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Abstract. We take nonce-based cryptography beyond symmetric en-
cryption, developing it as a broad and practical way to mitigate damage
caused by failures in randomness, whether inadvertent (bugs) or mali-
cious (subversion). We focus on definitions and constructions for nonce-
based public-key encryption and briefly treat nonce-based signatures.
We introduce and construct hedged extractors as a general tool in this
domain. Our nonce-based PKE scheme guarantees that if the adversary
wants to violate IND-CCA security then it must do both of the follow-
ing: (1) fully compromise the RNG (2) penetrate the sender system to
exfiltrate a seed used by the sender.

1 Introduction

An old security adage says there is no point putting strong locks on the door
if you leave the window open. The lock here is modern public-key encryption,
proven to meet the strong IND-CCA goal. The window is the assumption made in
these proofs that, at every encryption, the encryptor has access to perfect, fresh
(independent from prior) randomness. To allow encryption to fulfill in practice
the promise it makes in theory, we must close the window. This paper develops
nonce-based public-key encryption as a practical way to do this. It goes on to
develop nonce-based digital signatures.
Randomness. That randomness failures occur and lead to cryptographic failures
is by now very well known and does not need to be belabored. The news of
interest is perhaps that it is getting worse. Let us explain. There are two sources
of randomness failures. The first, which has been with us a while and is not going
away, is bugs. A good example is the Debian Linux vulnerability present from
September 2006 to May 2008 where a programmer removed some lines of code
from the OpenSSL source, resulting in there being only 15 bits of entropy in
the seed for the PRNG [1]. HDWH [19] finds cryptographic vulnerabilities in a
significant fraction of TLS and SSH servers due to what they call “malfunctioning
RNGs.” And the list goes on. The second source of randomness failures, which
may have been with us for a while but of which we have learned only recently due
to the mass-surveillance revelations, is subversion, the deliberate and targeted
attempt to weaken randomness. At the South by South West (SXSW) 2014
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conference, Snowden said “we know that the encryption algorithms we are using
today work ... it is the random number generators that are attacked as opposed
to the encryption algorithms themselves.” The prime example here is Dual EC,
a RNG the NSA designed to have a backdoor and then pushed into standards
and adoption. The ability to compromise security in practice via the backdoor
has been demonstrated in [14].

Prior work. The basic definitions of security for public-key encryption (PKE),
namely IND-CPA [18] and IND-CCA [5, 15], provide no guarantees if the ran-
domness is bad. There is a long line of work giving new definitions of security
that do provide such guarantees, and building PKE schemes to meet these defi-
nitions.

The simplest way to avoid vulnerabilities due to poor randomness is to not
use randomness at all. Deterministic PKE [3, 12, 6, 17] however only provides
security when the messages have high min-entropy. This limits utility (for exam-
ple, we may want to encrypt votes, which have low min-entropy) and, although
in a different context, CGPR [13] show that in practice the entropy of “real”
data is often quite low. Hedged PKE [4, 7, 27] extends Deterministic PKE to
provide privacy as long as the message and randomness together have suffi-
cient min-entropy. This is a significant benefit and we recommend that one use
Hedged PKE whenever possible. But the limitations remain. Since messages reg-
ularly do not in fact have entropy [13], and the “randomness” can be entirely
predictable (this happened both with the Debian Linux bug and the Dual EC
subversion), the message and randomness together still may not have enough
entropy for hedged encryption to provide security. A further limitation of both
Deterministic and Hedged PKE is that security is only provided for messages
that do not depend on the public key. (This second limitation can be partially
addressed but at some cost [26].) Yilek [32] defines and achieves security against
randomness-reset attacks, where the randomness is perfect but the adversary can
force its re-use across different encryptions. This is useful in the context of vir-
tual machine resets but not more broadly. PSS [24] introduce related-randomness
attacks, where encryption is under adversary-specified functions of some initial
uniform randomness. However, negative results they provide show that for many
functions one cannot achieve security.

In summary, all these notions have some limitations and the practical benefit
they provide is not clear. Most importantly, these were all designed in the older
mindset of RNG failures due to bugs and can break down severely when the RNG
is subverted. The latter is the new reality against which we need to defend.

Nonces. Rogaway [28, 29] introduced nonce-based symmetric-key encryption,
where the encryption algorithm is deterministic, taking the shared key, message
and a quantity called a nonce. Security is provided as long as the nonce does not
repeat. The notion was strengthened by Rogaway and Shrimpton (RS) [30]. Rog-
away suggests that packet sequence numbers may play the role of the nonce. Mo-
tivations he provides include reducing implementor error and achieving stronger
notions of security. We suggest that nonces can be used much more broadly and
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are a good defense against poor randomness. The goal we pursue in depth is
nonce-based PKE.

The obvious extension fails. Towards this we begin by noting that a direct
extension of nonce-based symmetric-key encryption as defined in [28–30] to the
public-key setting does not work. Such an extension would have the encryption
algorithm E be deterministic, taking input the encryption key ek, messagem and
a nonce n to return the ciphertext C = E(ek,m, n). The privacy game would
give the adversary an oracle that takes messages m0,m1 and a nonce n (in the
definitions of [28–30], nonces are adversarially chosen subject to not repeating)
to return C = E(ek,mb, n), where b is a challenge bit chosen at random by the
game. Security would require that the adversary has little advantage in guessing
b. But such security would not be achieved because in the public-key setting
the adversary has ek and can itself encrypt. Thus it could query its oracle with
any m0,m1, n of its choice to get back ciphertext C = E(ek,mb, n), and itself
compute C0 = E(ek,m0, n). If C = C0 it knows that the challenge b is 0, else it
is 1.

Nonce-based PKE. We define a nonce-based PKE scheme NPE as follows. The
receiver runs key-generation algorithm NPE.Kg as usual to get an encryption key
ek and decryption key dk. Not as usual, the sender begins by locally running a
seed generation algorithm NPE.sKg to get a seed xk. The encryption algorithm
NPE.Enc is deterministic, taking in addition to the usual ek and message m,
two new inputs, a nonce n and the seed xk, and returning ciphertext C =
NPE.Enc(ek, xk,m, n). Decryption is unchanged, taking dk and a ciphertext C
to return a message. The receiver does not need to know the seed, and the
keys and seed are entirely independent. The sender can either re-use the same
seed across multiple encryptions, or generate a fresh one at every encryption, or
anything in between, and the receiver will be oblivious to all of this.

Security is captured via two games and corresponding requirements. Nonce-
based privacy One (NBP1) asks that IND-CCA privacy be maintained as long as
message-nonce pairs do not repeat. That is, the only way security fails is if, for
the same message, a nonce is re-used. This is a very strong guarantee. However
there is one caveat, namely this holds when the seed is kept private from the
adversary. Nonce-based privacy Two (NBP2) addresses the possibility that the
adversary compromises the sender’s system and obtains the seed. Even in this
case, it guarantees IND-CCA privacy as long as nonces are unpredictable to the
adversary. The formalizations are in terms of a stateful nonce generator NG that
takes an adversary specified input η to return the next nonce, so that nonces are
(indirectly) under adversary control.

In practice we would expect a combination of a variety of things to be used
as the nonce, for example the current time (this does not repeat) and prior
ciphertexts, but, also, randomness from the system RNG, since, for NBP2, nonce
unpredictability is required. (This is a departure from the symmetric setting.)
However guarantees in the face of poor randomness are much better than before,
as we now explain.
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What this buys us. Intuitively our definitions are saying the following. Con-
sider two cases. The expected and good case is that the sender seed stays private.
In this case we get IND-CCA privacy regardless of the quality of the random-
ness, the only requirement being that message-nonce pairs do not repeat. The
latter is a mild condition, such repetition being unlikely with reasonable nonces,
even simply using the date and time as the nonce. The other case is that the
sender’s system is compromised and the seed is exposed. In this case, we are ef-
fectively in the setting of standard PKE and we cannot deterministically provide
IND-CCA. We guarantee that we do no worse than standard PKE, meaning we
provide IND-CCA as long as the randomness (here part of the nonce) is good.
But in fact we do better, since the requirement on nonces is only unpredictabil-
ity. This means that we are safe even if the outputs of the RNG are correlated
and structured, as long as they remain unpredictable.

Put another way, if a subvertor wanted to compromise privacy, it would not
suffice to compromise the RNG. They would have to also break in to the sender’s
system, find the seed, and exfiltrate it. Frequent rotation of seeds (which has
effectively no cost) makes this even harder. This ups the ante. Now, it is true
that with the NSA’s capabilities in malware, we should not under-estimate their
ability to penetrate a target sender. But this would have to be done on per-sender
basis, making mass surveillance harder.

Hedged extractors and our scheme. It is easy to achieve either of NBP1 or
NBP2 in isolation. We can get an NBP1 nonce-based PKE scheme by encrypting
under a conventional (randomized) IND-CCA PKE scheme with the coins set to
the result of a PRF keyed by the sender seed and applied to the message and
nonce, but there is no reason this scheme would also be NBP2 secure. We can
get an NBP2 nonce-based PKE scheme by encrypting under the conventional
IND-CCA PKE scheme with the coins set to the result of an extractor keyed
by the seed and applied to the (message and) nonce, but there is no reason this
scheme would also be NBP1 secure. To simultaneously get both properties, we
introduce and use hedged extractors.

A hedged extractor HE takes a seed (also called a key) xk, a message m
and a nonce n to deterministically return a string r = HE(xk, (m,n)). It has
two properties: (1) It is a PRF, meaning if xk is random and hidden then the
outputs look random even to an adversary that picks m,n, and (2) it is an
extractor, meaning if xk is random but known, then r looks random if (m,n) is
unpredictable (meaning, has enough min-entropy). Again, achieving either goal
in isolation is trivial. The task is to achieve them simultaneously, in the same
construction. We give two solutions, one in the ROM, the other in the standard
model. The first is easy but practical, and likely to be what we would use,
namely to simply apply the RO to xk, (m,n). The second combines a PRF with
a strong randomness extractor via XOR. The ROM solution delivers optimal
security, the standard-model one a bit less due to the inherent limitations of
strong randomness extractors, namely that they are only guaranteed to work
for seed-independent inputs that retain min-entropy even conditioned on prior
inputs.
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Our nonce-based PKE scheme is then simply defined via the same paradigm
as for the in-isolation cases, namely we encrypt under a conventional (random-
ized) IND-CCA PKE scheme with the coins set to the result of a hedged ex-
tractor keyed by the sender seed and applied to the message and nonce. Both
NBP1 and NBP2 security are proven for this scheme assuming IND-CCA of the
conventional scheme and security of the hedged extractor.

Discussion and pragmatics. We can view nonce-based cryptography as mov-
ing the traditional abstraction boundary between cryptography and system RNGs
closer to the cryptography. The view is that, in the presence of bad RNGs, a safer
and better architecture is that the cryptography take on as large a share of the
burden of providing security as possible, in other words, rely on its environment
as little as possible. Our suggestion here is that the environment is relied on only
to produce nonces with relatively weak requirements. This view is in some ways
the opposite of that represented by work that aims to strengthen RNGs against
failure or subversion [16]. In practice the two can co-exist and their combined
presence will increase security.

Our nonce-based encryption scheme is simple and modular, a way to trans-
form any given conventional IND-CCA scheme into an NBP1+NBP2 secure
nonce-based scheme. With a practical choice of hedged extractor such as our
ROM one, we retain the efficiency attributes of the initial PKE scheme. In our
scheme, decryption is unchanged. The decryptor does not need to change its soft-
ware or even know that nonces are being used. These attributes make it easier
to deploy nonce-based PKE as a practical defense against poor randomness.

In the above-discussed prior work aimed at increasing resistance of PKE to
randomness failures, the model was unchanged in the sense that the object whose
security was being considered continued in syntax to be a classical public-key
encryption scheme as per [18]. Nonce-based encryption is a new model (because
the sender has a seed) and a new syntax (there is a seed generation algorithm
and the encryption algorithm is different). It is these changes, and in particular
not just the nonce, but the combination of nonce and seed, that are a game
changer and result in significantly better guarantees against poor randomness
compared to prior work.

Picking a seed, like picking a key, does require (good) randomness. The view-
point here, as in all the prior work discussed above, is that there is a difference
between static and dynamic randomness usage. We assume good randomness
for key generation because effort can be invested in it. Current key-generation
software often has the user generate coins by waving their mouse around. Good
seed generation would require similar effort, but one would expect to use a seed
for some time so this effort is not frequent. This is flexible. If a seed is lost due
to a system reboot, or compromised, the user can elect to make the effort to pick
a new one. If you are encrypting from multiple systems (your desktop, laptop
and phone) each can have its own, independently chosen seed.

Nonce-based signatures and beyond. We define nonce-based signatures,
where the signing algorithm is deterministic, and takes not only the signing key
and message, but also a seed and nonce. We require that (1) if the seed remains
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hidden then we have regular security (unforgeability) regardless of how nonces
are generated, and (2) if the seed is exposed, then we have security as long as the
nonces were unpredictable. Section 5 formalizes this and shows how to convert
any signature scheme into a nonce-based one with these security properties using
a hedged extractor.

Due to their speed and short signature sizes, the most attractive signa-
ture schemes for practice are elliptic-curve versions of DSA, El Gamal and
Schnorr [31]. However, they are randomized, and fail spectacularly when the
randomness is bad. Discussions on the cfrg forum show overwhelming support
for making these schemes deterministic. This is easily done, by deriving the coins
either as a PRF, keyed by a seed that is part of the secret key and applied to
the message, or as a RO applied to the secret key and message [23, 21, 9, 25], and
the popular Ed25519 signature scheme of [11] already embodies this. Making
a scheme nonce-based complements this traditional de-randomization, retaining
the benefits of deterministic signing while adding further ones. See Section 5 for
more extensive background and discussion.

Nonces in combination with seeds can similarly be used in many other areas
of cryptography to provide resilience in the face of poor randomness or even
provide other gains. Our work aims to be illustrative rather than exhaustive.
Related work. BKS [8] introduce stateful PKE. Here also the sender can
maintain a seed. They show that this leads to significant efficiency gains. Their
schemes are however randomized, and there are no nonces. An interesting di-
rection for future work is to combine their methods with ours to get similar
efficiency gains for nonce-based PKE.

Rogaway [29] discusses nonces as “surfacing the IV.” As motivation, he says
that when IVs are implicit, implementors and even books get things wrong.
He says that often nonces are readily available, for example packet sequence
numbers. He does not seem to explicitly mention robustness in the face of ran-
domness failure as a goal in the symmetric case. Intriguingly, in the final section
of the paper, he goes on to say: “ ... it makes just as much sense to consider
nonce-based public-key encryption schemes as it does to consider nonce-based
symmetric encryption schemes. This provides an approach to effectively weaken-
ing the requirement for randomness on the sender.” Our work has pursued this
suggestion. It is surprising that this waited 12 years.

2 Notation and standard definitions

Notation. We let ε denote the empty string. If X is a finite set, we let x←$ X
denote picking an element of X uniformly at random and assigning it to x. Al-
gorithms may be randomized unless otherwise indicated. Running time is worst
case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random
coins r on inputs x1, . . . and assigning the output to y. We let y←$ A(x1, . . .)
be the result of picking r at random and letting y ← A(x1, . . . ; r). We let
[A(x1, . . .)] denote the set of all possible outputs of A when invoked with in-
puts x1, . . .. We use the code based game playing framework of [10]. (See Fig. 1
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Game Gprf
F (A)

fk←$ F.Keys
c←$ {0, 1}
c′←$AFn,RO

Return (c = c′)

Fn(x)
If (c = 1) then
S[x]← FRO(fk, x)

Else
If S[x] = ⊥ then
S[x]←$ F.Rng

Return S[x]

RO(x, l)
If T [x, l] = ⊥ then
T [x, l]←$ {0, 1}l

Return T [x, l]

Game Gind
PE (A)

(ek, dk)←$ PE.Kg
b←$ {0, 1} ; C ← ∅
b′←$AENC,DEC(ek)
Return (b = b′)

ENC(m0,m1)
If (|m0| 6= |m1|) then return ⊥
c←$ PE.Enc(ek,mb)
C ← C ∪ {c}
Return c

DEC(c)
If (c ∈ C) then return ⊥
m← PE.Dec(ek, dk, c)
Return m

Game Guf
DS(A)

(sk, vk)←$ DS.Kg
M ← ∅
(m, s)←$ASIG(vk)
v ← (DS.Ver(vk,m, s) = 1)
Return (v ∧ (m 6∈M))

SIG(m)
s← DS.Sig(sk,m)
M ←M ∪ {m}
Return s

Fig. 1. Games for defining PRF security of a function family F, standard
IND-CCA security of a standard PKE scheme PE and EUF-CMA security
of a signature scheme DS.

for an example.) By Pr[G] we denote the event that the execution of game G re-
sults in the game returning true. Random oracles are variable output length,
represented by a game procedure RO that takes x, l and returns a random
string of length l. The min-entropy of a random variable X over X is defined
as H∞(X) = − log(maxx∈X (Pr[X = x])).

Function families. A family of functions F: F.Keys × F.Dom → F.Rng is a
two-argument function that takes a key K in the key space F.Keys, an input x
in the domain F.Dom and returns an output F(K,x) in the range F.Rng. In the
ROM, F takes an oracle RO.

Pseudo-random functions. The security of F as a PRF is defined via game
Gprf

F (A) that is associated to adversary A and shown in Fig. 1. Here F could
have access to a RO and thus the game is in the ROM. Tables S, T are as-
sumed initially ⊥ everywhere. The advantage of A is defined as Advprf

F (A) =
2 Pr[Gprf

F (A)]− 1.

Public-key encryption. A public-key encryption scheme PE specifies the fol-
lowing. Receiver key-generation algorithm PE.Kg returns an encryption key ek
and associated decryption key dk. Encryption algorithm PE.Enc takes ek and
message m ∈ {0, 1}∗ to return a ciphertext c. Deterministic decryption algo-
rithm PE.Dec takes ek,dk and ciphertext c to return a value in {0, 1}∗ ∪ {⊥},
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and we require standard decryption correctness. The advantage of an adver-
sary A in breaking the IND-CCA security of PE is defined as Advind

PE(A) =
2 Pr[Gind

PE (A) − 1 for the game Gind
PE (A) described in Fig. 1. This represents a

conventional (not nonce-based scheme), and thus PE.Enc is randomized. We will
use such schemes as base schemes and we will need to surface their coins, writing
c← PE.Enc(ek,m; r) to mean that PE.Enc is run with coins r to deterministically
return c. The length of the coins is denoted PE.rl.

Digital signatures. A digital signature scheme DS specifies the following.
Signer key-generation algorithm DS.Kg returns a signature key sk and a ver-
ification key vk. Signing algorithm DS.Sig takes sk and message m ∈ {0, 1}∗
to return a signature s ∈ {0, 1}DS.ol. Verification algorithm DS.Ver takes vk,
message m ∈ {0, 1}∗, and signature s ∈ {0, 1}DS.ol, to return a bit b ∈ {0, 1}.
The advantage of an adversary A in breaking the EUF-CMA security of DS is
defined as Advuf

DS(A) = Pr[Guf
DS(A)] for the game Guf

DS(A) described in Fig. 1.
Again we may need to surface the coins r ∈ {0, 1}DS.rl of DS.Sig, writing s ←
DS.Sig(sk,m; r).

3 Hedged Extractors

Our nonce-based schemes work simply by supplying coins to a base scheme via a
hedged extractor keyed by the sender seed. This primitive, that we introduce and
build here, is a function family that has two security properties. The first is that
it is a PRF. The second, which we define and call ror (real or random) security,
formalizes randomness of outputs when the key (seed) is known. Clearly this can
only be achieved with some restrictions, and the type of ror security achieved
will vary across constructions, from the “best possible” achieved by our ROM
construction to a weaker, but we think still meaningful, version for our standard
model construction. To make the goals precise we first introduce the notion of a
nonce generator.

Nonce generators. A nonce generator is an algorithm NG that, on input
a nonce selector η and a current state St, returns a nonce n, belonging to
the range set NG.Rng ⊆ {0, 1}∗ of NG, together with an updated state, writ-
ten (n,St)←$ NG(η,St). We say the generator has nonce length NG.nl ∈ N if
NG.Rng = {0, 1}NG.nl. Let P be an adversary called a predictor and consider
game Gpred

NG (P) of Fig. 2. Let
Advpred

NG (P) = Pr[Gpred
NG (P)] and Advpred

NG (q1, q2) = max
P

Advpred
NG (P) ,

where the maximum is over all P making at most q1 ∈ N queries to GEN and
q2 ∈ {0, 1} queries to EXPOSE. Now let us explain. A call toGEN generates the
next nonce in the sequence, returning nothing to the adversary, The adversary
can influence the choice of nonces through its choice of the selector η. The
EXPOSE oracle allows to additionally get access to the state of the nonce
generator. To win, the adversary needs to guess some generated nonce or create
a collision between generated nonces.
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Game Gpred
NG (P)

St ← ε ; s← 0 ; N ← ∅
n←$ PGEN,EXPOSE

Return ((n ∈ N) OR coll)

GEN(η)
If s = 1 then return ⊥
(n,St)←$ NG(η,St)
If (n ∈ N) then coll← true
N ← N ∪ {n}

EXPOSE

s← 1
Return St

Game Gror
HE,NG(G)

St ← ε ; xk←$ HE.Keys ; c←$ {0, 1} ; s← 0
c′←$ GRoR,EXPOSE,RO(xk)
Return (c = c′)

RoR(m, η)
If s = 1 then return ⊥
(n,St)←$ NG(η,St)
If (c = 1) then r ← HERO(xk, (m,n))
Else r←$ HE.Rng
Return r

EXPOSE

s← 1 ; Return St

RO(x, l)
If T [x, l] = ⊥ then T [x, l]←$ {0, 1}l

Return T [x, l]

Fig. 2. Games for defining predictability of the nonce generator NG and
real-or-random security of function family HE.

Nonce generators represent another departure from nonce-based symmetric
encryption. In the latter the adversary picks the nonce, but we saw in Section 1
that this does not work in the public-key setting. Instead, we model the process
of a sender picking a nonce via a nonce generator.

In discussions, we refer to NG as weakly unpredictable if it is unpredictable
for adversaries making no EXPOSE query, meaning Advpred

NG (q1, 0) is “small”
for “practical” values of q1, and strongly unpredictable if it is unpredictable even
for adversaries making an EXPOSE query, meaning Advpred

NG (q1, 1) is “small”
for “practical” values of q1. If NG is strongly unpredictable it is also weakly
unpredictable, but not necessarily vice versa. That is, the class of weakly un-
predictable nonce generators is larger than the class of strongly unpredictable
nonce generators.

Real or random security. Let HE: HE.Keys × HE.Dom → HE.Rng be an
oracle family of functions (this means it may have access to a random oracle).
The first input is referred to as the “key” or the “seed.” The domain has the
form HE.Dom = {0, 1}∗ × HE.NS, so that an input is a pair of strings, the first
referred to as the “message” and the second as the “nonce,” the latter drawn
from a nonce space HE.NS associated to HE. Consider game Gror

HE,NG(G) of Fig. 2
associated to HE, nonce generator NG and an adversary G. The number of queries
to EXPOSE is either 0 or 1, and the number to other oracles is arbitrary. Let

Advror
HE,NG(G) = 2 Pr[Gror

HE,NG(G)]− 1 .
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Note that here the adversary is given the key (seed) xk as input, unlike in the
PRF notion, modeling exposure of the sender seed. Security asks that outputs of
HE(xk, (·, ·)), for adversary-chosen messages and nonces from the nonce genera-
tor, are indistinguishable from random. Clearly, this will be possible only with
certain restrictions, which will emerge when we discuss our constructions below.

In game Gror
HE,NG(G), we say that adversary G is agnostic if its RoR queries

do not depend on the seed xk. More formally, there exists a pair (G1,G2) of
algorithms such that GRoR,EXPOSE,RO(xk) does the following:

St←$ GRoR,EXPOSE,RO
1 (ε) ; c′ ← GEXPOSE,RO

2 (xk,St) ; Return c′ .
This represents one of the restrictions we will impose to achieve ror security in
the standard model.
Hedged extractors. A hedged extractor HE: HE.Keys × HE.Dom → HE.Rng
is an oracle family of functions as above where the goal is that (1) HE is a PRF,
meaning Advprf

HE(A) is low for any adversary A of practical resources, and also
(2) Advror

HE,NG(G) is small for some class of nonce generators NG and some class of
ror adversaries G, both specified via results for individual hedged extractors. We
give a ROM construction and standard model one. Both achieve PRF security,
but differ in the type of ror security achieved. The ROM construction achieves
ror security for unpredictable nonce generators (both weak and strong) and for
all ror adversaries. This is “best possible” because the unpredictability assump-
tion is easily seen to be necessary. The standard model construction achieves
ror security for strongly unpredictable generators and agnostic ror adversaries.
These restrictions reflect limitations of the randomness extractors that are our
underlying tool. The restriction to agnostic adversaries reflects that randomness
extractors only work on seed-independent distributions, and the strong unpre-
dictability requirement on the generator reflects that when extracting from a
sequence of inputs, one needs not only that each has some min-entropy, but that
it does even given the others.
ROM hedged extractor. We start by giving a simple and efficient construc-
tion HE1 of a hedged extractor in the ROM. Let ` be a desired number of output
bits for the extractor, and k a desired seed (key) length. Associated to `, k is the
hedged extractor HE = HE1[`, k]: {0, 1}k× ({0, 1}∗×{0, 1}∗)→ {0, 1}` defined
by

HERO(xk, x) = RO((xk, x), `) .
Here HE.Keys = {0, 1}k, HE.Dom = {0, 1}∗ × HE.NS with HE.NS = {0, 1}∗, and
HE.Rng = {0, 1}`.

The following lemma states that this construction achieves PRF security and
also achieves real or random security assuming only that the nonce generator
is unpredictable. Note the latter only requires each nonce to individually be
unpredictable, but nonces may be arbitrarily correlated, and it could be that
given n1 one can easily predict n2. But the extractor works nonetheless.

Lemma 1. Let `, k ≥ 1 be integers and let HE = HE1[`, k] be the ROM function
family associated to ` and k as above.



Nonce-Based Cryptography 11

1. If A is an adversary making q2 queries to its RO oracle, then
Advprf

HE(A) ≤ q2

2k
. (1)

2. Let NG be a nonce generator. If G is an adversary making q1 queries to
its RoR oracle, q2 queries to its RO oracle, and q3 ∈ {0, 1} queries to its
EXPOSE oracle, then

Advror
HE,NG(G) ≤ q2 ·Advpred

NG (q1, q3) . (2)

Note that in the 2nd case, the reduction preserves the number of EXPOSE
queries, meaning the number reflected by q3 is the number made by G. This is
the best one could hope for.

Proof (Lemma 1). For the proof of Equation (1), consider the games G0,G1 of
Fig. 3, where G1 contains the boxed code and G0 does not. Letting c denote
the challenge bit in game Gprf

HE (A), the following, justified below, establishes
Equation (1):

Advprf
HE(A) = Pr[ Gprf

HE (A) | c = 1 ]−
(

1− Pr[ Gprf
HE (A) | c = 0 ]

)
(3)

= Pr[G1]− Pr[G0] (4)

≤ Pr[G0 sets bad] (5)

≤ q2

2k
. (6)

Equation (3) is a standard re-formulation of the definition of the advantage.
In game G0, replies to queries to the Fn and RO oracles are independently
distributed, so that it is equivalent to the c = 0 case of game Gprf

HE (A), up to the
flipping of the outcomes from true to false. In game G1, the replies to Fn queries
are given by HERO, making it equivalent to the c = 1 case of game Gprf

HE (A).
This justifies Equation (4). Games G0,G1 are identical until bad (differ only in
statements following the setting of bad to true), so the Fundamental Lemma of
Game Playing [10] justifies Equation (5). In game G0, replies to all oracle queries
are random and independent of xk so the probability that the latter is queried
as part of an RO query is at most the quantity of Equation (6).

For Equation (2), consider the games G2,G3 of Fig. 3, where G3 contains the
boxed code and G2 does not. Let predictor adversary P be as specified in Fig. 3.
Letting c denote the challenge bit in game Gror

HE,NG(G), the following, justified
below, establishes Equation (2):

Advror
HE,NG(G) = Pr[ Gror

HE,NG(G) | c = 1 ]−
(
1− Pr[ Gror

HE,NG(G) | c = 0 ]
)

(7)

= Pr[G3]− Pr[G2] (8)

≤ Pr[G2 sets bad] (9)

≤ q2 ·Advpred
NG (G) (10)

≤ q2 ·Advpred
NG (q1, q3) . (11)
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Game G0 / G1

xk←$ {0, 1}k ; c′←$AFn,RO ; Return (c′ = 1)

Fn(w)
If S[w] = ⊥ then S[w]←$ {0, 1}` ; Return S[w]

RO(w, l)
If T [w, l] = ⊥ then
T [w, l]←$ {0, 1}l ; (u, x)← w

If ((u = xk) and (l = `)) then
If (S[w] = ⊥) then S[w]←$ {0, 1}` ; bad← true ; T [w, l]← S[w]

Return T [w, l]

Game G2 / G3

St ← ε ; xk←$ {0, 1}k S ← ∅
c′←$ GRoR,EXPOSE,RO(xk) ; Return (c′ = 1)

RoR(m, η)
If s = 1 then return ⊥
(n,St)←$ NG(η,St)
r ← R[m,n] ; R[m,n]←$ {0, 1}`

If ((m,n) ∈ S) then bad← true ; R[m,n]← r

If (T [(xk, (m,n)), `] 6= ⊥) then
bad← true ; R[m,n]← T [(xk, (m,n)), `]

S ← S ∪ {(m,n)}
Return R[m,n]

EXPOSE

s← 1
Return St

RO(w, l)
If (T [w, l] = ⊥) then
T [w, l]←$ {0, 1}l ; (u, x)← w ; (m,n)← x

If ((u = xk) and (l = `) and ((m,n) ∈ S)) then
bad← true ; T [w, l]← R[m,n]

Return T [w, l]

Adversary PGEN

xk←$ {0, 1}k ; i← 0
g←$ {1, . . . , q2}
c′←$ GRoR,EXPOSE,RO(xk)
Return ng

RoR(m, η)
If s = 1 then return ⊥
GEN(η)
r←$ {0, 1}`

Return r

EXPOSE

s← 1
St ← EXPOSE

Return St

RO(w, l)
If (T [w, l] = ⊥) then
T [w, l]←$ {0, 1}l

(u, x)← w ; (m,n)← x

i← i+ 1 ; ni ← n

Return T [w, l]

Fig. 3. Games and adversary for proof of Lemma 1.

Equation (7) is a standard re-formulation of the definition of the advantage.
In game G2, replies to queries to the RoR and RO oracles are independently
distributed, so that it is equivalent to the c = 0 case of game Gror

HE,NG(G), up
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to the flipping of the outcomes from true to false. In game G3, the replies to
RoR queries are given by HERO, making it equivalent to the c = 1 case of game
Gror

HE,NG(G). This justifies Equation (8). Games G2,G3 are identical until bad, so
the Fundamental Lemma of Game Playing [10] justifies Equation (9). In game
G2, replies to all oracle queries are random and independent, so adversary P can
simulate the oracles of adversary G directly. Its output is a random one of the
nonces in a RO-query of G, whence Equation (10). Equation (11) is because P
makes q1 calls to its GEN oracle and q3 queries to its EXPOSE oracle. ut

Standard-model hedged extractor. Next we give a standard-model hedged
extractor based on a PRF F and an almost-XOR-universal hash function H. We
use the latter essentially as a strong extractor. The construction is simple: the
PRF is evaluated on the message and nonce, and the hash function is evaluated
only on the nonce. The results are combined via a simple XOR operation. The
intuition behind this is that as long as at least one of the outputs generated
by the two schemes is random, then the result is also random. PRF security
of the hedged extractor is proved assuming only on the assumed PRF security
of F. Real-or-random security of the hedged extractor is shown for a restricted
class of nonce generators NG and adversaries G. Namely NG must retain unpre-
dictability even in the presence of an EXPOSE query revealing the state, and
G’s RoR queries must not depend on the seed. These restrictions reflect inherent
limitations of strong extractors.

We start with some definitions. For ε ∈ [0, 1], function family H is ε-almost
XOR-universal [22] if H.Rng = {0, 1}` for some ` ∈ N and, for all distinct
x, y ∈ H.Dom and all s ∈ {0, 1}`, we have

Pr[H(hk, x)⊕ H(hk, y) = s : hk←$ H.Keys] ≤ ε.
Our standard model construction is as follows. Let ` be a desired number of
output bits for the extractor. Let F: F.Keys × ({0, 1}∗ × {0, 1}∗) → {0, 1}` be
a function family assumed to be a PRF, and let H: H.Keys × H.Dom → {0, 1}`

be an almost-XOR-universal hash function with H.Dom ⊆ {0, 1}∗. We asso-
ciate to `,F,H the standard-model hedged extractor HE = HE2[F,H]: (F.Keys×
H.Keys)× ({0, 1}∗ × H.Dom)→ {0, 1}` defined by

Algorithm HE(xk, (x, y))
(hk, fk)← xk ; z1 ← H(hk, y) ; z2 ← F(fk, (x, y)) ; Return z1 ⊕ z2

Here HE.Keys = F.Keys × H.Keys, HE.Dom = {0, 1}∗ × HE.NS with HE.NS =
H.Dom, and HE.Rng = {0, 1}`. The following says this hedged extractor achieves
PRF security and restricted real-or-random security.
Lemma 2. Let ` ≥ 1 be an integer. Let F: F.Keys×({0, 1}∗×{0, 1}∗)→ {0, 1}`

be a function family. Let H: H.Keys × H.Dom → {0, 1}` be a (1 + γ) · 2−`-
almost-XOR-universal hash function. Let HE = HE2[F,H] be the function family
associated to `, F and H as above.
1. If A is an adversary making q queries to its Fn oracle then there is an

adversary B (described in the proof) such that
Advprf

HE(A) ≤ Advprf
F (B) . (12)
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Adversary B also makes q queries to its Fn oracle and has running time
that of A plus the time for q computations of H.

2. Let NG be a nonce generator that produces outputs in the set H.Dom. If G is
an agnostic adversary making q queries to its RoR oracle and Advpred

NG (q, 1) ≤
2−m, then

Advror
HE,NG(G) ≤ q

2

√
γ + 2`

2m
. (13)

To prove this we first need some more definitions. Recall that for ε ∈ [0, 1], a func-
tion family H is ε-almost universal if Pr[H(hk, x) = H(hk, y) : hk←$ H.Keys] ≤ ε
for all distinct x, y ∈ H.Dom. For a function family H with H.Dom = {0, 1}∗ ×
{0, 1}∗, we say that H is ε-almost universal in the second input component if for
all x1, y1 ∈ {0, 1}∗ and all x2, y2 ∈ {0, 1}∗ with x2 6= y2, Pr[H(hk, (x1, x2)) =
H(hk, (y1, y2)) : hk←$ H.Keys] ≤ ε. For k ∈ N and ε ∈ [0, 1], a (k, ε)-strong ex-
tractor SE is a (standard model) family of functions such that Advror

E,NG(1, 0, 1) ≤
ε for all NG with Advpred

NG (1, 1) ≤ 2−k. This is a re-formulation of the standard re-
quirement that is clearly equivalent to it. The Leftover Hash Lemma, a celebrated
result by Impagliazzo, Levin, and Luby [20], states that an almost universal hash
function is a strong extractor:

Lemma 3 (Leftover Hash Lemma). Let γ, k > 0. Let H be an (1+γ)/|H.Rng|-
almost universal hash function family. Then H is an (k, ε)-strong extractor where

ε = 1
2

√
γ + |H.Rng|

2k
.

The original result is stated in a different formalism and a slightly more restricted
form, but it generalizes to the form stated here. (The formulation of the bounds
comes from [2].)

Since we use the nonce that is used in the hash function H also outside of
it, namely in the evaluation of the PRF F, we cannot immediately apply the
leftover-hash lemma. However, we show that if the function H is almost XOR-
universal, then the hedged extractor HE obtained by XORing the output of F to
the output of H is almost universal and therefore serves as a strong extractor.

Lemma 4. Let H : H.Keys × H.Dom → {0, 1}` be an ε-almost-XOR-universal
hash function. Let F : F.Keys×({0, 1}∗×{0, 1}∗)→ {0, 1}` a function family and
H.Dom ⊆ {0, 1}∗. Then HE as defined above is ε-almost-universal in the second
input component.

Proof. For all m,m′ ∈ {0, 1}∗ and n, n′ ∈ H.Dom with n 6= n′:

Pr [HE(xk, (m,n)) = HE(xk, (m′, n′)) : xk←$ HE.Keys]

= Pr
[
H(hk, n)⊕ F(fk, (m,n)) = H(hk, n′)⊕ F(fk, (m′, n′))

: (hk, fk)←$ H.Keys× F.Keys
]
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Game G(G)
St ← ε ; xk←$ E.Keys ; c←$ {0, 1} ; s← 0
StG ←$ GGEN

prep

c′←$ GRoR,EXPOSE
chal (StG , xk)

Return (c = c′)
RoR(m, η)
If s = 1 then return ⊥
(n,St)←$ NG(η,St)
If (c = 1) then r ← ERO(xk,m, n)
Else r←$ E.Rng
Return r
GEN(η)
(n,St)←$ NG(η,St)
EXPOSE

s← 1
Return St

Fig. 4. Hybrid game for E, as needed in the proof of Lemma 2.

≤ max
fk∈F.Keys

Pr
[
H(hk, n)⊕ H(hk, n′) = F(fk, (m,n))⊕ F(fk, (m′, n′))

: hk←$ H.Keys
]
≤ ε,

since for each fk ∈ F.Keys the term F(fk, (m,n))⊕F(fk, (m′, n′)) describes a fixed
value s ∈ {0, 1}` and H is ε-almost XOR-universal. ut

A strong extractor will only guarantee the outputs to be random and inde-
pendent of the seed if the inputs to the extractor, that is the nonces, do not
depend on the seed. Once the seed is exposed to the adversary, no guarantee on
further outputs can be given. Therefore, for the game Gror

HE,NG(G) we restrict our
attention to agnostic adversaries G.

Proof (Lemma 2). We first prove Equation (12). Adversary B starts by choosing
a seed hk←$ H.Keys uniformly at random. It then uses the assumed adversary A,
and whenever A makes a query Fn(x, y), then B first computes z1 ← H(hk, y)
and then makes a query z2 ← Fn(x, y), and returns z1 ⊕ z2. Finally, B provides
the same output as A. The view of A has the same distribution in Gprf

HE (A) and
in Gprf

F (B), and therefore the distribution of the output is also the same. This
implies Equation (12).

We prove Equation (13) using a hybrid argument similarly to Zuckerman [33,
Lemma 6]. The hybrid argument involves a game G as specified in Fig. 4 and
adversaries G1, . . . ,Gq that each query the oracleRoR only once. This is achieved
by having Gi answer the ith query of G by using the RoR oracle, by using for all
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previous queries uniformly random values and computing all subsequent values
by evaluating HE. In more detail, for all queries j = 1, . . . , i−1, the adversary Gi

will call its GEN(η) oracle and then sample a value from HE.Rng = {0, 1}`

uniformly at random. For the ith query, the adversary Gi will call RoR(m, η)
and obtain the output r, as well as the nonce generator’s state St through a
subsequent EXPOSE query. The answer to G will be r in this case. For all queries
j = i + 1, . . . , q, adversary Gi will compute the nonce via (nj ,St) ← NG(η,St)
and the output as HE(xk,m, nj). This is possible because it uses the seed xk
only after the challenge query. We can therefore specify the adversary as a pair
Gi = (Gi,prep,Gi,chal) as described in Fig. 4.

To conclude the hybrid argument, we first observe that the view of G in
Gror

HE,NG(G) with c = 1 is the same as its view in G(G1) with c = 1. Subsequently,
for each i = 1, . . . , q − 1, the view of G in G(Gi) with c = 0 is the same as in
G(Gi+1) with c = 1. Finally, the view of G in G(Gq) with c = 0 is the same as in
Gror

HE,NG(G) with c = 0.
We still have to bound the advantage of adversary Gi. By Lemma 4, we know

that HE is (1+γ)/2`-almost universal in its second input and therefore by a slight
generalization of Lemma 3 an (m, ε)-strong extractor for ε = 1/2

√
γ + 2`−m.

Fix i, then Gi,prep makes i − 1 queries to its GEN oracle. We can therefore
define a nonce generator RG(Gi,guess,NG) as follows: Set St ← ε and execute
(n,StG)←$ GGEN

i,guess with the oracle as defined in the game. Compute a random x
via (x,St)←$ NG(η,St) and output a pair (x, (St,StG)).

This implies that Advpred
RG(Gi,prep,NG)(1, 1) ≤ Advpred

NG (i, 1), since otherwise Gi,prep
could be used in the statement against the assumption on NG. But now we
can view Gi,chal as an adversary against HE in the original Gror game, and
2 Pr [HYBHE,NG(Gi)] − 1 ≤ Advror

SE,RG(Gi,prep,NG)(Gi,chal) ≤ ε. We obtain a factor
q through the hybrid argument; this completes the proof. ut

4 Nonce-based public-key encryption

In this section we define nonce-based public-key encryption, giving first a syntax
and then two security goals, NBP1 and NPB2. We give a construction, simulta-
neously meeting both goals, based on a hedged extractor. Instantiating the latter
via our constructions of Section 3 yields concrete nonce-based PKE schemes, one
in the ROM and the other in the standard model.

Syntax. A nonce-based public-key encryption scheme NPE specifies the follow-
ing. Receiver key-generation algorithm NPE.Kg returns an encryption key ek and
associated decryption key dk. Sender seed-generation algorithm NPE.sKg returns
a seed xk. Encryption algorithm NPE.Enc takes ek, xk, message m ∈ {0, 1}∗ and
nonce n from nonce set NPE.NS to return a ciphertext c. This algorithm is de-
terministic. Decryption algorithm NPE.Dec (also deterministic) takes ek,dk and
ciphertext c to return a value in {0, 1}∗ ∪ {⊥}. The scheme NPE is correct if for
all (ek,dk) ∈ [NPE.Kg], all xk ∈ [NPE.sKg], all m ∈ {0, 1}∗ and all n ∈ NPE.NS
we have NPE.Dec(ek,dk,NPE.Enc(ek, xk,m, n)) = m.
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Game Gnbp1
NPE,NG(A)

(ek, dk)←$ NPE.Kg ; xk←$ NPE.sKg
b←$ {0, 1} ; St ← ε ; C, S0, S1 ← ∅
b′←$AENC,DEC,RO(ek)
Return (b = b′)

ENC(m0,m1, η)
If (|m0| 6= |m1|) then return ⊥
(n,St)←$ NG(η,St)
If ((m0, n) ∈ S0) then return ⊥
If ((m1, n) ∈ S1) then return ⊥
S0 ← S0 ∪ {(m0, n)}
S1 ← S1 ∪ {(m1, n)}
c← NPE.EncRO(ek, xk,mb, n)
C ← C ∪ {c}
Return c

DEC(c)
If (c ∈ C) then m← ⊥
Else m← NPE.DecRO(ek, dk, c)
Return m

RO(x, l)
If T [x, l] = ⊥ then T [x, l]←$ {0, 1}l

Return T [x, l]

Game Gnbp2
NPE,NG(A)

(ek, dk)←$ NPE.Kg
xk←$ NPE.sKg
b←$ {0, 1} ; St ← ε ; C ← ∅
b′←$AENC,DEC,RO(ek, xk)
Return (b = b′)

ENC(m0,m1, η)
If (|m0| 6= |m1|) then return ⊥
(n,St)←$ NG(η,St)
c← NPE.EncRO(ek, xk,mb, n)
C ← C ∪ {c}
Return c

DEC(c)
If (c ∈ C) then return ⊥
m← NPE.DecRO(ek, dk, c)
Return m

RO(x, l)
If T [x, l] = ⊥ then T [x, l]←$ {0, 1}l

Return T [x, l]

Fig. 5. Games for security goals for nonce-based asymmetric encryption
scheme NPE. Both are relative to nonce generator NG.

The receiver key-generation algorithm has the same role as in a random-
ized PKE scheme. The sender seed-generation algorithm is a new element of
nonce-based PKE schemes. Encryption is changed to take a nonce rather than
randomness and, importantly, is now deterministic. Decryption is as in a stan-
dard PKE scheme. Unlike symmetric nonce-based encryption, the decryption
algorithm is not given the nonce.

Nonce-based encryption is a sender-side hardening and can be added to an
existing encryption scheme in such a way that the receiver is oblivious to its
presence and the receiver implementation needs no changes.

Security definitions. Let NPE be a nonce-based PKE scheme. Let NG be
a nonce generator returning nonces in NPE.NS. We associate to NPE, NG and
adversary A the games of Fig. 5. We define the advantages of A in these games



18 Mihir Bellare, Björn Tackmann

via
Advnbp1

NPE,NG(A) = 2 Pr[Gnbp1
NPE,NG(A)]− 1

and
Advnbp2

NPE,NG(A) = 2 Pr[Gnbp2
NPE,NG(A)]− 1 ,

respectively. The games are described in the ROM; standard-model definitions
are derived by considering only schemes and adversaries that do not query the
RO oracle. The notation “nbp” stands for “nonce-based privacy.” We proceed to
discuss the definitions.

Game Gnbp1
NPE,NG(A) formalizes security in the case where the sender’s seed is

not exposed, captured in the formalism by the fact that the adversary is not given
the seed as input, while game Gnbp2

NPE,NG(A) formalizes security in the case where
the sender’s seed is exposed, formalized by its being given to the adversary as
input. Both ask for indistinguishability-style security under a chosen-ciphertext
attack. In Gnbp1

NPE,NG(A), the natural restriction that one would consider is to ask
that nonces not repeat. The restriction we make is weaker, resulting in a stronger
security condition, namely that message-nonce pairs may not repeat. (Thus,
security is provided even if a nonce repeats, as long as the message is different.)
We will achieve this notion for any nonce generator, meaning we get very good
privacy with minimal restrictions on nonces. In Gnbp2

NPE,NG(A), no restriction is
made, so a priori the notion is stronger, but we will achieve it only if the hedged
extractor is ror-secure, which will be further reduced to unpredictability of the
nonce generator. Thus, in this case, security requires unpredictable nonces.

In game Gnbp2
NPE,NG(A), we say that adversary A is agnostic if its ENC,DEC

queries do not depend on the seed xk. More formally, there exists a pair (A1,A2)
of algorithms such that AENC,DEC,RO(ek, xk) does the following:

St←$AENC,DEC,RO
1 (ek) ; c′ ← ARO

2 (xk,St) ; Return c′ .

Scheme. We specify a scheme NPE that achieves both the NPB1 and NPB2 se-
curity notions simultaneously, that is, it guarantees security if either the sender’s
state remains secret and as long as the message-nonce pairs are unique, or even if
the sender’s state is leaked to the adversary as long as the nonces are sufficiently
unpredictable. The construction is actually a transform R2NPE that takes a
base, randomized PKE scheme PE and a hedged extractor HE to return a nonce-
based PKE scheme NPE = R2NPE[PE,HE] whose algorithms are described in
Fig. 6. The nonce space is that of the hedged extractor, i.e. NPE.NS = HE.NS.
The construction requires that the randomness provided by HE is sufficient, i.e.,
PE.rl = HE.ol.

We first prove that the scheme achieves NBP1-security, that is, it is secure as
a nonce-based scheme as long as the sender’s seed remains secret. The theorem
bounds the adversaries advantage by advantages of other, related adversaries
against the underlying probabilistic public-key scheme and the PRF-property of
the hedged extractor HE. For the constructions described in Section 3, the latter
advantage is then bounded by Lemmas 1 (for the ROM construction) and 2 (for
the standard-model construction), respectively.
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Algorithm NPE.Kg
(ek,dk)←$ PE.Kg
Return (ek,dk)

Algorithm NPE.sKg
xk←$ HE.Keys
Return xk

Algorithm NPE.EncRO(ek, xk,m, n)
r ← HERO(xk, (m,n))
c← PE.Enc(ek,m; r)
Return c
Algorithm NPE.Dec(ek,dk, c)
m← PE.Dec(ek,dk, c)
Return m

Fig. 6. The nonce-based public-key encryption scheme NPE, based on prob-
abilistic public-key encryption scheme PE and hedged extractor HE. The
nonce space is the same as for the hedged extractor.

Theorem 5. Let PE be a (standard, randomized) public-key encryption scheme.
Let HE be a hedged extractor. Let nonce-based public-key encryption scheme
NPE = R2NPE[PE,HE] be associated to them as above. Let NG be a nonce
generator. Let A be an adversary making at most q1 queries to its ENC oracle,
q2 queries to its DEC oracle, and q3 queries to its RO oracle. Then the proof
specifies adversaries B and G such that

Advnbp1
NPE,NG(A) ≤ 2Advprf

HE(G) + Advind
PE(B) , (14)

where adversary B makes at most q1 queries to its ENC oracle and q2 queries
to its DEC oracle; in terms of computation it evaluates NG for q1 times and
manages an array of generated ciphertexts. Adversary G makes at most q1 queries
to its Fn oracle and q3 queries to its RO oracle; it generates keys for PE and
compute q1 encryptions and q2 decryptions in addition to the computation of A.

Proof. Adversary B obtains ek and starts by setting St ← ε, S0 ← ∅, and S1 ← ∅.
Adversary B then runs the adversary A internally on input ek. For queries
ENC(m0,m1, η), adversary B computes (n,St)←$ NG(η,St), checks whether
(m0, n) ∈ S0 or (m1, n) ∈ S1, and returns ⊥ in that case. Otherwise, it queries
its own oracle ENC(m0,m1) and returns the result to A. Queries DEC(c) are
answered using the respective oracles in the game, and potential queries RO(x, l)
are answered by emulating a random oracle via lazy sampling as also described
in the game.

For each d ∈ {0, 1}, adversary Gd against the PRF initializes St ← ε, S0 ← ∅,
and S1 ← ∅ as B and generates a key pair (ek,dk)←$ PE.Kg. Adversary Gd

then runs adversary A on input ek. Upon a query ENC(m0,m1, η) from A,
adversary Gd computes (n,St)←$ NG(η,St), checks whether (m0, n) ∈ S0 or
(m1, nonce) ∈ S1, and returns ⊥ in that case. Gd gets r from its oracle Fn(md, n),
computes c← PE.Enc(ek,md; r) and returns c. Queries DEC(c) are answered by
computing m ← PE.Dec(ek,dk, c) and returning m. Potential queries RO(x, l)
are referred to the random oracle provided in the game. When A provides its
output b′, then Gd outputs b′ ⊕ d.
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We define a hybrid game G in which all computations are performed as before,
except that in the encryption with a new pair of message mb and nonce n a fresh
random string r ← {0, 1}` is used. The difference with the game Gnbp1

NPE,NG(A)
can be highlighted as described in game G in Fig. 7

Game G
...
S1 ← S1 ∪ {(m1, n)}
c← NPE.EncRO(ek, xk,mb, n)
r←$ {0, 1}`

c← PE.Enc(ek,mb; r)
C ← C ∪ {c}
Return c
...

Game H
...
(n,St)←$ NG(η,St)
c← NPE.EncRO(ek, xk,mb, n)
r←$ {0, 1}`

c← PE.Enc(ek,mb; r)
C ← C ∪ {c}
Return c
...

Fig. 7. Intermediate games used in the proofs of Theorem 5 (left) and The-
orem 6 (right).

The view of A in G is exactly the same as in Gind
PE (B). Furthermore, we

observe that

2 Pr[Gprf
HE (G0)] = Pr[Gnbp1

NPE,NG(A)|b = 0]− Pr[G|b = 0] + 1,

the reason is that if the bit b = 0 is chosen in Gprf
HE (G0), then the view of A

is exactly as in G with b = 0; all ciphertexts are encryptions of m0 with fresh
randomness. Analogously, if b = 1 is chosen in Gprf

HE (G0), then the view of A is
exactly as in Gnbp1

NPE,NG(A) with b = 0; all ciphertexts are encryptions of m0 with
randomness computed via NG and HE from the message m0 and the input η,
but in this case G0 outputs the “wrong” bit. In the same sense,

2 Pr[Gprf
HE (G1)] = Pr[Gnbp1

NPE,NG(A)|b = 1]− Pr[G|b = 1] + 1,

since if the bit b is chosen as b = 0 in Gprf
HE (G0), then the view of A is exactly as

in G with b = 1; all ciphertexts are encryptions of m1 with fresh randomness.
This is the reason for G1 to invert the output of A. Overall, we obtain

Advnbp1
NPE,NG(A) = Pr[Gnbp1

NPE,NG(A)|b = 0] + Pr[Gnbp1
NPE,NG(A)|b = 1]− 1

= Pr[Gnbp1
NPE,NG(A)|b = 0]− Pr[G|b = 0]

+ Pr[Gnbp1
NPE,NG(A)|b = 1]− Pr[G|b = 1] + 2 Pr[G]− 1

≤ 2 Pr[Gprf
HE (G0)]− 1 + 2 Pr[Gprf

HE (G1)]− 1 + Advnbp1
PE (B)
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= Advprf
HE(G0) + Advprf

HE(G1) + Advnbp1
PE (B).

The proof concludes by defining G as choosing G0 or G2 with probability 1/2
each. ut

The property of a hedged extractor to serve simultaneously as extractor and
as a PRF implies that the scheme described above is also secure even if the
sender’s seed leaks, as long as the nonces are sufficiently unpredictable. The
reduction in the theorem below preserves agnosticity, meaning if A is agnostic,
so is G. This allows us to draw conclusions based on Lemma 2 in the case of the
standard-model hedged extractor.

Theorem 6. Let PE be a (standard, randomized) public-key encryption scheme.
Let HE be a hedged extractor. Let nonce-based public-key encryption scheme
NPE = R2NPE[PE,HE] be associated to them as above. Let NG be a nonce
generator. Let A be an adversary making at most q1 queries to its ENC oracle,
q2 queries to its DEC oracle, and q3 queries to its RO oracle. Then the proof
specifies adversaries B and G such that

Advnbp2
NPE,NG(A) ≤ 2Advror

HE,NG(G) + Advind
PE(B) , (15)

where adversary B makes at most q1 queries to its ENC oracle and q2 queries to
its DEC oracle, and emulates a random oracle for q3 queries. Adversary G makes
at most q1 queries to its RoR oracle and q3 queries to its RO oracle; it generates
keys for PE and computes q1 encryptions and q2 decryptions in addition to the
computation of A. Furthermore, if A is agnostic, then G is also agnostic.

Proof. The proof follows the same ideas as the one for Theorem 5. Adversary B
against the underlying public-key encryption scheme PE behaves as follows. It
obtains an encryption key ek as an input and generates a seed xk←$ HE.Keys,
and then runs adversary A on input (ek, xk). Upon a query ENC(m0,m1, η)
by A, adversary B queries its oracle ENC(m0,m1) and returns the result to A.
Queries DEC(c) are answered by making the same query to its own oracle; the
queries RO(x, l) are answered by emulating a random oracle via lazy sampling.
Adversary B outputs the same output bit as A.

For each d ∈ {0, 1}, adversary Gd against the extractor behaves as follows. It
obtains an extractor seed xk ∈ HE.Keys, generates a key pair (ek,dk)←$ PE.Kg,
and then runs adversary A on input (ek, xk). Upon a query ENC(m0,m1, η)
from A, adversary Gd calls RoR(md, η) to obtain a random string r. It then
computes c← PE.Enc(ek,md; r) and returns c. Queries DEC(c) are answered by
computing m ← PE.Dec(ek,dk, c) and returning m. Potential queries RO(x, l)
are referred to the random oracle provided in the game. When A provides its
output b′, then Gd outputs b′ ⊕ d. Note that Gd uses the seed only through A,
and if A uses it only after all encryption queries, then Gd uses it only after all
RoR queries. Thus, if A is agnostic, then Gd is also agnostic.

We define a hybrid game H in which all computations are performed as
before, except that in the encryption a fresh random string r ← {0, 1}` is used;
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the difference with the game Gnbp2
NPE,NG(A) is highlighted by the boxed code in

Fig. 7.
The view of A in H is exactly the same as in Gnbp2

PE (B). Furthermore, we
observe that

2 Pr[Gror
HE,NG(G0)] = Pr[Gnbp2

NPE,NG(A)|b = 0]− Pr[H|b = 0] + 1,

the reason is that if the bit b = 0 is chosen in Gror
HE,NG(G0), then the view of A

is exactly as in H with b = 0; all ciphertexts are encryptions of m0 with fresh
randomness. Analogously, if b = 1 is chosen in Gror

HE,NG(G0), then the view of A is
exactly as in Gnbp2

NPE,NG(A) with b = 0; all ciphertexts are encryptions of m0 with
randomness computed via HE and NG from the message m0 and the input η,
but in this case G0 outputs the “wrong” bit. In the same sense,

2 Pr[Gror
HE,NG(G1)] = Pr[Gnbp2

NPE,NG(A)|b = 1]− Pr[H|b = 1] + 1,

since if the bit b is chosen as b = 0 in Gror
HE,NG(G0), then the view of A is exactly

as in H with b = 1; all ciphertexts are encryptions of m1 with fresh randomness.
This is the reason for G1 to invert the output of A. The final computation follows
exactly as in Theorem 5. ut

Settings with multiple senders and multiple receivers. The security
properties defined above take into account only a single sender and a single
receiver. Realistic settings, however, involve multiple senders and multiple re-
ceivers. This means that, on the one hand, encryptions toward the same receivers
will be made with respect to different sender seeds. On the other hand, senders
will use the same seed to generate randomness for encryptions toward different
receivers. To achieve security in these settings, we extend the games Gnbp2

NPE,NG(A)
and Gnbp1

NPE,NG(A) by the following oracle:

ENC2(ek,m, η)
(n,St)←$ NG(η,St)
c← NPE.Enc(ek, xk,m, n)
Return c

The scheme discussed above can easily be shown to achieve the correspond-
ingly modified games; the hedged extractor provides uniform and independent
randomness for each encryption.

Extending this game to multiple senders and multiple receives is done by
generating multiple sets of keys and seeds in the game and extending the oracles
with arguments to select the desired sender and/or receiver of the messages to
be processed. The proof then follows by two hybrid arguments, one for reducing
the number of senders, and one for reducing the number of receivers. The oracle
ENC2 is required in the step to reduce the number of receivers to simulate
encryptions toward the receivers not captured in the game.
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5 Nonce-based signatures

In this section we define and construct nonce-based digital signature schemes.

Background. Eliminating randomness in signing is not new and is easily done.
A simple way to convert a given randomized EUF-CMA digital signature scheme
DS into a deterministic one is as follows. Let F be a PRF. The key-generation
algorithm lets (sk, vk)←$ DS.Kg and fk←$ F.Keys, and stores the pair (fk, sk) as
the secret signing key of the new scheme. A signature on a messagem ∈ {0, 1}∗ is
then computed by first evaluating r ← F(fk,m) and then s ← DS.Sig(sk,m; r).
This method goes back to MNPV [23] and it is easy to show that it works,
meaning the constructed, deterministic signature scheme retains the EUF-CMA
security of the starting randomized one assuming F is a PRF.

The above solution, however, changes the secret key, which is not always de-
sirable. For example it may be a problem to retrofit deployed schemes with the
modification, or if the same signature key is used by multiple applications and
the format cannot easily be changed. A folklore solution is to leave the keys un-
changed and obtain the coins r via a random oracle applied to the existing secret
key sk and the message. In the case that DS is ECDSA, this was proven to work
by KM [21]. It was proven to work in general (meaning, for any base EUF-CMA
scheme) by BPS [9]. Such de-randomization is used in the Ed25519 signature
scheme [11] and is specified for DSA and ECDSA in an RFC by Pornin [25].

Nonce-based signatures. In our model, the signer has a secret key as well
as a seed. Signing uses both these and a nonce, and is deterministic. If the seed
(and secret key) are kept private, we get the usual EUF-CMA level of security,
regardless of how nonces are generated. So far this is providing the same security
as deterministic signature schemes. The added condition is that if the seed is
exposed (but the secret key isn’t) then we still retain security as long as the
nonces are unpredictable.

The secret key and seed are held by the same entity, namely the signer.
So one may ask how it could be that the seed is exposed but the secret key
isn’t. That is, either the system is secure, in which case both are secure, or not,
in which case both are exposed. If so, indeed, nonce-based signatures do not
provide anything over and above classical deterministic signatures. However, we
can imagine settings where the level of security for the secret key and seed are
different. For example the secret key may be already stored in hardware, and the
seed not. The seed may be stored at a different place than the signature scheme’s
secret key, and it may be re-generated at any frequency that seems appropriate
for the application (ranging from never, at fixed time intervals, at every system
reboot, or at every signature operation). Being a signer-only modification of the
signature generation, a user may also use different seeds on different machines,
or use the modified scheme with the standard probabilistic one.

The scheme we propose is again based on hedged extractors.

Definitions. A nonce-based signature scheme NDS specifies the following. Signer
key-generation algorithm NDS.Kg returns a signature key sk, a verification key
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Game Gnbuf1
NDS,NG(A) / Game Gnbuf2

NDS,NG(A)

(sk, vk, xk)←$ NDS.Kg
St ← ε ; M ← ∅
(m, s)←$ASIG,RO( vk , xk )
v ← NDS.vrf(vk,m, s)
Return ((v = 1) ∧ (m /∈M))

SIG(m, η)
(n,St)←$ NG(η,St)
s← NDS.sign(sk, xk,m, n)
M ←M ∪ {m}
Return s

RO(x, l)
If T [x, l] = ⊥ then T [x, l]←$ {0, 1}l

Return T [x, l]

Algorithm NDS.Kg
xk←$ HE.Keys
(sk, vk)←$ DS.Kg
Return (sk, vk, xk)

Algorithm NDS.signRO(sk, xk,m, n)
r ← HERO(xk, (m,n))
c← DS.Sig(sk,m; r)
Return c

Fig. 8. Games for security goals for nonce-based digital scheme NDS relative
to nonce-generator NG, and our nonce-based digital signature scheme.

vk, and a seed xk. Deterministic signature algorithm NDS.sign takes sk, xk,
message m ∈ {0, 1}∗, and nonce n from nonce set NDS.NS, to return a sig-
nature s ∈ {0, 1}NDS.ol. Deterministic verification algorithm NDS.vrf takes vk,
message m ∈ {0, 1}∗, and candidate signature s ∈ {0, 1}NDS.ol, to return a
bit b ∈ {0, 1}. The scheme NDS is correct if for all (sk, vk, xk) ∈ [NDS.Kg],
all m ∈ {0, 1}∗ and n ∈ NDS.NS, the verification of true signatures succeeds:
NDS.vrf(vk,m,NDS.sign(sk, xk,m, n)) = 1.

To formalize security, we consider the games Gnbuf1
NDS,NG(A) and Gnbuf2

NDS,NG(A)
in Fig. 8 associated to nonce-based signature scheme NDS, nonce generator NG
returning nonces in NDS.NS, and adversary A, where the second game includes
the boxed code and the first does not. We let

Advnbuf1
NDS,NG(A) = Pr[Gnbuf1

NDS,NG(A)] , and

Advnbuf2
NDS,NG(A) = Pr[Gnbuf2

NDS,NG(A)] .

As usual the games are described in the ROM, with standard-model definitions
are derived by considering only schemes and adversaries that do not query the
RO oracle. The difference between the games is tiny, and in just one line of the
code, namely that in the second game, the adversary gets the seed xk as an
additional input. The first game captures the case that the seed is not exposed,
and we will guarantee security for any nonce generator. The second game cap-
tures the case that the seed is exposed, in which case we will provide security
for unpredictable nonce generators.
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Regular signature schemes can be viewed as a special case of nonce-based ones
where the seed xk is defined to be the empty string and security is measured
relative only to the nonce generator that always returns a uniformly random
string.

In game Advnbuf2
NDS,NG(A), we say that adversaryA is agnostic if its SIG queries

do not depend on the seed xk. More formally, there exists a pair (A1,A2) of
algorithms such that ASIG,RO(vk, xk) does the following:

St←$ASIG,RO
1 (vk) ; (m, s)← ARO

2 (xk,St) ; Return (m, s) .

Scheme. We specify a transform R2NDS that takes a (standard, randomized)
signature scheme DS and a hedged extractor HE and returns the nonce-based sig-
nature scheme NDS = R2NDS[DS,HE] whose algorithms are described in Fig. 8.
The nonce space is the same as for the hedged extractor, i.e. NDS.NS = HE.NS.
The length of the signatures is preserved, NDS.ol = DS.ol. The construction
requires that HE provides sufficient randomness, i.e., DS.rl = HE.ol.

We first show that the described scheme NDS is indeed secure according to
the game Gnbuf1

NDS,NG(A), that is, in case the seed is not exposed. In this case and
if the hedged extractor is a good pseudo-random function, we achieve the same
security guarantees as achieved by the original scheme if proper randomness is
used.
Theorem 7. Let DS be a (standard, randomized) digital-signature scheme. Let
HE be a hedged extractor. Let nonce-based digital signature scheme NDS =
R2NDS[DS,HE] be associated to them as above. Let NG be a nonce genera-
tor. Let A be an adversary making at most q1 queries to its SIG oracle and q2
queries to its RO oracle. Then the proof specifies adversaries B and G such that

Advnbuf1
NDS,NG(A) ≤ Advprf

HE(G) + Advuf
DS(B) , (16)

where adversary B makes at most q1 queries to its SIG oracle; besides emulating
a Random Oracle it performs almost the same computation as A. Adversary G
makes at most q1 queries to its RoR oracle and q2 queries to its RO oracle; in
terms of computation it generates a key pair for DS and computes q1 signatures.
Proof. Adversary B against DS behaves as follows. When started with input vk,
it executesA(vk). Upon a query SIG(m, η) fromA, adversary B queries SIG(m),
obtaining a signature s, and returns s to A. Queries to the oracle RO are exactly
as in the game, that is, by lazy sampling of a random function.

Adversary G against the hedged extractor behaves as follows. It generates
a key pair (sk, vk)←$ DS.Kg, and then runs adversary A on input vk. Upon a
query SIG(m, η) from A, adversary G calls Fn(m, η) to obtain a random string r.
It then computes s← DS.Sig(sk,m; r) and returns s. Potential queries RO(x, l)
are referred to the random oracle provided in the game. When A provides its
output (m, s), then G outputs the result of DS.Ver(vk,m, s) = 1.

We define a hybrid game G that is defined almost identically with Gnbuf1
NDS,NG(A),

with the only difference that the randomness used in SIG queries is uniformly
random instead of derived via the hedged extractor. The difference with the
game Gnbuf1

NDS,NG(A) is highlighted in Fig. 9.
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Game G
...
SIG(m, η)
(n,St)←$ NG(η,St)
s← NDS.sign(sk, xk,m, n)
r←$ {0, 1}`

s← DS.Sig(sk,m; r)
M ←M ∪ {m}
Return s
...

Game H
...
SIG(m, η)
(n,St)←$ NG(η,St)
s← NDS.sign(sk, xk,m, n)
r←$ {0, 1}`

s← DS.Sig(sk,m; r)
M ←M ∪ {m}
Return s
...

Fig. 9. Intermediate games used in the proofs of Theorem 7 (left) and The-
orem 8 (right).

The view of A in G is the same as in Guf
DS(B); in both cases the signatures

are computed with fresh randomness.
We observe that

2 Pr[Gprf
HE (G)] = Pr[Gprf

HE (G)|b = 1] + Pr[Gprf
HE (G)|b = 0]

= Pr[Gprf
HE (G)|b = 1] + 1− Pr[¬Gprf

HE (G)|b = 0]

= Pr[Gnbuf1
NDS,NG(A)] + 1− Pr[Guf

DS(B)],

the reason is that if the bit b is chosen as b = 0 in Gprf
HE (G), then the view of

A is exactly as in Guf
DS(B); all signatures are generated using fresh randomness.

Analogously, if b is chosen as b = 1 in Gprf
HE (G), then the view of A is exactly as in

Gnbuf1
NDS,NG(A) with b = 0; all signatures are generated with randomness computed

via HE and NG from the message m and the input η. For b = 1 the probability of
G guessing correctly is the same as the probability of A forging the signature, but
for b = 0 the probability of G guessing correctly is the same as the probability
of A not forging a signature. The above equation implies

Advprf
HE(G) = Advnbuf1

NDS,NG(A)−Advuf
DS(B)

and therefore the inequality claimed in the theorem statement. ut

The second statement concerns the security in the sense of Gnbuf2
NDS,NG(A), that

is, the signatures are indeed secure even if the seed is exposed, as long as the
nonces contain a sufficient amount of min-entropy. For the scheme based on our
standard-model hedged extractor, we again restrict the statement to agnostic
adversaries A. The scheme based on our ROM-based hedged extractor is again
secure against all (i.e., not necessarily agnostic) adversaries.
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Theorem 8. Let DS be a (standard, randomized) digital-signature scheme. Let
HE be a hedged extractor. Let nonce-based digital signature scheme NDS =
R2NDS[DS,HE] be associated to them as above. Let NG be a nonce genera-
tor. Let A be an adversary making at most q1 queries to its SIG oracle and q2
queries to its RO oracle. Then the proof specifies adversaries B and G such that

Advnbuf2
NDS,NG(A) ≤ Advror

HE,NG(G) + Advuf
DS(B) , (17)

where adversary B makes at most q1 queries to its SIG oracle; besides emulating
a Random Oracle it performs almost the same computation as A. Adversary G
makes at most q1 queries to its RoR oracle and q2 queries to its RO oracle; in
terms of computation it generates a key pair for DS and computes q1 signatures.
Furthermore, if A is agnostic, then G is also agnostic.

Proof. Adversary B against DS behaves as follows. When started with input vk,
it samples xk←$ HE.Keys and executes A(vk, xk). Upon a query SIG(m, η) from
A, adversary B queries SIG(m), obtaining a signature s, and returns s to A.
Queries to the oracle RO are exactly as in the game, that is, by lazy sampling
of a random function.

Adversary G against the hedged extractor behaves as follows. It obtains a
seed xk ∈ HE.Keys and generates a key pair (sk, vk)←$ DS.Kg, and then runs
adversaryA on input (vk, xk). Upon a query SIG(m, η) fromA, adversary G calls
RoR(m, η) to obtain a random string r. It then computes s← DS.Sig(sk,m; r)
and returns s. Potential queries RO(x, l) are referred to the random oracle pro-
vided in the game. When A provides its output (m, s), then G outputs the result
of DS.Ver(vk,m, s) = 1.

We define a hybrid game H that is defined almost identically with Gnbuf2
NDS,NG(A),

with the only difference that the randomness used in SIG queries is uniformly
random instead of derived via the hedged extractor. The difference with the
game Gnbuf2

NDS,NG(A) is highlighted in Fig. 9.
The view of A in H is the same as in Guf

DS(B); in both cases the signatures
are computed with fresh randomness. The remainder of the proof follows almost
exactly as in Theorem 7. ut
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