
Freestart collision for full SHA-1

Marc Stevens1o, Pierre Karpman2,3,4f, and Thomas Peyrin4b

1 Centrum Wiskunde & Informatica, The Netherlands
2 Inria, France

3 École polytechnique, France
4 Nanyang Technological University, Singapore

marc.stevens@cwi.nl, pierre.karpman@inria.fr, thomas.peyrin@ntu.edu.sg

Abstract. This article presents an explicit freestart colliding pair for
SHA-1, i.e. a collision for its internal compression function. This is the
first practical break of the full SHA-1, reaching all 80 out of 80 steps.
Only 10 days of computation on a 64-GPU cluster were necessary to
perform this attack, for a runtime cost equivalent to approximately 257.5

calls to the compression function of SHA-1 on GPU. This work builds
on a continuous series of cryptanalytic advancements on SHA-1 since
the theoretical collision attack breakthrough of 2005. In particular, we
reuse the recent work on 76-step SHA-1 of Karpman et al. from CRYPTO
2015 that introduced an efficient framework to implement (freestart)
collisions on GPUs; we extend it by incorporating more sophisticated
accelerating techniques such as boomerangs. We also rely on the results
of Stevens from EUROCRYPT 2013 to obtain optimal attack conditions;
using these techniques required further refinements for this work.
Freestart collisions do not directly imply a collision for the full hash
function. However, this work is an important milestone towards an ac-
tual SHA-1 collision and it further shows how GPUs can be used very
efficiently for this kind of attack. Based on the state-of-the-art colli-
sion attack on SHA-1 by Stevens from EUROCRYPT 2013, we are able
to present new projections on the computational and financial cost re-
quired for a SHA-1 collision computation. These projections are signifi-
cantly lower than what was previously anticipated by the industry, due
to the use of the more cost efficient GPUs compared to regular CPUs.
We therefore recommend the industry, in particular Internet browser
vendors and Certification Authorities, to retract SHA-1 quickly. We hope
the industry has learned from the events surrounding the cryptanalytic
breaks of MD5 and will retract SHA-1 before concrete attacks such as
signature forgeries appear in the near future.

Keywords: SHA-1, hash function, cryptanalysis, freestart collision, GPU
implementation.

o Supported by the Netherlands Organization for Scientific Research Veni Grant 2014
f Partially supported by the Direction Générale de l’Armement and by the Singapore

National Research Foundation Fellowship 2012 (NRF-NRFF2012-06)
b Supported by the Singapore National Research Foundation Fellowship 2012 (NRF-

NRFF2012-06)

1 Introduction

A cryptographic hash function H is a function that takes an arbitrar-
ily long message M as input and outputs a fixed-length hash value of
size n bits. It is a versatile primitive useful in many applications, such
as building digital signature schemes, message authentication codes or
password hashing functions. One key security feature expected from a
cryptographic hash function is collision resistance: it should not be fea-
sible for an adversary to find two distinct messages M , M̂ that hash to
the same value H(M) = H(M̂) faster than with a generic algorithm, i.e.
with significantly less than 2

n
2 calls to the hash function.

A widely used hash function construction is the Merkle-Damg̊ard
paradigm [22,4]: H is built by iterating a compression function h that
updates a fixed-size internal state (also called chaining value) with fixed-
size message blocks; the initial chaining value (IV) is a fixed constant of
the hash function. This construction is useful in particular for the sim-
ple security reduction it allows to make: if the compression function is
collision-resistant, then so is the corresponding hash function. This leads
to defining variants of collision attacks which allow the attacker to choose
the IV: a freestart collision is a pair of different message and IV (C,M),
(Ĉ, M̂) such that HC(M) = HĈ(M̂); semi-freestart collisions are similar

but impose C = Ĉ. It is noteworthy that the Merkle-Damg̊ard security
reduction assumes that any type of collision (freestart or semi-freestart)
must be intractable by the adversary. Thus, a collision attack on the
compression function should be taken very seriously as it invalidates the
security reduction coming from the operating mode of the hash function.

The most famous hash function family, basis for most hash function
industry standards, is undoubtedly the MD-SHA family, which includes no-
table functions such as MD4, MD5, SHA-1 and SHA-2. This family first orig-
inated with MD4 [33] and continued with MD5 [34] (due to serious security
weaknesses [7,9] found on MD4 soon after its publication). Even though
collision attacks on the compression function were quickly identified [8],
the industry widely deployed MD5 in applications where hash functions
were required. Yet, in 2005, a team of researchers led by Wang [44] com-
pletely broke the collision resistance of MD5, which allowed to efficiently
compute colliding messages for the full hash function. This groundbreak-
ing work inspired much further research on the topic; in a major devel-
opment, Stevens et al. [41] showed that a more powerful type of attack
(the so-called chosen-prefix collision attack) could be performed against
MD5. This eventually led to the forgery of a Rogue Certification Authority

2

that in principle completely undermined HTTPS security [42]. This past
history of cryptanalysis on MD5 is yet another argument for a very careful
treatment of collision cryptanalysis progress: the industry should move
away from weak cryptographic hash functions or hash functions built on
weak inner components (compression functions that are not collision re-
sistant) before the seemingly theoretic attacks prove to be a direct threat
to security (counter-cryptanalysis [39] could be used to mitigate some of
the risks during the migration).

While lessons should be learned from the case of MD5, it is interesting
to observe that the industry is again facing a similar challenge. SHA-1 [26],
designed by the NSA and a NIST standard, is one of the main hash
functions of today, and it is facing important attacks since 2005. Based
on previous successful cryptanalysis works [3,1,2] on SHA-0 [25] (SHA-1’s
predecessor, that only differs by a single rotation in the message expansion
function), a team led again by Wang et al. [43] showed in 2005 the very
first theoretical collision attack on SHA-1. Unlike the case of MD5, this
attack, while groundbreaking, remains mostly theoretical as its expected
cost was evaluated to be equivalent to 269 calls to the SHA-1 compression
function.

Therefore, as a proof of concept, many teams considered generating
real collisions for reduced versions of SHA-1: 64 steps [6] (with a cost of 235

SHA-1 calls), 70 steps [5] (cost 244 SHA-1), 73 steps [12] (cost 250.7 SHA-1)
and the latest advances for the hash function reached 75 steps [13] (cost
257.7 SHA-1) using extensive GPU computation power.

In 2013, building on these advances and a novel rigorous framework
for analyzing SHA-1, the current best collision attack on full SHA-1 was
presented by Stevens [40] with an estimated cost of 261 calls to the SHA-1

compression function. Nevertheless, a publicly known collision still re-
mains out of reach.

Very recently, collisions on the compression function of SHA-1 reduced
to 76 steps (out of 80) were obtained by using a start-from-the-middle
approach and a highly efficient GPU framework [17]. This required only
a reasonable amount of GPU computation power (less than a week on a
single card, equivalent to about 250.3 calls to SHA-1 on GPU, whereas the
runtime cost equivalent on regular CPUs is about 249.1 SHA-1).

Because of these worrisome cryptanalysis advances on SHA-1, one
is advised to use e.g. SHA-2 [27] or the new hash functions standard
SHA-3 [29] when secure hashing is needed. While NIST recommended
that SHA-1-based certificates should not be trusted beyond 2014 [28] (by
2010 for governmental use), the industry actors only recently started to

3

move away from SHA-1, about a decade after the first theoretical collision
attacks. For example, Microsoft, Google and Mozilla have all announced
that their respective browsers will stop accepting SHA-1 SSL certificates
by 2017 (and that SHA-1-based certificates should not be issued after
2015). These deadlines are motivated by a simple evaluation of the com-
putational and financial cost required to generate a collision for SHA-1:
in 2012, Bruce Schneier (using calculations by Jesse Walker based on a
261 attack cost [40], Amazon EC2 spotprices and Moore’s Law) estimated
the cost of running one SHA-1 collision attack to be around 700,000 US$
in 2015, down to about 173,000 US$ in 2018, which he deemed to be
within the resources of criminals [35]. We observe that while a majority
of industry actors already chose to migrate to more secure hashing algo-
rithms, surveys show that in September 2015 SHA-1 remained the hashing
primitive for about 28.2% of certificate signatures [37].

1.1 Our contributions

In this article, we give the first colliding pair for the full SHA-1 compres-
sion function (see Table 1-1), which amounts to a freestart collision for
the full hash function. This was obtained at a GPU runtime cost approx-
imately equivalent to 257.5 evaluations of SHA-1.1

The starting point for this attack is the start-from-the-middle ap-
proach and the GPU framework of CRYPTO 2015, which was used to
compute freestart collisions on the 76-step reduced SHA-1 [17]. We im-
prove this by incorporating the auxiliary paths (or boomerangs) speed-up
technique from Joux and Peyrin [15]. We also rely on the cryptanalytic
techniques by Stevens [40] to obtain optimal attack conditions, which
required further refinements for this work.

As was mentioned above, previous recommendations on retracting
SHA-1 were based on estimations of the resources needed to find SHA-1

collisions. These consist both in the time necessary to mount an attack, for
a given computational power, as well as the cost of building and main-
taining this capability, or of renting the equipment directly on a plat-
form such as Amazon EC2 [36]. In that respect, our freestart collision
attack can be run in about 9 to 10 days on average on a cluster with 64
GeForce GTX970 GPUs, or by renting GPU time on Amazon EC2 for
about 2K US$.2 Based on this experimental data and the 2013 state-of-

1 Which from previous experience is about a factor 2 higher than the runtime cost in
equivalent number of SHA-1 evaluations on regular CPUs.

2 This is based on the spot price for Amazon EC2 GPU Instance Type ‘g2.8xlarge’,
featuring 4 GPUs, which is about 0.50 US$ per hour as of October 2015. These four

4

Table 1-1. A freestart collision for SHA-1. A test program for this colliding pair is
available at https://sites.google.com/site/itstheshappening/tester.cpp

Message 1

IV1 50 6b 01 78 ff 6d 18 90 20 22 91 fd 3a de 38 71 b2 c6 65 ea

M1 9d 44 38 28 a5 ea 3d f0 86 ea a0 fa 77 83 a7 36

33 24 48 4d af 70 2a aa a3 da b6 79 d8 a6 9e 2d

54 38 20 ed a7 ff fb 52 d3 ff 49 3f c3 ff 55 1e

fb ff d9 7f 55 fe ee f2 08 5a f3 12 08 86 88 a9

Compr(IV1,M1) f0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 0f 4b

Message 2

IV2 50 6b 01 78 ff 6d 18 91 a0 22 91 fd 3a de 38 71 b2 c6 65 ea

M2 3f 44 38 38 81 ea 3d ec a0 ea a0 ee 51 83 a7 2c

33 24 48 5d ab 70 2a b6 6f da b6 6d d4 a6 9e 2f

94 38 20 fd 13 ff fb 4e ef ff 49 3b 7f ff 55 04

db ff d9 6f 71 fe ee ee e4 5a f3 06 04 86 88 ab

Compr(IV2,M2) f0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 0f 4b

the-art collision attack, we can project that a complete SHA-1 collision
would take between 49 and 78 days on a 512 GPU cluster, and renting
the equivalent GPU time on EC2 would cost between 75K US$ and 120K
US$ and would plausibly take at most a few months.

Although freestart collisions do not directly translate to collisions for
the hash function, they directly invalidate the security reduction of the
hash function to the one of the compression function. Hence, obtaining
a concrete example of such a collision further highlights the weaknesses
of SHA-1 and existing users should quickly stop using this hash function.
In particular, we believe that our work shows that the industry’s plan to
move away from SHA-1 in 2017 might not be soon enough.

Outline. In Section 2, we provide our analysis and recommendations
regarding the timeline of migration from SHA-1 to a secure hash function.
In Section 3 we give a short description of the SHA-1 hash function and
our notations. In Section 4, we explain the structure of our cryptanalysis
and the various techniques used from a high level point of view, and we

GPU cards are comparable to NVidia Tesla cards and actually contain 2 physical
GPU chips each. But due to their lower clock speed and slightly lower performance
we estimate that each card is comparable to about one GTX970s.

5

https://sites.google.com/site/itstheshappening/tester.cpp

later provide in Section 5 all the details of our attack for the interested
readers.

2 Recommendations for the swift removal of SHA-1

Our work allowed to generate a freestart collision for the full SHA-1, but
a collision for the entire hash algorithm is still unknown. There is no
known generic and efficient algorithm that can turn a freestart collision
into a plain collision for the hash function. However, the advances we have
made do allow us to precisely estimate and update the computational
and financial cost to generate such a collision with latest cryptanalysis
advances [40] (the computational cost required to generate such a collision
was actually a recurrent debate in the academic community since the first
theoretical attack from Wang et al. [43]).

Schneier’s projections [35] on the cost of SHA-1 collisions in 2012 (on
EC2: ≈700K US$ by 2015, ≈173K US$ by 2018 and ≈43K US$ by 2021)
were based on (an early announcement of) [40]. As mentioned earlier,
these projections have been used to establish the timeline of migrating
away from SHA-1-based signatures for secure Internet websites, resulting
in a migration by January 2017 —one year before Schneier estimated that
a SHA-1 collision would be within the resources of criminal syndicates.

However, as remarked in [17] and now further improved in this arti-
cle thanks to the use of boomerang speed-up techniques [15], GPUs are
much faster for this type of attacks (compared to CPUs) and we now
precisely estimate that a full SHA-1 collision should not cost more than
between 75K and 120K US$ by renting Amazon EC2 cloud over a few
months at the time of writing, in early autumn 2015. Our new GPU-
based projections are now more accurate and they are significantly be-
low Schneier’s estimations. More worrying, they are theoretically already
within Schneier’s estimated resources of criminal syndicates as of today,
almost two years earlier than previously expected, and one year before
SHA-1 being marked as unsafe in modern Internet browsers. Therefore,
we believe that migration from SHA-1 to the secure SHA-2 or SHA-3 hash
algorithms should be done sooner than previously planned.

Note that it has previously been shown that a more advanced so-
called chosen-prefix collision attack on MD5 allowed the creation of a rogue
Certification Authority undermining the security of all secure websites
[42]. Collisions on SHA-1 can result in e.g. signature forgeries, but do not
directly undermine the security of the Internet at large. More advanced
so-called chosen-prefix collisions [42] are significantly more threatening,

6

but currently much costlier to mount. Yet, given the lessons learned with
the MD5 full collision break, it is not advisable to wait until these become
practically possible.

At the time of the submission of this article in October 2015, we
learned that in an ironic turn of events the CA/Browser Forum3 was
planning to hold a ballot to decide whether to extend issuance of SHA-1
certificates through the year 2016 [10]. With our new cost projections
in mind, we strongly recommended against this extension and the ballot
was subsequently withdrawn [11]. Further action is also being considered
by major browser providers such as Microsoft [23] and Mozilla [24] in
speeding up the removal of SHA-1 certificates.

3 Preliminaries

3.1 Description of SHA-1

We start this section with a brief description of the SHA-1 hash function.
We refer to the NIST specification document [26] for a more thorough
presentation. SHA-1 is a hash function from the MD-SHA family which
produces digests of 160 bits. It is based on the popular Merkle-Damg̊ard
paradigm [4,22], where the (padded) message input to the function is
divided into k blocks of a fixed size (512 bits in the case of SHA-1). Each
block is fed to a compression function h which then updates a 160-bit
chaining value cvi using the message block mi+1, i.e. cvi+1 = h(cvi,mi+1).
The initial value cv0 = IV is a predefined constant and cvk is the output
of the hash function.

Similarly to other members of the MD-SHA family, the compression
function h is built around an ad hoc block cipher E used in a Davies-Meyer
construction: cvi+1 = E(mi+1, cvi) + cvi, where E(x, y) is the encryption
of the plaintext y with the key x and “+” denotes word-wise addition
in Z/232 Z. The block cipher itself is an 80-step (4 rounds of 20 steps
each) five-branch generalized Feistel network using an Add-Rotate-Xor
“ARX” step function. The internal state consists in five 32-bit registers
(Ai, Bi, Ci, Di, Ei); at each step, a 32-bit extended message word Wi is

3 The CA/Browser Forum is the main association of industries regulating the use of
digital certificates on the Internet.

7

used to update the five registers:
Ai+1 = (Ai ≪ 5) + fi(Bi, Ci, Di) + Ei + Ki + Wi

Bi+1 = Ai

Ci+1 = Bi ≫ 2
Di+1 = Ci

Ei+1 = Di

where Ki are predetermined constants and fi are Boolean functions (see
Table 3-1 for their specifications). As all updated registers but Ai+1 are
just rotated copies of another, it is possible to equivalently express the
step function in a recursive way using only the register A:

Ai+1 = (Ai ≪ 5)+fi(Ai−1, Ai−2 ≫ 2, Ai−3 ≫ 2)+(Ai−4 ≫ 2)+Ki+Wi.

Table 3-1. Boolean functions and constants of SHA-1

round step i fi(B,C,D) Ki

1 0 ≤ i < 20 fIF = (B ∧ C)⊕ (B ∧D) 0x5a827999

2 20 ≤ i < 40 fXOR = B ⊕ C ⊕D 0x6ed6eba1

3 40 ≤ i < 60 fMAJ = (B ∧ C)⊕ (B ∧D)⊕ (C ∧D) 0x8fabbcdc

4 60 ≤ i < 80 fXOR = B ⊕ C ⊕D 0xca62c1d6

Finally, the extended message words Wi are computed from the 512-bit
message block, which is split into sixteen 32-bit words M0, . . . ,M15. These
sixteen words are then expanded linearly into the eighty 32-bit words Wi

as follows:

Wi =

{
Mi, for 0 ≤ i ≤ 15

(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1, for 16 ≤ i ≤ 79

The step function and the message expansion can both easily be inverted.

3.2 Differential collision attacks on SHA-1

We now introduce the main notions used in a collision attack on SHA-1

(and more generally on members of the MD-SHA family).

8

Background. In a differential collision attack on a (Merkle-Damg̊ard)
hash function, the goal of the attacker is to find a high-probability dif-
ferential path (the differences being on the message, and also on the IV
in the case of a freestart attack) which entails a zero difference on the
final state of the function (i.e. the hash value). A pair of messages (and
optionally IVs) following such a path indeed leads to a collision.

In the case of SHA-1 (and more generally ARX primitives), the way of
expressing differences between messages is less obvious than for e.g. bit
or byte-oriented primitives. It is indeed natural to consider both “XOR
differences” (over Fn

2) and “modular differences” (over Z/2nZ) as both
operations are used in the function. In practice, the literature on SHA-1

uses several hybrid representations of differences based on signed XOR
differences. In its most basic form, such a difference is similar to an XOR
difference with the additional information of the value of the differing bits
for each message (and also of some bits equal in the two messages), which
is a “sign” for the difference. This is an important information when one
works with modular addition as the sign impacts the (absence of) prop-
agation of carries in the addition of two differences. Let us for instance
consider the two pairs of words a = 11011000001b, â = 11011000000b
and b = 10100111000b, b̂ = 10100111001b; the XOR differences (a ⊕ â)
and (b⊕ b̂) are both 00000000001b (which may be writtenx),
meaning that (a⊕ b) = (â⊕ b̂). On the other hand, the signed XOR dif-
ference between a and â may be written- to convey the fact
that they are different on their lowest bit and that the value of this bit
is 1 for a (and thence 0 for â); similarly, the signed difference between
b and b̂ may be written+, which is a difference in the same
position but of a different sign. From these differences, we can deduce
that (a + b) = (â + b̂) because differences of different signs cancel; if we
were to swap the values b and b̂, both differences on a and b would have
the same sign and indeed we would have (a+ b) 6= (â+ b̂) (though (a⊕ b)
and (â ⊕ b̂) would still be equal). It is possible to extend signed differ-
ences to account for more generic combinations of possible values for each
message bit; this was for instance done by De Cannière and Rechberger
to aid in the automatic search of differential paths [6]. Another possible
extension is to consider relations between various bits of the (possibly ro-
tated) state words; this allows to efficiently keep track of the propagation
of differences through the step function. Such differences are for instance
used by Stevens [40], and also in this work (see Figure 5-2).

The structure of differential attacks on SHA-1 evolved to become quite
specific. At a high level, they consist of: 1. a non-linear differential path

9

of low probability; 2. a linear differential path of high probability; 3.
accelerating techniques.

The terms non-linear and linear refer to how the paths were obtained:
the latter is derived from a linear (over F32

2) modelling of the step func-
tion. This kind of path is used in the probabilistic phase of the attack,
where one simply tries many message pairs in order to find one that in-
deed “behaves” linearly. Computing the exact probability of this event is
however not easy, although it is not too hard to find reasonable estimates.
This probability is the main factor determining the final complexity of
the attack.

The role of a non-linear path is to bootstrap the attack by bridging a
state with no differences (the IV) with the start of the linear differential
path4. In a nutshell, this is necessary because these paths do not typically
lie in the kernel of the linearized SHA-1; hence it is impossible to obtain a
collision between two messages following a fully linear path. This remains
true in the present case of a freestart attack, even if the non-linear path
now connects the start of the linear path with an IV containing some
differences. Unlike the linear path, the non-linear one has a very low
probability of being followed by random messages. However, the attacker
can fully choose the messages to guarantee that they do follow the path,
as he is free to set the 512 bits of the message. Hence finding conforming
message pairs for this path effectively costs nothing in the attack.

Finally, the role of accelerating techniques is to find efficient ways of
using the freedom degrees remaining after a pair following the non-linear
path has been found, in order to delay the effective moment where the
probabilistic phase of the attack starts.

We conclude this section with a short discussion of how to construct
these three main parts of a (freestart) collision attack on SHA-1.

Linear path; local collisions. The linear differential paths used in col-
lision attacks are built around the concept of local collision, introduced
by Chabaud and Joux in 1998 to attack SHA-0. The idea underlying a
local collision is first to introduce a difference in one of the intermediate

4 For the sake of simplicity, we ignore here the fact that a collision attack on SHA-1

usually uses two blocks, with the second one having differences in its chaining value.
The general picture is actually the following: once a pair of messages following the
linear path P+ is found, the first block ends with a signed difference +∆; the sign
of the linear path is then switched for the second block to become P− and following
this path results in a difference −∆; the feedforward then cancels both differences
and yields a collision.

10

state words of the function, say Ai, through a difference in the message
word Wi−1. For an internal state made of j words (j = 5 in the case of
SHA-0 or SHA-1), the attacker then uses subsequent differences in (possi-
bly only some of) the message words Wi...i+(j−1) in order to cancel any
contribution of the difference in Ai in the computation of a new internal
state Ai+1...i+j , which will therefore have no differences. The positions of
these “correcting” differences are dictated by the step function, and there
may be different options depending on the used Boolean function, though
originally (and in most subsequent cases) these were chosen according to
a linearized model (over F32

2) of the step functions.

Local collisions are a fit basis to generate differential paths of good
probability. The main obstacle to do this is that the attacker does not
control all of the message words, as some are generated by the message
expansion. Chabaud and Joux showed how this could be solved by chain-
ing local collisions along a disturbance vector (DV) in such a way that the
final state of the function contains no difference and that the pattern of
the local collisions is compatible with the message expansion. The distur-
bance vector just consists of a sparse message (of sixteen 32-bit words)
that has been expanded with the linear message expansion of SHA-1. Ev-
ery “one” bit of this expanded message then marks the start of a local
collision (and expanding all the local collisions thus produces a complete
linear path).

Each local collision in the probabilistic phase of the attack (roughly
corresponding to the last three rounds) increases the overall complexity of
the attack, hence one should use disturbance vectors that are sparse over
these rounds. Initially, the evaluation of the probability of disturbance
vector candidates was done mostly heuristically, using e.g. the Hamming
weight of the vector ([1,31,32,20,16]), the sum of bit conditions for each
local collision independently (not allowing carries) ([45,46]), and the prod-
uct of independent local collision probabilities (allowing carries) ([21,19]).
Manuel [18,19] noticed that all disturbance vectors used in the literature
belong to two classes I(K, b) and II(K, b). Within each class all distur-
bance vectors are forward or backward shifts in the step index (controlled
by K) and/or bitwise cyclic rotations (controlled by b) of the same ex-
panded message. We will use this notation through the remainder of this
article.

Manuel also showed that success probabilities of local collisions are
not always independent, causing biases in the above mentioned heuristic
cost functions. This was later resolved by Stevens using a technique called
joint local-collision analysis (JLCA)[40,38], which allows to analyze entire

11

sets of differential paths over the last three rounds that conform to the
(linear path entailed by the) disturbance vector. This is essentially an
exhaustive analysis taking into account all local collisions together, using
which one can determine the highest possible success probability. This
analysis also produces a minimal set of sufficient conditions which, when
all fulfilled, ensure that a pair of messages follows the linear path; the
conditions are minimal in the sense that meeting all of them happens with
this highest probability that was computed by the analysis. Although a
direct approach is clearly unfeasible (as it would require dealing with an
exponentially growing amount of possible differential paths), JLCA can
be done practically by exploiting the large amount of redundancy between
all the differential paths to a very large extent.

Non-linear differential path. The construction of non-linear differen-
tial paths was initially done by hand by Wang, Yin and Yu in their first
attack on the full SHA-1 [43]. Efficient algorithmic construction of such
differential paths was later proposed in 2006 by De Cannière and Rech-
berger, who introduced a guess-and-determine approach [6]. A different
approach based on a meet-in-the-middle method was also proposed by
Stevens et al. [38,14].

Accelerating techniques. For a given differential path, one can de-
rive explicit conditions on state and message bits which are sufficient to
ensure that a pair of messages follows the path. This lets the collision
search to be entirely defined over a single compression function computa-
tion. Furthermore, they also allow detection of “bad” message pairs a few
steps earlier compared to computing the state and verifying differences,
allowing to abort computations earlier in this case.

An important contribution of Wang, Yin and Yu was the introduction
of powerful message modification techniques, which followed an earlier
work of Biham and Chen who introduced neutral bits to produce better
attacks on SHA-0 [1]. The goal of both techniques is for the attacker to
make a better use of the available freedom in the message words in order
to decrease the complexity of the attack. Message modifications try to
correct bad message pairs that only slightly deviate from the differential
path, and neutral bits try to generate several good message pairs out of a
single one (by changing the value of a bit which does not invalidate nearby
sufficient conditions with good probability). In essence, both techniques
allow to amortize part of the computations, which effectively delays the
beginning of the purely probabilistic phase of the attack.

12

Finally, Joux and Peyrin showed how to construct powerful neutral
bits and message modifications by using auxiliary differential paths akin
to boomerangs [15], which allow more efficient attacks. In a nutshell, a
boomerang (in collision attacks) is a small set of bits that together form
a local collision. Hence flipping these bits together ensures that the differ-
ence introduced by the first bit of the local collision does not propagate
to the rest of the state; if the initial difference does not invalidate a suf-
ficient condition, this local collision is indeed a neutral bit. Yet, because
the boomerang uses a single (or sometimes a few) local collision, more
differences will actually be introduced when it goes through the message
expansion. The essence of boomerangs is thus to properly choose where
to locate the local collisions so that no differences are introduced for the
most steps possible.

4 Attack overview

In this section we provide an overview of how our attack was constructed.
At a high level, it consists of the following steps:

1. Disturbance vector selection: We need to select the best disturbance
vector for our attack. This choice is based on results provided by joint
local collision analysis (JLCA), taking into account constraints on the
number and position of sufficient conditions on the IV implied by the
disturbance vector. We explain this in Section 4.1.

2. Finding optimal attack conditions: Having selected a disturbance vec-
tor, we need to determine a set of attack conditions over all steps
consisting of sufficient conditions for state bits up to some step, aug-
mented by message bit relations. We use non-linear differential path
construction methods to determine conditions within the first round.
Using JLCA we derive an optimal complete set of attack conditions
that given the first round path leads to the highest possible success
probability over all steps, yet minimizes the number of conditions
within this model. We detail this in Section 4.2.

3. Finding and analyzing boomerangs and neutral bits: To speed up the
freestart collision attack, we exploit advanced message modification
techniques such as (multiple) neutral bits and boomerangs. In order
to find suitable candidates, we sample partial solutions fulfilling the
above attack conditions up to an early step. The samples are used to
test many potential boomerangs and neutral bits, and only ones of
good quality and that do not introduce contradictions will be used. In

13

particular, no boomerang or neutral bit may invalidate the attack con-
ditions of the so-called base solution (see below, includes all message
bit relations) with non-negligible probability. We also use sampling
to estimate the probability of interaction between boomerang and
neutral bits with particular sufficient conditions, in the forward and
backward direction. Although we do not allow significant interaction
in the backward direction, we use these probabilities to determine at
which step the boomerang or neutral bit are used. This is explained
in Section 4.3.

4. Base solution generation: Before we can apply neutral bits and boom-
erangs, we first need to compute a partial solution over 16 consecutive
steps. Only this partial solution can then be extended to cover more
steps by using neutral bits and boomerangs. We call such a solution
a base solution; it consists of state words A−3, . . . , A17 and message
words W1, . . . ,W16. The cost for generating base solutions is relatively
low compared to the overall attack cost, therefore it is not heavily
optimized and the search is run on regular CPUs. This is further
explained in Section 4.4.

5. Application of neutral bits and boomerangs on GPU : We extend each
base solution into solutions over a larger number of steps by succes-
sively applying neutral bits and boomerangs and verifying sufficient
conditions. Once all neutral bits and boomerangs have been exploited,
the remainder of the steps have to be fulfilled probabilistically.
This is computationally the most intensive part, and it is therefore
implemented on GPUs that are significantly more cost-efficient than
CPUs, using the highly efficient framework introduced by Karpman,
Peyrin and Stevens [17]. More details are provided in Section 4.5.

All these steps strongly build upon the continuous series of papers
that have advanced the state-of-the-art in SHA-1 cryptanalysis, yet there
are still small adaptions and improvements used for this work. We now
describe all these points in more details.

4.1 Disturbance vector selection

It is possible to compute exactly the highest success probability over the
linear part by using joint-local collision analysis [40]. By further using
the improvements described in [17], one can restrict carries for the steps
where sufficient conditions are used and obtain the sufficient conditions
for those steps immediately.

The number of sufficient conditions at the beginning of round 2 and
the associated highest success probability for the remaining steps provide

14

Table 4-1. Disturbance vector analysis. For each DV, under c[24,80), we list the negative
log2 of the success probability over steps [24, 80) assuming that all sufficient conditions
up to A24 have been satisfied. The columns c23 and c22 list the number of conditions
on A24 (in step 23) and A23 (in step 22), respectively. The final column represents an
estimated runtime in days on a cluster consisting of 64 GTX970s based on c[24,80).

DV Cost c[24,80) Cost c23 Cost c22 Days on 64 GPUs

I(48,0) 61.6 1 3 39.1

I(49,0) 60.5 3 2 18.3

I(50,0) 61.7 2 1 41.8

I(51,0) 62.1 1 2 55.7

I(48,2) 64.4 1 2 281.9

I(49,2) 62.8 2 3 90.4

II(46,0) 64.8 1 0 369.5

II(50,0) 59.6 1 2 9.9

II(51,0) 57.5 3 3 2.2

II(52,0) 58.3 3 3 4.1

II(53,0) 59.9 3 2 11.8

II(54,0) 61.3 2 1 31.4

II(55,0) 60.7 1 3 21.0

II(56,0) 58.9 3 2 6.3

II(57,0) 59.3 2 3 7.9

II(58,0) 59.7 3 2 10.5

II(59,0) 61.0 3 2 26.2

II(49,2) 61.0 2 3 26.1

II(50,2) 59.4 3 2 8.7

II(51,2) 59.4 2 3 8.5

15

insight into the attack complexity under different circumstances. In Ta-
ble 4-1 we give our analysis results for various DVs, listing the negative
log2 of the success probability over steps [24, 80) assuming that all suffi-
cient conditions up to A24 have been satisfied; we also include the number
of conditions on A24 and A23. The final column represents an estimated
runtime in days on a cluster consisting of 64 GTX970s based on c[24,80),
by multiplying the runtime of the 76-step freestart GPU attack [17] with
the difference between the costs c[24,80) for the 76-step attack and the
DVs in the table.

Considering Table 4-1, the obvious choice of DV to mount a full col-
lision attack on SHA-1 would be II(51,0). However in the present case
of a freestart attack additional constraints need to be taken into ac-
count. In particular the, choice of the DV determines the possible dif-
ferences in the IV, as these have to cancel the differences of the final state
(A80, B80, C80, D80, E80). This impacts the estimated runtime as follows: if
there are sufficient conditions present on A0 then the estimated runtime in
the last column should be multiplied by 2c23 . Indeed, the 76-step freestart
attack did not have any sufficient conditions on A0 and could thus ignore
step 0, leading to an offset of one in the probabilistic phase. Moreover, if
the IV differences are denser or ill-located (compared to the 76-step at-
tack), then more neutral bits and boomerangs are likely to interact badly
with the sufficient conditions on the IV, when propagated backwards. If
only few neutral bits and boomerangs can be used for a given DV, the
cost of the attack would rise significantly. The number of conditions c23
and c22 for each DV allow to estimate how much more expensive a vector
will be in the case where the probabilistic phase effectively starts sooner
than in step A25 as for the 76-step attack.

Taking the freestart setting into account, and with a preliminary anal-
ysis of available neutral bits and boomerangs, the best option eventually
seemed to be II(59,0). This DV is actually a downward shift by four of
II(55,0), which was used in the 76-step attack. Consequently, this choice
leads to the same IV sufficient conditions as in the latter.

4.2 Finding optimal attack conditions

Using joint local collision analysis, we could obtain sufficient conditions
for the beginning of the second round and IV differences that are optimal
(i.e., with the highest probability of cancelling differences in the final
state). What remains to do is to construct a non-linear differential path for
the first round. For this, we used the meet-in-the-middle method using the
public HashClash implementation [14]. Although we tried both non-linear

16

differential path construction methods, i.e. guess-and-determine, using
our own implementation, and the meet-in-the-middle method, we have
found that the meet-in-the-middle approach generally resulted in fewer
conditions. Furthermore, the control on the position of these conditions
was greater with the meet-in-the-middle approach.

This differential path for the first round was then used as input for
another run of joint local collision analysis. In this case the run was over
all 80 steps, also replacing the differences assumed from the disturbance
vector with the differences in the state words coming from the non-linear
path of the first round; switching the sign of a difference was also al-
lowed when it resulted in a sparser overall difference. In this manner joint
local collision analysis is able to provide a complete set of attack condi-
tions (i.e., sufficient conditions for the state words and linear relations on
message bits) that is optimized for the highest success probability over
the last three rounds, all the while minimizing the amount of conditions
needed.

In fact, JLCA outputs many complete sets that only vary slightly in
the signing of the differences. For our selected disturbance vector II(59,0)
it turned out that this direct approach is far too costly and far too
memory-consuming, as the amount of complete sets grows exponentially
with the number of steps for which we desired sufficient conditions sets.
We were able to improve this by introducing attack condition classes,
where two sets of sufficient conditions belong to the same class if their
sufficient conditions over the last five state words are identical. By ex-
pressing the attack condition classes over steps [0, i] as extensions of at-
tack conditions classes over steps [0, i − 1], we only have to work with a
very small number of class representatives at each step, making it very
practical.

Note that we do not exploit this to obtain additional freedom for the
attack yet, However, it allows us to automatically circumvent random
unpredictable contradictions between the attack conditions in the densest
part, by randomly sampling complete sets until a usable one is found.
We previously used the guess-and-determine approach to resolve such
contradictions by changing signs, however this still required some manual
interaction.

The resulting sufficient conditions on the state are given in the form
of the differential path in Figure 5-1 (using the symbols of Figure 5-2)
and the message bit relations are given in Figure 5-3 through Figure 5-5.

17

4.3 Finding and analyzing neutral bits and boomerangs

Generating and analyzing the boomerangs and neutral bits used in the
attack was done entirely automatically as described below. This process
depends on a parameter called the main block offset (specific to a freestart
attack) that determines the offset of the message freedom window used
during the attack. We have selected a main block offset of 5 as this led to
the best distribution of usable neutral bits and boomerangs. This means
that all the neutral bits and boomerangs directly lead to changes in the
state from steps 5 up to 20, and that these changes propagate to steps 4
down to 0 backwards and steps 21 up to 79 forwards.

Because the dense area of the attack conditions may implicitly force
certain other bits to specific values (resulting in hidden conditions), we use
more than 4000 sampled solutions for the given attack conditions (over
steps 1 up to 16) in the analysis. The 16 steps fully determine the message
block, and also verify the sufficient conditions in the IV and in the dense
non-linear differential path of the first round. It should be noted that for
this step it is important to generate every sample independently. Indeed
using e.g. message modification techniques to generate many samples from
a single one would result in a biased distribution where many samples
would only differ in the last few steps.

Boomerang analysis. We analyze potential boomerangs that flip a
single state bit together with 3 or more message bits. Each boomerang
should be orthogonal to the attack conditions, i.e., the state bit should
be free of sufficient conditions, while flipping the message bits should not
break any of the message bit relations (either directly or through the
message propagation). Let t ∈ [6, 16], b ∈ [0, 31] be such that the state bit
At[b] has no sufficient condition.

First, we determine the best usable boomerang on At[b] as follows.
For every sampled solution, we flip that state bit and compute the signed
bit differences between the resulting and the unaltered message words
W5, . . . ,W20. We verify that the boomerang is usable by checking that
flipping its constituting bits breaks none of the message bit relations.
We normalize these signed bit differences by negating them all when the
state bit is flipped from 1 to 0. In this manner we obtain a set of usable
boomerangs for At[b]. We determine the auxiliary conditions on message
bits and state bits and only keep the best usable boomerang that has the
fewest auxiliary conditions.

Secondly, we analyze the behaviour of the boomerang over the back-
wards steps. For every sampled solution, we simulate the application of

18

the boomerang by flipping the bits of the boomerang. We then recom-
pute steps 4 to 0 backwards and verify if any sufficient condition on these
steps is broken. Any boomerang that breaks any sufficient conditions on
the early steps with probability higher than 0.1 is dismissed.

Thirdly, we analyze the behaviour of the boomerang over the forward
steps. For every sampled solution, we simulate the application of the
boomerang by flipping its constituting bits. We then recompute steps
21 up to 79 forwards and keep track of any sufficient condition for the
differential path that becomes violated. A boomerang will be used at step
i in our attack if it does not break any sufficient condition up to step i−1
with probability more than 0.1.

Neutral bits analysis. The neutral bit analysis uses the same overall
approach as the boomerangs, with the following changes. After boomerangs
are determined, their conditions are added to the previous attack condi-
tions and used to generate a new set of solution samples. Usable neutral
bits consist of a set of one or more message bits that are flipped simul-
taneously. However, unlike for boomerangs, the reason for flipping more
than one bit is to preserve message bit relations, and not to control the
propagation of a state difference. Let t ∈ [5, 20], b ∈ [0, 31] be a candidate
neutral bit; flipping Wt[b] may possibly break certain message bit rela-
tions. We express each message bit relation over W5, . . . ,W20 using linear
algebra, and use Gaussian elimination to ensure that each of them has a
unique last message bit Wi[j] (i.e. where i ∗ 32 + j is maximal). For each
relation involving Wt[b], let Wi[j] be its last message bit. If (i, j) equals
(t, b) then this neutral bit is not usable (indeed, it would mean that its
value is fully determined by earlier message bits). Otherwise we add bit
Wi[j] to be flipped together with Wt[b] as part of the neutral bit. Similarly
to boomerangs, we dismiss any neutral bit that breaks sufficient condi-
tions backwards with probability higher than 0.1. The step i in which the
neutral bit is used is determined in the same way as for the boomerangs.

The boomerangs we have selected are given in Figure 5-7 and the
neutral bits are listed in Figure 5-6. In the case of the latter, only the
first neutral bit is given and not the potential corrections for the message
bit relations.

4.4 Base solution generation on CPU

We are now equipped with a set of attack conditions, including some that
were added by the selected boomerangs and neutral bits. However, before

19

these can be applied, we first need to compute partial solutions over 16
consecutive steps. Since the selected neutral bits and boomerangs cannot
be used to correct the sufficient conditions on the IV, these have to be
pre-satisfied as well. Therefore, we compute what we call base solutions
over steps 1, . . . , 16 that fulfill all state conditions on A−4, . . . , A17 and
all message bit relations. A base solution itself consists of state words
A−3, . . . , A17 and message words W1, . . . ,W16 (although the implementa-
tion of the GPU step implies that the message words are translated to
the equivalent message words W5, . . . ,W20 with the main block offset of
5).

The C++ code generating base solutions is directly compiled from the
attack and auxiliary conditions. In this manner, all intermediate steps
and condition tables can be hard-coded, and we can apply some static lo-
cal optimizations eliminating unnecessary computations where possible.
However, we do not exploit more advanced message modification tech-
niques within these first 16 steps yet.

Generating the base solutions only represents a small part of the cost
of the overall attack, and it is run entirely on CPU. Although theoretically
we need only a few thousand base solutions to be successful given the total
success probability over the remaining steps and the remaining freedom
degrees yet to be used, in practice we need to generate a small factor
more to ensure that all GPUs have enough work.

4.5 Applying neutral bits and boomerangs on GPU

We now describe the final phase of the attack, which is also the most com-
putationally intensive; as such, it was entirely implemented on GPUs. In
particular, we used 65 recent Nvidia GTX970 [30] GPUs that feature 1664
small cores operating at a clock speed of about 1.2GHz; each card cost
about 350 US$ in 2015. 5 In [17], the authors evaluate a single GTX970
to be worth 322 CPU cores6 for raw SHA-1 operations, and about 140
cores for their SHA-1 attack.

We make use of the same efficient framework for Nvidia GPUs [17].
This makes use of the CUDA toolkit that provides programming exten-
sions to C and C++ for convenient programming. For each step of SHA-1
wherein we use neutral bits and boomerangs, there will be a separate
GPU-specific C++ function. Each function will load solutions up to that
step from a global cyclic buffer; extend those solutions using the freedom

5 With the right motherboard one can place up to 4 such GPUs on a single machine.
6 Intel Haswell Core-i5 3.2GHz CPU.

20

for that step by triggering the available neutral bits or boomerangs; verify
the sufficient conditions; and finally save the resulting partial solution ex-
tended by one step in the next global cyclic buffer. The smallest unit that
can act independently on Nvidia GPUs is the warp, which consists of 32
threads that can operate on different data, but should execute the same in-
struction for best performance. When threads within a warp diverge onto
different execution paths, these paths are executed serially, not in paral-
lel. In the framework, the threads within each warp will agree on which
function (thus which step) to execute together, resulting in reads, com-
putations, and conditional writes that are coherent between all threads
of the warp. We refer the reader to the original paper introducing this
framework for a more detailed description [17].

The exact details of which neutral bits and which boomerangs are
used for each step are given in Section 5.

In the probabilistic phase, after all freedom degrees have been ex-
hausted, we can verify internal state collisions that should happen after
steps 39 and 59 (for a message pair that follows the differential path), as
these are steps with no active differences in the disturbance vector. These
checks are still done on the GPU. Solutions up to A60 are passed back
to the CPU for further verification to determine if a complete freestart
collision has been found.

We would like to note that in comparison with the attack on 76 steps,
this work introduces boomerangs and has a slightly bigger count of neutral
bits (60 v. 51). As a result, this required to use more intermediate buffers,
and consequently a slightly more careful management of the memory.
Additionally, in this work there is a relatively high proportion of the
neutral bits that need additional message bits to be flipped to ensure no
message bit relation is broken, whereas this only happens twice in the
76-step attack. These two factors result in an attack that is slightly more
complex to implement, although neither point is a serious issue.

5 Attack details

5.1 Sufficient conditions

We give a graphical representation of the differential path used in our
attack up to step 28 in Figure 5-1, consisting of sufficient conditions for
the state, and the associated message signed bit differences. The mean-
ing of the bit condition symbols are defined in Figure 5-2. Note that the
signs of message bit differences are enforced through message bit rela-
tions. All message bit relations used in our attack are given in Figure 5-3

21

through Figure 5-5. The remainder of the path can easily be determined
by linearization of the step function given the differences in the message.

A-4:
A-3:
A-2:^-.
A-1: 1...1...0.....+
A0 : 01..0...1...... W0 : x.+...+.+....
A1 : 11+^..+.^... ...+.... W1 : ..-..-..-++..
A2 : ..-11-1. 1......^1+1 10.1.0.. W2 : ..+..--.-.+..
A3 : .0.0-001 1.^.10.. .+01.011 11^0.1.1 W3 : ..-..--.-+.-.
A4 : .1.11+-1 +^^^+1^^ ^011^^.- +++++-.+ W4 :+....
A5 : .+.+.-++ ++++++++ ++++++++ .+0-1111 W5 :-..+++..
A6 : .0.0.1.0 11.111.1 1110-010 0-1.10-+ W6 : x+..++..-.+..
A7 : 1-.+.1.0 10100010 00000011 1+.-.0.+ W7 :-+..+.
A8 : 0+.0.0..0. .+.-.0.1 W8 : x-......+....
A9 : .+.0.0..0.+...^ W9 : x.-+.-..-++..
A10: .+......+.0.. W10: ..-+++..-..
A11: ...-.... W11: x.++++..-+.+.
A12: ...0.1..1.. W12: ..-.....-....
A13: .1...0..!^ W13: ..+..+..-++..
A14: +-...... W14: x++.+-..-.+..
A15: 1.1-....!. W15:+-..+.
A16: +.10.1.. W16: x+......-....
A17: 1.-..0..^ W17: x.++.+..+--..
A18: .+-.0...! W18: ..+.--..-..
A19: .+.s.... W19: x.+---..-+...
A20: -...R... W20: x.++....+....
A21: -.+R.... W21:++..
A22: -...S...^ W22: x.---...+....
A23: .-..R... W23:-...+-...
A24: -.rs.... W24: .-+--...+....
A25: -.-r.... W25:+...+.+..
A26: -...s... W26: .+--....+....
A27: -.-.r... W27: x.+-+...++-..
A28: W28: x+-.-...
A29: ..-.....

Fig. 5-1. The differential path used in the attack up to step 28. The meaning of the
different symbols is given in Figure 5-2

5.2 The neutral bits

We give here the list of the neutral bits used in our attack. There are 60
of them over the 7 message words W14 to W20, distributed as follows:

– W14: 6 neutral bits at bit positions (starting with the least significant
bit (LSB) at zero) 5,7,8,9,10,11

– W15: 11 neutral bits at positions 4,7,8,9,10,11,12,13,14,15,16
– W16: 9 neutral bits at positions 8,9,10,11,12,13,14,15,16
– W17: 10 neutral bits at positions 10,11,12,13,14,15,16,17,18,19

22

Symbol Condition on (At[i],A
′
t[i])

. At[i] = A′t[i]

x At[i] 6= A′t[i]

+ At[i] = 0, A′t[i] = 1

- At[i] = 1, A′t[i] = 0

0 At[i] = A′t[i] = 0

1 At[i] = A′t[i] = 1

^ At[i] = A′t[i] = At−1[i]

! At[i] = A′t[i] 6= At−1[i]

r At[i] = A′t[i] = (At−1 ≫ 2)[i]

R At[i] = A′t[i] 6= (At−1 ≫ 2)[i]

s At[i] = A′t[i] = (At−2 ≫ 2)[i]

S At[i] = A′t[i] 6= (At−2 ≫ 2)[i]

Fig. 5-2. Bit conditions

– W18: 11 neutral bits at positions 4,6,7,8,9,10,11,12,13,14,15

– W19: 8 neutral bits at positions 6,7,8,9,10,11,12,14

– W20: 5 neutral bits at positions 6,11,12,13,15

We give a graphical representation of the position of these neutral bits in
Figure 5-6.

Not all of the neutral bits of the same word (say W14) are used at
the same step during the attack. Their repartition in that respect is as
follows

– Bits neutral up to step 18 (excluded): W14[8,9,10,11], W15[13,14,15,16]

– Bits neutral up to step 19 (excluded): W14[5,7], W15[8,9,10,11,12],
W16[12,13,14,15,16]

– Bits neutral up to step 20 (excluded): W15[4,7,8,9], W16[8,9,10,11,12],
W17[12,13,14,15,16]

– Bits neutral up to step 21 (excluded): W17[10,11,12,13], W18[15]

– Bits neutral up to step 22 (excluded): W18[9,10,11,12,13,14],W19[10,14]

– Bits neutral up to step 23 (excluded): W18[4,6,7,8], W19[9,11,12],
W20[15]

– Bits neutral up to step 24 (excluded): W19[6,7,8], W20[11,12,13]

– Bit neutral up to step 25 (excluded): W20[7]

One should note that this list only includes a single bit per neutral bit
group. As we mentioned in the previous section, some additional flips may
be needed in order to preserve message bit relations.

23

- W0[4] = 0 - W9[29] = 1 - W18[27] = 1 - W29[28] = 0
- W0[25] = 0 - W10[2] = 1 - W18[29] = 0 - W29[29] = 0
- W0[29] = 0 - W10[26] = 0 - W19[3] = 0 - W30[27] ^ W30[28] = 1
- W1[2] = 0 - W10[27] = 0 - W19[4] = 1 - W30[30] = 1
- W1[3] = 0 - W10[28] = 0 - W19[26] = 1 - W31[2] = 0
- W1[4] = 1 - W10[29] = 1 - W19[27] = 1 - W31[3] = 0
- W1[26] = 1 - W11[1] = 0 - W19[28] = 1 - W31[28] = 0
- W1[29] = 1 - W11[3] = 0 - W19[29] = 0 - W31[29] = 0
- W2[2] = 0 - W11[4] = 1 - W20[4] = 0 - W33[28] ^ W33[29] = 1
- W2[4] = 1 - W11[26] = 0 - W20[28] = 0 - W30[4] ^ W34[29] = 0
- W2[25] = 1 - W11[27] = 0 - W20[29] = 0 - W35[27] = 0
- W2[26] = 1 - W11[28] = 0 - W21[2] = 0 - W35[28] = 0
- W2[29] = 0 - W11[29] = 0 - W21[3] = 0 - W35[4] ^ W39[29] = 0
- W3[1] = 1 - W12[4] = 1 - W22[4] = 0 - W58[29] ^ W59[29] = 0
- W3[3] = 0 - W12[29] = 1 - W22[27] = 1 - W57[29] ^ W59[29] = 0
- W3[4] = 1 - W13[2] = 0 - W22[28] = 1 - W55[4] ^ W59[29] = 0
- W3[25] = 1 - W13[3] = 0 - W22[29] = 1 - W53[29] ^ W54[29] = 0
- W3[26] = 1 - W13[4] = 1 - W23[3] = 1 - W52[29] ^ W54[29] = 0
- W3[29] = 1 - W13[26] = 0 - W23[4] = 0 - W51[28] ^ W51[29] = 1
- W4[4] = 0 - W13[29] = 0 - W23[27] = 1 - W50[4] ^ W54[29] = 0
- W5[2] = 0 - W14[2] = 0 - W24[4] = 0 - W50[28] ^ W51[28] = 0
- W5[3] = 0 - W14[4] = 1 - W24[27] = 1 - W50[29] ^ W51[28] = 1
- W5[4] = 0 - W14[26] = 1 - W24[28] = 1 - W49[28] ^ W51[28] = 0
- W5[26] = 1 - W14[27] = 0 - W24[29] = 0 - W48[29] ^ W48[30] = 0
- W6[2] = 0 - W14[29] = 0 - W24[30] = 1 - W47[3] ^ W51[28] = 0
- W6[4] = 1 - W14[30] = 0 - W26[4] = 0 - W47[4] ^ W51[28] = 1
- W6[26] = 0 - W15[1] = 0 - W26[28] = 1 - W46[29] ^ W51[28] = 1
- W6[27] = 0 - W15[26] = 1 - W26[29] = 1 - W45[4] ^ W51[28] = 0
- W6[30] = 0 - W15[27] = 0 - W26[30] = 0 - W44[29] ^ W51[28] = 0
- W7[1] = 0 - W16[4] = 1 - W27[2] = 1 - W43[4] ^ W51[28] = 1
- W7[26] = 0 - W16[30] = 0 - W27[3] = 0 - W43[29] ^ W51[28] = 0
- W7[27] = 1 - W17[2] = 1 - W27[4] = 0 - W41[4] ^ W51[28] = 0
- W8[4] = 0 - W17[3] = 1 - W27[27] = 0 - W63[4] ^ W67[29] = 0
- W8[30] = 1 - W17[4] = 0 - W27[28] = 1 - W79[5] = 0
- W9[2] = 0 - W17[26] = 0 - W27[29] = 0 - W78[0] = 1
- W9[3] = 0 - W17[28] = 0 - W28[27] = 0 - W77[1] ^ W78[6] = 1
- W9[4] = 1 - W17[29] = 0 - W28[29] = 1 - W75[5] ^ W79[30] = 0
- W9[26] = 1 - W18[2] = 1 - W28[30] = 0 - W74[0] ^ W79[30] = 1
- W9[28] = 0 - W18[26] = 1 - W29[2] = 0

Fig. 5-3. The message bit-relations used in the attack.

5.3 The boomerangs

We finally give the boomerangs used in the attack, which are regrouped in
two sets of two. The first one first introduces a difference in the message on
word W10; as it does not significantly impact conditions up to step 27, it
is used to increase the number of partial solutions A28 that are generated.
The second set first introduces a difference on word W11, and is used to
generate partial solutions at A30. More precisely, the four boomerangs
have their first differences at bits 7,8 of W10 and 8,9 of W11. In Figure 5-
7, we give a graphical representation of the complete set of message bits
to be flipped for each boomerang. One can see that these indeed follow
the pattern of a local collisions.

24

W0 : . . 0 . . . 0 . 0
W1 : . . 1 . . 1 . 1 0 0 . .
W2 : . . 0 . . 1 1 . 1 . 0 . .
W3 : . . 1 . . 1 1 . 1 0 . 1 .
W4 : . 0
W5 : 1 . 0 0 0 . .
W6 : . 0 . . 0 0 . 1 . 0 . .
W7 : 1 0 . 0 .
W8 : . 1 . 0
W9 : . . 1 0 . 1 . 1 0 0 . .
W10: . . 1 0 0 0 . 1 . .
W11: . . 0 0 0 0 . 1 0 . 0 .
W12: . . 1 . 1
W13: . . 0 . . 0 . 1 0 0 . .
W14: . 0 0 . 0 1 . 1 . 0 . .
W15: 0 1 . 0 .
W16: . 0 . 1
W17: . . 0 0 . 0 . 0 1 1 . .
W18: . . 0 . 1 1 . 1 . .
W19: . . 0 1 1 1 . 1 0 . . .
W20: . . 0 0 . 0
W21: . 0 0 . .
W22: . . 1 1 1 . 0
W23: 1 . 0 1 . . .
W24: . 1 0 1 1 . 0
W25: .
W26: . 0 1 1 . 0
W27: . . 0 1 0 . 0 0 1 . .
W28: . 0 1 . 0 .
W29: . . 0 0 . 0 . .
W30: . 1 . A a . c
W31: . . 0 0 . 0 0 . .
W32: .
W33: . . B b .
W34: . . c .
W35: . . . 0 0 . d
W36: .
W37: .
W38: .
W39: . . d .

Fig. 5-4. The message bit-relations used in the attack for words W0 to W39 (graphical
representation). A “0” or “1” character represents a bit unconditionally set to 0 or 1.
A pair of two letters x means that the two bits have the same value. A pair of two
letters x and X means that the two bits have different values.

25

W40: .
W41: . w
W42: .
W43: . . v . u
W44: . . t .
W45: . s
W46: . . r .
W47: . q p . . .
W48: . o o .
W49: . . . n .
W50: . . m l . k
W51: . . J @ .
W52: . . i .
W53: . . h .
W54: . . * .
W55: . g
W56: .
W57: . . f .
W58: . . e .
W59: . . $.
W60: .
W61: .
W62: .
W63: . x
W64: .
W65: .
W66: .
W67: . . x .
W68: .
W69: .
W70: .
W71: .
W72: .
W73: .
W74: . a
W75: . z
W76: .
W77: . y .
W78: . Y 1
W79: . % . 0
@ = jlMnpQRstUvw
* = hik
$ = efg
% = zA

Fig. 5-5. The message bit-relations used in the attack for words W40 to W79 (graphical
representation, continued). Non-alphanumeric symbols are used as shorthand for bit
positions with more than one relation.

26

W14:xxxx x.x.....

W15:x xxxxxxxx x..x....

W16:x xxxxxxxx

W17:xxxx xxxxxx..

W18: xxxxxxxx xx.x....

W19:x.xxxxx xx......

W20: x.xxx... .x......

Fig. 5-6. The 60 neutral bits. An “x” represents the presence of a neutral bit, and a
“.” the absence thereof. The LSB position is the rightmost one.

W10:BA

W11:ba....D C.......

W12:dc....

W13:

W14:a......

W15: ba......

W16:dc.....

Fig. 5-7. The local collision patterns for each of the four boomerangs. The position of
the first difference to be introduced is highlighted with a capital letter; the correcting
differences must then have a sign different from this one. Note that boomerang “A”
uses one more difference than the others.

27

Software disclosure policy

To allow verification and improve understanding of our new results, we
intend to release our engineered freestart attack code for graphic cards at
https://sites.google.com/site/itstheshappening/.

However, this source code does not directly enable the engineering of a
SHA-1 collision attack. Any cryptanalytic tools needed for engineering a
full SHA-1 collision attack will be released independently in a responsible
manner.

Acknowledgements

We would like to express our gratitude to Orr Dunkelman for the use of
his cluster with NVidia Tesla K10 cards. We also thank the anonymous
reviewers for their helpful comments.

References

1. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M.K. (ed.) CRYPTO.
Lecture Notes in Computer Science, vol. 3152, pp. 290–305. Springer (2004)

2. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and Reduced SHA-1. In: Cramer, R. (ed.) EUROCRYPT. Lecture Notes
in Computer Science, vol. 3494, pp. 36–57. Springer (2005)

3. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 1462, pp. 56–71. Springer
(1998)

4. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 435, pp. 416–427. Springer
(1989)

5. De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the
Full Cost of Collision Search. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) SAC.
Lecture Notes in Computer Science, vol. 4876, pp. 56–73. Springer (2007)

6. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT. Lecture Notes in
Computer Science, vol. 4284, pp. 1–20. Springer (2006)

7. den Boer, B., Bosselaers, A.: An Attack on the Last Two Rounds of MD4. In:
Feigenbaum, J. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 576, pp.
194–203. Springer (1991)

8. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 765,
pp. 293–304. Springer (1993)

9. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE. Lecture Notes
in Computer Science, vol. 1039, pp. 53–69. Springer (1996)

10. Forum, C.: Ballot 152 - Issuance of SHA-1 certificates through 2016. Cabforum
mailing list (2015)

28

https://sites.google.com/site/itstheshappening/

11. Forum, C.: Ballot 152 - Issuance of SHA-1 certificates through 2016. Cabforum
mailing list (2015)

12. Grechnikov, E.A.: Collisions for 72-step and 73-step SHA-1: Improvements in the
Method of Characteristics. IACR Cryptology ePrint Archive 2010, 413 (2010)

13. Grechnikov, E.A., Adinetz, A.V.: Collision for 75-step SHA-1: Intensive Paralleliza-
tion with GPU. IACR Cryptology ePrint Archive 2011, 641 (2011)

14. Hashclash project webpage, https://marc-stevens.nl/p/hashclash/

15. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 4622, pp.
244–263. Springer (2007)

16. Jutla, C.S., Patthak, A.C.: A matching lower bound on the minimum weight of
sha-1 expansion code. Cryptology ePrint Archive, Report 2005/266 (2005)

17. Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on 76-
step SHA-1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO. Lecture Notes in
Computer Science, vol. 9215, pp. 623–642. Springer (2015), http://dx.doi.org/
10.1007/978-3-662-47989-6

18. Manuel, S.: Classification and generation of disturbance vectors for collision attacks
against sha-1. Cryptology ePrint Archive, Report 2008/469 (2008)

19. Manuel, S.: Classification and generation of disturbance vectors for collision attacks
against SHA-1. Des. Codes Cryptography 59(1-3), 247–263 (2011)

20. Matusiewicz, K., Pieprzyk, J.: Finding good differential patterns for attacks on
SHA-1. In: Ytrehus, Ø. (ed.) Coding and Cryptography, International Workshop,
WCC 2005. Lecture Notes in Computer Science, vol. 3969, pp. 164–177. Springer
(2005)

21. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: The impact of carries
on the complexity of collision attacks on SHA-1. In: Robshaw, M.J.B. (ed.) FSE.
Lecture Notes in Computer Science, vol. 4047, pp. 278–292. Springer (2006)

22. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO.
Lecture Notes in Computer Science, vol. 435, pp. 428–446. Springer (1989)

23. Microsoft: SHA-1 Deprecation Update. Microsoft blog (2015)

24. Mozilla: Continuing to Phase Out SHA-1 Certificates. Mozilla Security Blog (2015)

25. National Institute of Standards and Technology: FIPS 180: Secure Hash Standard
(May 1993)

26. National Institute of Standards and Technology: FIPS 180-1: Secure Hash Standard
(April 1995)

27. National Institute of Standards and Technology: FIPS 180-2: Secure Hash Standard
(August 2002)

28. National Institute of Standards and Technology: Special Publication 800-57 - Rec-
ommendation for Key Management Part 1: General (Revision 3) (July 2012)

29. National Institute of Standards and Technology: FIPS 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions (August 2015)

30. Nvidia Corporation: Nvidia Geforce GTX 970 Specifications. http://www.

geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications

31. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting coding theory for collision
attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding, 10th IMA
International Conference. Lecture Notes in Computer Science, vol. 3796, pp. 78–
95. Springer (2005)

32. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA. Lecture
Notes in Computer Science, vol. 3376, pp. 58–71. Springer (2005)

29

https://marc-stevens.nl/p/hashclash/
http://dx.doi.org/10.1007/978-3-662-47989-6
http://dx.doi.org/10.1007/978-3-662-47989-6
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-970/specifications

33. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A., Vanstone,
S.A. (eds.) CRYPTO. Lecture Notes in Computer Science, vol. 537, pp. 303–311.
Springer (1990)

34. Rivest, R.L.: RFC 1321: The MD5 Message-Digest Algorithm (April 1992)
35. Schneier, B.: When will we see collisions for sha-1? Schneier on Security (2012)
36. Services, A.W.: Amazon EC2 – Virtual Server Hosting. aws.amazon.com (Re-

trieved Jan 2016)
37. Survey of the ssl implementation of the most popular web sites. TIM Trustworthy

Internet Movement (2015)
38. Stevens, M.: Attacks on Hash Functions and Applications. Ph.D. thesis, Leiden

University (June 2012)
39. Stevens, M.: Counter-Cryptanalysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO.

Lecture Notes in Computer Science, vol. 8042, pp. 129–146. Springer (2013), http:
//dx.doi.org/10.1007/978-3-642-40041-4

40. Stevens, M.: New Collision Attacks on SHA-1 Based on Optimal Joint Local-
Collision Analysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT. Lecture
Notes in Computer Science, vol. 7881, pp. 245–261. Springer (2013), http://dx.
doi.org/10.1007/978-3-642-38348-9

41. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EURO-
CRYPT. Lecture Notes in Computer Science, vol. 4515, pp. 1–22. Springer (2007)

42. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A.,
de Weger, B.: Short Chosen-Prefix Collisions for MD5 and the Creation of a
Rogue CA Certificate. In: Halevi, S. (ed.) CRYPTO. Lecture Notes in Com-
puter Science, vol. 5677, pp. 55–69. Springer (2009), http://dx.doi.org/10.1007/
978-3-642-03356-8

43. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO. Lecture Notes in Computer Science, vol. 3621, pp. 17–36. Springer
(2005)

44. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 3494, pp. 19–35.
Springer (2005)

45. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup,
V. (ed.) CRYTO. Lecture Notes in Computer Science, vol. 3621, pp. 1–16. Springer
(2005)

46. Yajima, J., Iwasaki, T., Naito, Y., Sasaki, Y., Shimoyama, T., Kunihiro, N., Ohta,
K.: A strict evaluation method on the number of conditions for the SHA-1 collision
search. In: Abe, M., Gligor, V.D. (eds.) ASIACCS. pp. 10–20. ACM (2008)

30

http://dx.doi.org/10.1007/978-3-642-40041-4
http://dx.doi.org/10.1007/978-3-642-40041-4
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-642-38348-9
http://dx.doi.org/10.1007/978-3-642-03356-8
http://dx.doi.org/10.1007/978-3-642-03356-8

	 Freestart collision for full SHA-1

