
Practical, Predictable Lattice Basis Reduction ?

Daniele Micciancio and Michael Walter

University of California, San Diego
{miwalter,daniele}@eng.ucsd.edu

Abstract. Lattice reduction algorithms are notoriously hard to predict,
both in terms of running time and output quality, which poses a major
problem for cryptanalysis. While easy to analyze algorithms with good
worst-case behavior exist, previous experimental evidence suggests that
they are outperformed in practice by algorithms whose behavior is still
not well understood, despite more than 30 years of intensive research.
This has lead to a situation where a rather complex simulation procedure
seems to be the most common way to predict the result of their appli-
cation to an instance. In this work we present new algorithmic ideas
towards bridging this gap between theory and practice. We report on
an extensive experimental study of several lattice reduction algorithms,
both novel and from the literature, that shows that theoretical algo-
rithms are in fact surprisingly practical and competitive. In light of our
results we come to the conclusion that in order to predict lattice reduc-
tion, simulation is superfluous and can be replaced by a closed formula
using weaker assumptions.

One key technique to achieving this goal is a novel algorithm to solve
the Shortest Vector Problem (SVP) in the dual without computing the
dual basis. Our algorithm enjoys the same practical efficiency as the
corresponding primal algorithm and can be easily added to an existing
implementation of it.

1 Introduction

Lattice basis reduction is a fundamental tool in cryptanalysis and it has been
used to successfully attack many cryptosystems, based on both lattices, and
other mathematical problems. (See for example [9,23,39,44–47,61,62,66].) The
success of lattice techniques in cryptanalysis is due to a large extent to the
fact that reduction algorithms perform much better in practice than predicted
by their theoretical worst-case analysis. Basis reduction algorithms have been
investigated in many papers over the past 30 years [3, 6, 8, 10, 12–16, 18, 20, 21,
26,28,32,36,40–42,45,48,50,51,54–56,58–60,63,65,67–69], but the gap between
theoretical analysis and practical performance is still largely unexplained. This

? Research supported in part by the DARPA SafeWare program and NSF grant CNS-
1117936. Opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of DARPA
or NSF.

gap hinders our ability to estimate the security of lattice based cryptographic
functions, and it has been widely recognized as one of the main obstacles to
the use of lattice cryptography in practice. In this work, we make some modest
progress towards this challenging goal.

By and large, the current state of the art in lattice basis reduction (in theory
and in practice) is represented by two algorithms:

– the eminently practical Block-Korkine-Zolotarev (BKZ) algorithm of Schnorr
and Euchner [54, 60], in its modern BKZ 2.0 incarnation [8] incorporating
pruning, recursive preprocessing and early termination strategies [14,18],

– the Slide reduction algorithm of Gama and Nguyen [15], an elegant gener-
alization of LLL [27, 40] which provably approximates short lattice vectors
within factors related to Mordell’s inequality.

Both algorithms make use of a Shortest Vector Problem (SVP) oracle for
lower dimensional lattices, and are parameterized by a bound k (called the “block
size”) on the dimension of these lattices. The Slide reduction algorithm has many
attractive features: it makes only a polynomial number of calls to the SVP or-
acle, all SVP calls are to projected sub-lattices in exactly the same dimension
k, and it achieves the best known worst-case upper bound on the length of its

shortest output vector: γ
(n−1)/(2(k−1))
k det(L)1/n, where γk = Θ(k) is the Her-

mite constant, and det(L) is the determinant of the lattice. Unfortunately, it has
been reported [15, 16] that in experiments the Slide reduction algorithm is out-
performed by BKZ, which produces much shorter vectors for comparable block
size. In fact, [15] remarks that even BKZ with block size k = 20 produces better
reduced bases than Slide reduction with block size k = 50. As a consequence,
the Slide reduction algorithm is never used in practice, and it has not been im-
plemented and experimentally tested beyond the brief claims made in the initial
work [15,16].1

On the other hand, while surprisingly practical in experimental evaluations,
the BKZ algorithm has its own shortcomings too. In its original form, BKZ is not
even known to terminate after a polynomial number of calls to the SVP oracle,
and its observed running time has been reported [16] to grow superpolynomially
in the lattice dimension, even when the block size is fixed to some relatively small
value k ≈ 30. Even upon termination, the best provable bounds on the output
quality of BKZ are worse than Slide reduction by at least a polynomial factor
[15].2 In practice, in order to address running time issues, BKZ is often employed
with an “early termination” strategy [8] that tries to determine heuristically
when no more progress is expected from running the algorithm. Theoretical

1 While we are referencing two separate works, both refer to the same experimental
study.

2 We remark that polynomial approximation factors, while being asymptotically in-
significant, can make a substantial difference in practice, as lattice-based cryptogra-
phy relies on the hardness of approximating lattice problems within factors that are
super-linear in the lattice dimension. In fact, much effort has been put on minimizing
such factors in the design of cryptographic constructions [1, 2, 31,33,35,49,52,53].

bounds on the quality of the output after a polynomial number of iterations
have been proved [18], but they are worse than Slide reduction by even larger
polynomial factors. Another fact that complicates the analysis (both in theory
and in practice) of the output quality of BKZ is the fact that the algorithm
makes SVP calls in all dimensions up to the block size. In theory, this results
in a formula that depends on all worst-case (Hermite) constants γi for i ≤ k. In
practice, the output quality and running time is evaluated by a simulator [8] that
initially attempts to numerically estimate the performance of the SVP oracle on
random lattices in all possible dimensions up to k.

Our Contribution We introduce new algorithmic techniques that can be used
to design improved lattice basis reduction algorithms, analyze their theoretical
performance, implement them, and report on their practical behavior through
a detailed set of experiments with block size as high as 75, and several data
points per dimension for (still preliminary, but already meaningful) statistical
estimation.

One of our main findings is that the Slide reduction algorithm is much more
practical than originally thought, and as the dimension increases, it performs
almost as well as BKZ, while at the same time, offering a simple closed-formula
to evaluate its output quality. This provides a simple and effective method to
evaluate the impact of lattice basis reduction attacks on lattice cryptography,
without the need to run simulators or other computer programs [8, 68]. Key to
our findings, is a new procedure to enumerate shortest lattice vectors in dual
lattices, without the need to explicitly compute a dual basis. Interestingly, our
dual enumeration procedure is almost identical (syntactically) to the standard
enumeration procedure to find short vectors in a (primal) lattice, and, as ex-
pected, it is just as efficient in practice. Using our new procedure, we are able
to conduct experiments using Slide reduction with significantly larger block size
than previously reported, and observe that the gap between theoretical (more
predicable) algorithms and practical heuristics gets pretty narrow already for
moderate block size and dimension.

For small block sizes (say, up to 40), there is still a substantial gap between
the output quality of Slide reduction and BKZ in practice. For this setting,
we design a new variant of BKZ, based on lattice duality and a new notion of
block reduced basis. Our new DBKZ algorithm can be efficiently implemented
using our dual enumeration procedure, achieving running times comparable to
BKZ, and matching its experimental output quality for small block size almost
exactly. At the same time, our algorithm has various advantages over BKZ, that
make it a better target for theoretical analysis: it only makes calls to an SVP
oracle in fixed dimension k, and it is self dual, in the sense that it performs
essentially the same operations when run on a basis or its dual. The fact that all
SVP calls on projected sublattices are in the same fixed dimension k has several
important implications. First, it results in a simpler bound on the length of the
shortest output vector, which can be expressed as a function of just γk. More
importantly, this allows to get a practical estimate on the output quality simply
by replacing γk with the value predicted by the Gaussian Heuristic GH(k),

commonly used in lattice cryptanalysis. We remark that the GH(k) formula has
been validated for moderately large values of k, where it gives fairly accurate
estimates on the shortest vector length in k-dimensional sublattices. However,
early work on predicting lattice reduction [16] has also shown that for small k
(say, up to k ≤ 25), BKZ sublattices do not follow the Gaussian Heuristic. As a
result, while the BKZ 2.0 simulator of [8] makes extensive use of GH(k) for large
values of k, it also needs to resort to cumbersome experimental estimations for
predicting the result of SVP calls in dimension lower than k. By making only
SVP calls on k-dimensional sublattices, our algorithm obviates the need for any
such experimental estimates, and allows to predict the output quality (under the
same, or weaker heuristic assumptions than the BKZ 2.0 simulator) just using the
GH(k) formula. We stress that this is not only true for the length of the shortest
vector found by our algorithm, but one can estimate many more properties of the
resulting basis. This is important in many cryptanalytic settings, where lattice
reduction is used as a preprocessing for other attacks. In particular, using the
Gaussian Heuristic we are able to show that a large part of the basis output by
our algorithm can be expected to follow the Geometric Series Assumption [57],
an assumption often made about the output of lattice reduction, but so far
never proven. (See Section 5 for details.) One last potential advantage of only
making SVP calls in fixed dimension k (and, consequently, the ability to use the
Gaussian Heuristic for all of them) is that it opens up the possibility of even
more accurate stochastic simulations (or analytic solutions) where the GH(k)
deterministic formula is replaced by a probability distribution (following the
length of the shortest vector in a random k-dimensional lattice). We leave the
investigation of such a stochastic simulator to future work.

Technical ideas Enumeration algorithms (as typically used within block basis
reduction) find short vectors in a lattice by examining all possible coordinates
x1, . . . , xn of candidate short lattice vectors

∑
i bi · xi with respect to the given

lattice basis, and using the length of the projected lattice vector to prune the
search. Our dual lattice enumeration algorithm works similarly, but without
explicitly computing a basis for the dual lattice. The key technical idea is that
one can enumerate over the scalar products yi = 〈bi,v〉 of the candidate short
dual vectors v and the primal basis vectors bi.

3 Perhaps surprisingly, one can
also compute the length of the projections of the dual lattice vector v (required
to prune the enumeration tree), without explicitly computing v or a dual basis.
The simplicity of the algorithm is best illustrated just by looking at the pseudo
code, and comparing it side-to-side to the pseudo code of standard (primal)
lattice enumeration. (See Algorithms 2 and 3 in Section 7.) The two programs
are almost identical, leading to a dual enumeration procedure that is just as
efficient as primal enumeration, and allowing the application of all standard
optimizations (e.g., all various forms of pruning) that have been developed for
enumerating in primal lattices.

3 By definition of dual lattice, all these products yi are integers, and, in fact, they are
the coordinates of v with respect to the standard dual basis of b1, . . . ,bn.

On the basis reduction front, our DBKZ algorithm is based on a new notion
of block-reduced basis. Just as for BKZ, DBKZ-reduction is best described as
a recursive definition. In fact, the recursive condition is essentially the same for
both algorithms: given a basis B, if b is a shortest vector in the sublattice gener-
ated by the first k basis vectors B[1,k], we require the projection of B orthogonal
to b to satisfy the recursive reduction property. The difference between BKZ and
DBKZ is that, while BKZ requires B[1,k] to start with a shortest lattice vector
b = b1, in DBKZ we require it to end with a shortest dual vector.4 This simple
twist in the definition of reduced basis leads to a much simpler bound on the
length of b, improving the best known bound for BKZ reduction, and matching
the theoretical quality of Slide reduction.

Experiments To the best of our knowledge, we provide the first experimental
study of lattice reduction with large block size parameter beyond BKZ. Even
for BKZ we improve on the currently only study involving large block sizes [8]
by collecting multiple data points per block size parameter. This allows us to
apply standard statistical methods to try to get a sense of the main statistical
parameters of the output distribution. Clearly, learning more about the out-
put distribution of these algorithms is highly desirable for cryptanalysis, as an
adversary is drawing samples from that distribution and will utilize the most
convenient sample, rather than a sample close to the average.

Finally, in contrast to previous experimental work [8,16], we contribute to the
community by making our code5 and data6 publicly available. To the best of our
knowledge, this includes the first publicly available implementation of dual SVP
reduction and Slide reduction. At the time of publication of this work, a modified
version of our implementation of dual SVP reduction has been integrated into
the main branch of fpLLL [4]. We hope that this will spur more research into
the predictability of lattice reduction algorithms.

2 Preliminaries

Notation Numbers and reals are denoted by lower case letters. For n ∈ Z+ we
denote the set {0, . . . , n} by [n]. For vectors we use bold lower case letters and
the i-th entry of a vector v is denoted by vi. Let 〈v,w〉 =

∑
i vi · wi be the

scalar product of two vectors. If p ≥ 1 we define the p norm of a vector v to

be ‖v‖p = (
∑
|vi|p)1/p. We will only be concerned with the norms given by

p = 1, 2, and ∞. Whenever we omit the subscript p, we mean the standard
Euclidean norm, i.e. p = 2. We define the projection of a vector b orthogonal

to a vector v as πv(b) = b − 〈b,v〉‖v‖2 v. Matrices are denoted by bold upper case

4 To be precise, we require b∗k/‖b∗k‖2 to be a shortest vector in the dual lattice of
B[1,k]. See Section 3 for details.

5 http://cseweb.ucsd.edu/~miwalter/src/fplll-dual_enum/fplll-dual_enum.

zip
6 http://cseweb.ucsd.edu/~miwalter/src/fplll-dual_enum/results.zip

http://cseweb.ucsd.edu/~miwalter/src/fplll-dual_enum/fplll-dual_enum.zip
http://cseweb.ucsd.edu/~miwalter/src/fplll-dual_enum/fplll-dual_enum.zip
http://cseweb.ucsd.edu/~miwalter/src/fplll-dual_enum/results.zip

letters. The i-th column of a matrix B is denoted by bi. Furthermore, we de-
note the submatrix comprising the columns from the i-th to the j-th column
(inclusive) as B[i,j] and the horizontal concatenation of two matrices B1 and
B2 by [B1|B2]. For any matrix B and p ≥ 1 we define the induced norm to be
‖B‖p = max‖x‖p=1(‖Bx‖p). For p = 1 (resp. ∞) this is often denoted by the
column (row) sum norm; for p = 2 this is also known as the spectral norm. It
is a classical fact that ‖B‖2 ≤

√
‖B‖1‖B‖∞. Finally, we extend the projection

operator to matrices, where πV(B) is the matrix obtained by applying πV to
every column bi of B and πV(bi) = πvk

(· · · (πv1(bi)) · · ·).

2.1 Lattices

A lattice Λ is a discrete subgroup of Rm and is generated by a matrix B ∈ Rm×n,
i.e. Λ = L(B) = {Bx : x ∈ Zn}. If B has full column rank, it is called a basis of
Λ and dim(Λ) = n is the dimension (or rank) of Λ. A lattice has infinitely many
bases, which are related to each other by right-multiplication with unimodular
matrices. With each matrix B we associate its Gram-Schmidt-Orthogonalization
(GSO) B∗, where the i-th column b∗i of B∗ is defined as b∗i = πB∗

[1,i−1]
(bi) =

bi −
∑
j<i µi,jb

∗
j and µi,j = 〈bi,b∗j 〉/‖b∗j‖2 (and b∗1 = b1). For every lattice

basis there are infinitely many bases that have the same GSO vectors b∗i , among
which there is a (not necessarily unique) basis that minimizes ‖bi‖ for all i.
Transforming a basis into this form is commonly known as size reduction and
is easily and efficiently done using a slight modification of the Gram-Schmidt
process. In this work we will implicitly assume all bases to be size reduced.
The reader can simply assume that any basis operation described in this work
is followed by a size reduction. For a fixed matrix B we extend the projection
operation to indices: πi(·) = πB∗

[1,i−1]
(·), so π1(B) = B. Whenever we refer to

the shape of a basis B, we mean the vector (‖b∗i ‖)i∈[n]. We define D† to be the
GSO of D in reverse order.

For every lattice Λ there are a few invariants associated to it. One of them is
its determinant det(L(B)) =

∏
i ‖b∗i ‖ for any basis B. Even though the basis of a

lattice is not uniquely defined, the determinant is and it is efficiently computable
given a basis. Furthermore, for every lattice Λ we denote the length of its shortest
non-zero vector (also known as the first minimum) by λ1(Λ), which is always
well defined. We use the short-hand notations det(B) = det(L(B)) and λ1(B) =
λ1(L(B)). Minkowski’s theorem is a classic result that relates the first minimum
to the determinant of a lattice. It states that λ1(Λ) ≤ √γn det(Λ)1/n, for any
Λ with dim(Λ) = n, where Ω(n) ≤ γn ≤ n is Hermite’s constant. Finding a
(even approximate) shortest nonzero vector in a lattice, commonly known as
the Shortest Vector Problem (SVP), is NP-hard under randomized reductions
[25,34].

For every lattice Λ, its dual is defined as Λ̂ = {w ∈ span(Λ)|〈w,v〉 ∈
Z for all v ∈ Λ}. It is a classical fact that det(Λ̂) = det(Λ)−1. For a lattice
basis B, let D be the unique matrix that satisfies span(B) = span(D) and

BTD = DTB = I. Then L̂(B) = L(D) and we denote D as the dual basis of

B. It follows that for any vector w = Dx we have that BTw = x, i.e. we can
recover the coefficients x of w with respect to the dual basis D by multiplication
with the transpose of the primal basis BT . Given a lattice basis, its dual basis is
computable in polynomial time, but requires at least Ω(n3) bit operations using
matrix inversion. Finally, if D is the dual basis of B, their GSOs are related by
‖b∗i ‖ = 1/‖d†i‖.

In this work we will often modify a lattice basis B such that its first vector
satisfies α‖b1‖ ≤ λ1(B) for some α ≤ 1. We will call this process SVP reduction
of B. Given an SVP oracle, it can be accomplished by using the oracle to find the
shortest vector in L(B), prepending it to the basis, and running LLL (cf. Section
2.3) on the resulting generating system. Furthermore, we will modify a basis B

such that its dual D satisfies α‖dn‖ ≤ λ1(L̂(B)), i.e. its reversed dual basis is
SVP reduced. This process is called dual SVP reduction. Note that if B is dual
SVP reduced, then ‖b∗n‖ is maximal among all bases of L(B). The obvious way
to achieve dual SVP reduction is to compute the dual of the basis, SVP reduce
it as described above, and compute the primal basis. We present an alternative
way to achieve this in Section 7. In the context of reduction algorithms, the
relaxation factor α is usually needed for proofs of termination or running time
and only impacts the analysis of the output quality in lower order terms. In this
work, we will sweep it under the rug and take it implicitly to be a constant close
to 1. Finally, we will apply SVP and dual SVP reduction to projected blocks
of a basis B, for example we will (dual) SVP reduce the block πi(B[i,i+k]). By
that we mean that we will modify B in such a way that πi(B[i,i+k]) is (dual)
SVP reduced. This can easily be achieved by applying the transformations to
the original basis vectors instead of their projections.

2.2 Enumeration Algorithms

In order to solve SVP in practice, enumeration algorithms are usually employed,
since these are the most efficient algorithms for currently realistic dimensions.
The standard enumeration procedure, usually attributed to Fincke, Pohst [11],
and Kannan [24] can be described as a recursive algorithm: given as input a basis
B ∈ Zm×n and a radius r, it first recursively finds all vectors v′ ∈ L(π2(B))
with ‖v′‖ ≤ r, and then for each of them finds all v ∈ L(B), s.t. π2(v) = v′

and ‖v‖ ≤ r, using b1. This essentially corresponds to a breadth first search
on a large tree, where layers correspond to basis vectors and the nodes to the
respective coefficients. While it is conceptually simpler to think of enumeration
as a BFS, implementations usually employ a depth first search for performance
reasons. Pseudo code can be found in Algorithm 3 in Section 7.

There are several practical improvements of this algorithm collectively known
as SchnorrEuchner enumeration [60]: First, due to the symmetry of lattices, we
can reduce the search space by ensuring that the last non zero coefficient is
always positive. Furthermore, if we find a vector shorter than the bound r, we
can update the latter. And finally, we can enumerate the coefficients of a basis
vector in order of the length of the resulting (projected) vector and thus increase

the chance of finding some short vector early, which will update the bound r and
keep the search space smaller.

It has also been demonstrated [14] that reducing the search space (and thus
the success probability) – a technique known as pruning – can speed up enumer-
ation by exponential factors. For more details on recent improvements we refer
to [14,19,20,36,69].

2.3 Lattice Reduction

As opposed to exact SVP algorithms, lattice reductions approximate the shortest
vector. The quality of their output is usually measured in the length of the
shortest vector they are able to find with respect to the root determinant of the
lattice. This quantity is denoted by the Hermite factor δ̄ = ‖b1‖/ det(B)1/n.
The Hermite factor depends on the lattice dimension n, but the experiments
of [16] suggest that the root Hermite factor δ = δ̄1/n converges to a constant as
n increases for popular reduction algorithms. During our experiments we found
that to be true at least for large enough dimensions (n ≥ 140).

The LLL algorithm [27] is a polynomial time basis reduction algorithm. A
basis B ∈ Zm×n can be defined to be LLL reduced if B[1,2] is SVP reduced
and π2(B) is LLL reduced. From this it is straight forward to prove that LLL

reduction achieves a root Hermite factor of at most δ ≤ γ1/42 ≈ 1.0746. However,
LLL has been reported to behave much better in practice [16,43].

BKZ [54] is a generalization of LLL to larger block size. A basis B is BKZ
reduced with block size k (denoted by BKZ-k) if B[1,min(k,n)] is SVP reduced and
π2(B) is BKZ-k reduced. BKZ achieves this by simply scanning the basis from
left to right and SVP reducing each projected block of size k (or smaller once
it reaches the end) by utilizing a SVP oracle for all dimensions ≤ k. It iterates
this process (which is usually called a tour) until no more change occurs. When
k = n, this is usually referred to as HKZ reduction and is essentially equivalent
to solving SVP. The following bound for the Hermite factor holds for b1 of a
BKZ-k reduced basis [18]:

‖b1‖ ≤ 2γ
n−1

2(k−1)
+ 3

2

k det(B)1/n (1)

Equation (1) shows that the root Hermite factor achieved by BKZ-k is at most

. γ
1

2(k−1)

k . Furthermore, while there is no polynomial bound on the number of
calls BKZ makes to the SVP oracle, Hanrot, Pujol, and Stehlé showed in [18] that
one can terminate BKZ after a polynomial number of calls to the SVP oracle and
still provably achieve the bound (1). Finally, BKZ has been repeatedly reported
to behave very well in practice [8,16]. For these reasons, BKZ is very popular in
practice and implementations are readily available in different libraries, e.g. in
NTL [64] or fpLLL [4].

In [15], Gama and Nguyen introduced a different block reduction algorithm,
namely Slide reduction. It is also parameterized by a block size k, which is re-
quired to divide the lattice dimension n, but uses a SVP oracle only in dimension

k. 7 A basis B is defined to be slide reduced, if B[1,k] is SVP reduced, π2(B[2,k+1])
is dual SVP reduced (if k > n), and πk+1(B[k+1,n]) is slide reduced. Slide reduc-
tion, as described in [15], reduces a basis by first alternately SVP reducing all
blocks πik+1(B[ik+1,(i+1)k]) and running LLL on B. Once no more changes occur,
the blocks πik+2(B[ik+2,(i+1)k+1]) are dual SVP reduced. This entire process is
iterated until no more changes occur. Upon termination, the basis is guaranteed
to satisfy

‖b1‖ ≤ γ
n−1

2(k−1)

k det(B)1/n (2)

This is slightly better than Equation (1), but the achieved root Hermite factor

is also only guaranteed to be less than γ
1

2(k−1)

k . Slide reduction has the desirable
properties of only making a polynomial number of calls to the SVP oracle and
that all calls are in dimension k (and not in lower dimensions). The latter allows
for a cleaner analysis, for example when combined with the Gaussian Heuristic
(cf. Section 2.4). Unfortunately, Slide reduction has been reported to be greatly
inferior to BKZ in experiments [16], so it is rarely used in practice and we are
not aware of any publicly available implementation.

2.4 The Gaussian Heuristic

The Gaussian Heuristic gives an approximation of the number of lattice points
in a “nice” subset of Rn. More specifically, it says that for a given set S and a
lattice Λ, we have |S ∩ Λ| ≈ vol(S)/ det(Λ). The heuristic has been proved to
be very useful in the average case analysis of lattice algorithms. For example,
it can be used to estimate the complexity of enumeration algorithms [14, 19] or
the output quality of lattice reduction algorithms [8]. For the latter, note that
reduction algorithms work by repeatedly computing the shortest vector in some
lattice and inserting this vector in a certain position of the basis. To estimate
the effect such a step has on the basis, it is useful to be able to predict how long
such a vector might be. This is where the Gaussian Heuristic comes in: using
the above formula, one can estimate how large the radius of an n-dimensional
ball (this is the “nice” set) needs to be such that we can expect it to contain a
non-zero lattice point (where n = dim(Λ)). Using the volume formula for the n-
dimensional ball, we get an estimate for the shortest non-zero vector in a lattice
Λ:

GH(Λ) =
(Γ (n/2 + 1) · det(Λ))1/n√

π
(3)

If k is an integer, we define GH(k) to be the Gaussian Heuristic (i.e. Equation
(3)) for k-dimensional lattices with unit determinant. The heuristic has been

7 Strictly speaking, the algorithm as described in [15] uses HKZ reduction and thus
requires an SVP oracle in lower dimensions as well. However, the entire analysis
in [15] only relies on the SVP reducedness of the projected blocks and thus the HKZ
reduction can be replaced by SVP reduction, which we do in the following.

tested experimentally [14], also in the context of lattice reduction [8, 16], and
been found to be too rough in small dimensions, but to be quite accurate starting
in dimension > 45. In fact, for a precise definition of random lattices (which we
are not concerned with in this work) it can be shown that the expected value
of the first minimum of the lattice (over the choice of the lattice) converges to
Equation (3) as the lattice dimension tends to infinity.8

Heuristic 1 [Gaussian Heuristic] For a given lattice Λ, λ1(Λ) = GH(Λ).

Invoking Heuristic 1 for all projected sublattices that the SVP oracle is called
on during the process, the root Hermite factor achieved by lattice reduction
(usually with regards to BKZ) is commonly estimated to be [5]

δ ≈ GH(k)
1

k−1 . (4)

However, since the Gaussian Heuristic only seems to hold in large enough di-
mensions and BKZ makes calls to SVP oracles in all dimensions up to the block
size k, it is not immediately clear how justified this estimation is. While there is
a proof by Chen [7] that under the Gaussian Heuristic, Equation (4) is accurate
for BKZ, this is only true as the lattice dimension tends to infinity. It might be
reasonable to assume that this also holds in practice as long as the lattice dimen-
sion is large enough compared to the block size, but in practice and cryptanalytic
settings this is often not the case. In fact, in order to achieve an approximation
good enough to break a cryptosystem, a block size at least linear in the lattice
dimension is often required. As another approach to predicting the output of
BKZ, Chen and Nguyen proposed a simulation routine [8]. Unfortunately, the
simulator approach has several drawbacks. Obviously, it requires more effort to
apply than a closed formula like (4), since it needs to be implemented and “typ-
ical” inputs need to be generated or synthesized (among others, the shape of a
“typical” HKZ reduced basis in dimension 45). On top of that, the accuracy of
the simulator is based on several additional heuristic assumptions, the validity
of which has not been independently verified.

To the best of our knowledge there have been no attempts to make similar
predictions for Slide reduction, as it is believed to be inferior to BKZ and thus
usually not considered for cryptanalysis.

3 Self-Dual BKZ

In this section we describe our new reduction algorithm. Like BKZ it is parame-
terized by a block size k and a SVP oracle in dimension k, and acts on the input
basis B ∈ Zm×n by iterating tours. The beginning of every tour is exactly like a

8 One can also formulate Heuristic 1 for a given lattice by assuming it “behaves like
a random lattice”. Depending on the exact definition of what it means for a lattice
to “behave like a random lattice”, this version is either stronger as or equivalent to
Heuristic 1.

BKZ tour, i.e. SVP reducing every block πi(B[i,i+k−1]) from i = 1 to n− k + 1.
We will call this part a forward tour. For the last block, which BKZ simply HKZ
reduces and where most of the problems for meaningful predictions stem from,
we do something different. Instead, we dual SVP the last block and proceed by
dual SVP reducing all blocks of size k backwards (which is a backward tour). Af-
ter iterating this process (which we call a tour of Self-Dual BKZ) the algorithm
terminates when no more progress is made. The algorithm is formally described
in Algorithm 1.

Algorithm 1 Self-Dual BKZ

procedure DBKZ (B, k, SVPk)
Input: A lattice basis B ∈ Zm×n, a block size k, a SVP oracle in dimension k
Output: A k-reduced basis B′ (See Definition 1 for a formal definition.)
1 do

2 for i = 1 . . . n− k
3 SVP reduce πi(B[i,i+k−1]) using SVPk

4 for i = n− k + 1 . . . 1
5 dual SVP reduce πi(B[i,i+k−1]) using SVPk

6 while progress is made
7 return B

Note that, like BKZ, Self-Dual BKZ (DBKZ) is a proper block generalization
of the LLL algorithm, which corresponds to the case k = 2.

The terminating condition in Line 6 is left ambiguous at this point on purpose
as there are several sensible ways to approach this as we will see in the next
section. One has to be careful to, on the one hand guarantee termination, while
on the other hand achieving a meaningful reducedness definition.

3.1 Analysis

The output of Algorithm 1 satisfies the following reducedness definition upon
termination:

Definition 1. A basis B = [b1, . . . ,bn] is k-reduced if either n < k, or it
satisfies the following conditions:

– ‖b∗k‖−1 = λ1(̂L(B[1,k])), and

– for some SVP reduced basis B̃ of L(B[1,k]), π2([B̃|B[k+1,n]]) is k-reduced.

We first prove that Algorithm 1 indeed achieves Definition 1 when used with
a specific terminating condition:

Lemma 1. Let B be an n-dimensional basis. If πk+1(B) is the same before and
after one loop of Algorithm 1, then B is k-reduced.

Proof. The proof is inductive: for n = k the result is trivially true. So, assume
n > k, and that the result already holds for n− 1. At the end of each iteration,
the first block B[1,k] is dual-SVP reduced by construction. So, we only need

to verify that for some B̃ an SVP reduced basis for L(B[1,k), the projection

π2([B̃|B[k+1,n]]) is also k-reduced. Let B̃ be the SVP reduced basis produced in
the first step. Note that the first and last operation in the loop do not change
L(B[1,k]) and B[k+1,n]. It follows that πk+1(B) is the same before and after the
partial tour (the tour without the first and the last step) on the projected basis
π2([B̃|B[k+1,n]]), and so πk+2(B) is the same before and after the partial tour.

By induction hypothesis, π2([B̃|B[k+1,n]]) is k-reduced. ut

Lemma 1 gives a terminating condition which ensures that the basis is re-
duced. We remark that it is even possible to adapt the proof such that it is
sufficient to check that the shape of the projected basis πk+1(B) is the same
before and after the tour, which is much closer to what one would do in practice
to check if progress was made (cf. Line 6). However, this requires to relax the
definition of SVP-reduction slightly, such that the first vector is not necessarily
a shortest vector, but merely a short vector achieving Minkowski’s bound. Since
this is the only property of SVP reduced bases we need for the analysis below,
this does not affect the worst case output quality. Finally, we are aware that it
is not obvious that either of these conditions are ever met, e.g. (the shape of)
πk+1(B) might loop indefinitely. However, in Section 4 we show that one can
put a polynomial upper bound on the number of loops without sacrificing worst
case output quality.

To show that the output quality of Self-Dual BKZ in the worst case is at
least as good as BKZ’s worst case behavior, we analyze the Hermite factor it
achieves:

Theorem 1. If B is k-reduced, then λ1(B[1,k]) ≤
√
γk

n−1
k−1 · det(B)1/n.

Proof. Assume without loss of generality that L(B) has determinant 1, and let

∆ be the determinant of L(B[1,k]). Let λ ≤ √γk∆1/k and λ̂ ≤ √γk∆−1/k be the
lengths of the shortest nonzero primal and dual vectors of L(B[1,k]). We need to

prove that λ ≤ √γk
n−1
k−1 .

We first show, by induction on n, that the determinant ∆1 of the first k − 1
vectors is at most

√
γk
n−k+1 det(B)(k−1)/n =

√
γk
n−k+1. Since B is k-reduced,

this determinant equals ∆1 = λ̂ · ∆ ≤ √γk∆1−1/k. (This alone already proves

the base case of the induction for n = k.) Now, let B̃ be a SVP reduced basis
of L(B[1,k]) satisfying the k-reduction definition, and consider the determinant

∆2 = ∆/λ of π2(B̃). Since π2([B̃|B[k+1,n]]) has determinant 1/‖b̃1‖ = 1/λ, by

induction hypothesis we have ∆2 ≤
√
γk
n−k(1/λ)(k−1)/(n−1).

∆ = λ∆2 ≤
√
γk
n−k

λ
n−k
n−1 ≤ √γkn−k(

√
γk∆

1
k)

n−k
n−1 =

√
γk

(n−k)n
n−1 ∆

n−k
k(n−1) .

Rising both sides to the power (n − 1)/n we get ∆1− 1
n ≤ √γnn−k∆

1
k−

1
n ,

or, equivalently, ∆1− 1
k ≤ √γkn−k. It follows that ∆1 = λ̂∆ ≤ √γk∆1− 1

k ≤
√
γk
n−k+1, concluding the proof by induction.

We can now prove the main theorem statement. Recall from the inductive

proof that ∆ ≤ √γkn−kλ
n−k
n−1 . Therefore, λ ≤ √γk∆1/k ≤ √γk

n
k λ

n−k
k(n−1) . Solving

for λ, proves the theorem. ut

4 Dynamical System

Proving a good running time on DBKZ directly seems just as hard as for BKZ,
so in this section we analyze the DBKZ algorithm using the dynamical system
technique from [18].

Let B = [b1, . . . ,bn] be an input basis to DBKZ, and assume without loss
of generality that det(B) = 1. During a forward tour, our algorithm computes a
sequence of lattice vectors B′ = [b′1, . . . ,b

′
n−k] where each b′i is set to a shortest

vector in the projection of [bi, . . . ,bi+k−1] orthogonal to [b′1, . . . ,b
′
i−1]. This set

of vectors can be extended to a basis B′′ = [b′′1 , . . . ,b
′′
n] for the original lattice.

Since [b′1, . . . ,b
′
i−1] generates a primitive sublattice of [bi, . . . ,bi+k−1], the pro-

jected sublattice has determinant det(L(b1, . . . ,bi+k−1))/ det(L(b′1, . . . ,b
′
i−1)),

and the length of its shortest vector is

‖(b′i)∗‖ ≤
√
γk

(
det(L(b1, . . . ,bi+k−1))

det(L(b′1, . . . ,b
′
i−1))

)1/k

. (5)

At this point, simulations based on the Gaussian Heuristics typically assume
that (5) holds with equality. In order to get a rigorous analysis without heuristic
assumptions, we employ the amortization technique of [18, 19]. For every i =
1, . . . , n− k, let xi = log det(b1, . . . ,bk+i−1) and x′i = log det(b′1, . . . ,b

′
i). Using

(5), we get for all i = 1, . . . , n− k,

x′i = x′i−1 + log ‖(b′i)∗‖

≤ x′i−1 + α+
xi − x′i−1

k
= ωx′i−1 + α+ (1− ω)xi

where ω = (1− 1/k), α = 1
2 log γk and x′0 = 0. By induction on i,

x′i ≤ α
1− ωi

1− ω
+ (1− ω)

i∑
j=1

ωi−jxj ,

or, in matrix notation x′ ≤ b + Ax where

b = αk

 1− ω
...

1− ωn−k

 A =
1

k

1
ω 1
...

. . .
. . .

ωn−k−1 · · · ω 1

 .

Since all the entries of A are positive, we also see that if Xi ≥ xi are upper
bounds on the initial values xi for all i, then the vector X ′ = AX + b gives
upper bounds on the output values x′i ≤ X ′i.

The vector x′ describes the shape of the basis matrix before the execution
of a backward tour. Using lattice duality, the backward tour can be equivalently
formulated by the following steps:

1. Compute the reversed dual basis D of B′

2. Apply a forward tour to D to obtain a new dual basis D′

3. Compute the reversed dual basis of D′

The reversed dual basis computation yields a basis D such that, for all i =
1, . . . , n− k,

yi = log det(d1, . . . ,dk+i−1)

= − log(det(B′)/ det([b′1, . . . ,b
′
n−k+1−i]))

= log det([b′1, . . . ,b
′
n−k+1−i]) = x′n−k+1−i.

So, the vector y describing the shape of the dual basis at the beginning of the
backward tour is just the reverse of x′. It follows that applying a full (forward
and backward) DBKZ tour produces a basis such that if X are upper bounds
on the log determinants x of the input matrix, then the log determinants of the
output matrix are bounded from above by

R(AR(AX + b) + b) = (RA)2X + (RA + I)Rb

where R is the coordinate reversal permutation matrix. This leads to the study
of the discrete time affine dynamical system

X 7→ (RA)2X + (RA + I)Rb. (6)

4.1 Output Quality

We first prove that this system has at most one fixed point.

Claim. The dynamical system (6) has at most one fixed point.

Proof. Any fixed point is a solution to the linear system ((RA)2− I)X+(RA+
I)Rb = 0. To prove uniqueness, we show that the matrix ((RA)2 − I) is non-
singular, i.e., if (RA)2x = x then x = 0. Notice that the matrix RA is sym-
metric, so we have (RA)2 = (RA)TRA = ATA. So proving ((RA)2 − I) is
non-singular is equivalent to showing that 1 is not an eigenvalue of ATA. We
have ρ(ATA) = ‖A‖22 ≤ ‖A‖1‖A‖∞, where ρ(·) denotes the spectral radius of
the given matrix (i.e. the largest eigenvalue in absolute value). But we also have

‖A‖∞ = ‖A‖1 =
1

k

n−k−1∑
i=0

ωi =
1− ωn−k

k(1− ω)
= 1− ωn−k < 1 (7)

which shows that the absolute value of any eigenvalue of ATA is strictly smaller
than 1. ut

We need to find a fixed point for (6). We have proved that (RA)2 − I is
a non-singular matrix. Since (RA)2 − I = (RA + I)(RA − I), it follows that
(RA±I) are also non singular. So, we can factor (RA+I) out of the fixed point
equation ((RA)2 − I)x + (RA + I)Rb = 0, and obtain (RA − I)x + Rb = 0.
This shows that the only fixed point of the full dynamical system (if it exists)
must also be a fixed point of a forward tour x 7→ R(Ax + b).

Claim. The fixed point of the dynamical system x 7→ R(Ax + b) is given by

xi =
(n− k − i+ 1)(k + i− 1)

k − 1
α. (8)

Proof. The unique fixed point of the system is given by the solution to the linear
system (R−A)x = b. We prove that (8) is a solution to the system by induction
on the rows. For the first row, the system yields

xn−k − x1/k = α. (9)

From (8) we get that xn−k = n−1
k−1α and x1 = k(n−k)

k−1 α. Substituting these into
(9), the validity is easily verified.

The r-th row of the system is given by

xn−k−r+1 −
1

k

 r∑
j=1

ωr−jxj

 =
1− ωr

1− ω
α (10)

which is equivalent to

xn−k−r+1+ω

xn−k−r+2 −
1

k

r−1∑
j=1

ωr−1−jxj

−xr
k
−ωxn−k−r+2 =

1− ωr

1− ω
α.

(11)
By induction hypothesis, this is equivalent to

ω

(
1− ωr−1

1− ω

)
α+ xn−k−r+1 −

xr
k
− ωxn−k−r+2 =

1− ωr

1− ω
α. (12)

Substituting (8) in for i = n− k − r + 1, r, and n− k − r + 2, we get

xn−k−r+1 −
xr
k
− ωxn−k−r+2 =

kr(n− r)− (n− r − k + 1)(r + k − 1)− (k − 1)(r − 1)(n− r + 1)

k(k − 1)
α

which, after some tedious, but straight forward, calculation can be shown to be
equal to α (i.e. the fraction simplifies to 1). This in turn shows that the left hand
side of (12) is equivalent to

ω

(
1− ωr−1

1− ω

)
α+ α

which is equal to its right hand side. ut

Note that since x1 corresponds to the log determinant of the first block,
applying Minkowski’s theorem results in the same worst case Hermite factor as
proved in Theorem 1.

4.2 Convergence

Consider any input vector v and write it as v = x + e, where x is the fixed
point of the dynamical system as in (8). The system sends v to v 7→ RAv +
b = RAx + RAe + b = x + RAe, so the difference e to the fixed point
is mapped to RAe in each iteration. In order to analyze the convergence of
the algorithm, we consider the induced norm of the matrix ‖RA‖p = ‖A‖p,
since after t iterations the difference is (RA)te and so its norm is bounded by
‖(RA)te‖p ≤ ‖(RA)t‖p‖e‖p ≤ ‖RA‖tp‖e‖p. So if the induced norm of A is
strictly smaller than 1, the corresponding norm of the error vector follows an
exponential decay. While the spectral norm of A seems hard to bound, the 1 and
the infinity norm are straight forward to analyze. In particular, we saw in (7)
that ‖A‖∞ = 1−ωn−k. This proves that the algorithm converges. Furthermore,
let the input be a basis B (with det(B) = 1), the corresponding vector v =
(log det(b1, . . . ,bk+i−1))1≤i≤n and write v = x + e. Then we have ‖e‖∞ =
‖v − x‖∞ ≤ ‖v‖∞ + ‖x‖∞ ≤ poly(n, size(B)). This implies that for

t = polylog(n, size(B))/ωn−k ≈ O(e(n−k)/k)polylog(n, size(B)) (13)

we have that ‖(RA)te‖ ≤ c for constant c. Equation (13) already shows that for
k = Ω(n), the algorithm converges in a number of tours polylogarithmic in the
lattice dimension n, i.e. makes at most Õ(n) SVP calls. In the initial version of
this work, proving polynomial convergence for arbitrary k was left as an open
problem. Recently, Neumaier filled this gap [38]. We reformulate his proof using
our notation in the full version of this paper [37].

5 Heuristic Analysis

In the context of cryptanalysis, we are more interested in the average case be-
havior of algorithms. For this we can use a very simple observation to predict
the Hermite factor achieved by DBKZ. Note that the proof of Theorem 1 is
based solely on Minkowski’s bound λ1(B) ≤ √γn det(B)1/n. Replacing it with
Heuristic 1 yields the following corollary.

Corollary 1. Applying Heuristic 1 to every lattice that is passed to the SVP
oracle during the execution of Algorithm 1, if B is k-reduced, then λ1(B1,k) =

GH(k)
n−1
k−1 det(B)1/n.

As the Hermite factor is the most relevant quantity in many cryptanalytic
settings, Corollary 1 is already sufficient for many intended applications in terms
of output quality. We remark that the proof of achieved worst-case output qual-
ity of Slide reduction also only relies on Minkowski’s bound. This means the

same observation can be used to predict the average case behavior of Slide re-
duction and yields the same estimate as Corollary 1. In fact, from the recursive
definition of Slide reduction it is clear that this yields even more information
about the returned basis: we can use Corollary 1 to predict the norm of ‖bik+1‖
for all i ∈ [n/k]. A short calculation shows that these vectors follow a geometric
series, supporting a frequently assumed behavior of lattice reduction, namely the
Geometric Series Assumption [57].

However, many attacks [30, 45] require to estimate the average case output
much more precisely. Fortunately, applying a similar trick as in Corollary 1 to
the dynamical systems analysis in Section 4 allows us to obtain much more in-
formation about the basis. For this, note that again we can replace Minkowski’s
theorem in the analysis by Heuristic 1. This transformation changes the dynam-
ical system in (6) only slightly, the only difference being that α = 1

2 logGH(k).
As the analysis is independent of the constant α, we can translate the fixed point
in (8) to information about the shape of the basis that DBKZ is likely to return.

Corollary 2. Applying Heuristic 1 to every lattice that is passed to the SVP
oracle during the execution of Algorithm 1, the fixed point of the heuristic dy-
namical system, i.e. (6) with α = 1

2 logGH(k), is (8) with the same α and
implies that after one more forward tour, the basis satisfies

‖b∗i ‖ = GH(k)
n+1−2i
2(k−1) det(L(B))

1
n (14)

for all i ≤ n− k.

Proof. According to (8), upon termination of Algorithm 1 the output basis sat-
isfies

log(det([b1, . . . ,bi])) =
(n− k − i+ 1)(k + i− 1)

k − 1
α

By Heuristic 1 we have log ‖b1‖ = α + x1/k, from which Equation (14) easily
follows for i = 1. Now assume (14) holds for all j < i. Then we have, again
by Heuristic 1, log ‖b∗i ‖ = α + (xi −

∑
j<i log ‖b∗j‖)/k. Invoking the induction

hypothesis, Equation (14) easily follows for all i ≤ n− k. ut

Corollary 2 shows that the output of the DBKZ algorithm, if terminated
after a forward tour, can be expected to closely follow the GSA, at least for all
i ≤ n − k and can be computed using simple closed formulas. It is noteworthy
that the self-dual properties of DBKZ imply that if terminated after a backward
tour, the GSA holds for all i ≥ k. This means, depending on the application
one can choose which part of the output basis to predict. Moreover, we see that
DBKZ allows to predict a much larger part of the basis than Slide reduction
solely based on the Gaussian Heuristic. If one is willing to make additional
assumptions, i.e. assumptions about the shape of a k-dimensional HKZ reduced
basis, the BKZ simulator allows to predict the shape of the entire basis output
by BKZ. Obviously, the same assumptions can be used to estimate the remaining
parts of the shape of the basis in the case of Slide reduction and DBKZ, since a
final application of a HKZ reduction to individual blocks of size k only requires

negligible amount of time compared to the running time of the entire algorithm.
Furthermore, since the estimation of the known part of the shape (from Corollary
2 and 1) do not depend on these additional assumptions, the estimation for
Slide reduction and DBKZ is much less sensitive to the (in-)correctness of these
assumptions, while errors propagate during the BKZ simulation.

To compare the expected output of BKZ, DBKZ, and Slide reduction, we
generated a Goldstein-Mayer lattice [17] in dimension n = 200 with numbers
of bit size 2000, applied LLL to it, and simulated the execution of BKZ with
block size k = 100 until no more progress was made. The output in terms of
the logarithm of the shape of the basis for the first 100 basis vectors is shown in
Figure 1 and compared to the GSA. Recall that the latter represents the expected
output of DBKZ and, to some degree, Slide reduction. Under the assumption
that Heuristic 1 and the BKZ simulator are accurate, one would expect BKZ to
behave a little worse than the other two algorithms in terms of output quality.

0 20 40 60 80 100

10

10.5

11

11.5

12

12.5

i

lo
g(
‖b

∗ i
‖)

BKZ
GSA

Fig. 1: Expected shape of the first 100 basis vectors in dimension n = 200 after BKZ
compared to the GSA. Note that the latter corresponds exactly to the expected shape
of the first 100 basis vectors after DBKZ (cf. 2).

6 Experiments

For an experimental comparison, we implemented DBKZ and Slide reduction in
fpLLL. SVP reduction in fplll is implemented in the standard way as described
in Section 2.1. For dual SVP reduction we used the algorithm explained in the
Section 7.

6.1 Methodology

In the context of cryptanalysis we are usually interested in the root Hermite
factor achievable using lattice reduction in order to choose parameters for cryp-
tosystems, as this often determines the success probability and/or complexity
of an attack. It is clear that merely reporting on the average root Hermite fac-
tor achieved is of limited use for this. Instead we will view the resulting root
Hermite factor achieved by a certain reduction algorithm (with certain param-
eters) as a random variable and try to estimate the main statistical parameters
of its distribution. We believe this will eventually allow for more meaningful
security estimates. The only previous experimental work studying properties of
the underlying distribution of the root Hermite factor [16] suggests that it is a
Gaussian-like but the study is limited to relatively small block sizes.

Since experiments with lattice reduction are rather time consuming, it is in-
feasible to generate as much data as desirable to estimate statistical parameters
like the mean value and standard deviation accurately. A standard statistical
technique to overcome this is to use bootstrapping to compute confidence inter-
vals for these parameters. Roughly speaking, in order to compute the confidence
interval for an estimator from a set of N samples, we sample l sets of size N
with replacement from the original samples and compute the estimator for each
of them. Intuitively, this should give a sense of the variability of the estimator
computed on the samples. Our confidence interval with confidence parameter
α, according to the bootstrap percentile interval method, is simply the α/2 and
1− α/2 quantiles. For further discussion we refer to [70]. Throughout this work
we use α = .05 and l = 100. The complete confidence intervals for mean value
and standard deviation are listed in Appendix A. Whenever we refer to the
standard deviation of a distribution resulting from the application of a reduc-
tion algorithm and computing the root Hermite factor achieved, we mean the
maximum of the corresponding confidence interval.

It is folklore that the output quality of lattice reduction algorithms measured
in the root Hermite factor depends mostly on the block size parameter rather
than on properties of the input lattice, like the dimension or bit size of the
numbers, at least when the lattice dimension and size of the numbers is large
enough. A natural approach to comparing the different algorithms would be to
fix a number of lattices of certain dimension and bit size and run the different
algorithms with varying block size on them. Unfortunately, Slide reduction re-
quires the block size to divide the dimension.9 To circumvent this we select the
dimension of the input lattices depending on the block sizes we want to test, i.e.
n = t · k, where k is the block size and t is a small integer. This is justified as
most lattice attacks involve choosing a suitable sublattice to attack, where such
a requirement can easily be taken into account. Since for very small dimensions
block reduction performs a little better then in larger dimensions, we need to
deal with a trade-off here: on the one hand we need to ensure that the lattice

9 While it is trivial to generalize Slide reduction to other block sizes, the performance
in terms of the achieved output quality of the basis deteriorates somewhat in this
case compared to other reduction algorithms [29].

dimension n is large enough, even for small block sizes, so that the result is not
biased positively for small block sizes due to the small dimension. On the other
hand, if the lattice dimension grows very large we would have to increase the
precision of the GSO computation significantly which would result in an artificial
slow down and thus limit the data we are able to collect. Our experiments and
previous work [16] suggest that the bias for small dimensions weakens sufficiently
as soon as the lattice dimension is larger than 140, so for the lattice dimension
n we select the smallest multiple t of the block size k such that t · k ≥ 140.

For each block size we generated 10 different subset sum lattices in dimension
n in the sense of [19] and we fix the bit size of the numbers to 10 · n following
previous work [19,36]. Experimental studies [43] have shown that this notion of
random lattices is suitable in this context as lattice reduction behaves similarly
on them as on “random” lattices in a mathematically more precise sense [17]10.
Then we ran each of the three reduction algorithms with corresponding block
size on each of those lattices. For BKZ and DBKZ we used the same terminating
condition: the algorithms terminate when the slope of the shape of the basis
does not improve during 5 loop iterations in a row (this is the default termi-
nating condition in fpLLL’s BKZ routine with auto abort option set). Finally,
for sufficiently large block sizes (k > 45), we preprocessed the local blocks with
BKZ-(k/2) before calling the SVP oracle, since this has been shown to achieve
good asymptotic running time [69] and also seemed a good choice in practice in
our experiments.

6.2 Results

Figure 2 shows the average output quality including the confidence interval pro-
duced by each of the three algorithms in comparison with the prediction based
on the Gaussian Heuristic (cf. Equation (4)). It demonstrates that BKZ and
DBKZ have comparable performance in terms of output quality and clearly out-
perform Slide reduction for small block sizes (< 50), which confirms previous
reports [16]. For some of the small block sizes (e.g. k = 35) BKZ seems to per-
form unexpectedly well in our experiments. To see if this is indeed inherent to
the algorithms or a statistical outlier owed to the relatively small number of data
points, we ran some more experiments with small block sizes. We report on the
results in the full version [37], where we show that the performance of BKZ and
DBKZ are actually extremely close for these parameters.

Furthermore, Figure 2 shows that all three algorithms tend towards the pre-
diction given by Equation (4) in larger block sizes, supporting the conjecture,
and Slide reduction becomes quite competitive. Even though BKZ still seems to
have a slight edge for block size 75, note that the confidence intervals for Slide
reduction and BKZ are heavily overlapping here. This is in contrast to the only
previous study that involved Slide reduction [16], where Slide reduction was re-
ported to be entirely noncompetitive in practice and thus mainly of theoretical
interest.

10 In fact, subset sum lattices are extremely similar to the random lattices of [17].

Figure 3 shows the same data separately for each of the three algorithms
including estimated standard deviation. The data does not seem to suggest that
one or the other algorithm behaves “nicer” with respect to predictability – the
standard deviation ranges between 0.0002 and 0.0004 for all algorithms, but can
be as high as 0.00054 (cf. Appendix A). Note that while these numbers might
seem small, it affects the base of the exponential that the short vector is mea-
sured in, so small changes have a large impact. The standard deviation varies
across different block sizes, but there is no evidence that it might converge to
smaller values or even 0 in larger block sizes. So we have to assume, that it re-
mains a significant factor for larger block sizes and should be taken into account
in cryptanalysis. It is entirely conceivable that the application of a reduction al-
gorithm yields a root Hermite factor significantly smaller than the corresponding
mean value.

40 60 80 100 120 140

1.008e

1.009e

1.01e

1.011e

1.012e

1.013e

1.014e

block size k

ro
o
t

H
e
rm

it
e
 f

a
ct

o
r

slide reduction
BKZ
DBKZ
prediction

Fig. 2: Confidence interval of average root Hermite factor for random bases as computed
by different reduction algorithms and the prediction given by Equation (4).

In order to compare the runtime of the algorithms we ran separate experi-
ments, because due to the way we selected the dimension, the data would exhibit
a somewhat strange “zigzag” behavior. For each block size 50 ≤ k ≤ 75 we gen-
erated again 10 random subset sum lattices with dimension n = 2k and the bit
size of the numbers was fixed to 1400. Figure 4 shows the average runtime for
each of the algorithms and block size in log scale. It shows that the runtime of
all three algorithms follows a close to single exponential (in the block size) curve.
This supports the intuition that the runtime mainly depends on the complexity
of the SVP oracle, since we are using an implementation that preprocesses the
local blocks before enumeration with large block size. This has been shown to

30 40 50 60 70

1.01e

1.011e

1.012e

1.013e

1.014e

1.015e

block size k

ro
o
t

H
e
rm

it
e
 f

a
ct

o
r

(a) BKZ

30 40 50 60 70

1.01e

1.011e

1.012e

1.013e

1.014e

1.015e

block size k

ro
o
t

H
e
rm

it
e
 f

a
ct

o
r

(b) Slide Reduction

30 40 50 60 70

1.01e

1.011e

1.012e

1.013e

1.014e

1.015e

block size k

ro
o
t

H
e
rm

it
e
 f

a
ct

o
r

(c) DBKZ

Fig. 3: Same as Figure 2 with estimated standard deviation

achieve an almost single exponential complexity (up to logarithmic factors in
the exponent) [69].

The data also shows that in terms of runtime, Slide reduction outperforms
both, BKZ and DBKZ. But again, with increasing block size the runtime of the
different algorithms seem to converge to each other. Combined with the data
from Figure 2 this suggests that all three algorithms offer a similar trade-off
between runtime and achieved Hermite factor for large block sizes. This shows
that Slide reduction is not only theoretically interesting with its cleaner and
tighter analysis of both, output quality and runtime, but also quite competitive in
practice. It should be noted that we analyzed Slide reduction as described in [15].
While significant research effort has been spent on improving BKZ, essentially
nothing along these lines has been done with regards to Slide reduction. We hope
that the results reported here will initiate more research into improvements, both
in practice and theory, of Slide reduction.

7 Dual Enumeration

Similar to Slide reduction, DBKZ makes intensive use of dual SVP reduction
of projected blocks. The obvious way to achieve this reduction is to compute
the dual basis for the projected block, run the primal SVP reduction on it,
and finally compute the primal basis of the block. While the transition between
primal and dual basis is a polynomial time computation and is thus dominated by
the enumeration step, it does involve matrix inversion, which can be quite time
consuming in practice. To address this issue, Gama and Nguyen [15] proposed
a different strategy. Note that SVP reduction, as performed by enumeration,
consists of two steps: (1) the coordinates of a shortest vector in the given basis
are computed, and (2) this vector is inserted into the basis. Gama and Nguyen
observe that for dual SVP reduction, (2) can be achieved using the coordinates
obtained during the dual enumeration by solely operating on the primal basis.
Furthermore, note that the enumeration procedure (step (1)) only operates on
the GSO of the basis so it is sufficient for (1) to invert the GSO matrices of the
projected block, which is considerably easier since they consist of a diagonal and

50 55 60 65 70 75

102

103

104

block size k

ru
n
ti

m
e
 i
n
 s

slide reduction
BKZ
DBKZ

Fig. 4: Average runtime in seconds for random bases in dimension n = 2k for different
reduction algorithms (in log scale).

an upper triangular matrix. However, this still incurs a computational overhead
of Ω(n3).

We now introduce a way to find the coordinates of a shortest vector in the
dual lattice without computing the dual basis or dual GSO.

Lemma 2. Let B be a lattice basis and w an arbitrary vector in the linear span
of B. Let x be the coefficient vector expressing w with respect to the dual basis,
i.e., xi = 〈w,bi〉 for all i ≤ n. Then, for any k ≤ n, the (uniquely defined) vector
w(k) ∈ span(B[1,k]) such that 〈w(k),bi〉 = xi for all i ≤ k, can be expressed as

w(k) =
∑
i≤k αib

∗
i /‖b∗i ‖2 where

αi = xi −
∑
j<i

µi,jαj . (15)

Proof. The condition w(k) ∈ span(B[1,k]) directly follows from the definition

of w(k) =
∑
i≤k αib

∗
i /‖b∗i ‖2. We need to show that this vector also satisfies

the scalar product conditions 〈w(k),bi〉 = xi for all i ≤ k. Substituting the
expression for w(k) in the scalar product we get

〈w(k),bi〉 =
∑
j≤k

αj
〈b∗j ,bi〉
‖b∗j‖2

=
∑
j≤i

αj
〈b∗j ,bi〉
‖b∗j‖2

= αi +
∑
j<i

αjµi,j = xi

where the last equality follows from the definition of αi. ut

This shows that if we enumerate the levels from k = 1 to n (note the reverse
order as opposed to primal enumeration) we can easily compute αk from all the
given or previously computed quantities in O(n). The length of w(k) is given by

‖w(k)‖2 =
∑
i≤k

α2
i /‖b∗i ‖2 = ‖w(k−1)‖2 + α2

k/‖b∗k‖2. (16)

To obtain an algorithm that is practically as efficient as primal enumeration,
it is necessary to apply the same standard optimizations known as SchnorrEuch-
ner enumeration to the dual enumeration. It is obvious that we can exploit lat-
tice symmetry and dynamic radius updates in the same fashion as in the primal
enumeration. The only optimization that is not entirely obvious is enumerating
the values for xk in order of increasing length of the resulting partial solution.
However, from Equation (15) and (16) it is clear that we can start by selecting
xk = b

∑
j<k µk,jαje in order to minimize the first value of αk, and then pro-

ceed by alternating around this first value just as in the SchnorrEuchner primal
enumeration algorithm.

It is also noteworthy that being able to compute partial solutions even al-
lows us to apply pruning [14] directly. In summary this shows that dual SVP
enumeration should be just as efficient as primal enumeration. To illustrate this,
Algorithm 2 and 3 show the SchnorrEuchner variant of the two enumeration
procedures.11

Algorithm 2 Dual Enumeration

procedure DualEnum(µ, (‖b∗i ‖2)i∈[n], A)
Input: The GSO of a lattice µ and
(‖b∗i ‖2)i∈[n] and an upper bound A to the
squared length of a shortest dual vector
Output: The coordinates of a shortest
dual vector in the dual basis D
1 k ← 1
2 while k ≥ 1
3 αk ← xk −

∑
j<k µk,jαj

4 lk ← lk−1 + α2
k/‖b∗k‖2

5 if lk ≤ A and k = n then

6 s← x, A← lk
7 if lk ≤ A and k < n then

8 k ← k+1, xk ← b
∑

j<k µk,jαje
9 else

10 k ← k − 1, xk ← nextX(k)
11 return s

Algorithm 3 Primal Enumeration

procedure PrimalEnum(µ, (‖b∗i ‖2)i∈[n], A)
Input: The GSO of a lattice µ and
(‖b∗i ‖2)i∈[n] and an upper bound A to the
squared length of a shortest vector
Output: The coordinates of a shortest vec-
tor in the basis B
1 k ← n
2 while k ≤ n
3 αk ← xk +

∑
j>k µj,kxj

4 lk ← lk+1 + α2
k‖b∗k‖2

5 if lk ≤ A and k = 1 then

6 s← x, A← lk
7 if lk ≤ A and k > 1 then

8 k ← k−1, xk ← b−
∑

j>k µj,kxje
9 else

10 k ← k + 1, xk ← nextX(k)
11 return s

11 The function nextX simply selects the next value for a specific variable in order to
alternate correctly around the center of the interval of valid values. We omit details
here since it works identical in both algorithms and requires auxiliary variables that
would clutter the code unnecessarily.

Implementation Notes To give some experimental evidence that the dual enu-
meration is just as efficient as primal enumeration, we implemented it in fpLLL.12

Note that Algorithm 2 can be easily added to an implementation of Algorithm
3 by using special cases in data accesses and a few operations. Furthermore, in
order to avoid the division in line 4 we precomputed the values 1/‖b∗k‖2 for all
k. We compared the implementation with the primal enumeration on 10 random
bases (in the same sense as in Section 6) in dimension 35 ≤ n ≤ 50. As expected,
the rate of enumeration was close to equal in both cases – around 3.2 ·107 nodes
per second (cf. Table1), which corresponds to slightly more than 100 cycles per
node on our 3.4 Ghz test machine. The slight discrepancies (and the low rate for
n = 35) can be explained by the variable number of nodes that were enumerated
and thus certain setup costs are amortized over a different number of nodes.

n 35 40 45 50

primal 2.73 3.16 3.13 3.17
dual 2.77 3.19 3.18 3.27

Table 1: Rate of enumeration (in 107 nodes per s) in primal and dual enumeration

8 Conclusion and Future Work

While our experimental study of lattice reduction confirms that the average root
Hermite factor achieved by lattice reduction is indeed, as conjectured, given by
Equation (4), the standard deviation is large enough that it is conceivable that
a single instance finds a much shorter vector. This means that cryptanalytic
estimates should take this into account.

It is clear that we need to learn more about the underlying distribution
in order to aid parameter selection. For example, using more data one could
try to verify experimentally if the distribution follows a (possibly truncated)
Gaussian as already suspected in [16] for small block sizes, which would allow
for much tighter bounds and meaningful estimates. A brief inspection of our data
suggests that this might be true even for larger block sizes, but 10 data points
per experiment is not sufficient to allow for any further conclusions about the
distribution. In any case, we believe our results show that simply relying on the
average of a handful of data points is not very meaningful and we hope that this
work can serve as a starting point for more sophisticated approaches to selecting
parameters secure against attacks involving lattice reduction.

With our new dual enumeration algorithm we provide another tool to practi-
cally examine different reduction algorithms. This should facilitate experimental

12 At the point of publication of this work, a modified version of this implementation
is now included in the main branch of fplll.

research into reduction algorithms that make use of dual SVP reduction, like
variants of Slide reduction. Future lines of research could explore if, for example,
the block Rankin reduction algorithm of [28] can be efficiently implemented by
using it to apply the densest sublattice algorithm of [10] to the dual lattice. This
could be used to achieve potentially stronger notions of reduction with better
output quality.

Acknowledgment

We thank Arnold Neumaier for completing the analysis of the convergence of
DBKZ. Furthermore, we thank Arnold and the anonymous reviewers of the Eu-
rocrypt 2016 committee for many helpful comments on a previous version of this
work. We also thank Florian Göpfert for helpful discussions in the early stages
of the development of the dual enumeration algorithm.

References

1. M. Ajtai. Generating hard instances of lattice problems. Complexity of Computa-
tions and Proofs, Quaderni di Matematica, 13:1–32, 2004. Preliminary version in
STOC 1996.

2. M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. In Proceedings of STOC ’97, pages 284–293. ACM, May 1997.

3. A. Akhavi and D. Stehlé. Speeding-up lattice reduction with random projections
(extended abstract). In E. S. Laber, C. F. Bornstein, L. T. Nogueira, and L. Faria,
editors, LATIN, volume 4957 of Lecture Notes in Computer Science, pages 293–305.
Springer, 2008.

4. M. Albrecht, D. Cadé, X. Pujol, and D. Stehlé. fplll-4.0, a floating-point LLL
implementation. Available at http://perso.ens-lyon.fr/damien.stehle.

5. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. Cryptology ePrint Archive, Report 2015/046, 2015. http://eprint.iacr.
org/.

6. A. Bachem and R. Kannan. Lattices and basis reduction algorithm. Technical
Report 84-006, Mathematisches Institut, Universität zu Köln, 1984.

7. Y. Chen. Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe. PhD thesis, ENS, Paris, 2013. Thse de doctorat dirige par Nguyen,
Phong-Quang Informatique Paris 7 2013.

8. Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In
ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2011.

9. C. Coupé, P. Nguyen, and J. Stern. The effectiveness of lattice attacks against
low-exponent RSA. In Proc. of PKC ’99, number 1560 in LNCS, pages 204–218.
Springer, Berlin Germany, Mar. 1999.

10. D. Dadush and D. Micciancio. Algorithms for the densest sub-lattice problem.
In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’13, pages 1103–1122. SIAM, 2013.

11. U. Fincke and M. Pohst. Improved methods for calculating vectors of short length
in a lattice, including a complexity analysis. Mathematics of Computation, 44:463–
471, 1985.

http://perso.ens-lyon.fr/damien.stehle
http://eprint.iacr.org/
http://eprint.iacr.org/

12. N. Gama, N. Howgrave-Graham, H. Koy, and P. Nguyen. Rankin’s constant and
blockwise lattice reduction. In Advances in Cryptology – Proceedings of CRYPTO
2006, volume 4117 of Lecture Notes in Computer Science, pages 112–130. Springer,
Aug. 2006.

13. N. Gama, N. Howgrave-Graham, and P. Nguyen. Symplectic lattice reduction
and NTRU. In Proceedings of Eurocrypt, volume 4004 of LNCS, pages 233–253.
Springer, May 2006.

14. N. Gama, P. Nguyen, and O. Regev. Lattice enumeration using extreme pruning.
In H. Gilbert, editor, Advances in Cryptology EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 257–278. Springer Berlin / Heidelberg,
2010.

15. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequal-
ity. In Proceedings of STOC, pages 207–216. ACM, May 2008.

16. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Proceedings of Euro-
crypt, volume 4965 of LNCS, pages 31–51. Springer, 2008.

17. D. Goldstein and A. Mayer. On the equidistribution of Hecke points. Forum
Mathematicum, 15(2):165 – 189, 2003.

18. G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using
dynamical systems. In Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings,
pages 447–464, 2011.

19. G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector
algorithm. In Proceedings of Crypto [22], pages 170–186.

20. B. Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced
lattice bases. Theoretical Computer Science, 41(2–3):125–139, Dec. 1985.

21. N. Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In Proceedings of Crypto [22], pages 150–169.

22. IACR. CRYPTO 2007, volume 4622 of LNCS. Springer, Aug. 2007.
23. A. Joux and J. Stern. Lattice reduction: A toolbox for the cryptanalyst. Journal

of Cryptology, 11(3):161–185, 1998.
24. R. Kannan. Improved algorithms for integer programming and related lattice

problems. In Proceedings of the fifteenth annual ACM symposium on theory of
computing - STOC ’83, pages 193–206. ACM, Apr. 1983. Journal version in Math.
of Operation Research 12(3):415-440, (1987).

25. S. Khot. Hardness of approximating the shortest vector problem in lattices. Journal
of the ACM, 52(5):789–808, Sept. 2005. Preliminary version in FOCS 2004.

26. H. Koy and C.-P. Schnorr. Segment LLL-reduction of lattice bases. In J. H.
Silverman, editor, CaLC, volume 2146 of Lecture Notes in Computer Science, pages
67–80. Springer, 2001.

27. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261:513–534, 1982.

28. J. Li and P. Q. Nguyen. Approximating the densest sublattice from Rankins
inequality. LMS Journal of Computation and Mathematics, 17:92–111, 2014.

29. J. Li and W. Wei. Slide reduction, successive minima and several applications.
Bulletin of the Australian Mathematical Society, 88:390–406, 12 2013.

30. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryp-
tion. In A. Kiayias, editor, Topics in Cryptology CT-RSA 2011, volume 6558 of
Lecture Notes in Computer Science, pages 319–339. Springer, 2011.

31. V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique short-
est vectors, and the minimum distance problem. In Proceedings of Crypto, volume
5677 of LNCS, pages 577–594. Springer, Aug. 2009.

32. S. Mehrotra and Z. Li. Segment LLL reduction of lattice bases using modular
arithmetic. Algorithms, 3(3):224–243, 2010.

33. D. Micciancio. Almost perfect lattices, the covering radius problem, and applica-
tions to Ajtai’s connection factor. SIAM Journal on Computing, 34(1):118–169,
2004. Preliminary version in STOC 2002.

34. D. Micciancio. Inapproximability of the shortest vector problem: Toward a deter-
ministic reduction. Theory of Computing, 8(1):487–512, 2012.

35. D. Micciancio and O. Regev. Worst-case to average-case reductions based on
Gaussian measure. SIAM Journal on Computing, 37(1):267–302, 2007. Preliminary
version in FOCS 2004.

36. D. Micciancio and M. Walter. Fast lattice point enumeration with minimal over-
head. In P. Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 276–294. SIAM, 2015.

37. D. Micciancio and M. Walter. Practical, predictable lattice basis reduction. Cryp-
tology ePrint Archive, Report 2015/1123, 2015. http://eprint.iacr.org/.

38. A. Neumaier. Bounding basis reduction properties. Cryptology ePrint Archive,
Report 2016/004, 2016. http://eprint.iacr.org/.

39. P. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from
Crypto ’97. In M. J. Wiener, editor, Advances in Cryptology - CRYPTO ’99,
Proceedings of the 19th Annual International Cryptology Conference, volume 1666
of LNCS. Springer, Aug. 1999.

40. P. Nguyen. Hermite’s constant and lattice algorithms. In The LLL Algorithm,
pages 19–69. Springer, 2010.

41. P. Nguyen. Lattice reduction algorithms: Theory and practice. In K. Paterson,
editor, Advances in Cryptology EUROCRYPT 2011, volume 6632 of Lecture Notes
in Computer Science, pages 2–6. Springer Berlin / Heidelberg, 2011.

42. P. Nguyen and D. Stehlé. Low-dimensional lattice basis reduction revisited. In
D. A. Buell, editor, Algorithmic number theory: 6th international symposium -
ANTS-VI, volume 3076 of LNCS, pages 338–357. Springer, June 2004. Journal
version in ACM Trans. on Algorithms.

43. P. Nguyen and D. Stehlé. LLL on the average. In Proceedings of ANTS VII, volume
4076 of LNCS, pages 238–256. Springer, July 2006.

44. P. Nguyen and J. Stern. Cryptanalysis of the Ajtai-Dwork cryptosystem. In
Proceedings of CRYPTO ’98, volume 1462 of LNCS, pages 223–242. Springer, Aug.
1998.

45. P. Nguyen and J. Stern. Lattice reduction in cryptology: an update. In Proceedings
of ANTS-IV, volume 1838 of LNCS, pages 85–112. Springer, July 2000.

46. P. Nguyen and J. Stern. The two faces of lattices in cryptology. In Proceedings of
CaLC ’01, volume 2146 of LNCS, pages 146–180. Springer, Mar. 2001.

47. P. Q. Nguyen and I. E. Shparlinski. The insecurity of the elliptic curve digital
signature algorithm with partially known nonces. Designs, codes and cryptography,
30(2):201–217, 2003.

48. P. Q. Nguyen and D. Stehlé. Low-dimensional lattice basis reduction revisited.
ACM Trans. Algorithms, 5(4):46, oct 2009. Prelim. version in ANTS 2004.

49. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In Proceedings of STOC, pages 333–342. ACM, 2009.

50. T. Plantard and W. Susilo. Recursive lattice reduction. In SCN, 2010.
51. M. Pohst. A modification of the LLL-reduction algorithm. Journal of Symbolic

Computation, 4(1):123–127, Aug. 1987.

http://eprint.iacr.org/
http://eprint.iacr.org/

52. O. Regev. New lattice based cryptographic constructions. Journal of the ACM,
51(6):899–942, 2004. Preliminary version in STOC 2003.

53. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of ACM, 56(6):34, Sept. 2009. Preliminary version in STOC 2005.

54. C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical Computer Science, 53(2–3):201–224, Aug. 1987.

55. C.-P. Schnorr. A more efficient algorithm for lattice basis reduction. Journal of
Algorithms, 9(1):47–62, Mar. 1988.

56. C.-P. Schnorr. Block reduced lattice bases and successive minima. Combinatorics,
Probability and Computing, 3:507–522, 1994.

57. C.-P. Schnorr. Lattice reduction by random sampling and birthday methods. In
H. Alt and M. Habib, editors, STACS, pages 145–156, 2003.

58. C. P. Schnorr. Fast LLL-type lattice reduction. Information and Computation,
204(1):1–25, Jan. 2006.

59. C. P. Schnorr. Progress on LLL and lattice reduction. In The LLL Algorithm,
pages 145–178. Springer, 2010.

60. C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. Mathematical programming, 66(1-3):181–
199, Aug. 1994. Preliminary version in FCT 1991.

61. C.-P. Schnorr, M. Fischlin, H. Koy, and A. May. Lattice attacks on GGH cryp-
tosystem. Rump session of Crypto’97, 1997.

62. C.-P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem by
improved lattice reduction. In Proceedings of EUROCRYPT ’95, volume 921 of
LNCS, pages 1–12. Springer, May 1995.

63. M. Seysen. Simultaneous reduction of a lattice basis and its reciprocal basis.
Combinatorica, 13(3):363–376, 1993.

64. V. Shoup. NTL: a library for doing number theory. Available at http://www.

shoup.net/ntl/index.html.
65. A. Storjohann. Faster algorithms for integer lattice basis reduction. Technical

Report 249, Swiss Federal Institute of Technology, ETH-Zurich, Department of
Computer Science, Zurich, Switzerland, July 1996.

66. B. Vallée, M. Girault, and P. Toffin. How to break Okamoto’s cryptosystem by
reducing lattice bases. In C. G. Günther, editor, Advances in Cryptology - EURO-
CRYPT ’88, Proceedings of a Workshop on the Theory and Application of Cryp-
tographic Techniques, volume 330 of LNCS, pages 281–291. Springer, May 1988.

67. B. Vallée and A. Vera. Probabilistic analyses of lattice reduction algorithms. In
The LLL Algorithm, pages 71–143. Springer, 2010.

68. J. van de Pol and N. P. Smart. Estimating key sizes for high dimensional lat-
tice based systems. Cryptology ePrint Archive, Report 2013/630, 2013. http:

//eprint.iacr.org/.
69. M. Walter. Lattice point enumeration on block reduced bases. In A. Lehmann and

S. Wolf, editors, Information Theoretic Security, volume 9063 of Lecture Notes in
Computer Science, pages 269–282. Springer International Publishing, 2015.

70. L. Wasserman. All of Nonparametric Statistics (Springer Texts in Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

http://www.shoup.net/ntl/index.html
http://www.shoup.net/ntl/index.html
http://eprint.iacr.org/
http://eprint.iacr.org/

A Experimental Data

k µ[min] µ[max] σ[min] σ[min]

BKZ

25 1.0129 1.0132 0.00014910 0.00031542
30 1.0129 1.0131 0.00013775 0.00028044
35 1.0122 1.0127 0.00030272 0.00053605
40 1.0122 1.0125 0.00020367 0.00045143
45 1.0120 1.0122 0.00011779 0.00022000
50 1.0119 1.0122 0.00019697 0.00035792
55 1.0117 1.0119 0.00012984 0.00025347
60 1.0114 1.0116 0.00009925 0.00022226
65 1.0111 1.0114 0.00012052 0.00038869
70 1.0106 1.0109 0.00012487 0.00026133
75 1.0105 1.0107 0.00009756 0.00020439

Slide reduction

25 1.0145 1.0148 0.00016524 0.00034219
30 1.0141 1.0142 0.00005426 0.00017119
35 1.0135 1.0137 0.00013333 0.00022903
40 1.0129 1.0133 0.00018023 0.00041554
45 1.0127 1.0129 0.00013605 0.00027860
50 1.0123 1.0125 0.00014877 0.00026298
55 1.0121 1.0122 0.00005830 0.00009498
60 1.0117 1.0119 0.00013659 0.00022897
65 1.0114 1.0115 0.00009455 0.00017193
70 1.0109 1.0111 0.00012178 0.00023823
75 1.0106 1.0108 0.00010597 0.00019067

Self-Dual BKZ

25 1.0130 1.0133 0.00012817 0.00029479
30 1.0129 1.0131 0.00017812 0.00027150
35 1.0127 1.0129 0.00016756 0.00025963
40 1.0123 1.0126 0.00013635 0.00028876
45 1.0122 1.0123 0.00010143 0.00018625
50 1.0120 1.0123 0.00018334 0.00038216
55 1.0119 1.0123 0.00026051 0.00046222
60 1.0116 1.0120 0.00018311 0.00040919
65 1.0113 1.0116 0.00014412 0.00037256
70 1.0110 1.0112 0.00013096 0.00030097
75 1.0107 1.0109 0.00011095 0.00021169

Table 2: Confidence intervals for mean value µ and standard deviation σ of root Hermite
factor achieved by lattice reduction with block size k

	Practical, Predictable Lattice Basis Reduction

