consider the simple case of standard PRFs with unbounded
inputs. Any PRF (with sufficient input size) can be extended to handle un-
bounded inputs by first compressing the input using a collision-resistant hash
function (CRHF), and then computing the PRF on this hash value. Abusalah
et al. [1] showed that by using diO, this approach can be extended to work for
constrained PRFs. However, the proof of security relies on the extractability
property of diO in a fundamental way. In particular, this approach will not work
if iO is used instead of diO because general CRHFs are not ‘iO-compatible’5

(see Section 2 for a more detailed discussion on iO-compatibility).

Challenges of a similar nature were addressed in [24] by introducing new tools
and techniques that guarantee program functional equivalence at different stages
of the proof. Let us review one such tool called positional accumulators, and see
why it is iO-compatible. A positional accumulator scheme is a cryptographic
primitive used to provide a short commitment to a much larger storage. This
commitment (also referred to as an accumulation of the storage) has two main
features: succinct verifiability (there exists a short proof to prove that an element
is present at a particular position) and succinct updatability (using short auxil-
iary information, the accumulation can be updated to reflect an update to the
underlying storage). The scheme also has a setup algorithm which generates the
parameters, and can operate in two computationally indistinguishable modes. It
can either generate parameters ‘normally’, or it can be enforcing at a particular
position p. When parameters are generated in the enforcing mode, the accumu-
lator is information-theoretically binding to position p of the underlying storage.
This information theoretic enforcing property is what makes it compatible for
proofs involving iO.

Returning to our constrained PRF problem, we need a special hash function
that can be used with iO. That brings us to the main insight of our work:
the KLW positional accumulator can be repurposed to be an iO-friendly hash

5 Consider the following toy example. Let C0, C1 be circuits such that C0(x, y) =
0 ∀(x, y) and C1(x, y) = 1 iff CRHF(x) = CRHF(y) for x 6= y. Now, under the diO
assumption, the obfuscations of C0 and C1 are computationally indistinguishable.
However, we cannot get the same guarantee by using iO, since the circuits are not
functionally identical
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function.6 Besides giving us an iO-friendly hash function, this also puts the input
in a data structure that is already suitable for the KLW framework.7

Our Construction : We will now sketch out our construction. Our constrained
PRF scheme uses a puncturable PRF F with key k. Let Hash-Acc(x) represent the
accumulation of storage initialized with input x = x1 . . . xn. The PRF evaluation
(in our scheme) is simply F (k,Hash-Acc(x)).

The interesting part is the description of our constrained keys, and how they
can be used to evaluate at an input x. The constrained key for machine M con-
sists of two programs. The first one is an obfuscated circuit which takes an input,
and outputs a signature on that input. The second one is an obfuscated circuit
which essentially computes the next-step of the Turing machine, and eventually,
if it reaches the ‘accepting state’, it outputs F (k,Hash-Acc(x)). This circuit also
performs additional authenticity checks to prevent illegal inputs - it takes a sig-
nature and accumulator as input, verifies the signature and accumulator before
computing the next step, and finally updates the accumulator and outputs a
signature on the new state and accumulator.

Evaluating the PRF at input x using the constrained key consists of two
steps. The first one is the initialization step, where the evaluator first computes
Hash-Acc(x) and then computes a signature on Hash-Acc(x) using the signing
program. Then, it iteratively runs the obfuscated next-step circuit (also including
Hash-Acc(x) as input at each time step) until the circuit either outputs the
PRF evaluation, or outputs ⊥. While this is similar to the KLW message hiding
encoding scheme, there are some major differences. One such difference is with
regard to accumulation of the input. In KLW, the input is accumulated by
the ‘honest’ encoding party, while in our case, the (possibly corrupt) evaluator
generates the accumulation and feeds it at each step of the iteration. As a result,
the KLW proof for message-hiding encoding scheme needs to be tailored to fit
our setting.

Proof of Security : Recall we are interested in proving selective security, where
the adversary sends the challenge input x∗ before requesting for constrained
keys. Our goal is to replace the (master) PRF key k in all constrained keys
with one that is punctured at acc-inp∗ = Hash-Acc(x∗). Once this is done, the
security of puncturable PRFs guarantees that the adversary cannot distinguish
between F(k, acc-inp∗) and a truly random string. Let us focus our attention on
one constrained key query corresponding to machine M , and suppose M runs
for t∗ steps on input x∗ and finally outputs ‘reject’.

To replace k with a punctured key, we need to ensure that the obfuscated
program for M does not reach the ‘accepting state’ on inputs with acc-inp =

6 More formally, it gives us an iO friendly universal one way hash function.
7 We note that the somewhat statistically binding hash of [21] has a similar spirit to

positional accumulators in that they have statistical binding at a selected position.
However, they are not sufficient for our purposes as positional accumulators provide
richer semantics such as interleaved reads, writes, and overwrites that are necessary
here.
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acc-inp∗. This is done via two main hybrid steps. First, we alter the program
so that it does not reach the accepting state within t∗ steps on inputs with
acc-inp = acc-inp∗. Then, we have the tail hybrid, where we ensure that on
inputs with acc-inp = acc-inp∗, the program does not reach accepting state even
at time steps t > t∗. For the first step, we follow the KLW approach, and define
a sequence of t∗ sub-hybrids, where in the ith hybrid, the obfuscated circuit does
not reach accepting state at time steps t ≤ i for inputs with acc-inp = acc-inp∗.
We use the KLW selective enforcement techniques to show that consecutive
hybrids are computationally indistinguishable.

We have a novel approach for handling the tail hybrids Let T (= 2λ) denote
the upper bound on the running time of any machine M on any input. In KLW,
the tail hybrid step was handled by defining T − t∗ intermediate hybrids. If
we adopt a similar approach for our construction, it results in an exponential
factor security loss, which is undesirable for our application8. Our goal would be
to overcome this to get an end to end polynomial reduction to iO. Therefore,
we propose a modification to our scheme which will allow us to handle the tail
hybrid with only a polynomial factor security loss. First, let us call the time
step 2i as the ith landmark, while the interval [2i, 2i+1 − 1] is the ith interval.
The obfuscated program now takes a PRG seed as input at each time step, and
performs some additional checks on the input PRG seed. At time steps just
before a landmark, it outputs a new (pseudorandomly generated) PRG seed,
which is then used in the next interval. Using standard iO techniques, we can
show that if the program outputs ⊥ just before a landmark, then we can alter
the program indistinguishably so that it outputs ⊥ at all time steps in the next
interval. Since we know that the program outputs ⊥ at (acc-inp∗, t∗− 1), we can
ensure that the program outputs ⊥ for all (acc-inp∗, t) such that t∗ ≤ t ≤ 2t∗.
Proceeding inductively, we can ensure that the program never reaches accepting
state if acc-inp = acc-inp∗.

1.2 Attribute Based Encryption for Turing Machines with
Unbounded Inputs

We will now describe our ABE scheme for Turing machines with unbounded
inputs. Let PKE be a public key encryption scheme. Our ABE scheme’s master
secret key is a puncturable PRF key k and the public key is an obfuscated
program Prog-PK and accumulator parameters. The program Prog-PK takes as
input a string acc-inp, computes r = F (k, acc-inp) and uses r as randomness for
PKE.setup. It finally outputs the PKE public key. To encrypt a message m for
attribute x, one must first accumulate the input x, then feed the accumulated
input to Prog-PK to get a PKE public key pk, and finally encrypts m using
public key pk. The secret keys corresponding to Turing machine M is simply the
constrained PRF key for M . This key can be used to compute F (k,Hash-Acc(x))
if M(x) = 1, and therefore can decrypt messages encrypted for x.

8 An exponential loss in the security proof of randomized encodings in KLW was
acceptable because the end goal was indistinguishability obfuscation, which already
requires an exponential number of hybrids.
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1.3 Paper Organization

We present the required preliminaries in Section 2 and the notions of constrained
PRFs for Turing machines in Section 3. The construction of our constrained PRF
scheme can be found in Section 4, while our ABE scheme can be found in 5. Due
to space constraints, part of our constrained PRF security proof is deferred to
the full version of the paper.

2 Preliminaries

2.1 Notations

In this work, we will use the following notations for Turing machines.

Turing machines A Turing machine is a 7-tuple M = 〈Q,Σtape, Σinp, δ, q0, qac,
qrej〉 with the following semantics:

- Q is the set of states with start state q0, accept state qac and reject state
qrej.

- Σinp is the set of inputs symbols
- Σtape is the set of tape symbols. We will assume Σinp ⊂ Σtape and there is

a special blank symbol ‘ ’ ∈ Σtape \Σinp.
- δ : Q×Σtape → Q×Σtape × {+1,−1} is the transition function.

2.2 Obfuscation

We recall the definition of indistinguishability obfuscation from [15, 25].

Definition 1. (Indistinguishability Obfuscation) Let C = {Cλ}λ∈N be a family
of polynomial-size circuits. Let iO be a uniform PPT algorithm that takes as
input the security parameter λ, a circuit C ∈ Cλ and outputs a circuit C ′. iO is
called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the
following conditions:

– (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ,
for all inputs x, we have that C ′(x) = C(x) where C ′ ← iO(1λ, C).

– (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT
distinguisher B = (Samp,D), there exists a negligible function negl(·) such
that the following holds: if for all security parameters λ ∈ N,Pr[∀x,C0(x) =
C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ)← Samp(1λ)]| ≤ negl(λ).

In a recent work, [15] showed how indistinguishability obfuscators can be con-
structed for the circuit class P/poly. We remark that (Samp,D) are two algo-
rithms that pass state, which can be viewed equivalently as a single stateful
algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.
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2.3 iO-Compatible Primitives

In this section, we define extensions of some cryptographic primitives that makes
them ‘compatible’ with indistinguishability obfuscation 9. All of the primitives
described here can be constructed from iO and one way functions. Their con-
structions can be found in [24].

Splittable Signatures A splittable signature scheme is a normal deterministic
signature scheme, augmented by some additional algorithms and properties that
we require for our application. Such a signature scheme has four different kinds
of signing/verification key pairs. First, we have the standard signing/verification
key pairs, where the signing key can compute signatures on any message, and
the verification key can verify signatures corresponding to any message. Next,
we have ‘all-but-one’ signing/verification keys. These keys, which correspond to
a special message m∗, work for all messages except m∗; that is, the signing key
can sign all messages except m∗, and the verification key can verify signatures for
all messages except m∗ (it does not accept any signature corresponding to m∗).
Third, we have ‘one’ signing/verification keys. These keys correspond to a special
message m′, and can only be used to sign/verify signatures for m′. For all other
messages, the verification algorithm does not accept any signatures. Finally,
we have the rejection verification key which does not accept any signatures.
The setup algorithm outputs a standard signing/verification key together with
a rejection verification key, while a ’splitting’ algorithm uses a standard signing
key to generate ‘all-but-one’ and ‘one’ signing/verification keys.

At a high level, we require the following security properties. First, the stan-
dard verification key and the rejection verification key must be computationally
indistinguishable. Intuitively, this is possible because an adversary does not have
any secret key or signatures. Next, we require that if an adversary is given an
‘all-but-one’ secret key for message m∗, then he/she cannot distinguish between
a standard verification key and an ‘all-but-one’ verification key corresponding to
m∗. We also have a similar property for the ‘one’ keys. No PPT adversary, given
a ‘one’ signing key, can distinguish between a standard verification key and a
‘one’ verification key. Finally, we have the ‘splittability’ property, which states
that the keys generated by splitting one signing key are indistinguishable from
the case where the ‘all-but-one’ key pair and the ‘one’ key pair are generated
from different signing keys.

We will now formally describe the syntax and correctness/security properties
of splittable signatures.

Syntax: A splittable signature scheme S for message space M consists of the
following algorithms:

Setup-Spl(1λ) The setup algorithm is a randomized algorithm that takes as input
the security parameter λ and outputs a signing key SK, a verification key
VK and reject-verification key VKrej.

9 In the full version of our paper, we describe a toy example to illustrate why we need
to extend/modify certain primitives in order to use them with iO.
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Sign-Spl(SK,m) The signing algorithm is a deterministic algorithm that takes
as input a signing key SK and a message m ∈M. It outputs a signature σ.

Verify-Spl(VK,m, σ) The verification algorithm is a deterministic algorithm that
takes as input a verification key VK, signature σ and a message m. It outputs
either 0 or 1.

Split(SK,m∗) The splitting algorithm is randomized. It takes as input a secret
key SK and a messagem∗ ∈M. It outputs a signature σone = Sign-Spl(SK,m∗),
a one-message verification key VKone, an all-but-one signing key SKabo and
an all-but-one verification key VKabo.

Sign-Spl-abo(SKabo,m) The all-but-one signing algorithm is deterministic. It
takes as input an all-but-one signing key SKabo and a message m, and out-
puts a signature σ.

Correctness Let m∗ ∈M be any message. Let (SK,VK,VKrej)← Setup-Spl(1λ)
and (σone,VKone,SKabo,VKabo) ← Split(SK,m∗). Then, we require the follow-
ing correctness properties:

1. For all m ∈M, Verify-Spl(VK,m,Sign-Spl(SK,m)) = 1.
2. For all m ∈M,m 6= m∗, Sign-Spl(SK,m) = Sign-Spl-abo(SKabo,m).
3. For all σ, Verify-Spl(VKone,m

∗, σ) = Verify-Spl(VK,m∗, σ).
4. For all m 6= m∗ and σ, Verify-Spl(VK,m, σ) = Verify-Spl(VKabo,m, σ).
5. For all m 6= m∗ and σ, Verify-Spl(VKone,m, σ) = 0.
6. For all σ, Verify-Spl(VKabo,m

∗, σ) = 0.
7. For all σ and all m ∈M, Verify-Spl(VKrej,m, σ) = 0.

Security We will now define the security notions for splittable signature schemes.
Each security notion is defined in terms of a security game between a challenger
and an adversary A.

Definition 2 (VKrej indistinguishability).
A splittable signature scheme S is said to be VKrej indistinguishable if any

PPT adversary A has negligible advantage in the following security game:

Exp-VKrej(1
λ,S,A):

1. Challenger computes (SK,VK,VKrej)← Setup-Spl(1λ) .Next, it chooses b←
{0, 1}. If b = 0, it sends VK to A. Else, it sends VKrej.

2. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A never receives any signatures and has
no ability to produce them. This is why the difference between VK and VKrej

cannot be tested.

Definition 3 (VKone indistinguishability). A splittable signature scheme S
is said to be VKone indistinguishable if any PPT adversary A has negligible ad-
vantage in the following security game:

Exp-VKone(1
λ,S,A):
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1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ). Next, it computes

(σone, VKone, SKabo, VKabo) ← Split(SK,m∗). It chooses b ← {0, 1}. If
b = 0, it sends (σone,VKone) to A. Else, it sends (σone,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A only receives the signature σone on m∗,
on which VK and VKone behave identically.

Definition 4 (VKabo indistinguishability). A splittable signature scheme S
is said to be VKabo indistinguishable if any PPT adversary A has negligible ad-
vantage in the following security game:

Exp-VKabo(1λ,S,A):

1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ). Next, it computes

(σone, VKone, SKabo, VKabo) ← Split(SK,m∗). It chooses b ← {0, 1}. If
b = 0, it sends (SKabo,VKabo) to A. Else, it sends (SKabo,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A does not receive or have the ability to
create a signature on m∗. For all signatures A can create by signing with SKabo,
VKabo and VK will behave identically.

Definition 5 (Splitting indistinguishability). A splittable signature scheme
S is said to be splitting indistinguishable if any PPT adversary A has negligible
advantage in the following security game:

Exp-Spl(1λ,S,A):

1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej)← Setup-Spl(1λ), (SK′,VK′,VK′rej)←

Setup-Spl(1λ). Next, it computes (σone, VKone, SKabo, VKabo)←
Split(SK,m∗), (σ′one, VK′one, SK′abo, VK′abo) ← Split(SK′,m∗). . It chooses
b← {0, 1}. If b = 0, it sends (σone,VKone,SKabo,VKabo) to A. Else, it sends
(σ′one,VK′one,SKabo,VKabo) to A.

3. A sends its guess b′.

A wins if b = b′.

In the game above, A is either given a system of σone,VKone,SKabo,VKabo

generated together by one call of Setup-Spl or a “split” system of
(σ′one,VK′one,SKabo,VKabo) where the all but one keys are generated separately
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from the signature and key for the one message m∗. Since the correctness con-
ditions do not link the behaviors for the all but one keys and the one message
values, this split generation is not detectable by testing verification for the σone
that A receives or for any signatures that A creates honestly by signing with
SKabo.

Positional Accumulators An accumulator can be seen as a special hash func-
tion mapping unbounded10 length strings to fixed length strings. It has two addi-
tional properties: succinct verifiability and succinct updatability. Let Hash-Acc(·)
be the hash function mapping x = x1 . . . xn to y. Then, succinct verifiability
means that there exists a ‘short’ proof π to prove that bit xi is present at
the ith position of x. Note that this verification only requires the hash value
y and the short proof π. Succinct updatability means that given y, a bit x′i,
position i and some ‘short’ auxiliary information, one can update y to obtain
y′ = Hash-Acc(x1 . . . x

′
i . . . xn). We will refer to y as the tape, and xi the symbol

written at position i.
The notion of accumulators is not sufficient for using with iO, and we need

a stronger primitive called positional accumulators that is iO-compatible. In a
positional accumulator, we have three different setup modes. The first one is the
standard setup which outputs public parameters and the initial accumulation
corresponding to the empty tape. Next, we have the read-enforced setup mode.
In this mode, the algorithm takes as input a sequence of k pairs (symi, posi) which
represent the first k symbols written and their positions. It also takes as input
the enforcing position pos, and outputs public parameters and an accumulation
of the empty tape. As the name might suggest, this mode is read enforcing at
position pos - if the first k symbols written are (sym1, . . . , symk), and their write
positions are (pos1, . . . , posk), then there exists exactly one opening for position
pos : the correct symbol written at pos. Similarly, we have a write-enforcing setup
which takes as input k (symbol, position) pairs {(symi, posi)}i≤k representing the
first k writes, and outputs public parameters and an accumulation of the empty
tape. The write-enforcing property states that if (symi, posi) are the first k writes,
and acck−1 is the correct accumulation after the first k − 1 writes, then there is
a unique accumulation after the kth write (irrespective of the auxiliary string).
Note that both the read and write enforcing properties are information theoretic.
This is important when we are using these primitives with indistinguishability
obfuscation.

For security, we require that the different setup modes are computationally
indistinguishable. We will now give a formal description of the syntax and prop-
erties. A positional accumulator for message space Mλ consists of the following
algorithms.

– Setup-Acc(1λ, T ) → (PP, acc0, store0) The setup algorithm takes as input
a security parameter λ in unary and an integer T in binary representing the

10 Unbounded, but polynomial in the security parameter
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maximum number of values that can stored. It outputs public parameters
PP, an initial accumulator value acc0, and an initial storage value store0.

– Setup-Acc-Enf-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗)→
(PP, acc0, store0): The setup enforce read algorithm takes as input a secu-
rity parameter λ in unary, an integer T in binary representing the maximum
number of values that can be stored, and a sequence of symbol, index pairs,
where each index is between 0 and T − 1, and an additional index∗ also be-
tween 0 and T − 1. It outputs public parameters PP, an initial accumulator
value acc0, and an initial storage value store0.

– Setup-Acc-Enf-Write(1λ, T, (m1, index1), . . . , (mk, indexk))→
(PP, acc0, store0): The setup enforce write algorithm takes as input a secu-
rity parameter λ in unary, an integer T in binary representing the maximum
number of values that can be stored, and a sequence of symbol, index pairs,
where each index is between 0 and T − 1. It outputs public parameters PP,
an initial accumulator value acc0, and an initial storage value store0.

– Prep-Read(PP, storein, index) → (m,π): The prep-read algorithm takes
as input the public parameters PP, a storage value storein, and an index
between 0 and T − 1. It outputs a symbol m (that can be ε) and a value π.

– Prep-Write(PP, storein, index) → aux: The prep-write algorithm takes as
input the public parameters PP, a storage value storein, and an index
between 0 and T − 1. It outputs an auxiliary value aux.

– Verify-Read(PP, accin,mread, index, π) → {True, False}: The verify-read
algorithm takes as input the public parameters PP, an accumulator value
accin, a symbol, mread, an index between 0 and T − 1, and a value π. It
outputs True or False.

– Write-Store(PP, storein, index,m)→ storeout: The write-store algorithm
takes in the public parameters, a storage value storein, an index between
0 and T − 1, and a symbol m. It outputs a storage value storeout.

– Update(PP, accin,mwrite, index, aux) → accout or Reject: The update al-
gorithm takes in the public parameters PP, an accumulator value accin, a
symbol mwrite, and index between 0 and T − 1, and an auxiliary value aux.
It outputs an accumulator value accout or Reject.

In general we will think of the Setup-Acc algorithm as being randomized
and the other algorithms as being deterministic. However, one could consider
non-deterministic variants.

Correctness We consider any sequence (m1, index1), . . . , (mk, indexk) of sym-
bolsm1, . . . ,mk and indices index1, . . . , indexk each between 0 and T−1. We fix
any PP, acc0, store0 ← Setup-Acc(1λ, T ). For j from 1 to k, we define storej
iteratively as storej := Write-Store(PP, storej−1, indexj ,mj). We similarly
define auxj and accj iteratively as auxj := Prep-Write(PP, storej−1, indexj)
and accj := Update(PP, accj−1,mj , indexj , auxj). Note that the algorithms
other than Setup-Acc are deterministic, so these definitions fix precise values,
not random values (conditioned on the fixed starting values PP, acc0, store0).

We require the following correctness properties:
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1. For every index between 0 and T−1, Prep-Read(PP, storek, index) returns
mi, π, where i is the largest value in [k] such that indexi = index. If no
such value exists, then mi = ε.

2. For any index, let (m,π)← Prep-Read(PP, storek, index). Then
Verify-Read(PP, acck,m, index, π) = True.

Remarks on Efficiency In our construction, all algorithms will run in time poly-
nomial in their input sizes. More precisely, Setup-Acc will be polynomial in λ
and log(T ). Also, accumulator and π values should have size polynomial in λ
and log(T ), so Verify-Read and Update will also run in time polynomial in λ and
log(T ). Storage values will have size polynomial in the number of values stored
so far. Write-Store, Prep-Read, and Prep-Write will run in time polynomial in λ
and T .

Security Let Acc = (Setup-Acc, Setup-Acc-Enf-Read, Setup-Acc-Enf-Write, Prep-Read,
Prep-Write, Verify-Read, Write-Store, Update) be a positional accumulator for
symbol set M. We require Acc to satisfy the following notions of security.

Definition 6 (Indistinguishability of Read Setup). A positional accumu-
lator Acc is said to satisfy indistinguishability of read setup if any PPT adversary
A’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A) is at most negli-
gible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ M and k indices index1, . . . , indexk ∈
{0, . . . , T − 1} to the challenger.

3. The challenger chooses a bit b. If b = 0, the challenger outputs
(PP, acc0, store0)← Setup-Acc(1λ, T ). Else, it outputs (PP, acc0, store0)←
Setup-Acc-Enf-Read
(1λ, T, (m1, index1), . . . , (mk, indexk)).

4. A sends a bit b′.

A wins the security game if b = b′.

Definition 7 (Indistinguishability of Write Setup). A positional accumu-
lator Acc is said to satisfy indistinguishability of write setup if any PPT adver-
sary A’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A) is at most
negligible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ M and k indices index1, . . . , indexk ∈
{0, . . . , T − 1} to the challenger.



14

3. The challenger chooses a bit b. If b = 0, the challenger outputs
(PP, acc0, store0)← Setup-Acc(1λ, T ). Else, it outputs
(PP, acc0, store0)← Setup-Acc-Enf-Write
(1λ, T, (m1, index1), . . . , (mk, indexk)).

4. A sends a bit b′.

A wins the security game if b = b′.

Definition 8 (Read Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk

∈M, index1, . . . , indexk ∈ {0, . . . , T − 1} and any index∗ ∈ {0, . . . , T − 1}.
Let (PP, acc0, store0)← Setup-Acc-Enf-Read

(1λ, T, (m1, index1), . . . , (mk, indexk), index∗). For j from 1 to k, we define
storej iteratively as
storej := Write-Store(PP, storej−1, indexj ,mj). We similarly define auxj
and accj iteratively as
auxj := Prep-Write(PP, storej−1, indexj) and accj := Update(PP, accj−1,
mj, indexj, auxj). Acc is said to be read enforcing if Verify-Read(PP, acck,
m, index∗, π) = True, then either index∗ /∈ {index1, . . ., indexk} and m = ε,
or m = mi for the largest i ∈ [k] such that indexi = index∗. Note that this is
an information-theoretic property: we are requiring that for all other symobls m,
values of π that would cause Verify-Read to output True at index∗ do no exist.

Definition 9 (Write Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk

∈M, index1, . . . , indexk ∈ {0, . . . , T − 1}. Let (PP, acc0, store0)←
Setup-Acc-Enf-Write(1λ, T, (m1, index1), . . . , (mk, indexk)). For j from 1 to k,
we define storej iteratively as
storej := Write-Store(PP, storej−1, indexj ,mj). We similarly define auxj
and accj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and
accj := Update(PP, accj−1,mj , indexj , auxj). Acc is said to be write enforcing
if Update(PP, acck−1,mk, indexk, aux) = accout 6= Reject, for any aux, then
accout = acck. Note that this is an information-theoretic property: we are requir-
ing that an aux value producing an accumulated value other than acck or Reject
does not exist.

Iterators In this section, we define the notion of cryptographic iterators. A
cryptographic iterator essentially consists of a small state that is updated in an
iterative fashion as messages are received. An update to apply a new message
given current state is performed via some public parameters.

Since states will remain relatively small regardless of the number of messages
that have been iteratively applied, there will in general be many sequences of
messages that can lead to the same state. However, our security requirement will
capture that the normal public parameters are computationally indistinguishable
from specially constructed “enforcing” parameters that ensure that a particular
single state can be only be obtained as an output as an update to precisely one
other state, message pair. Note that this enforcement is a very localized property
to a particular state, and hence can be achieved information-theoretically when
we fix ahead of time where exactly we want this enforcement to be.
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Syntax Let ` be any polynomial. An iterator I with message space Mλ =
{0, 1}`(λ) and state space Sλ consists of three algorithms - Setup-Itr,
Setup-Itr-Enf and Iterate defined below.

Setup-Itr(1λ, T ) The setup algorithm takes as input the security parameter λ (in
unary), and an integer bound T (in binary) on the number of iterations. It
outputs public parameters PP and an initial state v0 ∈ Sλ.

Setup-Itr-Enf(1λ, T,m = (m1, . . . ,mk)) The enforced setup algorithm takes as
input the security parameter λ (in unary), an integer bound T (in binary)
and k messages (m1, . . . ,mk), where each mi ∈ {0, 1}`(λ) and k is some
polynomial in λ. It outputs public parameters PP and a state v0 ∈ S.

Iterate(PP, vin,m) The iterate algorithm takes as input the public parameters
PP, a state vin, and a message m ∈ {0, 1}`(λ). It outputs a state vout ∈ Sλ.

For simplicity of notation, we will drop the dependence of ` on λ. Also, for any
integer k ≤ T , we will use the notation Iteratek(PP, v0, (m1, . . . ,mk)) to denote
Iterate(PP, vk−1,mk), where vj = Iterate(PP, vj−1,mj) for all 1 ≤ j ≤ k − 1.

Security Let I = (Setup-Itr,Setup-Itr-Enf, Iterate) be an interator with message
space {0, 1}` and state space Sλ. We require the following notions of security.

Definition 10 (Indistinguishability of Setup). An iterator I is said to sat-
isfy indistinguishability of Setup phase if any PPT adversary A’s advantage
in the security game Exp-Setup-Itr(1λ, I,A) at most is negligible in λ, where
Exp-Setup-Itr is defined as follows.

Exp-Setup-Itr(1λ,I,A)

1. The adversary A chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ {0, 1}` to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (PP, v0) ←

Setup-Itr(1λ, T ). Else, it outputs (PP, v0) ← Setup-Itr-Enf(1λ, T, 1k,m =
(m1, . . . ,mk)).

4. A sends a bit b′.

A wins the security game if b = b′.

Definition 11 (Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), k < T and
m1, . . . ,mk ∈ {0, 1}`. Let (PP, v0) ← Setup-Itr-Enf(1λ, T,m = (m1, . . . ,mk))
and vj = Iteratej(PP, v0, (m1, . . . ,mj)) for all 1 ≤ j ≤ k. Then, I = (Setup-Itr,
Setup-Itr-Enf, Iterate) is said to be enforcing if

vk = Iterate(PP, v′,m′) =⇒ (v′,m′) = (vk−1,mk).

Note that this is an information-theoretic property.
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2.4 Attribute Based Encryption

An ABE scheme where policies are represented by Turing machines comprises
of the following four algorithms (ABE.setup,ABE.enc,ABE.keygen,ABE.dec):

– ABE.setup(1λ) → (PKABE,MSKABE): The setup algorithm takes as input
the security parameter λ and outputs the public key PKABE and the master
secret key MSKABE

– ABE.enc(m,x,PKABE) → ct: The encryption algorithm takes as input the
message m, the attribute string x of unbounded length and the public key
PKABE and it outputs the corresponding ciphertext ctx specific to the at-
tribute string.

– ABE.keygen(MSKABE,M)→ SK{M}: The key generation algorithm takes as
input MSKABE and a Turing machine M and outputs the secret key SK{M}
specific to M

– ABE.dec(SK{M}, ct)→ m or ⊥: The decryption algorithm takes in SK{M}
and ciphertext ct and outputs either a message m or ⊥.

The correctness of the scheme guarantees that if ABE.enc(m,x,PKABE)→ ctx
and ABE.keygen(MSKABE,M)→ SK{M} then ABE.dec(SK{M}, ctx)→ m.

2.5 Selective Security

Consider the following experiment between a challenger C and a stateful adver-
sary A:

– Setup Phase: A sends the challenge attribute string x∗ of his choice to C.
C runs the ABE.setup(1λ) and sends across PKABE to A.

– Pre-Challenge Query Phase: A gets to query for secret keys correspond-
ing to Turing machines. For each query M such that M(x∗) = 0, the chal-
lenger computes SK{M} ← ABE.keygen(MSKABE, .) and sends it to A.

– Challenge Phase A sends two messages m0,m1 with |m0| = |m1|, the
challenger chooses bit b uniformly at random and outputs ct∗ = ABE.enc(mb,
x∗,PKABE).

– Post-Challenge Query Phase: This is identical to the Pre-Challenge
Phase.

– Guess: Finally, A sends its guess b′ and wins if b = b′.

The advantage ofA, AdvABEA (λ) in the above experiment is defined to be |Pr[b′ =
b]− 1

2 |.

Definition 12. An ABE scheme is said to be selectively secure if for all PPT
adversaries A, the advantage AdvABEA (λ) is a negligible function in λ.
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3 Constrained Pseudorandom Functions for Turing
Machines

The notion of constrained pseudorandom functions was introduced in the con-
current works of [7, 9, 23]. Informally, a constrained PRF extends the notion of
standard PRFs, enabling the master PRF key holder to compute ‘constrained
keys’ that allow PRF evaluations on certain inputs, while the PRF evaluation
on remaining inputs ‘looks’ random. In the above mentioned works, these con-
straints could only handle bounded length inputs. In order to allow unbounded
inputs, we need to ensure that the constrained keys correspond to polynomial
time Turing Machines. A formal definition is as follows.

Let Mλ be a family of Turing machines with (worst case) running time
bounded by 2λ. Let K denote the key space, X the input domain and Y the
range space. A pseudorandom PRF : K × X → Y is said to be constrained with
respect to the Turing machine familyMλ if there is an additional key space Kc,
and three algorithms PRF.setup, PRF.constrain and PRF.eval as follows:

– PRF.setup(1λ) is a PPT algorithm that takes the security parameter λ as
input and outputs a key K ∈ K.

– PRF.constrain(K,M) is a PPT algorithm that takes as input a PRF key
K ∈ K and a Turing machine M ∈ Mλ and outputs a constrained key
K{M} ∈ Kc.

– PRF.eval(K{M}, x) is a deterministic polynomial time algorithm that takes
as input a constrained key K{M} ∈ Kc and x ∈ X and outputs an element
y ∈ Y. Let K{M} be the output of PRF.constrain(K,M). For correctness,
we require the following:

PRF.eval(K{M}, x) = F (K,x) if M(x) = 1.

For simplicity of notation, we will use PRF(K{M}, x) to denote
PRF.eval(K{M}, x).

3.1 Security of Constrained Pseudorandom Functions

Intuitively, we require that even after obtaining several constrained keys, no
polynomial time adversary can distinguish a truly random string from the PRF
evaluation at a point not accepted by the queried Turing machines. In this
work, we achieve a weaker notion of security called selective security, which is
formalized by the following security game between a challenger and an adversary
Att.

Let PRF : K×X → Y be a constrained PRF with respect to a Turing machine
family M. The security game consists of three phases.

Setup Phase The adversary sends the challenge input x∗. The challenger chooses
a random key K ← K and a random bit b ← {0, 1}. If b = 0, the challenger
outputs PRF(K,x∗). Else, the challenger outputs a random element y ← Y.
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Query Phase In this phase, Att is allowed to ask for the following queries:

– Evaluation Query Att sends x ∈ X , and receives PRF(K,x).
– Key Query Att sends a Turing machine M ∈M such that M(x∗) = 0, and

receives PRF.constrain(K,M).

Guess Finally, A outputs a guess b′ of b.
A wins if b = b′ and the advantage of Att is defined to be AdvAtt(λ) =∣∣∣Pr[Att wins]− 1/2

∣∣∣.
Definition 13. The PRF PRF is a secure constrained PRF with respect to M
if for all PPT adversaries A AdvAtt(λ) is negligible in λ.

3.2 Puncturable Pseudorandom Functions

A special class of constrained PRFs, called puncturable PRFs, was introduced in
the work of [25]. In a puncturable PRF, the constrained key queries correspond
to points in the input domain, and the constrained key is one that allows PRF
evaluations at all points except the punctured point.

Formally, a PRF F : K × X → Y is a puncturable pseudorandom function
if there is an additional key space Kp and three polynomial time algorithms
F.setup, F.eval and F.puncture as follows:

– F.setup(1λ) is a randomized algorithm that takes the security parameter λ
as input and outputs a description of the key space K, the punctured key
space Kp and the PRF F .

– F.puncture(K,x) is a randomized algorithm that takes as input a PRF key
K ∈ K and x ∈ X , and outputs a key Kx ∈ Kp.

– F.eval(Kx, x
′) is a deterministic algorithm that takes as input a punctured

key Kx ∈ Kp and x′ ∈ X . Let K ∈ K, x ∈ X and Kx ← F.puncture(K,x).
For correctness, we need the following property:

F.eval(Kx, x
′) =

{
F(K,x′) if x 6= x′

⊥ otherwise

The selective security notion is analogous to the security notion of constrained
PRFs.

4 Construction

A high level description of our construction: Our constrained PRF construction
uses a puncturable PRF F as the base pseudorandom function. The setup algo-
rithm chooses a puncturable PRF key K together with the public parameters of
the accumulator and an accumulation of the empty tape (it also outputs addi-
tional parameters for the authenticity checks described in the next paragraph).
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To evaluate the constrained PRF on input x, one first accumulates the input x.
Let y denote this accumulation. The PRF evaluation is F (K, y).

Next, let us consider the constrained key for Turing machine M . The major
component of this key is an obfuscated program Prog. At a very high level, this
program evaluates the next-step circuit of M . Its main inputs are the time step
t, hash y of the input and the symbol, state, position of TM used at step t.
Using the state and symbol, it computes the next state and the symbol to be
written. If the state is accepting, it outputs F (K, y), else it outputs the next
state and symbol. However, this is clearly not enough, since the adversary could
pass illegal states and symbols as inputs. So the program first performs some
additional authenticity checks then evaluates the next state, symbol , and finally
outputs authentication required for the next step evaluation. These authenticity
checks are imposed via the accumulator, signature scheme and iterator. For
these checks, Prog takes additional inputs: accumulation of the current tape acc,
proof π that the input symbol is the correct symbol at the tape-head position,
auxiliary string aux to update the accumulation, iterated value and signature
σ. The iterated value and the signature together ensure that the correct state
and accumulated value is input at each step, while the accumulation ensures
that the adversary cannot send a wrong symbol. Finally, to perform the ‘tail-
cutting’, the program requires an additional input seed. The first and last step
of the program are for checking the validity of seed, and to output the new seed
if required. The constrained key also has another program Init-Sign which is used
to sign the accumulation of the input. In the end, if all the checks go through,
the final output will be the PRF evaluation using the constrained key.

Formal description: Let Acc = (Setup-Acc, Setup-Acc-Enf-Read, Setup-Acc-Enf-Write,
Prep-Read, Prep-Write, Verify-Read, Write-Store, Update) be a positional accumu-
lator, Itr = (Setup-Itr, Setup-Itr-Enf, Iterate) an iterator, S = (Setup-Spl, Sign-Spl,
Verify-Spl, Split, Sign-Spl-abo) a splittable signature scheme and PRG : {0, 1}λ →
{0, 1}2λ a length doubling injective pseudorandom generator.

Let F be a puncturable pseudorandom function whose domain and range
are chosen appropriately, depending on the accumulator, iterator and splittable
signature scheme. For simplicity, we assume that F takes inputs of bounded
length, instead of fixed length inputs. This assumption can be easily removed by
using different PRFs for different input lengths (in our case, we will require three
different fixed-input-length PRFs). Also, to avoid confusion, the puncturable
PRF keys (both master and punctured) are represented using lower case letters
(e.g. k, k{z}), while the constrained PRF keys are represented using upper case
letters (e.g. K, K{M}).

– PRF.setup(1λ): The setup algorithm takes the security parameter λ as input.
It first chooses a puncturable PRF keys k ← F.setup(1λ). Next, it runs the
accumulator setup to obtain (PPAcc, acc0, store0) ← Setup-Acc(1λ). The
master PRF key is K = (k,PPAcc, acc0, store0).
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– PRF Evaluation: To evaluate the PRF with keyK = (k,PPAcc, acc0, store0)
on input x = x1 . . . xn, first ‘hash’ the input using the accumulator. More
formally, let Hash-Acc(x) = accn, where for all j ≤ n, accj is defined as
follows:

• storej = Write-Store(PPAcc, storej−1, j − 1, xj)
• auxj = Prep-Write(PPAcc, storej−1, j − 1)
• accj = Update(PPAcc, accj−1, xj , j − 1, auxj)

The PRF evaluation is defined to be F (k,Hash-Acc(x)).

– PRF.constrain(K = (k,PPAcc, acc0, store0),M): The constrain algorithm
first chooses puncturable PRF keys k1, . . ., kλ and ksig,A and runs the it-
erator setup to obtain (PPItr, it0) ← Setup-Itr(1λ, T ). Next, it computes an
obfuscation of program Prog (defined in Figure 1) and Init-Sign (defined in
Figure 2). The constrained key K{M} = (PPAcc, acc0, store0, PPItr, it0,
iO(Prog), iO(Init-Sign)).

– PRF Evaluation using Constrained Key: Let K{M} = (PPAcc, acc0, store0,
PPItr, it0, P1, P2) be a constrained key corresponding to machine M , and
x = x1, . . . , xn the input. As in the evaluation using master PRF key, first
compute acc-inp = Hash-Acc(x).

To begin the evaluation, compute a signature on the initial values using the
program P2. Let σ0 = P2(acc-inp).

Suppose M runs for t∗ steps on input x. Run the program P1 iteratively for
t∗ steps. Set pos0 = 0, seed0 =‘ ’, and for i = 1 to t∗, compute

1. Let (symi−1, πi−1) = Prep-Read(PPAcc, storei−1, posi−1).
2. Compute auxi−1 ← Prep-Write(PPAcc, storei−1, posi−1).
3. Let out = P1(i, seedi−1, posi−1, symi−1, sti−1, acci−1, πi−1, auxi−1,

acc-inp, iti−1, σi−1).
If j = t∗, output out. Else, parse out as (symw,i, posi, sti, acci, iti, σi, seedi).

4. Compute storei = Write-Store(PPAcc, storei−1, posi−1, symw,i).

The output at step t∗ is the PRF evaluation using the constrained key.

4.1 Proof of Selective Security

Theorem 1. Assuming iO is a secure indistinguishability obfuscator, F is a se-
lectively secure puncturable pseudorandom function, Acc is a secure positional
accumulator, Itr is a secure positional iterator and S is a secure splittable signa-
ture scheme, the constrained PRF construction described in Section 4 is selec-
tively secure as defined in Definition 13.

Our security proof will consist of a sequence of computationally indistinguish-
able hybrid experiments. Recall that we are proving selective security, where the
adversary sends the challenge input x∗ before receiving any constrained keys.
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Program Prog

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉,
time bound T

Public parametersPPAcc,PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A

Inputs : Time t, String seed,position posin, symbol symin,

TM state stinAccumulator value accin, proof π,

auxiliary value aux, accumulation of input acc-inp

Iterator value itin, signature σin.

1. Let µ be an integer such that 2µ ≤ t < 2µ+1.
If PRG(seed) 6= PRG(F(kµ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rA = F(ksig,A, (acc-inp, t− 1)).
Compute (SKA, VKA, VKA,rej) = Setup-Spl(1λ; rA).

(b) Let min = (itin, stin, accin, posin).
If Verify-Spl(VKA,min, σin) = 0 output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej output ⊥.

Else if stout = qac output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux).
If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′A = F(ksig,A, (acc-inp, t)).
Compute (SK′A, VK′A, VK′A,rej) = Setup-Spl(1λ; r′A).

(b) Let mout = (itout, stout, accout, posout) and σout =
Sign-Spl(SK′α,mout).

7. If t+ 1 = 2µ+1, set seed′ = F(kµ+1, acc-inp).
Else, set seed′ = .

8. Output posout, symout, stout, accout, itout, σout, seed
′.

Fig. 1: Program Prog

Sequence of Hybrid Experiments We will first set up some notation for the hy-
brid experiments. Let q denote the number of constrained key queries made
by the adversary. Let x∗ denote the challenge input chosen by the adversary,
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Program Init-Sign

Constants: Puncturable PRF key ksig,A, Initial TM state q0, Iterator
value it0

Input: Accumulation of input acc-inp

1. Let F (ksig,A, (acc-inp, 0)) = rsig. Compute (SK,VK,VKrej) =
Setup-Spl(1λ; rsig).

2. Output σ = Sign-Spl(SK, (it0, q0, acc-inp, 0)).

Fig. 2: Program Init-Sign

(k,PPAcc, acc0, store0) the master key chosen by challenger,
acc-inp∗ = Hash-Acc(x∗) as defined in the construction. Let Mj denote the jth

constrained key query, and t∗j be the running time of machine Mj on input x∗,
and τj be the smallest power of two greater than tj . The program Progj denotes
the program Prog with machine Mj hardwired.

Hybrid0 This corresponds to the real experiment.

Next, we define q hybrid experiments Hybrid0,j for 1 ≤ j ≤ q.

Hybrid0,j : Let Prog-1 denote the program defined in Figure 3. In this experi-
ment, the challenger sends an obfuscation of the program Prog-1i (Prog-1 with
machine Mi hardwired) for the ith query if i ≤ j. For the remaining queries, the
challenger outputs an obfuscation of Progi.

Hybrid1 : This experiment is identical to hybrid Hybrid0,q. In this experiment,
the challenger sends an obfuscation of Prog-1i for all constrained key queries.

Hybrid2 : In this experiment, the challenger punctures the PRF key k at input
acc-inp∗ and uses the punctured key for all key queries. More formally, after re-
ceiving the challenge input x∗, it chooses (PPAcc, acc0, store0)← Setup-Acc(1λ)
and computes acc-inp∗ = Hash-Acc(x∗). It then chooses a PRF key k and
computes k{acc-inp∗} ← F.puncture(k, acc-inp∗). Next, it receives constrained
key queries for machines M1, . . . ,Mq. For each query, it chooses (PPItr, it0) ←
Setup-Itr(1λ) and PRF keys k1, . . ., kλ, ksig,A. It computes an obfuscation of
Prog-1{Mi , PPAcc, PPItr, k{acc-inp∗}, ksig,A}.

Hybrid0 ≡ Hybrid0,0 Hybrid0,1 . . . Hybrid0,q ≡ Hybrid1

Hybrid20
PPRF
≈

1 1 1

iO
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Program Prog-1

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time t∗ ∈ [T ]

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A ∈ K
Hardwired accumulated value acc-inp∗

Inputs: Time t, String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let µ be an integer such that 2µ ≤ t < 2µ+1.
If PRG(seed) 6= PRG(F(kµ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig = F (ksig,A, t − 1). Compute (SK,VK,VKrej) =
Setup-Spl(1λ; rsig).

(b) Let min = (itin, stin, accin, posin, acc-inp). If
Verify-Spl(VK,min, σin) = 0 output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej output ⊥.
(c) If stout = qac and acc-inp 6= acc-inp∗, output F(k, acc-inp).

Else If stout = qac output ⊥.

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If
wout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig = F (ksig,A, (acc-inp, t)). Compute
(SK′,VK′,VK′rej)← Setup-Spl(1λ; r′sig).

(b) Let mout = (itout, stout, accout, posout, acc-inp) and
σout = Sign-Spl(SK′,mout).

7. If t+ 1 = 2µ+1, set seed′ = F(kµ+1, acc-inp).
Else, set seed′ = .

8. Output posout, symout, stout, accout, itout, σout, seed
′.

Fig. 3: Program Prog-1

Analysis Let AdvAi denote the advantage of any PPT adversary A in the hy-
brid experiment Hybridi (similarly, let AdvA0,j denote the advantage of A in the
intermediate hybrid experiment Hybrid0,j).



24

Recall Hybrid0,0 corresponds to the experiment Hybrid0, and Hybrid0,q corre-
sponds to the experiment Hybrid1. Using the following lemma, we can show that
|AdvA0 − AdvA1 | ≤ negl(λ).

Lemma 1. Assuming F is a puncturable PRF, Acc is a secure positional ac-
cumulator, Itr is a secure positional iterator, S is a secure splittable signature
scheme and iO is a secure indistinguishability obfuscator, for any PPT adversary
A, |AdvA0,j − AdvA0,j+1| ≤ negl(λ).

The proof of this lemma involves multiple hybrids. We include a high level
outline of the proof in Appendix A, while the complete proof can be found in
the full version of our paper.

Lemma 2. Assuming iO is a secure indistinguishability obfuscator, for any
PPT adversary A, |AdvA1 − AdvA2 | ≤ negl(λ).

Proof. Let us assume for now that the adversary makes exactly one constrained
key query corresponding to machine M1. This can be naturally extended to the
general case via a hybrid argument.

Note that the only difference between the two hybrids is the PRF key hard-
wired in Prog-1. In one case, the challenger sends an obfuscation of P1 =
Prog-1{M1, PPAcc, PPItr, k, k1, . . ., kλ, ksig,A}, while in the other, it sends an
obfuscation of P2 = Prog-1{M1, PPAcc, PPItr, k{acc-inp∗}, k1, . . ., kλ, ksig,A}. To
prove that these two hybrids are computationally indistinguishable, it suffices to
show that the P1 and P2 are functionally identical. Note that program P1 com-
putes F(k, acc-inp) only if acc-inp 6= acc-inp∗. As a result, using the correctness
property of puncturable PRFs, the programs have identical functionality.

Lemma 3. Assuming F is a selectively secure puncturable PRF, for any PPT
adversary A, |AdvA2 | ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that |AdvA2 | = ε. We will
useA to construct a PPT algorithm B that breaks the security of the puncturable
PRF F .

To begin with, B receives the challenge input x∗ from A. It chooses
(PPAcc, acc0, store0)← Setup-Acc(1λ). It then computes acc-inp∗ =
Hash-Acc(x∗), and sends acc-inp∗ to the PRF challenger as the challenge input. It
receives a punctured key k′ and an element y (which is either the pseudorandom
evaluation at acc-inp∗ or a truly random string in the range space). B sends y to
A as the challenge response.

Next, it receives multiple constrained key requests. For the ith query corre-
sponding to machine Mi, B chooses PRF keys k1, . . ., kλ, ksig,A ← F.setup(1λ),
(PPItr, it0) ← Setup-Itr(1λ) and computes an obfuscation of Prog-1{Mi, PPAcc,
PPItr, k

′, k1, . . ., kλ, ksig,A}. It sends this obfuscated program to A as the con-
strained key.

Finally, after all constrained key queries, A sends its guess b′, which B for-
wards to the challenger. Note that if A wins the security game against PRF, then
B wins the security game against F. This concludes our proof.
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5 Attribute Based Encryption for Turing Machines

In this section, we describe an ABE scheme where policies are associated with
Turing machines, and as a result, attributes can be strings of unbounded length.
Our ABE scheme is very similar to the constrained PRF construction described
in Section 4.

Let PKE = (PKE.setup,PKE.enc,PKE.dec) be a public key encryption scheme
and F a puncturable PRF for Turing machines, with algorithms PRF.setup and
PRF.constrain. Consider the following ABE scheme:

– ABE.setup(1λ) The setup algorithm chooses a puncturable PRF key k ←
F.setup(1λ) and (PPAcc, acc0, store0) ← Setup-Acc(1λ, T ). Next, it com-
putes an obfuscation of Prog-PK{k} (defined in Figure 4). The public key
PKABE = (PPAcc, acc0, store0, iO(Prog-PK{k})), while the master secret
key is MSKABE = k.

Program Prog-PK

Constants: Puncturable PRF key k
Input: Accumulation of input acc-inp

1. Let F (k, acc-inp) = r. Compute (pk, sk) = PKE.setup(1λ; r).
2. Output pk.

Fig. 4: Program Prog-PK

– ABE.enc(m,x,PKABE) Let PKABE = (PPAcc, acc0, store0,Programpk) and
x = x1 . . . xn. As in Section 4, the encryption algorithm first ‘accumulates’
the attribute x using the accumulator public parameters. Let acc-inp = accn,
where for all j ≤ n, accj is defined as follows:

• storej = Write-Store(PPAcc, storej−1, j − 1, xj)
• auxj = Prep-Write(PPAcc, storej−1, j − 1)
• accj = Update(PPAcc, accj−1, xj , j − 1, auxj)

Next, the accumulated value is used to compute a PKE public key. Let pk =
Programpk(acc-inp). Finally, the algorithm outputs ct = PKE.enc(m,pk).

– ABE.keygen(MSKABE,M) Let MSKABE = k and M = a Turing machine. The
ABE key corresponding to M is exactly the constrained key corresponding
to M , as defined in Section 4. In particular, the key generation algorithm
chooses (PPItr, it0)← Setup-Itr(1λ, T ) and a puncturable PRF key ksig,A, and
computes an obfuscation of Prog{M,k, ksig,PPAcc,PPItr} (defined in Figure
1) and Init-Sign{ksig,A (defined in Figure 2). The secret key SK{M} = (PPItr,
it0, iO(Prog), iO(Init-Sign)).
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– ABE.dec(SK{M}, ct, x) Let SK{M} = (PPItr, it0, Program1, Program2), and
suppose M accepts x in t∗ steps. As in the constrained key PRF evalua-
tion, the decryption algorithm first obtains a signature using Program2 and
then runs Program1 for t∗ steps, until it outputs the pseudorandom string
r. Using this PRF output r, the decryption algorithm computes (pk, sk) =
PKE.setup(1λ; r) and then decrypts ct using sk. The algorithm outputs
PKE.dec(sk, ct).

5.1 Proof of Security

We will first define a sequence of hybrid experiments, and then show that any
two consecutive hybrid experiments are computationally indistinguishable.

Sequence of Hybrid Experiments

Hybrid H0 This corresponds to the selective security game. Let x∗ denote the
challenge input, and acc-inp∗ = Hash-Acc(x∗).

Hybrid H1 In this hybrid, the challenger sends an obfuscation of Prog-1 instead
of Prog. Prog-1, on inputs corresponding to acc-inp∗, never reaches the accepting
state qac. This is similar to Hybrid1 of the constrained PRF security proof in
Section 4.1.

Hybrid H2 In this hybrid, the challenger first punctures the PRF key k at
acc-inp∗. It computes k′ ← F.puncture(k, acc-inp∗) and (pk∗, sk∗) =
PKE.setup(1λ;F (k, acc-inp∗)). Next, it uses k′ and pk∗ to define Prog-PK′{k′,pk∗}
(see Figure 5). It sends an obfuscation of Prog-PK′ as the public key. Next, for
each of the secret key queries, it sends an obfuscation of Prog-1. However unlike
the previous hybrid, Prog-1 has k′ hardwired instead of k.

Program Prog-PK′

Constants: Punctured PRF key k′, Hardwired accumulation acc-inp∗

and public key pk∗.
Input: Accumulation of input acc-inp

1. If acc-inp = acc-inp∗, set pk = pk∗.
Else let F (k′, acc-inp) = r. Compute (pk, sk) = PKE.setup(1λ; r).

2. Output pk.

Fig. 5: Program Prog-PK′

Hybrid H3 In this hybrid, the challenger chooses (pk∗, sk∗) ← PKE.setup(1λ);
that is, the public key is computed using true randomness. It then hardwires
pk∗ in Prog-PK. The secret key queries are same as in previous hybrids.
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Analysis Let AdvAi denote the advantage of A in hybrid Hi.

Lemma 4. Assuming iO is a secure indistinguishability obfuscator, Acc is a
secure positional accumulator, Itr is a secure iterator, S is a secure splittable
signature scheme and F is a secure puncturable PRF, for any adversary A,
|AdvA0 − AdvA1 | ≤ negl(λ).

The proof of this lemma is identical to the proof of Lemma 1.

Lemma 5. Assuming iO is a secure indistinguishability obfuscator, for any
PPT adversary A, |AdvA1 − AdvA2 | ≤ negl(λ).

Proof. Similar to the proof of Lemma 2, k can be replaced with k′ in all the
secret key queries, since F (k, acc-inp∗) is never executed. As far as Prog-PK and
Prog-PK′ are concerned, (pk∗, sk∗) is set to be PKE.setup(1λ;F (k, acc-inp∗)), and
therefore, the programs are functionally identical.

Lemma 6. Assuming F is a selectively secure puncturable PRF, for any PPT
adversary A, |AdvA2 − AdvA3 | ≤ negl(λ).

Proof. The proof of this follows immediately from the security definition of punc-
turable PRFs. Suppose there exists an adversary that can distinguish between
H2 and H3 with advantage ε. Then, there exists a PPT algorithm B that can
break the selective security of F. B first receives x∗ from the adversary. It com-
putes acc-inp∗, sends acc-inp∗ to the PRF challenger and receives k′, y, where y
is either the PRF evaluation at acc-inp∗, or a truly random string. Using y, it
computes (pk∗, sk∗) = PKE.setup(1λ; y), and uses k′,pk∗ to define the public key
iO(Prog-PK′{k′,pk∗}). The secret key queries are same in both hybrids, and can
be answered using k′ only. As a result, B simulates either H2 or H3 perfectly.
This concludes our proof.

Lemma 7. Assuming PKE is a secure public key encryption scheme, for any
PPT adversary A, AdvA3 ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A such that AdvA3 = ε. Then there
exists a PPT adversary B that breaks IND-CPA security of PKE . B receives
a public key pk∗ from the challenger. It chooses PRF key k, punctures it at
acc-inp∗ and sends the public key iO{Prog-PK′}. Next, it responds to the secret
key queries, and finally, on receiving challenge messages m0,m1, it forwards them
to the challenger, and receives ct∗, which it forwards to the adversary. The post
challenge key query phase is also simulated perfectly, since it has all the required
components.
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A Proof Outline of Lemma 1

In this section, we provide an outline of the proof of Lemma 1. The detailed proof
is included in the full version of our paper. Let us assume the key query is for
TM M , and M does not accept the challenge input x∗, and let acc-inp∗ denote
the accumulation of x∗. Our goal in this hybrid is to ensure that the program will
never output F (K, acc-inp∗). This is done via a sequence of hybrids, where we
use the security properties of splittable signatures, accumulators and iterators
together with iO security.

Preprocessing hybrid: The first step is to modify the program Prog to allow
additional valid signatures without being detected. In particular, we have an ad-
ditional PRF key in the program, and this generates ‘bad’ signing/verification
keys. The program first checks if the input signature is accepted by the usual
‘good’ verification key. If not, it checks if it is accepted by the ‘bad’ verification
key. If the incoming signature is bad, then the output signature is also computed
using the bad signing key. Let us call this hybrid Hyb-1. This switch is indistin-
guishable because the Init-Sign program only outputs a good signature, and we
use the rejection-verification key indistinguishability property to show that this
change is indistinguishable.
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Intermediate hybrids Hyb-(1, i): Next, we gradually ensure that the program
does not output the PRF evaluation on acc-inp∗ in the first i steps. If i = T , then
we are done. Here, we need to define our intermediate hybrid carefully. In the
ith intermediate hybrid, the program does not output PRF evaluation if t ≤ i.
Moreover, if acc-inp = acc-inp∗, it only accepts good signatures for the first i− 1
steps. For the ith step, if acc-inp = acc-inp∗, it accepts only good signatures,
but outputs a bad signature if the input iterated value, accumulated value or
state are not the correct ones for time step i (here, the program has the correct
values for step i hardwired). We now need to go from step Hyb-(1, i) to step
Hyb-(1, i+ 1).

For this, we will first ensure that if acc-inp = acc-inp∗, the only signature
accepted at step i + 1 is the one corresponding to the correct (iterated value,
accumulated value, state) input tuple at step i + 1. Intuitively, this is true be-
cause the program, at step i, outputs a bad signature for all other tuples. To
enforce this, we use the properties of the splittable signature schemes. Next, we
make the accumulator read-enforcing. This would mean that both the state and
symbol input at step i+ 1 are the correct ones. As a result, the program cannot
output the PRF evaluation at step i+ 1 if acc-inp = acc-inp∗. So now, the state
and symbol output at step i+ 1 also have to be the correct ones. To ensure that
the accumulated value and iterated value output are also correct, we make the
accumulator write-enforcing and iterator enforcing respectively. Together, these
will ensure that the transition from Hyb-(1, i) and Hyb-(1, i + 1) are computa-
tionally indistinguishable.

Continuing this way, we can ensure, step by step, that the program does not
output the PRF evaluation on acc-inp∗. However, the approach described above
will require exponential hybrids. To make the number of intermediate hybrids
polynomial, we use the ‘tail-cutting’ technique described in Section 1. Note that
the program, after t∗ steps, only outputs ⊥. Suppose t∗ is a power of two. Using
a PRG trick, we can wipe out steps t∗ to 2t∗ in one shot. At every step where t
is a power of two, the program outputs a new PRG seed, and this PRG seed’s
validity is checked till t reaches the next power of two. Now, if no PRG seed is
output at step t∗, then using the PRG security, one can ensure that the PRG
seed validity check fails. As a result, for all t ∈ (t∗, 2t∗), the program outputs ⊥.
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