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Abstract. Crépeau and Santha, in 1991, posed the question of reversibil-
ity of functionalities, that is, which functionalities when used in one direc-
tion, could securely implement the identical functionality in the reverse
direction. Wolf and Wullschleger, in 2006, showed that oblivious trans-
fer is reversible. We study the problem of reversibility among 2-party
SFE functionalities, which also enable general multi-party computation,
in the information-theoretic setting.

We show that any functionality that enables general multi-party compu-
tation, when used in both directions, is reversible. In fact, we show that
any such functionality can securely realize oblivious transfer when used
in an a priori fixed direction. This result enables secure computation us-
ing physical setups that parties can only use in a particular direction due
to inherent asymmetries in them.
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1 Introduction

In 1991, Crépeau and Santha [7] posed the following question. Given oblivious
transfers in one direction can we implement oblivious transfer in the opposite
direction? That is, given oblivious transfers where Alice is the sender and Bob is
the receiver, can we securely realize an oblivious transfer where Bob is the sender
and Alice is the receiver? Wolf and Wullschleger [22] resolved this question in
the affirmative. This result inspired several interesting results in cryptography,
like offline generation of correlated private randomness independent of the target
functionality being computed in secure computation [4,12] and (comparatively)
easily introducing adaptive-security to secure computation protocols [18]. The
proof of reversibility for oblivious transfer of [22] appears to be intimately tied to
the specifics of the oblivious transfer functionality. Could reversibility, however,
be a more general phenomenon?

Some functionalities, like simultaneous exchange, are inherently reversible.
But we are most interested in functionalities which provide us general secure [3]
multi-party computation [23,9], i.e. the complete functionalities. Restricted to the
class of complete functionalities, the line of inquiry initiated in 1991 naturally
leads to the following fundamental question.

Which Complete Functionalities can be Reversed?

We study this problem in the two-party setting for secure function evaluation
(SFE) functionalities. Our work provides a full characterization of SFE function-
alities that are reversible as well as sufficient for information-theoretic general
secure multi-party computation. In fact, we show that every complete SFE func-
tionality is reversible. In other words, we show that if using a functionality in
both directions is powerful enough to enable general secure function evaluation,
then in fact using the functionality in just one direction is enough.

Aside from its inherent theoretical appeal, the question of reversibility is also
motivated by asymmetries that may be present in different systems. For example,
if some physical phenomenon between two parties Alice and Bob is being utilized
in order to carry out secure computations, it may be that only a powerful entity
can play the role of Alice, but a weak device can play the role of Bob. In such an
scenario, it would be critical to ensure that the cryptographic advantage offered
by the physical phenomenon is sufficient for secure computation even if roles
cannot be reversed.

We obtain our characterization of reversibility, in fact, by studying the more
general problem of characterizing all 2-party complete functionalities that can be
used in fixed roles to enable secure information-theoretic two-party computation,
i.e. the characterization of fixed-role completeness.

1.1 Owur contributions

In this work, we study 2-party secure function evaluation (SFE) functionalities in
the information-theoretic UC-setting [3]. Our first result shows that any complete
2-party SFE functionality is reversible.



Informal Theorem 1 (Reversibility Characterization) Any complete 2-party
SFE functionality F is reversible.

Our construction is also constant rate. That is, n instances of the functionality
in one direction is used to implement @(n) instances of the functionality in the
reverse direction.

A functionality F is complete if it can be used (in both directions) to securely
realize the oblivious transfer functionality. For the stronger security notion of
fixed-role completeness, we show that any complete functionality, when used in
fixed-role, is also complete.

Informal Theorem 2 (Fixed-role Completeness Characterization) Any
complete 2-party SFE functionality F is also fized-role complete.

Similar to the previous result, this result is also constant rate. That is, using n
instances of the F functionality in a fixed direction, we implement ©(n) instances
of the oblivious transfer functionality.

Additionally, we also show that the commitment functionality can be securely
realized in the F-hybrid if and only if F is complete (see Corollary 1). The proof
is sketched in Section 1.4. This rules out the possibility of a functionality F
which is of an intermediate complerity in the following sense: it enables the
computation of the commitment functionality (a non-trivial functionality) but
not the (all powerful) oblivious transfer functionality.

1.2 Prior Works

The problem of reversibility was initially posed by Crépeau and Santha [7] and
the reversibility of oblivious transfer (and oblivious linear function evaluation)
was exhibited by Wolf and Wullschleger [22].

There are several results characterizing completeness of functionalities in dif-
ferent settings. The oblivious transfer functionality was identified by Wiesner and
Rabin [20,21]. Brassard et al. [2] showed the equivalence between various flavors
of OT. In a seminal work, Kilian showed the active-completeness of OT [13].
Prior to this, the passive-completeness of OT was shown in [11,10]. Crépeau and
Kilian showed that noisy channels are active-complete [5].

The first characterization of completeness appeared in the seminal work of
Kilian [14]. In the asymmetric SFE setting, Beimel et al. [1] provided a char-
acterization. Kilian, in another seminal work in 2000, vastly generalized these
results [15]. Subsequent works extended Kilian’s result for active-completeness
in two different directions: [6] considered “channel functions;” [17] considered
deterministic functions.

Recently, the full characterization of 2-party complete functionalities in the
semi-honest [19] and malicious [16] settings were obtained.

1.3 Technical Overview: Reversibility of Functionalities

Let F be a randomized two-party functionality between parties A and B, and
let Feore denote the redundancy-free core of F (obtained after removing redun-



dancies from F, as described in Section 3.2 of our paper). Kraschewski et al. [16]
showed that F is complete <= Fcore is not simple.

To develop intuition for ‘simple’ functions, consider the following example of
a ‘simple’ two-party functionality Feein. Feoin ignores the inputs of both parties
and just outputs a common uniform independent random bit to both parties.
The formal notion of a simple function generalizes this to arbitrary random-
ized functions, by ensuring that if the parties start with independent inputs,
then conditioned on the “common information” present after evaluating Feore,
the views of the two players remain independent of each other. Naturally then,
a non-simple function is one where the views of the two players are not inde-
pendent conditioned on the “common information” present after evaluating Feore
on independent inputs. For the rest of this exposition, we will assume that F is
redundancy-free, and thus F = Feore-

Kraschewski et al. [16] also showed how to obtain UC commitments from
either A — B or B — A, but not necessarily in both directions, using any non-
simple F. W.l.o.g. for our case analysis and the examples below, we assume that
F already gives commitments from A — B.

The main technical challenge in our paper, is to obtain commitments from
B — A using any complete (equivalently, non-simple) F. This is done by parti-
tioning all complete functionalities into three exhaustive cases: 1(a), 1(b) and 2.
We will illustrate how we achieve this with the help of representative examples
for each case (Figures 1, 2 and 3). We define the notion of ‘extreme views’ and
‘intersection’ below, after which we describe our partition and explain the main
ideas that allow us to obtain commitments in each case.

Extreme Views: Consider the example function matrices in Figures 1, 2
and 3. For simplicity, these examples have no redundancies, and are therefore
equivalent to their core. Alice views are rows, and each row is a tuple (z,w):
where x is her input and w is the output she received. Bob views are columns and
each column is a tuple (y, z), where y is his input and z is his output. L denotes no
input. Double-lines separate sets of columns that correspond to the same input
of Bob. The entry in row (z,w) and column (y, z) denotes Prx[(w, 2) | (x,y)].

A view of Bob corresponds to a column in the matrix, labelled by the (input,
output) for that view. An extreme view of Bob is a a column that cannot be
written as a convex linear combination of other columns in the matrix. Note that
for any non-simple F, both parties will have at least one extreme view.

Warmup: Extreme views guarantee binding.

Looking ahead, extreme views will form an important part of our analysis.
Consider the following illustrative situation: Suppose Alice and Bob invoke the
functionality in Fig. 2 many times on uniformly random inputs (assume they
picked their inputs honestly). After this, Bob is supposed to send Alice the
indices of all executions where he received (1, 0). Suppose malicious Bob instead
decides to send to Alice some indices where his view was (0,1) or (0,0).

Note that corresponding to Bob’s view (1,0), Alice always obtains view
(L, 1). On the other hand corresponding to Bob’s view (0, 1), Alice obtains view
(L,0) with constant probability. Corresponding to Bob’s view (0,0), Alice al-
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Fig. 2: Case 1(b). (0,0) and (1,0) are
extreme. col(0,1) = 1/3 x col(0,0) +
2/3 x col(1,0)

Fig. 1: Case 1(a). Both columns are
extreme.
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Fig.3: Case 2. (0,0), (0,1) and (0,2) are
extreme. col(1,0) = 1/4 x col(0,0) +
3/4 x col(1,0). col(1,1) = 1/4 x
col(0,2) 4+ 3/4 x col(1, 0).

ways obtains view (L, 0). Since Bob cannot guess what view Alice obtained, if
Bob tries to cheat by claiming that his view was (1,0) when actually his view was
(0,1) or (0,0), Alice will sometimes end up with a view of (L, 0) and thus imme-
diately detect Bob’s cheating with constant probability. This weakly binds Bob
to his views. We use repetition techniques (error-correcting codes) to amplify
this weak binding property.

More generally, since extreme views cannot be expressed as a convex linear
combination of other views, it impossible for any party to obtain other views
and claim that he obtained a specific extreme view without getting caught. In
the example situation above, no convex linear combination of other views (0, 1)
and (0,0) can be claimed to be the extreme view (1,0). The same thing is true
for all extreme views in any functionality F.

Intersecting Views: A view of Alice, V4, intersects with a view of Bob, Vg, if the
joint view (V4, V) occurs with non-zero probability on invoking F with uniform
distribution over both inputs.

Case Analysis. Given this terminology, we partition the set of all complete func-
tionalities into three sets, corresponding to Cases 1(a), 1(b) and 2. [16] already
show how to obtain commitments from any functionality in what we call Case
1(a). The major technical contribution of our paper is to obtain commitments
from functionalities that lie in Cases 1(b) and 2.

We will now walk through these cases using example functionalities from
Figures 1, 2 and 3. We will first define Case 1(a), and then describe how we
partition the remaining possibilities for complete functionalities into Cases 1(b)
and 2. At this level, the fact that they are exhaustive will be trivial to see.



For Cases 1(b) and 2, we will then explain the main ideas behind obtaining
commitments from B — A, with the help of examples.

— Case 1(a): Kraschewski et al. [16] obtained commitments from P, — P»
using any functionality between parties P, and P, which has the following
property: There exist at least 2 extreme views (V}gl,Vl%l) of P, which in-
tersect with the same view Vp, of P, i.e. both joint views (Vp,,Vp,) and
(V1231»VP2) occur with non-zero probability. They also show that any com-
plete functionality must satisfy this property in at least one direction, either
P1—>P2 OI‘P2—>P1.

Recall that we require commitments from B — A. We define Case 1(a) as
the set of all F which satisfy the above property in the B — A direction.
That is, Case 1(a) consists of all F for which there exist at least 2 extreme
views (Vj, V%) of Bob that intersect with the same view V4 of Alice, i.e.
both joint views (Vg,Va) and (V3, V4) occur with non-zero probability.
Observe that in the example in Fig. 1, both Bob views (L, 0) and (L, 1) are
extreme, and they intersect with common Alice view (L,0). Fig. 1 satisfies
the above property from B — A and lies in Case 1(a). Thus, [16] give B — A
commitments for this case.

At a very intuitive level, Bob is committed to the views he obtained. He
reveals these views in the decommitment phase. The common intersecting
view of Alice occurs sometimes, and in these instances, she does not know
what view Bob obtained. This property is amplified to obtain hiding. As
illustrated above, Bob cannot equivocate extreme views, and [16] used this
property of the extreme views to obtain binding as illustrated above.

Bob Alice Bov (0’0) (071) (]' 0)
(€L O(L, 1) (L,0) [ 1/4|1/12

(L) | 0 [2/3

Loz 16
(LD 0 [1/3

=1

Fig. 2: Case 1(b). (0,0) and (1,0) are
extreme. col(0,1) = 1/3 x col(0,0) +
2/3 x col(1,0)

Fig.1: Case 1(a). Both columns are
extreme.

Remaining Cases Are Exhaustive. Let Vg denote the set of all extreme views
of Bob. Let Y := {y : 3z, such that (y,2) € Vg}, that is Y5 denotes the
set of Bob inputs, which have at least one corresponding view in Vp. Let
Vp denote the set of all views of Bob that have some y € Yp as input,
ie, Vg = {(y,2) : y € Yg, (y, 2) occurs with non-zero probability}. Note:
Vi contains all extreme Bob views, and may also contain some non-extreme
Bob views.

e Case 1, i.e. Case 1(a) U Case 1(b), consists of all complete functionalities

for which two views in XA/B intersect with a common Alice view.



e Case 2 consists of all complete functionalities for which no two views in
Vp intersect with a common Alice view.
It is easy to see that Cases 1 and 2 are an exhaustive partition of all complete
F. Next,
e Case 1(a) consists of all functionalities F in Case 1, where there are at
least two extreme views in 173 that intersect with a common Alice view.
e Case 1(b) consists of all functionalities in Case 1 that are not in Case
1(a). In particular, the fact that F is in Case 1(b) requires that no two
extreme views in 173 intersect with a common Alice view. This means
that either an extreme and non-extreme view of Bob in Vp intersect with
a common Alice view, or two non-extreme views of Bob in Vg intersect
with a common Alice view. Note that if two non-extreme views intersect,
then an extreme and non-extreme view also intersect (by the definition
of extreme views).

— Case 1(b): Recall that this case consists of complete functionalities for

which an extreme and a non-extreme view of Bob in ‘73 intersect with a
common Alice view, for Vp defined above. An illustrative example for this
case is in Fig. 2 above. The views (0,0) and (1,0) of Bob are extreme,
Yp = {0, 1},‘73 = {(0,0),(0,1),(1,0)}. Moreover, views (0,0) and (0,1) in
Vp intersect with a common Alice view. Also, views (1,0) and (0,1) in Vi
intersect with a common Alice view. But no two extreme Bob views intersect
with a common Alice view.
To obtain B — A commitments, Alice and Bob invoke F, with Alice using
a uniform distribution over her inputs and Bob using a uniform distribution
over inputs in Yp. Assume for simplicity that Alice and Bob can be forced
to use the correct distribution over their inputs. (This can be ensured using
cut-and-choose techniques and extreme views of Bob.)

Binding. We split Bob’s views into two categories: extreme and non-extreme.
The main idea behind building commitments will be to ensure that he cannot
obtain views in one category and later claim that they belong in another
category. To understand this, consider the following example scenario w.r.t.
the functionality in Fig. 2: Bob obtains view (0, 0), which is an extreme view,
and claims later that he obtained (0,1), which is a non-extreme view. We
would like to prevent this situation. We would also like to prevent Bob from
obtaining view (0, 1), which is a non-extreme view, and later claiming that
he obtained (0,0), which is an extreme view. In both these situations, we
would like Alice to catch such a cheating Bob with high probability. Ensuring
that she catches such a cheating Bob will (weakly) bind Bob to the category
of views he obtained. Here is how we ensure this.

e Suppose Bob obtains (0,1) and later claims it was (0,0). By a similar
argument as the warmup, Alice will catch him with constant probability:
Note that Alice obtains view (L, 1) with constant probability correspond-
ing to Bob’s view (0, 1), but she never obtains view (L, 1) corresponding
to Bob’s view (0, 0). Since Bob doesn’t know what view Alice obtained, if



he actually obtained the view (0, 1) and tried to claim that he obtained
(0,0), Alice will sometimes end up with view (L,1) and detect Bob’s
cheating with constant probability. This can be amplified to full-fledged
binding using error correction.

e Suppose Bob obtains (0, 0) and claims that it was (0, 1). In this case, the
previous argument no longer works since (0,1) is not an extreme view.
However, because both parties used uniform inputs, Bob will obtain some
‘correct’ distribution over his outputs. Also by the previous item, Bob
cannot have obtained (0, 1) and claim that it is (0, 0). Thus, if he obtains
(0,0) and claims that he obtained (0, 1), then (0, 1) will appear too often
in his claimed views and Alice will detect this. In general, to equivocate
extreme views to non-extreme views, Bob will have to “steal” probability
mass from the extreme views and add more mass to the non-extreme
views — which Alice will detect.

Hiding. For a uniform distribution over her inputs, with constant probability
Alice obtains a common view that intersects both an extreme and a non-
extreme view of Bob. Thus she cannot tell which category Bob’s view was in,
at the end of the commit stage. This gives a weak form of hiding which can
then be amplified. For example in the functionality in Fig. 2, Alice’s view
(L,0) intersects with the extreme view (0,0) and non-extreme view (0,1)
of Bob. Only one such intersection suffices to obtain hiding. For a complete
analysis of this case, please refer to Section 5.

Case 2: Recall that this case consists of complete functionalities for which
no two views of Bob in VB intersect with a common Alice view, for VB
defined above. Nevertheless, note that at least 2 views of Bob must intersect
with a common Alice view, because otherwise F is trivial. Moreover, if two
views outside Vp intersect with a common Alice view, then both views must
be non-extreme (by the definition of Vg). This means that at least one
extreme and non-extreme view pair intersect with a common Alice view,
which means that in this case necessarily, one Bob view inside Vp and one
outside Vg intersect with a common Alice view.

2] (0,0)(0,1)1(0,2)[|(1,0)] (1, 1)
(L,0) [1/5] 0 | 0 [[1/20] ©
(L,1) | 0 [3/5] 0 [[9/20]9/20
(L2)| 0 [0 [1/5] 0 [1/20

Fig.3: Case 2. (0,0), (0,1) and (0,2) are
extreme. col(1,0) = 1/4 x col(0,0) +
3/4 x col(1,0). col(1,1) = 1/4 x
col(0,2) 4+ 3/4 x col(1, 0).



In the illustrative example in Fig. 3, since the first three columns can be
convex-linearly combined to obtain the fourth and fifth columns, only the
first three views (0, 0), (0, 1), (0, 2) of Bob are extreme. Moreover, all extreme
views of Bob correspond to input 0, thus Yz = {0}, V5 = {(0,0), (0,1), (0,2)}
and views in ‘73 do not intersect with any common Alice view. Note also
that Bob’s input 1 is not redundant, because the distribution over Alice’s
views induced by Bob’s input 1 is different from the distribution induced by
Bob’s input 0.

To obtain B — A commitments in this case, Alice and Bob invoke F with
Alice using a uniform distribution over her inputs and Bob using a uniform
distribution over all his inputs.

Binding. We partition Bob’s views into two categories: views inside Vi and
views outside Vp, then argue that he cannot equivocate between these cat-
egories. Again, here we only argue that a cheating Bob will be caught with
constant probability — this can be amplified using error-correcting codes to
obtain full-fledged binding.

In this case, it is not straightforward to argue that Bob can be forced to use
a uniform (or some requisite) distribution over his inputs — in fact arguing
this forms the crux of our binding argument. Consider the example in Fig. 3.
Here are two representative strategies of a malicious Bob:

e Bob actually obtains view (1,0), and later claims that it was (0, 1). How-
ever, unbeknownst to Bob, Alice may obtain view (L,0) and therefore
detects Bob’s cheating with constant probability. More generally, if Bob
uses input 1 and claims that it is a 0, Alice will catch him with constant
probability.

e Bob actually uses input 0 all the time, and later claims that in some invo-

cations he used input 1. Here, we note that the distributions over Alice’s
views corresponding to Bob’s inputs 0 and 1 in the example function-
ality are different. If this were not the case, then Bob’s input 1 would
be redundant. This means that Alice, by simply checking her output
distribution, will catch Bob whenever he launches such an attack.
We generalize this argument (refer to Lemma 3) to show that in any
redundancy-free core of a complete functionality, in Case 2, there exists
at least one Bob input outside of Yp (this input is 1 in the representative
example) which cannot be mimicked using any input in }A/B (this input
is 0 in this example).

Hiding. We show that there exists a common Alice view which intersects
at least one Bob view in }73 (which is 0 in the representative example in
Fig. 3) and one Bob view corresponding to the un-mimickable input outside
}A/B (which is a 1 in the example). In the example functionality, Alice’s view
(L, 0) intersects with the views (0,0) in Vp and (1,0) corresponding to input
1 outside 173. When using a uniform distribution over her inputs (this can
be easily ensured), with constant probability Alice obtains this intersecting



view. This gives a weak form of hiding which can then be amplified. A
complete analysis of this case is in Section 6.

1.4 Technical Overview: Commitment reducible only to Complete
SFE Functionalities

We have already shown what if f is a 2-party SFE which is malicious-complete
then Feom fixed-role reduces to it. So, it suffices to show that if F has a simple
core, then F.om does not reduce to F. Suppose a protocol II securely realizes
Feom in the F-hybrid, where F has a simple core. Note that, given a public
transcript, since F has a simple core, a party can always sample joint-views
consistent with it. Therefore, either each transcript can be equivocated or it is
not hiding. Hence, we have the following result:

Corollary 1. For every 2-party SFE F, we have: Feom CSue F iff For Cuc F-

2 Preliminaries

In this section, we recall some primitives useful in stating unified completeness
results for 2-party SFE in various security notions.

2.1 Secure Function Evaluation

A Functionality. Consider a two-party finite randomized functionality F between
Alice and Bob, where Alice has input z € X and Bob has input y € ). They
invoke the functionality with their respective inputs and obtain outputs w € W
and z € Z. We recall that such a functionality can be denoted by a matrix. The
rows of this matrix are indexed by Alice views (z,w) € X x W and columns are
indexed by Bob views (y,z) € Y x Z. The entry in the cell in row (z,w) and
column (y, z) equals Prlw, z|z, y].

This matrix can also be viewed as a collection of stochastic sub-matrices,
where each sub-matrix corresponds to some input x € X of Alice and y € Y
of Bob. Each cell in this sub-matrix, with row indexed by Alice output w and
column indexed by Bob output z equals Pr|w, z|x, y].

Graph of an SFE Functionality. Given a 2-party SFE F(fa, fg) we define a
bipartite graph G(F) as follows.

Definition 1. Graph of a 2-party SFE. Given a SFE functionality F(fa, fB),
its corresponding graph G(F) is a weighted bipartite graph constructed as follows.
Its partite sets are X x Za andY X Zp. For every (x,a) € X X Z4 and (y,b) €
Y x Zp, the edge joining these two vertices is assigned weight

Pr s [fa(z,y,r) =a N fp(z,y,7) =]

wt ((z,a), (y,b)) :== X x Y]




The choice of the normalizing constant 1/|X x Y| is arbitrary. For this par-
ticular choice of constant, we can view the weight of an edge as representing the
joint-distribution probability of input-output pairs seen by the two parties when
(z,y,7) < X xY x R.

The kernel of a 2-party function f is a function which outputs to the two
parties only the “common information” that f makes available to them. To for-
malize this, we define a weighted bipartite graph G(f) with partite sets X x W
and Y x Z, and for every (z,w) € X x W and (y,2) € Y x Z, the edge joining
these two vertices is assigned weight % The kernel of F is a random-
ized function which takes inputs x € X and y € Y from the parties, samples
(w, z) < f(z,y), and outputs to both parties the connected component of G(F)
which contains the edge (z,w), (y, 2).

2-Party Secure Function Evaluation. A two-party randomized function (also
called a secure function evaluation (SFE) functionality) is specified by a single
randomized function denoted as f: X x Y — W x Z. Despite the notation, the
range of f is, more accurately, the space of probability distributions over W x Z.
The functionality takes an input x € X from Alice and an input y € Y from
Bob, and samples (w, z) € W x Z according to the distribution f(z,y); then it
delivers w to Alice and z to Bob. Throughout, we shall denote the probability
of outputs being (w, z) when Alice and Bob use inputs x and y respectively is
represented by 37 [w, z|x,y]. We use the following variables for the sizes of the
sets W, X, Y, Z: |X| =m, Y| =n,|W|=¢q,|Z| =r.

As is conventional in this field, in this paper, we shall restrict to function
evaluations where m,n, ¢ and r are constants, that is, as the security parameter
increases the domains do not expand. (But the efficiency and security of our
reductions are only polynomially dependent on m,n,q,r, so one could let them
grow polynomially with the security parameter. We have made no attempt to
optimize this dependency.) W.l.o.g., we shall assume that X = [m] (that is, the
set of first m positive integers), Y = [n], W = [¢] and Z = [r].

We consider standard security notions in the information-theoretic setting:
UC-security, standalone security and passive-security against computationally
unbounded adversaries (and with computationally unbounded simulators). Using
UC-security allows to compose our sub-protocols securely [3]|. Error in security
(simulation error) is always required to be negligible in the security parameter
of the protocol, and the communication complexity of all protocols are required
to be polynomial in the same parameter. However, we note that a protocol may
invoke a sub-protocol with a security parameter other than its own (in particular,
with a constant independent of its own security parameter).

Complete Functionalities. A two-party randomized function evaluation F is
standalone-complete (respectively, UC-complete) against information theoretic
adversaries if any functionality G can be standalone securely (respectively, UC
securely) computed in the F hybrid. We shall also consider passive-complete
functions where we consider security against passive (semi-honest) adversaries.



Redundancy-free core of a functionality. The core of a functionality is computed
by removing redundant parts of the functionality f. A redundancy may be of
two forms. It could consist of inputs which are useless for the adversary, that
is, using another input gives the adversary strictly more information about the
view of the (other) honest party, while the honest party cannot distinguish the
cases in which the adversary used the less informative or the more informative
input. In this case, the less informative input is called redundant and is removed
to obtain the core of the functionality.

Another kind of redundancy is an output redundancy, where two or more
outputs can be compressed into a single output if they convey identical informa-
tion to the adversary about the honest party’s view. As an example, consider a
functionality in which when Bob’s input is 0, if Alice’s input is 0 then he receives
0, but if her input is 1, he receives the output symbol « with probability 3/4
and S with probability 1/4. Here, the two outcomes « and (3 give Bob the same
information about Alice’s input, and could be merged into a single output. We
recall the formal linear algebraic definition of redundancies from Kraschewski et
al. [16] in Section 2.

Simple core of functionalities. The core of a functionality f is simple if for parties
starting with independent inputs, the views of the parties remain independent of
each other conditioned on the common information after the function evaluation.
This is formally defined in Section 2. Recall that Kraschewski et al. [16] showed
that a finite randomized functionality is complete if and only if the redundancy-
free core of F is not simple.

Extreme views and mimicking inputs Consider the matrix 37 obtained after
removing the above-mentioned redundancies from the matrix F. The entry in the
cell in row (2, w) and column (y, z) is denoted by 57, , . and equals Pr[w, z|z, y].

Then a view (y, z) of Bob is an extreme view if the column indexed by (y, 2)
in 87 cannot be written as a convex linear combination of other columns in 37 .
Note that there necessarily exist at least two extreme views for each party in
any non-trivial functionality. We say that a view (y, z) of Bob intersects with a
view (z,w) of Alice if the entry ﬂiw’%z #0.

Let Yy C Y be a set of Bob inputs. We say that an input y* € Y \ Yj
of Bob, is mimicked by Yy, if there exists a probability distribution n over Yj
such that Alice’s view when Bob is choosing inputs from this distribution is
indistinguishable from her view when Bob uses y*.

2.2 Leftover Hash Lemma

The min-entropy of a discrete random variable X is defined to be H(X) =
— log max,esupp(x) P/ [X = ]. For a joint distribution (A4, B), the average min-
entropy of A w.r.t. B is defined as Huo(A|B) = —log (Eo~p [27He(AIB=0]),
Imported Lemma 1 (Generalized Leftover Hash Lemma(LHL) [8]) Let
{H, : {0,1}" = {0,1} W wex be a family of universal hash functions. Then, for
any joint distribution (W,1):SD (Hx (W), X, 1), Us, X, I)) < 1/ 2-Hax(WID2t



3 Technical Tools

This section is mainly based on concepts introduced in [16].

3.1 Notation and Definitions

Consider the matrix 87 of the redundancy-free core of F, whose columns are
indexed by Bob views (y,z) € ¥ x £ and rows are indexed by Alice views
(z,w) € X x W. The entry in the cell in row (z,w) and column (y, z) is denoted
by 87 ... and equals Pr{w, z|z, y].

We will also consider the compressed matrix 3% whose rows are indexed by
Bob inputs y and rows are indexed by Alice views (z,w) € X x W. The entry in
the cell in row (2, w) and column y is denoted by 7, , and equals Pr[w|z,y].
The maps ¢4 and ¢p These maps define equivalence classes of views. Roughly,
two rows (or columns) in 87 lie in the same equivalence class if they are scalar
multiples of each other. Formally, for each (z,w) € X x W, let the vector
BT |(z,w) € R™ be the row indexed by (z,w) in the matrix 37. Let ¢4 :
[m] x [q] — [€] (for a sufficiently large ¢ < mq) be such that ¢4 (z,w) = p4(z’, w’)
iff 5}-\@@) =c- ﬁf|(r/7w/) for some positive scalar c. ¢p is defined similarly for
column vectors indexed by Bob views (y, z).

3.2 Characterizing Irredundancy

Redundancy in a function allows at least one party to deviate in its behavior in
the ideal world and not be detected (with significant probability) by an environ-
ment. In our protocols, which are designed to detect deviation, it is important to
use a function in a form in which redundancy has been removed. We use defini-
tions of irredundancy from [16], and give a brief overview here for completeness.
There also exists an efficient algorithm to remove redundancies following [16].

Irredundancy of a 2-Party Secure Function Fvaluation Function. Recall that a
2-party SFE function f with input domains, X x Y and output domain W x Z
is defined by probabilities p/ [w, z|x, y]. Output redundancies identify if the out-
put can be compressed to remove aspects of the output that are useless for
the adversary’s goal of gaining information about the honest party’s inputs. For
input redundancy, we define left and right redundancy of f as follows. Below,
| X| =m,|Y| =n,|W| =q,|Z| = r. To define left-redundancy, consider repre-
senting f by the matrices {P*},cx where each P* is an nr x ¢ matrix with
A

P(my,z),w = pf[w,y,z|x]. Here, pf[w,y,z|x] = %pf[w,z\x,y] (where we pick y
independent of z, with uniform probability p/[y|z] = %)

Definition 2. For an SFFE function f : X XY — W x Z, represented by matrices

{P}oex, with P ), = Prlw,y, z[z], we say that an input & € X is left-

redundant if there is a set { (o, My )|z € X}, where 0 < o <1 with Y oy =1,



and each M, is a q X q stochastic matriz such that if az = 1 then Mz # I, and
p* = Y zex QP M. We say & is strictly left-redundant if it is left-redundant
as above, but az = 0. We say & is self left-redundant if it is left-redundant as
above, but az =1 (and hence Mz # I). We say that f is left-redundancy free if
there is no x € X that is left-redundant.

Right-redundancy notions for inputs § € Y are defined analogously. f is said
to be redundancy-free if it is left-redundancy free and right-redundancy free.

3.3 Statistically Testable Function Evaluation

Statistical tests [16] help ensure that a cut-and-choose technique can be used to
verify an adversary’s claims about what inputs it sent to a 2-party function and
what outputs it received, when the verifier has access to only the other end of the
function. It is important to note that such statistical tests can only be applied
when an adversary declares (or commits to) his claimed inputs beforehand and is
not allowed to adaptively choose his input claims adaptively based on function
output. Kraschewski et al. [16] show that evaluation of a 2-party function is
statistically testable iff the function is redundancy free. We repeat the statistical
test game and the proof of the above statement in the full version of the paper.

3.4 Weak Converse of the Channel Coding Theorem, Generalization

A converse of the channel coding theorem states that message transmission is
not possible over a noisy channel at a rate above its capacity, except with a
non-vanishing rate of errors. We use a generalization of the (weak) converse of
channel coding theorem due to [16] where the receiver can adaptively choose
the channel based on its current view. Then if in at least a p fraction of the
transmissions, the receiver chooses channels which are noisy (i.e., has capacity
less than that of a noiseless channel over the same input alphabet), it is possible
to lower bound its probability of error in predicting the input codeword as a
function of u, an upper bound on the noisy channel capacities, and the rate of
the code. We import the following lemma from [16].

Imported Lemma 2 Let F = {Fy,...,Fxi} be a set of K channels which take
as input alphabets from a set A, with |A| = 2*. Let G C [K] be such that for all
1 € G, the capacity of the channel F; is at most A — ¢, for a constant ¢ > 0.

Let C C AN be a rate R € [0,1] code. Consider the following experiment:

a random codeword ¢1...cy = ¢ & ¢ s drawn and each symbol ¢y ...cn is
transmitted sequentially; the channel used for transmitting each symbol is chosen
(possibly adaptively) from the set F by the receiver.

Conditioned on the receiver choosing a channel in G for u or more transmis-
sions, the probability of error of the receiver in predicting c is

I 1—cp/A
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4 Summary and Exhaustive Case Analysis

4.1 Summary

Given a 2-party SFE F, we represent by F_,p the functionality which takes
its first input from Alice and its second input from Bob. Similarly, we define the
functionality Fp_, 4. We say F reduces to G, represented by F Cy¢ G, if there
exists a information-theoretic UC-secure protocol for F in the G-hybrid. The
functionality F®" represents n independent copies of the functionality F.

We observe that Kraschewski et al. [16] obtain oblivious transfer using any
finite randomized functionality F with a non-simple core, in a fixed direction, if
there exist commitments in both directions. Furthermore, they already show that
for any finite randomized functionality F with a non-simple core, commitments
can be obtained from either Alice to Bob or from Bob to Alice.

Our main technical contribution will be to show that, in fact, for any finite
randomized functionality F with a non-simple core, commitments can be ob-
tained both from Alice to Bob and from Bob to Alice, by using F in a fixed
direction.

Analogous to the above statement, we also have a statement where F4_, g is
replaced by Fp_, 4. Next, once we get For at constant rate, we can implement
Fp_y4 at constant rate using [12]. This gives our main result.

Theorem 1 (Reversible Characterization). For every 2-party SFE F: if
Fot Cue F in the malicious settz'ng (possibly using F in both directions), then
there exists ¢ > 0 such that ]:A—>B Cue ]:gf)A in the malicious setting and
o > CK.

Again, once we have commitments in both directions, by using the SFE
functionality in only one direction, we can use the compiler of [16] to directly
obtain the following theorem.

Theorem 2 (Fixed-Role Completeness Characterization). For every 2-
party SFE F: For Cye F in the malicious setting (possibly using F in both
directions) if and only if there exists ¢ > 0 such that Fg)T” Coe F3¥ 5 in the
malicious setting and o > ck.

4.2 Exhaustive Case Analysis

First, we will classify any functionality F with a non-simple redundancy-free
core, into a set of exhaustive cases. In each case, we demonstrate that it is possible
to obtain commitments using F, from Bob to Alice. Let Vp denote the set of
extreme Bob views, and Y be the set of inputs of Bob that admit at least one
extreme view, that is, ¥ := {y: 3z, such that (y,2) € Vp}. Let Vs denote the
set of all Bob views corresponding to inputs in Y, that is Vi = {(y,2):y € Y}.
Our cases are listed in Table 1.

Claim. In a non-simple functionality F, if no two extreme Bob views intersect
with the same Alice view, then there exists an Alice view which intersects with
one extreme and one non-extreme Bob view.



1 There exists an Alice view with which > 2 Bob views in Vg intersect.

(a) |There exists an Alice view with which > 2 extreme Bob views in Vp
intersect. In this case, it is possible to obtain commitments from Bob to
Alice [16].

(b)| There exists an Alice view with which one extreme and > 1 non-extreme
Bob view in Vg intersect.

2 No two Bob views in Vg intersect with the same Alice view.

Table 1: Exhaustive Summary of Cases

Proof. In a non-simple functionality F, if no two extreme Bob views intersect
with the same Alice view, then we have the following possibilities:

1. There is an Alice view intersecting an extreme and non-extreme Bob view,
2. Or, there is an Alice view which intersects 2 non-extreme Bob views,
3. Or, no Alice view intersects any two Bob views.

We show that 2 = 1, and 3 contradicts the fact that F is non-simple.

Let the number of extreme views of Bob be . Denote the extreme views
of Bob by (yf,z]), for i € [7]. Suppose Alice view V4 = (z, z) intersects with
two non-extreme Bob views V3 = (y1,21) and V2 = (ya,22). Then, the columns
[3@1721) and Blfyz@) of 37 have non-zero entries in the row corresponding to

f
[(y1,21)
) of A7 can be expressed as a linear combination of extreme columns

(z,2). Since both views (VA,V32) are non-extreme, the columns j3 and

F
[(y2,22
(yr,z2F), for i € [y]. This means that there necessarily exists at least one extreme

view (y*,2%) € {(v1,27), (¥3,25), - (y3,2})} such that the column 6@*@*) of
B7 has a non-zero entry in the row corresponding to (z, z). This proves 2 = 1.

Suppose that in a non-simple functionality F, no view of Alice intersects
with any two views of Bob. That is, every view of Alice intersects with at most
one view of Bob. In this case, the common information/kernel obtained after
function evaluation is the view of Bob. It is straightforward to see that both
parties can independently sample their views, conditioned on any view of Bob.
This completes the proof of this claim.

In the following sections, we construct commitments Feom 54, for any func-
tionality F depending on which of the two cases it falls in.

We observe that in case there exists an Alice view with which at least two
extreme Bob views in V intersect, the protocol of [16] can be used to obtain com-
mitments from Bob to Alice. We re-state their result in the following lemma. In
the following lemma, we will recall appropriate notions of confusability from [16].
Any functionality F in which at least two eztreme Bob views in ‘73 intersect with
a common Alice view, will be said to have a confusable b7 .

Imported Lemma 3 Denote the set of extreme views of Bob by 6% . For each
Alice view (z,w) denote by b7 |, . all the extreme views of Bob which intersect



with the specific Alice view (x,w). That is, b}—|($’w) is the set of extreme views
(y,2) of Bob such that the row in 37 indexed by (y,z) has a positive entry in
the column indexed by (z,w). b7 is said to be confusable if there exists (x,w) €
X X W and two elements (y1,21), (y2,22) € b7 |(4w) such that ¢p(y1,21) #
b5(y2, 22). a” is defined similarly for extreme views of Alice. Then,

1. If the redundancy-free core of F is simple, either a” or b7 is confusable.
2. If a” is confusable, it is possible to obtain commitments from Alice to Bob.
If b7 is confusable, it is possible to obtain commitments from Bob to Alice.

5 Case 1(b): Commitments

5.1 Construction

Let Vg denote the set of all extreme views of Bob and let Y denote the set
of all inputs of Bob that contain at least one extreme view, that is ¥ :=
{y: 3z, such that (y,z) € Vp}. Further, let V5 denote the set of all Bob views
corresponding to inputs in Y, that is Vg = {(y,2):y € EA’}

In this section, we demonstrate how to obtain commitments from any func-
tionality F for which the following is true: Vi “is confusable”, that is, there exists
an Alice view (z,w) and two distinct Bob views (Y7, 21) and (Y5, 23) € V3, (where
possibly Y; = Y5) such that ﬂzf,fﬁ,w,il £ 0 and ﬁzf,%,w,22 # 0. The protocol is
described in Fig. 4.

5.2 Proof of Security

Receiver Security (Statistical Binding/Extractability) In the UC set-
ting, it suffices to consider a dummy sender & and malicious environment Zg,
such that the dummy sender forwards all messages from Zs to the honest re-
ceiver/simulator, and vice-versa. Without loss of generality, the malicious simu-
lation strategy Simg can be viewed to interact directly with Zs. Simg is described
in Fig. 5.

Lemma 1. There exists a constant ¢ such that the simulation error for the
malicious sender is at most 27°%.

Proof. The simulator performs Steps 1(a), (b) and (c¢) as per the honest receiver
strategy, and also emulates the functionality F honestly for the sender. It re-
mains to show that the unique bit b’ extracted by the simulator equals the bit
b committed by the sender Bob. The crux of this proof relies on the fact that
the protocol requires the sender to use one extreme view and on the minimum
distance of the code used.



Inputs: Sender S has input bit bit € {0,1} and receiver R has no input.
Hybrid: F for non-simple function F, and Y as defined above is confusable.
F provides commitments (Com) from Alice to Bob.

The protocol is presented in terms of a (x, & — /16, 2(k'%/16))-linear code C
over the binary alphabet. (An explicit code is not necessary: the receiver can
pick random §2(x'%/16) “parity checks” to construct the code and announce it
to the sender.) The protocol is parameterized by k.

1. Commit Phase:

(a) R (Alice) picks inputs (Xi,Xo,...,Xs.2) uniformly from X2’
She commits to each of them using fresh randomness and sends
Com(X7),Com(X3),...Com(Xa,.2) to S.

(b) S (Bob) picks inputs (Y7, Y2, ..., Ys,2) from a uniform distribution over
V2%’ R and S invoke F, 2k times, with inputs (X7, Xo, ..., Xo.2) and
(Y1,Ys, ..., Ys,.2) respectively.

(¢) Cut-and-Choose: R picks r1 <{0,1}* and sends Com(r1) to S. S sends
Py < {0,1}" to R. R uses randomness (71 & r3) to pick a subset I <

2
([2:2]> of the k2 indices. R decommits to 7. Furthermore, for all i € I,
R decommits to input X; and also opens her view (X;, W;).
S aborts if the decommitments are not correct, or the inputs of R are
not close to a uniform distribution, or if (X;, W;) for ¢ € I satisfy the
consistency checks in the Left-Statistical-Tests.
Else, S and R set S = [2x2] \ I and reorder the indices in S to [x?].
(d) S does the following for all ¢ € [x].
— Construct the j** characteristic vector u; such that for all i € [x],
uj; = 0 if and only if (Yjxti, Zjnti) € V, else u;,; = 1.
— Pick & random codewords ¢, cs,...c, € C*. Pick h <~ H, a uni-
versal hash function mapping {0, 1}Nz — {0,1}, and for j € [K],
compute y = h(cy,ca,...cx) @ bit,offset; = (c; & u;). Send
(h,y, offsety, offsets, . . . offset,;) to R.
2. Reveal Phase:
(a) S sets b’ = bit,u; = u; for j € [x] and sends b',uj,uj,...u; to R as
his opening. S also sends (Y;, Z;) for all i € [x?], to R.
(b) R accepts if all the following conditions hold:
— For j € [k], ¢; = u] @ offset;, is a valid codeword.
— b =h(cy,ca,...c0) D Y.
— For all i € [x?], (Y, Z;) satisfy input-output frequency tests.

Fig.4: Feom in Case 1(b).

Bob cannot claim non-extreme views to be extreme. In the opening made by
Bob, consider the positions where Bob claimed his view to be extreme, that is,



The simulator Simg does the following.

1. Commit Phase:

(a) Simg picks inputs (X7, Xs,...,Xs.2) uniformly from X2 Simg
then commits to each of them using fresh randomness and sends
Com(X7),Com(X3),...Com(Xy.2) to S. Note that Simgs has the ca-
pability to equivocate these commitments.

(b) Sims obtains inputs (Y7,Ys,...Y5.2) from S and emulates the
functionality F honestly for & with inputs (X, Xo,...Xs.2) and
(Y17 Y'27 cee }/2){2)'

(¢) Cut-and-Choose: Sims picks 71 <~ {0,1}* and sends com; = Com(ry)
to S. S sends ry <~ {0,1}" to Sims. Sims uses (1} @ r3) to pick subset

(7]
i € I, Simg decommits to input X; and also opens the view (X;, W;).
Set S = [2x2] \ I and reorder the indices in S to [x?].

(d) Simg obtains (h,y, offset;) for j € [k] from S. It constructs characteris-
tic vectors u; such that for all i € S, u; = 0 if and only if (Y, Z;) € V,
else u; = 1. It then computes ¢; = u; ®offset;, sets c; to be the nearest
codeword® to ¢;, and sets bit b’ =y @ h(c), ch,...c),).

2. Reveal Phase:

(a) Obtain b',u},uh,...u., (Y;, Z;) for all i € [k?] from S as his opening.

(b) Allow the ideal functionality to output the extracted bit b’ if all the
following conditions hold (and otherwise reject):

— (uf; @ offset;) is a valid codeword for j € [x].
— (Y3, Z;) for all i € [k?] satisfy input-output frequency tests.

2
1< <2ﬁ > of the x? indices. Simg decommits com; to r; and, for all

@ If the nearest codeword is not unique, then Sims commits to an arbitrary bit.

Fig.5: Sender Simulation Strategy in Case 1(b).

(yi, zi) = (y*, 2*) € Vp, such that the equivalence class of this view ¢p(y*,2*) =
@. Consider the fraction of these positions where the actual view of Bob (v, 2’)
such that ¢p(y’,2") # @. In these positions, the expected view of Alice is given
by a linear combination of the columns ﬁ}-|(y/7z/) (with coordinates scaled appro-
priately). If this linear combination is not close to the vector 57 (,« .« (scaled
appropriately) then with all but negligible probability, the opening will not be
accepted by the receiver. On the other hand, if the linear combination is close
to B7|(y» 2+), since B7 |+ .+) is outside the linear span of other 87|, ..y with
op(y'2) # ép(y*,2*), only at a small number (sub-linear fraction, say x2/3)
of places can Bob open to (y*,2*) but have had an actual view (y/,2’). This is
because, an extreme view can’t be expressed as a linear combination of other
views of Bob, without being detected by Alice with constant probability.



Bob wuses close to uniform distribution over inputs in }A’B. Consider an input
y* € Yp and let (y*, 2*) denote its corresponding extreme view. Alice will not
accept the extreme view (y*, z*) in the opening of Bob (except with probability
2_0”2/3) unless Bob actually obtained the particular view in all but x2/2 of these
indices. In order to obtain the view (y*, z*) in 1/5/3 X Bf*‘y* fraction of indices,
Bob should have used the input y* to the functionality with probability at least
1/|Ys5l.

Bob cannot equivocate outputs. Since Bob uses all inputs in ?B with nearly the
correct probability (except on O(k?/?) indices, then in the real and simulated
worlds, he also obtains views in 173 with nearly the expected probability. Fur-
thermore, he cannot obtain views not in Vg and pretend that they were in Vg
except for O(k"/®) indices. Therefore, he cannot obtain views in Vg and pretend
that they were not in Vp except for O(k"/®) indices, otherwise he will fail the
frequency tests on the outputs.

To summarize,

— For any input y* € 373, if Alice accepts the decommitment, Bob should have
actually used the input to the functionality F in exactly 1/|Vp| fraction of
the places, except cheating in at most x£2/% indices.

— For any (extreme) view (y*,z*) € Vi, Bob cannot have claimed to obtain
(y*, z*) at specific indices unless he obtained the view in (y*,z*) at all but
O(K7/8) of these indices.

— For any non-extreme view (y*, 2*) € ‘73, Bob cannot have claimed to obtain
(y*, 2*) at specific indices unless he actually obtained some non-extreme view
at all but O(x"/®) of these indices.

By using a code such that the minimum distance of the code (£2(k'%/16)) is
much larger than the number of positions where the sender can cheat as above
(O(k"/®), we guarantee that the sender is bound to his committed bit.

Specifically, the simulator computes the nearest codeword to the codeword
extracted from the sender, and uses this to extract his committed bit. The sender
cannot equivocate this codeword without cheating in Q(nw/ 16) views, and if
he does so, his decommitment is not accepted except with probability at least
(1 —27¢%). This completes the proof of this lemma.

Sender Security (Statistical Hiding/Equivocability) It suffices to con-
sider a dummy receiver R and malicious environment Zx, such that the dummy
receiver forwards all messages from Zx to the honest sender/simulator, and vice-
versa. Without loss of generality, the malicious simulation strategy Simg can be
viewed to interact directly with Zz. Simg is described in Fig. 6.

Lemma 2. There exists a constant ¢ such that the simulation error for the
malicious receiver is at most 27,



The simulator Simz does the following.

1. Commit Phase:

(a) Simgz obtains commitments ¢y, ¢, ... ez from R.

(b) Simz obtains inputs (Xi, Xa,...Xs.2) from R and emulates the
functionality F honestly for R with inputs (X7, Xs,...Xo.2) and
(Y1,Ys, ... Ys,2).

(¢) Cut-and-Choose: Simp obtains com; from R. Simg sends 75 < {0,1}"

2
to R. R decommits to r; and sends subset I& (?:20 of the k2 indices.
For all 4 € I, Simg obtains decommitments X; and also the openings
(Xi,W;). Simg aborts if the decommitments are not correct, or the
inputs of R are not from a uniform distribution, or if (X;, W;) for i € I
do not satisfy the consistency checks in Left-Statistical-Tests.

(d) Simg follows honest strategy to commit to a uniformly random bit

bit’ <& {0,1}.

Fig. 6: Receiver Simulation Strategy in Case 1(b).

Proof. Consider the use of the function f as a “channel”, which accepts z; ;
from Alice, ¢; ; from Bob, samples (y; j,w; j, z; ;) and outputs z; ; to Bob, and
a;; @ c;j to Alice where a; ; = ¢ (Yi;, 2ij)-

The cut-and-choose verification in Step 1(c) ensures that Alice uses (close to)
a uniform distribution over her inputs. This is done by invoking Left-Statistical-
Tests on committed inputs X7, x5 ... Xs,.2 of Alice, and her claimed outputs
Wi, Wa, ... Wa,e2.

This test ensures that she obtains the view (z,w) that intersects with an
extreme and a non-extreme view in Vp in at least ﬁﬁznz — O(k) invocations.
At all these invocations, given her view, Alice has confusion about whether the
corresponding view of Bob was extreme or non-extreme. Therefore, the views
obtained by Alice act as a channel transmitting information about the corre-
sponding views of Bob. It is that the capacity of this channel is a constant, that
is less than 1.

Then we appeal to an extension of the weak converse of Shannon’s Channel
Coding Theorem (Imported Lemma 2) to argue that since the code has rate
1—0(1), Alice errs in decoding each codeword with at least a constant probability.
We need this extension of the (weak) converse of the channel coding theorem to
handle that the facts that:

1. The receiver can adaptively choose the channel characteristic, by picking y; ;
adaptively, and

2. Some of the channel characteristics that can be chosen include a noiseless
channel, but the number of times such a characteristic can be used cannot be
large (except with negligible probability). The reason this restriction can be



enforced is because Alice’s view intersects with views of Bob corresponding
to characteristic index 0 and 1.

Then, applying the Leftover Hash Lemma, we get that for a universal hash
function h, if Bob sends k codewords over such a channel, the output of the hash
function is at least 1 — 27" close to uniform. Thus, the simulation error is at
most 27,

6 Case 2: Commitments

As before, let Vg denote the set of all extreme views of Bob and let Y denote
the set of all inputs of Bob that contain at least one extreme view, that is
Y := {y: 3z, such that (y,z) € Vp}. Further, let Vs denote the set of all Bob
views corresponding to inputs in Y, that is Vg = {(y,2): y € Y}

In this section, we demonstrate how to construct commitments from any
function F for which the following is true: Vp has no confusion, that is no two
Bob views in Vg intersect with the same Alice view. In other words, all views
corresponding to all inputs y € Y are extreme and also disjoint.

First, we make the following basic observation about disjoint extreme views.
Let Vg denote the set of extreme views of Bob. If there is no Alice view V4 which
intersects two or more Bob views in Vg, then each Bob view in Vg is in one-
to-one correspondence with the equivalence class ¢ of Alice views. In particular,
each Bob view (y, z) in Vg reveals ¢(V4) for any view V4 which the Bob view
(y, z) intersects. Then, we note that for all inputs ¢ in Y, each output view (7,%)
completely reveals the equivalence class ¢ of Alice views. The following lemma
is imported from [16].

Imported Lemma 4 [16]. Suppose Y CY isa set of inputs, where each view
(4, 2) for each input § € Y s completely revealing about the equivalence class ¢
of Alice views. If some input y* € Y\ Y can be fully-mimicked by Y then y* s
a strictly redundant input.

Note that if y € Yy can be mimicked by Yy, it does not necessarily mean that y*
is redundant, because for redundancy there must exist a probabilistic mapping
from Yy X Z to y* x Z. However, if Y, are all completely revealing about the
equivalence class ¢ of Alice views, it can be shown that y* is indeed redundant.
For completeness, we repeat the formal proof from [16] in the full version.

Lemma 3. Suppose Y CVY is a set of inputs, where each view (g, z) for each
mput § € Y is completely revealing about an equivalence class of Alice views. Let
Y' =Y \Y. If every input in' Y’ can be mimicked using a probability distribution
over other inputs that assigns constant non-zero weight to Y, then every input
n Y’ is strictly redundant.

Proof. Our proof follows along the lines of Gaussian elimination, removing one
variable dependency at a time. As is the case with Gaussian elimination, the



invariant we maintain is that the i*” variable does not influence anything be-
yond the i*" constraint. Our proof uses an inductive argument where the above
invariant is iteratively maintained in each iteration.

Consider inputs y* € Y’ that can be mimicked using non-zero constant weight
inY. We prove that if all inputs y* € Y’ can be mimicked using non-zero constant
weight in Y, then they can in fact be fully mimicked only by Y. Once we prove
this, we can invoke Imported Lemma 4 to prove that all such inputs y* must be
strictly redundant. We first set up some notation for the proof.

Notation. Let Y = {yf,y5,...y;} and Y = {ij1, 2, . -~ Y|y|—e}, where £ < |Y|.
Let M be an £ x (£ 4+ 1) matrix whose entries are set such that for all i € [¢],
i =2 jerg(Mig)ys + 2 qyi—g Piis- Then Mi i1y = 32 ieqy—q Pii-

That is, for (4, j) € [¢] x [¢], the row M; denotes the probability distribution
over inputs y; used to mimic the input y;. The entry M; 41 denotes the total
weight of inputs in Y assigned by the probability distribution, for mimicking the
input y;.

Transformation. Assume, contrary to the statement of the lemma, that every
entry M; 11 for all i € [1,4] is a non-zero constant, denote the it" such entry
by ¢;. We give a series of transformations on M, such that the resulting matrix
M’ has non-zero entries only in the (¢ + 1) column. This suffices to prove that
all inputs can be fully mimicked using some distribution over inputs only in Y,
therefore proving the lemma.

We inductively set M; ; = 0 for all (4,7) € [1,k] x [1,k].

Base Case. In the base case, if M;; = 0, we are done.
Else we can rewrite the first row equations as:

yi = Z i,j y_j Z PijU; (1)

JE¢] JEYVI-14]
=Muayi+ Y (Mijy;+ Y. pijb (2)
J€l2, JE(YI=4
_Ml,lyf = Z Ml,] y] Z pl,Jy] (3)
J€l2,4 JElYI-4]
yi (1= M) = Z (Ma;)y; + Z P1.i¥; (4)
J€l2,4 JElYI-4

If M1 # 0, we rewrite this as:

M pl 7 ~
* — + 3. . 5
h Z (1—M11 Z M11)y ©)
JE[2.4] JElYI- Z]
At the end of this manipulation, we have an equivalent system of equations
represented by matrix M’, such that M7 ; = 0 and for all j € [£], M] ; (1M71\1/If1)

In shorthand, we denote this by My — 0, M; ; — 3 for j € [2,4).

M,
(lM



Inductive Hypothesis.

Assume that after the k" transformation, all entries M;; = 0 for (i,5) €
[1,k] x [1,k]. This gives us, that for i’ € [1, k], the probability distribution over
other inputs for mimicking inputs y}; are of the form:

vi= >, (Me )i+ Y Prr1sb (6)

JE[k+1,4] JENYI-4

Induction Step. This consists of the following two transformations:

1. The probability distribution over other inputs for mimicking the input y; ,
can be written as:

Vion= > Miwi )i+ > M)yl + > pesrgiy  (7)

FE[K] jE[k+1,0] ISR

Then, it is possible to substitute the first k terms in this equation using
Equation 6 to obtain another equation of the form:

y;+1 = Z (Mk+1 J y] Z p k+1 ]yj ) (8)

JE[k+1,] JElYI-4

for suitably modified values (Mj_, ;) and p'; 4 ;.
At the end of this set of transformations, for all j € [k], Mj41,; — 0 and for
j S [k‘ + 17€]7Mk+1,j — Ml/c—i-l,j'

2. Now, we can write the (k + 1)** row Equation 8 as:

Yirr = My g1 1) Vi + Z (Mpy15)y; + Z Pev1;9 (9
Jelk+2,6] Jelly|={]

If Mi41 k41 # 0, this can be rewritten as:

" Ml/c+1 Pr+1,5 N
Y1 = Z (1— M/ 2 )y] + Z %yj (10)

M,
jelk+2,] k+1k+1 Je[yI— g] Pt k1)

At the end of this transformation, the matrix entry MkJrl ka1 % 0.
3. Substituting Equation 10 into the first k rows, we get that for i’ € [1,k+1],
the probability distribution over other inputs for mimicking inputs y}; are of

the form:
Yy = Z (Mi15)y Z P k1,595 (11)
JE[k+1,E] JE[IY]—4]

At the end of these transformations, we obtain an matrix M representing an
equivalent system of equations, such that for all (4, j) € [¢] x [¢], M; ; = 0 and
M; ¢+1 # 0. This completes the proof of this lemma.

Now, suppose that for all inputs y* € Y\ Y, Bob can mimic y* using non-
zero weight in Y. Then, since Lemma 3 proves that all inputs y* € Y\ Y can be
written as a convex linear combination of inputs entirely in Y. This contradicts
Imported Lemma 4. Since the functionalities we study only have a constant-sized
domain, it is always easy to find such an input y*.



6.1 Construction

The protocol is described in Fig. 7. Without loss of generality, we can assume
that there exists a commitment protocol from Alice to Bob. We construct a
commitment protocol with Bob as sender, and Alice as receiver.

6.2 Proof of Security

Receiver Security (Statistical Binding/Extractability) In the UC set-
ting, it suffices to consider a dummy sender S and malicious environment Zg,
such that the dummy sender forwards all messages from Zs to the honest re-
ceiver/simulator, and vice-versa. Without loss of generality, the malicious simu-
lation strategy Simg can be viewed to interact directly with Zg. Simg is described
in Fig. 8.

Lemma 4. There exists a constant ¢ such that the simulation error for the
malicious sender is at most 27",

Proof. The simulator performs Steps 1(a), (b) and (c) as per the honest receiver
strategy, and also emulates the functionality F honestly for the sender. It re-
mains to show that the unique bit &’ extracted by the simulator equals the bit b
committed by the sender Bob. The crux of this proof relies on the fact that the
protocol requires the sender to use all his extreme views, and some non-extreme
views; and on the minimum distance of the code used.

Bob cannot claim non-extreme views to be extreme. Equivalently, Bob cannot
claim an input outside Yp to be an input inside Yp. In the opening made by Bob,
consider the positions where Bob claimed his view to be (y;, z;) = (y*, 2*) € V5,
such that the equivalence class of this view ¢ (y*, z*) = @. Consider the fraction
of these positions where the actual view of Bob (z/,w’) such that ¢p(y’, 2') # .

In these positions, the expected view of Alice is given by a linear combination
of the columns 7 |2y (with coordinates scaled appropriately). If this linear
combination is not close to the vector 37 |(y=,=+) (scaled appropriately) then with
all but negligible probability, the opening will not be accepted by the receiver.
On the other hand, if the linear combination is close to 7|« .+), since 87y .+
is outside the linear span of other 37,/ ..y with ¢p(y'2") # ¢p(y*, 2*), only at
a small number (sub-linear fraction, say x2/%) of places can Bob open to (y*, z*)
but have had an actual view (y’,z’). Thus, extreme views cannot be claimed
to be obtained as a result of using inputs which exclusively yield non-extreme
views.

Bob cannot claim an input inside )/}B to be outside )/;B. By Lemma 3, we also
know that y* cannot be mimicked with any non-zero weight in Y, without getting
caught by the receiver in the Right-Statistical-Tests. Thus, it is not possible to
use inputs in Y and equivocate them to y*. This gives that the sender cannot
equivocate at more that O(x%/3) indices.



Inputs: Sender S has input bit bit € {0,1} and receiver R has no input.
Hybrid: F for non-simple function F where Y is not confusable, and y* as
defined above, exists. F provides commitments (Com) from Alice to Bob.
The protocol is presented in terms of a (', s’ — H’S/Q,w(/il‘r’/w))—linear code C
over the binary alphabet. (An explicit code is not necessary: the receiver can
pick random w(KJ7/ 8) “parity checks” to construct the code and announce it to
the sender.) The protocol is parameterized by .

1. Commit Phase:

(a) For all ¢ € [k], R (Alice) picks inputs (Xi1,Xo,...,Xok2)
from a uniform distribution over 2%, Alice also sends
Com(X7), Com(X3),...Com(Xs,2) to Bob.

(b) S (Bob) picks inputs (Y1, Ys, ..., Ys.2) from a uniform distribution over
()A/Uy*)2“2. R and S invoke F, 2k times, with inputs (X1, Xs, ..., Xa.2)
and (Y7,Ys,...,Y5,2) respectively.

(¢) Cut-and-Choose: R picks r1 < {0,1}* and sends Com(r) to S. S sends

2K2
<[;~;2]
indices. R decommits to ;. Furthermore, for all i € I, R decommits
to input X; and also opens her view (X;, W;).
S aborts if the decommitments are not correct, or the inputs of R are
not close to a uniform distribution, or if (X;, W;) for ¢ € I satisfy the
consistency checks in the Left-Statistical-Tests.
(d) S does the following for all i € [x].
— Construct the j characteristic vector u; such that for all i € [«],

o < {0,1}* to R. R uses r, & ry to pick a subset I < ) of the x?

uj; = 0 if and only if Yj,.4; € Y, else uj; = 1.

— Pick k random codewords ¢y, ¢3,... ¢, € Cr. Pick h & ‘H, a uni-
versal hash function mapping {0, 1}”2 — {0,1}, and for j € [K],
compute y = h(ci,ca,...cx) @ bit,offset; = (c; @ u;). Send
(h,y, offsety, offsets, . . . offset,;) to R.

2. Reveal Phase:
(a) Ssetsb =b,u’ =u and sends b, v to R as his opening. S also sends
(Y, Z;) for all i € [£?], to R.
(b) R accepts if all the following conditions hold:

— For j € [k], ¢; = u/ @ offset;, is a valid codeword.

— b =h(cy,ca,...c) D Y.

— Input-output frequency tests on (Y;, Z;) pass for all i € [r2].

Fig.7: Feom in Case 2.

Bob cannot equivocate. By using a code such that the minimum distance of the
code (2(k3/*)) is much larger than the number of positions where the sender



The simulator Simg does the following.

1. Commit Phase:

(a) Simg picks inputs (X7, Xs,...,Xs.2) uniformly from X2 Simg
then commits to each of them using fresh randomness and sends
Com(X7),Com(X3),...Com(Xy.2) to S. Note that Simgs has the ca-
pability to equivocate these commitments.

(b) Sims obtains inputs (Y7,Ys,...Y5.2) from S and emulates the
functionality F honestly for & with inputs (X, Xo,...Xs.2) and
(Y17 }/27 cee }/2){2)'

(¢) Cut-and-Choose: Sims picks 71 <~ {0,1}* and sends com; = Com(ry)
to S. S sends ry <~ {0,1}" to Sims. Sims uses (1} @ r3) to pick subset

(7]
i € I, Simg decommits to input X; and also opens the view (X;, W;).
Set S = [2x2] \ I and reorder the indices in S to [x?].
(d) Simg obtains (h,y, offset;) for j € [k] from S. It constructs characteris-

2
1< <2ﬁ > of the x? indices. Simg decommits com; to r; and, for all

tic vectors u; such that for all : € S, u;; = 0 if and only if Y., € Y,
else u; = 1. It then computes ¢; = u; @ offset;, sets c; to be the nearest
codeword® to ¢;, and sets bit b’ =y & h(c},c5, ... cl).
2. Reveal Phase:
(a) Obtain b',u},ub,...ul, (Y, Z;) for all i € [x?] from S as his opening.
(b) Allow the ideal functionality to output the extracted bit &’ if all the
following conditions hold (and otherwise reject):
— (uf; @ offset;) is a valid codeword for j € [x].
— (Y3, Z;) for all i € [x?] satisfy the input-output frequency tests in
the Right-Statistical-Tests.

@ If the nearest codeword is not unique, then Sims commits to an arbitrary bit.

Fig. 8: Sender Simulation Strategy in Case 2.

can cheat in one of the two situations above (O(k%/%), we guarantee that the
sender is bound to his committed bit.

Specifically, the simulator computes the nearest codeword to the codeword
extracted from the sender, and uses this to extract his committed bit. The sender
cannot equivocate this codeword without cheating in Q(FLB/ 4) views, and if he
does so, his decommitment is not accepted except with probability at least (1 —
27¢%). This completes the proof of this lemma.

Sender Security (Statistical Hiding/Equivocability) It suffices to con-
sider a dummy receiver R and malicious environment Z5, such that the dummy
receiver forwards all messages from Zx to the honest sender/simulator, and vice-



versa. Without loss of generality, the malicious simulation strategy Simg can be
viewed to interact directly with Zz. Simg is described in Fig. 9.

Lemma 5. There exists a constant ¢ such that the simulation error for the
malicious receiver is at most 27,

Proof. Consider the use of the function f as a “channel”, which accepts z; ;
from Alice, ¢; ; from Bob, samples (y; ;,w; j, z;, ;) and outputs z ; to Bob, and
A 5 ©® Ci,j to Alice where a; 5 = ¢B (yi7j7 Zi,j)'

The cut-and-choose verification in Step 1(c) ensures that Alice uses (close
to) a uniform distribution over her inputs. Then, she obtains the view (z,w)
that intersects with an extreme and a non-extreme view in ‘73 in at least a
constant fraction of the invocations. At all these invocations, given her view,
Alice has confusion about whether the corresponding view of Bob was extreme
of non-extreme. Formally, we can show that the capacity of the above channel
is a constant, that is less than 1.

The simulator Simz does the following.

1. Commit Phase:

(a) Simgz obtains commitments ¢y, ¢, ... ez from R.

(b) Simz obtains inputs (X1, Xa,...Xo.2) from R and emulates the
functionality F honestly for R with inputs (X7, Xs,...Xo.2) and
(Y1,Ys, ... Ys,2).

(¢) Cut-and-Choose: Simp obtains com; from R. Simg sends 75 < {0,1}"

2
to R. R decommits to r; and sends subset & <[2:2]> of the k2 indices.
For all i« € I, Simgz obtains decommitments X; and also the openings
(Xi,W;). Simg aborts if the decommitments are not correct, or the
inputs of R are not from a uniform distribution, or if (X;, W;) for i € I
do not satisfy the consistency checks in Left-Statistical-Tests.

(d) Simg follows honest sender strategy to commit to a uniformly random

bit bit’ < {0,1}".

Fig.9: Receiver Simulation Strategy in Case 2.

Then we appeal to an extension of the weak converse of Shannon’s Channel
Coding Theorem (Imported Lemma 2) to argue that since the code has rate 1,
Alice errs in decoding each codeword with at least a constant probability. We
need this extension of the (weak) converse of the channel coding theorem to
handle that the facts that:

1. The receiver can adaptively choose the channel characteristic, by picking y; ;
adaptively, and



2. Some of the channel characteristics that can be chosen include a noiseless
channel, but the number of times such a characteristic can be used cannot be
large (except with negligible probability). The reason this restriction can be
enforced is because Alice’s view intersects with views of Bob corresponding
to characteristic index 0 and 1.

Then, applying the Leftover Hash Lemma, we get that for a universal hash
function h, if Bob sends k codewords over such a channel, the output of the hash
function is at least 1 — 27" close to uniform. Thus, the simulation error is at
most 27",
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