
Efficient Zero-Knowledge Arguments for
Arithmetic Circuits in the Discrete Log Setting?

Jonathan Bootle1, Andrea Cerulli1, Pyrros Chaidos1??, Jens Groth1, and
Christophe Petit2

1 University College London
2 University of Oxford

Abstract. We provide a zero-knowledge argument for arithmetic circuit
satisfiability with a communication complexity that grows logarithmically
in the size of the circuit. The round complexity is also logarithmic and
for an arithmetic circuit with fan-in 2 gates the computation of the
prover and verifier is linear in the size of the circuit. The soundness
of our argument relies solely on the well-established discrete logarithm
assumption in prime order groups.
At the heart of our new argument system is an efficient zero-knowledge
argument of knowledge of openings of two Pedersen multicommitments
satisfying an inner product relation, which is of independent interest. The
inner product argument requires logarithmic communication, logarithmic
interaction and linear computation for both the prover and the verifier.
We also develop a scheme to commit to a polynomial and later reveal the
evaluation at an arbitrary point, in a verifiable manner. This is used to
build an optimized version of the constant round square root complexity
argument of Groth (CRYPTO 2009), which reduces both communication
and round complexity.

Keywords: Sigma-protocol, zero-knowledge argument, arithmetic cir-
cuit, discrete logarithm assumption.

1 Introduction

Zero-knowledge proofs and arguments are ubiquitous in cryptography today,
with prominent applications in authentication protocols, multi-party computa-
tion, encryption primitives, electronic voting systems and verifiable computation
protocols.

Informally, a zero-knowledge argument involves two parties, the prover and
the verifier, and allows the prover to prove to the verifier that a particular
statement is true, without revealing anything else about the statement itself.
Statements are of the form u ∈ L, where L is a language in NP. We call w a

? The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)
/ ERC Grant Agreement n. 307937 and EPSRC grant EP/J009520/1.

?? Was supported by an EPSRC scholarship (EP/G037264/1 – Security Science DTC).

2

witness for a statement u if (u,w) ∈ R, where R is a polynomial time decidable
binary relation associated with L. We require the zero-knowledge argument to
be complete, sound and zero-knowledge.

Completeness: A prover with a witness w for u ∈ L can convince the verifier
of this fact.

Soundness: A prover cannot convince a verifier when u /∈ L.
Zero-knowledge: The interaction should not reveal anything to the verifier

except that u ∈ L. In particular, it should not reveal the prover’s witness w.

Our goal is to build an efficient argument system for the satisfiability of an
arithmetic circuit, i.e., a circuit that consists of addition and multiplication gates
over a finite field Zp. Moreover we want to base the security of this argument
solely on the discrete logarithm assumption: this will provide both strong security
guarantees and good efficiency since there exists no known attacks better than
generic ones for well-chosen elliptic curve subgroups.

The most efficient zero-knowledge arguments solely based on the discrete
logarithm assumption are Groth’s protocol based on linear algebra [21] and its
variant by Seo [36]. Both of these protocols have a communication complexity
that is proportional to the square root of the circuit size. This square root
complexity has since then appeared as a (perhaps fundamental) barrier for
discrete logarithm-based arguments for circuit satisfiability.

1.1 Our Contributions

We provide an honest verifier zero-knowledge argument for arithmetic circuit
satisfiability based on the discrete logarithm assumption that only requires a
logarithmic communication complexity. Our argument has perfect completeness
and perfect special honest verifier zero-knowledge. Soundness is computational
and based on the discrete logarithm assumption. We require a logarithmic number
of moves, and both the prover and verifier have linear computational complexity.
The argument is therefore efficient on all parameters with the biggest improvement
being in the communication complexity.

Improved Square Root Complexity Argument. We start from the circuit satis-
fiability argument of Groth [21], which requires 7 moves and has square root
communication complexity in the total number of gates. In this argument the
prover commits to all the wires using homomorphic multicommitments, verifies
addition gates using the homomorphic properties, and uses a product argument
to show that the multiplication gates are satisfied.

We first improve Groth’s argument into a 5 moves argument with square root
communication complexity in the number of multiplication gates only. We achieve
fewer moves compared to [21] by avoiding generic reductions to linear algebra
statements. We remove the communication cost of the addition gates in the
argument by providing a technique that can directly handle a set of Hadamard
products and linear relations together. Another efficiency improvement is a

3

subroutine to commit to a polynomial and later reveal its evaluation at an
arbitrary point in a verifiable manner. In Section 3 we provide a protocol to
perform this task, which has a square root communication complexity with respect
to the degree of the polynomial, and which may be of independent interest.

Logarithmic Complexity Argument. In spite of all these improvements, the above
argument still requires a square root communication complexity with respect to
multiplication gates. In the first move the prover commits to all circuit wires
using 3m commitments to n elements each, where mn = N is a bound on the
number of multiplication gates, and in the last move after receiving a challenge
he opens one commitment that can be constructed from the previous ones and
the challenge. By setting m ≈ n we get a minimal communication complexity of
O(
√
N).

Our key idea to break this square root communication complexity barrier is to
replace the last opening step in this protocol by an argument of knowledge of the
opening values. Using specific properties of Pedersen multicommitments, namely
homomorphic properties with respect to the keys, we rewrite this argument as an
argument of knowledge of openings of two homomorphic commitments, satisfying
an inner product relation. In Section 4 we provide an argument system for this
problem, which only requires a logarithmic communication with respect to the
vector sizes. The argument is built in a recursive way, reducing the size and
complexity of the statement further in each recursion step. Using this inner
product argument as a subroutine we obtain an arithmetic circuit satisfiability
argument with logarithmic communication.

Implementation. In Section 6 we report on an implementation of our arguments.
To show the practicality of our results we compare the efficiency of our implemen-
tation to that of Pinocchio [34]. Pinocchio is a practical verifiable computation
scheme allowing a constrained client to outsource computation of a function to
a powerful worker and to efficiently verify the outcome of the function. It uses
quadratic arithmetic programs, a generalisation of arithmetic circuits, and for
some functions achieves verification that is faster than local computation. While
we do not achieve comparably fast verification, we compare favourably in terms
of prover computation, and do so under simpler assumptions.

1.2 Related Work

Zero-knowledge proofs were invented by Goldwasser et al. [18]. It is useful
to distinguish between zero-knowledge proofs, with statistical soundness, and
zero-knowledge arguments with computational soundness. In general proofs can
only have computational zero-knowledge, while arguments may have perfect
zero-knowledge. Goldreich et al. [16] showed that all languages in NP have zero-
knowledge proofs while Brassard et al. [8] showed that all languages in NP have
zero-knowledge arguments with perfect zero-knowledge.

Gentry et al. [14] used fully homomorphic encryption to construct zero-
knowledge proofs where the communication complexity corresponds to the size

4

of the witness. However, proofs cannot in general have communication that is
smaller than the witness size unless surprising results about the complexity of
solving SAT instances hold [15, 17].

Kilian [27] showed that in contrast to zero-knowledge proofs, zero-knowledge
arguments can have very low communication complexity. His construction relied
on the PCP theorem though, and did not yield a practical scheme.

Schnorr [35] and Guillou and Quisquater [25] gave early examples of practical
zero-knowledge arguments for concrete number theoretic problems. Extending
Schnorr’s protocols, there have been many constructions of zero-knowledge
arguments based on the discrete logarithm assumption. Cramer and Damg̊ard [10]
gave a zero-knowledge argument for arithmetic circuit satisfiability, which has
linear communication complexity.

Currently the most efficient discrete logarithm based zero-knowledge argu-
ments for arithmetic circuits are the ones by Groth [21] and Seo [36], which are
constant move arguments with a communication proportional to the square root
of the circuit size. Using pairing-based cryptography instead of just relying on
the discrete logarithm assumption, Groth [20] extended these techniques to give
a zero-knowledge argument with a cubic root communication complexity.

There are recent works giving a logarithmic communication complexity for
specific languages. Bayer and Groth [2] show that one can prove that a polynomial
evaluated at a secret committed value gives a certain output with a logarithmic
communication complexity and Groth and Kohlweiss [24] show that one can
prove that one out of N commitments contain 0 with logarithmic communication
complexity. These results are for very specific types of statements (with low
circuit depth) and the techniques do not seem to generalize to arbitrary NP
languages.

An exciting line of research [22, 30, 6, 13, 7, 34, 4, 5, 24] has developed many
proposals for succinct non-interactive arguments (SNARGs) yielding pairing-
based constructions where the arguments consist of a constant number of group
elements. However, they all rely on a common reference string (with a special
structure) and non-falsifiable knowledge extractor assumptions. In contrast, the
arguments we develop here are based solely on the discrete logarithm assumption,
and use a small common reference string which is independent of the circuit.

Table 1 compares the most efficient previous zero-knowledge arguments based
on the discrete logarithm assumption with our scheme, when allowing for 5 moves
or a logarithmic number of moves. Using 5 moves, our scheme requires significantly
less computation than [36]. On the other hand when using a logarithmic number of
moves and applying a reduction similar to [1], our scheme dramatically improves
the communication costs with respect to all previous work without incurring any
significant overhead. We note that [1] uses the reduction to reduce computation
whereas we use it to reduce communication.

As part of our construction we give a protocol for committing to a polynomial
and later revealing an evaluation of the polynomial in a given point. Kate et al. [26]
have also provided protocols to commit to polynomials and then evaluate them at
a given point in a verifiable way. Their protocols only require a constant number

5Reference Moves Communication Prover Complexity Verifier Complexity
G Zp exp. mult. exp. mult.

[10] 3 6N 5N + 2 6N 6N 6N 0

[21] 7 9
√
N + 4 7

√
N + 6 6N

logN
O (N logN) 39

√
N

logN
O (N)

[21] 2 logN + 5 2
√
N 7

√
N 6N

logN
O(N) 18

√
N

logN
O (N)

[36] 5 30
√
N 7

√
N 6N

logN
O (N logN) 77

√
N

logN
O (N)

This paper 5 2
√
N 2

√
N 6N

logN
3N logN 8

√
3N

logN
O(N)

This paper 2 logN + 1 4 logN + 7 2 logN + 6 12N O(N) 4N O(N)

Table 1. Efficiency comparison between our arguments and the most efficient interactive
zero-knowledge arguments relying on discrete logarithm. We express communication in
number of group elements G and field elements Zp and computation costs in number of
exponentiations over G and multiplications over Zp. The efficiency displayed is for a
circuit with N multiplication gates.

of commitments but security relies on pairing assumptions. Our polynomial
commitment protocol has square root communication complexity but relies solely
on the discrete logarithm assumption.

2 Preliminaries

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r at random and
setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from the set S. We will assume one can sample uniformly at random from sets
such as Zp and Z∗p.

Algorithms in our schemes receive a security parameter λ as input (some-
times implicitly) written in unary. The intuition is that the higher the security
parameter, the lower the risk of the scheme being broken. Given two functions
f, g : N→ [0, 1] we write f(λ) ≈ g(λ) when |f(λ)− g(λ)| = λ−ω(1). We say that
f is negligible when f(λ) ≈ 0 and that f is overwhelming when f(λ) ≈ 1.

Throughout the paper we let G be a group of prime order p. Let g =
(g1, . . . , gn) ∈ Gn and f = (f1, . . . , fn) ∈ Znp . We write gf for the multi-

exponentiation gf =
∏n
i=1 g

fi
i . A multi-exponentiation of size n can be com-

puted at a cost of roughly n
logn single group exponentiations using the multi-

exponentiation techniques of [28, 31, 32].

2.1 The Discrete Logarithm Assumption

Let GGen be an algorithm that on input 1λ returns (G, p, g) such that G is the
description of a finite cyclic group of prime order p, where |p| = λ, and g is a
generator of G.

Definition 1 (Discrete Logarithm Assumption). The discrete logarithm
assumption holds relative to GGen if for all non-uniform polynomial time adver-
saries A

Pr
[
(G, p, g)← GGen(1λ);h← G; a← A(G, p, g, h) : ga = h

]
≈ 0

6

In this definition, the value a is called the discrete logarithm of h in the basis
g. Note that the discrete logarithm assumption is defined with respect to a
particular group generator algorithm GGen. According to current state-of-the-art
cryptanalytic techniques, to get a security level of 2−λ the group generator may
for example return well-chosen elliptic curve groups where group elements can be
represented with O(λ) bits or multiplicative subgroups of finite fields with a large
characteristic where group elements can be represented with O(λ3) bits. It is
well-known that the discrete logarithm assumption is equivalent to the following
assumption.

Definition 2 (Discrete Logarithm Relation Assumption). For all n ≥ 1
and all non-uniform polynomial time adversaries A

Pr

[
(G, p, g)← GGen(1λ); g1, . . . , gn ← G;
a0, . . . , an ← A(G, p, g, {gi}i)

: ∃ai 6= 0 and ga0
n∏
i=1

gaii = 1

]
≈ 0

We call such a product ga0
∏n
i=1 g

ai
i = 1 a non-trivial discrete logarithm relation.

2.2 Pedersen Commitments

A non-interactive commitment scheme allows a sender to create a commitment
to a secret value. She may later open the commitment and reveal the value in
a verifiable manner. A commitment should be hiding, i.e., not reveal the secret
value, and binding in the sense that a commitment cannot be opened to two
different values.

Formally, a non-interactive commitment scheme is a pair of probabilistic
polynomial time algorithms (CGen,Com). The setup algorithm ck ← CGen(1λ)
generates a commitment key ck. The commitment key specifies a message space
Mck, a randomness space Rck and a commitment space Cck. The commitment
algorithm combined with the commitment key specifies a function Comck :
Mck × Rck → Cck. Given a message m ∈ Mck the sender picks uniformly at
random r ← Rck and computes the commitment c = Comck(m; r).

Definition 3 (Perfectly hiding). We say a non-interactive commitment scheme
(CGen,Com) is perfectly hiding if a commitment does not reveal the committed
value. For all non-uniform polynomial time stateful interactive adversaries A

Pr

[
ck ← CGen(1λ); (m0,m1)← A(ck);
b← {0, 1}; c← Comck(mb)

: A(c) = b

]
=

1

2

where A outputs m0,m1 ∈Mck.

Definition 4 (Binding). A non-interactive commitment scheme (CGen,Com)
is computationally binding if a commitment can only be opened to one value. For
all non-uniform polynomial time adversaries A

Pr

[
ck ← CGen(1λ);
(m0, r0,m1, r1)← A(ck)

:
Comck(m0; r0) = Comck(m1; r1)

and m0 6= m1

]
≈ 0

where A outputs m0,m1 ∈Mck and r0, r1 ∈ Rck.

7

We say a commitment scheme is homomorphic if for all valid keys ck the
message, randomness and commitment spaces are abelian groups and for all
messages m0,m1 ∈Mck and randomness r0, r1 ∈ Rck we have

Comck(m0; r0) · Comck(m1; r1) = Comck(m0 +m1; r0 + r1).

The most prominent example of a homomorphic perfectly hiding commitment
scheme is the Pedersen commitment scheme. Pedersen commitments have the
form c = grhm where g, h are group elements specified in the commitment key.
The opening of a Pedersen commitment is (m, r) ∈ Z2

p, from which anybody
can recompute the commitment c and verify it was a valid commitment. Since
Pedersen commitments are random group elements, they are perfectly hiding.
On the other hand, breaking the binding property of Pedersen commitments
corresponds to breaking the discrete logarithm assumption.

We will be using a variant of Pedersen commitments that allow us to commit
to multiple values at once. The commitment key is ck = (G, p, g, g1, . . . , gn) and a
commitment is of the form c = gr

∏n
i=1 g

mi
i . We write c = Comck(m1, . . . ,mn; r)

for this operation.
With the Pedersen commitment scheme in mind, we will assume throughout

the paper that the message space is Znp and the randomness space is Zp. The con-
structions we have in Sections 3 and 5.1 require a perfectly hiding, homomorphic
commitment scheme so we are not limited to using the Pedersen commitment
scheme. However, in Sections 4 and 5.2, we will rely on specific properties of the
Pedersen scheme and work directly on the group elements in the key.

2.3 Zero-knowledge Arguments of Knowledge

Let R be a polynomial time decidable binary relation, i.e., a relation that defines
a language in NP. We call w a witness for a statement u if (u,w) ∈ R.

In the arguments we consider a prover P and a verifier V, both of which are
probabilistic polynomial time interactive algorithms. The transcript produced
by P and V when interacting on inputs s and t is denoted by tr ← 〈P(s),V(t)〉.
We write 〈P(s),V(t)〉 = b depending on whether the verifier rejects, b = 0, or
accepts, b = 1.

Definition 5 (Argument of knowledge). The pair (P,V) is called an ar-
gument of knowledge for the relation R if we have perfect completeness and
statistical witness-extended emulation as defined below.

Definition 6 (Perfect completeness). (P,V) has perfect completeness if for
all non-uniform polynomial time adversaries A

Pr
[
(u,w)← A(1λ) : (u,w) 6∈ R or 〈P(u,w),V(u)〉 = 1

]
= 1

To define an argument of knowledge we follow Groth and Ishai [23] that
borrowed the term witness-extended emulation from Lindell [29]. Informally, their
definition says that given an adversary that produces an acceptable argument

8

with some probability, there exists an emulator that produces a similar argument
with the same probability together with a witness w. Note that the emulator is
allowed to rewind the prover and verifier’s interaction to any previous move.

Definition 7 (Statistical witness-extended emulation). (P,V) has statis-
tical witness-extended emulation if for all deterministic polynomial time P∗
there exists an expected polynomial time emulator E such that for all interactive
adversaries A

Pr
[
(u, s)← A(1λ); tr ← 〈P∗(u, s),V(u)〉 : A(tr) = 1

]
≈ Pr

[
(u, s)← A(1λ); (tr, w)← E〈P∗(u,s),V(u)〉(u) :
A(tr) = 1 and if tr is accepting then (u,w) ∈ R

]
where the oracle called by E〈P∗(u,s),V(u)〉 permits rewinding to a specific point and
resuming with fresh randomness for the verifier from this point onwards.

In the definition, s can be interpreted as the state of P∗, including the
randomness. So, whenever P∗ is able to make a convincing argument when in
state s, E can extract a witness. This is why we call it an argument of knowledge.

Definition 8 (Public coin). An argument (P,V) is called public coin if the
verifier chooses his messages uniformly at random and independently of the
messages sent by the prover, i.e., the challenges correspond to the verifier’s
randomness ρ.

An argument is zero-knowledge if it does not leak information about the witness
beyond what can be inferred from the truth of the statement. We will present
arguments that have special honest verifier zero-knowledge in the sense that if
the verifier’s challenges are known in advance, then it is possible to simulate the
entire argument without knowing the witness.

Definition 9 (Perfect special honest verifier zero-knowledge). A public
coin argument (P,V) is called a perfect special honest verifier zero knowledge
(SHVZK) argument for R if there exists a probabilistic polynomial time simulator
S such that for all interactive non-uniform polynomial time adversaries A

Pr
[
(u,w, ρ)← A(1λ); tr ← 〈P(u,w),V(u; ρ)〉 : (u,w) ∈ R and A(tr) = 1

]
= Pr

[
(u,w, ρ)← A(1λ); tr ← S(u, ρ) : (u,w) ∈ R and A(tr) = 1

]
where ρ is the public coin randomness used by the verifier.

Full zero-knowledge. In real life applications special honest verifier zero-
knowledge may not suffice since a malicious verifier may give non-random chal-
lenges. However, it is easy to convert an SHVZK argument into a full zero-
knowledge argument secure against arbitrary verifiers in the common reference
string model using standard techniques [19, 12] . The conversion can be very
efficient and only costs a small additive overhead.

9

The Fiat-Shamir heuristic. The Fiat-Shamir transformation takes an inter-
active public coin argument and replaces the challenges with the output of a
cryptographic hash function. The idea is that the hash function will produce
random looking output and therefore be a suitable replacement for the verifier.
The Fiat-Shamir heuristic yields a non-interactive zero-knowledge argument in
the random oracle model [3].

The transformation can be applied to our arguments to make them non-
interactive at the cost of using the random oracle model in the security proofs.
From an efficiency point of view this is especially useful for the arguments in
Sections 4 and 5.2, reducing a logarithmic number of moves to a single one.

A general forking lemma. Suppose that we have a (2µ+ 1)-move public-coin
argument with µ challenges, x1, . . . , xµ in sequence. Let ni ≥ 1 for 1 ≤ i ≤ µ.
Consider

∏µ
i=1 ni accepting transcripts with challenges in the following tree

format. The tree has depth µ and
∏µ
i=1 ni leaves. The root of the tree is labelled

with the statement. Each node of depth i < µ has exactly ni children, each
labelled with a distinct value for the ith challenge xi.

This can be referred to as an (n1, . . . , nµ)-tree of accepting transcripts. All of
our arguments allow a witness to be extracted efficiently from an appropriate tree
of accepting transcripts. This is a natural generalisation of special-soundness for
Sigma-protocols, where µ = 1 and n = 2. For simplicity in the following lemma,
we assume that the challenges are chosen uniformly from Zp where |p| = λ, but
any sufficiently large challenge space would suffice. We refer to the full version of
the paper for a proof of the forking lemma.

Lemma 1 (Forking Lemma). Let (P,V) be a (2µ+ 1)-move, public coin in-
teractive protocol. Let χ be a witness extraction algorithm that always succeeds in
extracting a witness from an (n1, . . . , nµ)-tree of accepting transcripts in proba-
bilistic polynomial time. Assume that

∏µ
i=1 ni is bounded above by a polynomial

in the security parameter λ. Then (P,V) has witness-extended emulation.

3 Commitments to Polynomials

In this section, we present a protocol to commit to a polynomial t(X) and later
reveal the evaluation of t(X) at any point x ∈ Z∗p together with a proof that
enables a verifier to check that the evaluation is correct with respect to the
committed t(X). We will consider Laurent polynomials t(X) ∈ Zp[X,X−1] i.e.
polynomials in which we allow terms of negative degree. This protocol will be
used as a subroutine for the arguments described in Sections 5.1 and 5.2.

A simple solution for this problem would be to send commitments to coeffi-
cients of t(X) individually, from which the evaluation of t(X) at any particular
point can be verified using the homomorphic properties. This solution requires
d group elements to be sent, where d is the number of non-zero coefficients in
t(X). As we shall show it is possible to reduce the communication costs to O(

√
d)

group elements, where d = d2 + d1 if t(X) =
∑d2
k=−d1 tkX

k.

10

For clarity we first informally describe our protocol for a standard (not Lau-

rent) polynomial t(X) =
∑d
k=0 tkX

k. We then extend this informal description
to Laurent polynomials with zero constant term. We finally provide a formal
description of the protocol and analyze its security and efficiency.

Main idea for standard polynomials. Let t(X) =
∑d
k=0 tkX

k be a poly-
nomial with coefficients in Zp and assume d + 1 = mn. We can write t(X) =∑m−1
i=0

∑n−1
j=0 ti,j(X)Xin+j and arrange the coefficients in a m× n matrix

t0,0 t0,1 · · · t0,n−1
t1,0 t1,1 · · · t1,n−1
...

...
...

tm−1,0 tn−1,1 · · · tm−1,n−1

Now, t(X) can be evaluated by multiplying the matrix by row and column
vectors.

t(X) =
(

1 Xn · · · X(m−1)n)

t0,0 t0,1 · · · t0,n−1
t1,0 t1,1 · · · t1,n−1
...

...
...

tm−1,0 tn−1,1 · · · tm−1,n−1

1
X
...

Xn−1

The idea behind the protocol is to commit to the rows of this matrix using

commitments T0, . . . , Tm−1. Later, when given an evaluation point x ∈ Zp we
can use the homomorphic property of the commitment scheme to compute the
commitment

∏m−1
i=0 T x

in

i to the vector

t̄ =
(

1 xn · · · x(m−1)n
)

t0,0 t0,1 · · · t0,n−1
t1,0 t1,1 · · · t1,n−1
...

...
...

tm−1,0 tm−1,1 · · · tm−1,n−1

The prover opens this latter commitment and now it is easy to compute v = t(x)
from t̄ and x.

The problem with this straightforward solution is that it leaks partial infor-
mation about the coefficients of t(X). We remedy this by inserting some blinding
values u1, . . . , un−1 to hide the weighted sum of the coefficients in each column.
However, we make sure that the blinding values cancel each other out so that we
still get the correct evaluation of the polynomial. More precisely, we commit to
the rows of the following (m+ 1)× n matrix

T =

t0,0 t0,1 − u1 · · · t0,n−2 − un−2 t0,n−1 − un−1
t1,0 t1,1 · · · t1,n−2 t1,n−1
...

...
...

tm−1,0 tm−1,1 · · · tm−1,n−2 tm−1,n−1
u1 u2 · · · un−1 0

11

with U being a commitment to the last row. This time

t(X) =
(

1 Xn · · · X(m−1)n X
)
T

1
X
X2

...
Xn−1

We now open Ux

∏m−1
i=0 T x

in

i by revealing the vector

t̄ =
(

1 xn · · · x(m−1)n x
)
T

This still allows us to compute t(x), but due to the blinders we no longer leak
information about the coefficients of t(X). In fact, each element of t̄ is uniformly
random, conditional on their weighted sum being equal to t(x), which the prover
intends for the verifier to learn anyway.

Extension to Laurent polynomials. Let now t(X) be a Laurent polynomial

t(X) =
∑d2
i=−d1 tiX

i with constant term t0 = 0. Let m1,m2, n be positive integers
such that d1 = nm1 and d2 = nm2 and write t(X) = X−m1nt′(X) + Xt′′(X)
for degree d1 − 1 and d2 − 1 polynomials t′(X), t′′(X) ∈ Zp[X]. We can write

t′(X) =
∑m1−1
i=0

∑n−1
j=0 t

′
i,jX

in+j and t′′(X) =
∑m2−1
i=0

∑n−1
j=0 t

′′
i,jX

in+j .
We can arrange the coefficients of t′(X) and t′′(X) in a (m1 +m2)×n matrix

T . We commit to both t′(X) and t′′(X) simultaneously by committing to the rows
of the matrix using commitments T ′i and T ′′i . As when committing to polynomials
we add blinders u1, . . . , un−1 and make a commitment U to the additional last
row arising from this.

T =

t′0,0 t′0,1 · · · t′0,n−1
t′1,0 t′1,1 · · · t′1,n−1
...

...
...

t′m1−1,0 t
′
m1−1,1 · · · t

′
m1−1,n−1

t′′0,0 t′′0,1 − u1 · · · t′′0,n−1 − un−1
t′′1,0 t′′1,1 · · · t′′1,n−1
...

...
...

t′′m2−1,0 t
′′
m2−1,1 · · · t

′′
m2−1,n−1

u1 u2 · · · 0

=

t′0
t′1
...

t′m1−1
t′′0
t′′1
...

t′′m2−1
u

Define vectors

Z = Z(X) =
(
X−m1n, X−(m1−1)n, . . . , X−n, X,Xn+1, . . . , X(m2−1)n+1, X2

)

X = X(X) =

1
X
...

Xn−1

12

and we have t(X) = ZTX.

To evaluate at x ∈ Z∗p we open
(∏m1−1

i=0 (T ′i)
x(i−m1)n

)(∏m2−1
i=0 (T ′′i)x

in+1
)
Ux

2

to the vector t̄ = Z(x)T . This allows us to compute t(x) as t̄X(x). The blinders
hide the weighted sums of each column as before, and now the verifier is able to
compute t(x) without gaining additional information about its coefficients.

Evaluation Protocol. Our protocol is made of the following three algorithms.

• PolyCommit(ck,m1,m2, n, t(X))→ (pc, st): Take as input a commitment key
ck and a Laurent polynomial t(X) =

∑nm2

i=−m1n
tiX

i with constant coefficient
t0 = 0. Pick blinders u1, . . . , un−1 ← Zp and randomness τu, τ

′
0, . . . , τ

′
m1−1,

τ ′′0 , . . . , τ
′′
m2−1 ← Zp. Set τ =

(
τ ′0, . . . , τ

′
m1−1, τ

′′
0 , . . . , τ

′′
m2−1, τu

)
. Compute

T ′i = Comck(t′i; τ
′
i), T ′′i = Comck(t′′i ; τ ′′i), U = Comck(u; τu)

Return a polynomial commitment pc =
(
{T ′i}

m1−1
i=0 , {T ′′i }

m2−1
i=0 , U

)
and private

information st = (t(X), τ).
• PolyEval(st, x)→ pe: Compute

t̄ = Z(x)T, τ̄ = Z(x) · τ

Return pe = (t̄, τ̄).
• PolyVerify(ck,m1,m2, n, pc, pe, x)→ v: The verifier checks whether

Comck(t̄; τ̄) =

(
m1−1∏
i=0

(T ′i)
x(i−m1)n

)(
m2−1∏
i=0

(T ′′i)x
in+1

)
Ux

2

If the check is satisfied the verifier returns v = t(x) = t̄X(x).
Otherwise, the verifier rejects pe as invalid with respect to pc and x and
returns v = ⊥.

Security Properties. We define three security properties for our protocol:
completeness, l-special soundness, and special-honest-verifier zero-knowledge.
Later, the protocol is used as a sub-protocol inside our zero-knowledge arguments-
of-knowledge. These properties will help us to prove the completeness, witness-
extended emulation, and special honest verifier zero knowledge for the zero
knowledge argument.

The definition of completeness simply guarantees that if PolyCommit, PolyVerify
are carried out honestly, then PolyVerify will accept and return a commitment
to the evaluation of the polynomial.

Definition 10 (Perfect Completeness). (PolyCommit,PolyEval,PolyVerify)
has perfect completeness if for all non-uniform polynomial time adversaries A

Pr

(ck,m1,m2, n, t(X), x)← A(1λ)
(pc, st)← PolyCommit(ck,m1,m2, n, t(X))
pe← PolyEval(st, x)
v ← PolyVerify(ck,m1,m2, n, pc, pe, x)

: v = t(x)

 = 1

13

where ck is a key for a homomorphic commitment scheme, t(X) is a Laurent
polynomial of degrees d1 = m1n, d2 = m2n and x ∈ Z∗p.

The definition of l-Special Soundness says that given l accepting evaluations for
different evaluation points, but from the same commitment pc, then it is possible
to extract either a valid Laurent polynomial t(X) with zero constant term that
is consistent with the evaluations produced or a breach in the binding property
of the commitment scheme. Furthermore, any other accepting evaluations for the
same commitment will also be evaluations of t(X).

Definition 11 (Statistical l-Special Soundness). (PolyCommit,PolyEval,
PolyVerify) is statistically l-special sound if there exists a probabilistic polynomial
time algorithm χ that, given l accepting transcripts with the same commitment pc,
either extracts the committed polynomial t(X), or extracts a break of the binding
property of the underlying commitment scheme. For all adversaries A and all
L ≥ l

Pr

ck ← CGen(1λ)
(m1,m2, n, pc, x1, pe1, . . . , xL, peL)← A(ck)
Parse pei = (t̄i, τ̄i)
(T, τ)← χ(ck,m1,m2, n, pc, x1, pe1, . . . , xl, pel)
vi ← PolyVerify(ck,m1,m2, n, pc, pei, xi)

:

∀i : vi = Z(xi)TX(xi)
or ∃j s.t.

Comck(t̄j ; τ̄j) =
Comck (Z(xj)T ;Z(xj)τ) ,

where t̄j 6= Z(xj)T

 ≈ 1,

where x1, . . . , xl are distinct, xi ∈ Z∗p , pei ∈ Znp × Zp, T ∈ Z(m1+m2)×n
p , and

τ ∈ Zm1+m2
p .

Perfect special honest verifier zero-knowledge means that given any value v
and evaluation point x, it is possible to simulate pc and pe, distributed exactly
as in a real execution of the protocol where v was the evaluation of t(X) at x.

Definition 12 (Perfect Special Honest Verifier Zero Knowledge).
(PolyCommit,PolyEval,PolyVerify) has perfect special honest verifier zero knowl-
edge (SHVZK) if there exists a probabilistic polynomial time simulator S such
that for all interactive non-uniform polynomial time adversaries A

Pr

 (ck,m1,m2, n, t(X), x)← A(1λ)
(pc, st)← PolyCommit(ck,m1,m2, n, t(X))
pe← PolyEval(st, x)

: A(pc, pe) = 1

= Pr

[
(ck,m1,m2, n, t(X), x)← A(1λ)
(pc, pe)← S(ck,m1,m2, n, x, t(x))

: A(pc, pe) = 1

]
where ck is a key for a homomorphic commitment scheme, t(X) is a Laurent
polynomial of degrees d1 = m1n, d2 = m2n and x ∈ Z∗p.

Theorem 1. The polynomial commitment protocol has perfect completeness,
perfect special honest verifier zero-knowledge and (m1+m2)n+1-special soundness
for extracting either a breach of the binding property of the commitment scheme
or openings to the polynomial.

We refer to the full version of the paper for the proof.

14

Efficiency. We now discuss the efficiency of the above protocol when instantiated
with the Pedersen multicommitment scheme. The outputs pc, pe of the polynomial
commitment protocol have sizes of m1 +m2 + 1 group elements and n+ 1 field
elements respectively. The computational cost of computing pc is dominated by
computing commitments T ′i and T ′′i , corresponding to m1 + m2 n-wide multi-
exponentiations. Using multi-exponentiation techniques as in [28, 31, 32], the total

cost is roughly (m1+m2)n
logn group exponentiations. The main cost for computing

pe is dominated by the n(m1 + m2) field multiplications required to compute
ZT . The dominant cost in PolyVerify is to check the verification equation. This
costs roughly m1+m2+n

log (m1+m2+n)
group exponentiations.

4 Recursive Argument for Inner Product Evaluation

We will now give an inner product argument of knowledge of two vectors a, b ∈ Znp
such that A = ga, B = hb and a · b = z, given z ∈ Zp, A, B ∈ G and g,h ∈ Gn.
The argument will be used later as a subroutine where zero-knowledge is not
required, so the prover could in principle just reveal the witness a, b to the verifier.
In the following we show how to use interaction to reduce the communication
from linear to logarithmic in n, the length of the vectors.

The basic step in our inner product argument is a 2-move reduction to a
smaller statement using techniques similar to [1]. It will suffice for the prover
to reveal the witness for the smaller statement in order to convince the verifier
about the validity of the original statement. In the full argument, prover and
verifier recursively run the reduction to obtain increasingly smaller statements.
The argument is then concluded with the prover revealing a witness for a very
small statement. The outcome of this is a O(log n)-move argument with an overall
communication of O(log n) group and field elements. The inner product argument
will be used in the next section to build a logarithmic size argument for circuit
satisfiability.

Due to the obvious relationship with Pedersen commitments, we will think of
multi-exponentiations ga and hb as commitments with randomness set equal to
zero, and to a, b as openings with respect to commitment keys g,h.

4.1 Main Idea

We now describe the basic step in our argument. Consider the common input for
both prover and verifier to be of the form (G, p, g, A,h, B, z,m) where m divides
n, the length of the vectors. For arbitrary n one can always reduce to the case
where m|n by appending at most m− 1 random group elements to g and h.

We split the bases for the multi-exponentiations into m sets g = (g1, . . . , gm)
and h = (h1, . . . ,hm), where each set has size n

m . We want to prove knowledge
of vectors a = (a1, . . . ,am) and b = (b1, . . . , bm) such that

A = ga =

m∏
i=1

gaii B = hb =

m∏
i=1

hbi
i a · b =

m∑
i=1

ai · bi = z

15

The key idea is for the prover to replace A with A′, a commitment to a shorter
vector a′ =

∑m
i=1 aix

i, given a random challenge x← Z∗p provided by the verifier.
In the argument, the prover first computes and sends

Ak =

min(m,m−k)∏
i=max(1,1−k)

g
ai+k
i for k = 1−m, . . . ,m− 1

corresponding to the products over the diagonals of the following matrix

a1 a2 · · · am

g1
...

gm−1
gm

ga1
1 ga2

1 · · · gam1
. . . ga2

2

. . .
...

ga1
m−1

. . .
. . . gamm−1

ga1
m ga2

m · · · gamm

 Am−1
...

Am−2
A1−m A2−m · · · A0 = A

Notice that A0 = A is already known to the verifier since it is part of the
statement. The verifier now sends a random challenge x← Z∗p.

At this point, both the prover and the verifier can compute g′ :=
∏m
i=1 g

x−i

i

and A′ :=
∏m−1
k=1−mA

xk

k . If the prover is honest then we have A′ = (g′)a
′
, namely

A′ is a commitment to a′ under the key g′. Furthermore, even if the prover
is dishonest, we can show that if the prover can open A′ with respect to the
key g′ for 2m− 1 different challenges, then we can extract opening (a1, . . . ,am)
corresponding to A =

∏m
i=1 g

ai
i .

The same type of argument can be applied in parallel to B with the inverse
challenge x−1 giving us a sum of the form b′ =

∑m
i=1 bix

−i and a new base

h′ =
∏m
i=1 h

xi

i .
All that remains is to demonstrate that z is the constant term in the product

a′ · b′ =
∑m
i=1 aix

i ·
∑m
j=1 bjx

−j . Similarly to A and B, the prover sends values

zk =

min(m,m−k)∑
i=max(1,1−k)

ai · bi+k for k = 1−m, . . . ,m− 1

where z0 = z =
∑m
i=1 ai · bi, and shows that z′ := a′ · b′ =

∑m−1
k=1−m zkx

−k.
To summarise, after the challenge x has been sent, both parties compute

g′, A′,h′, B′, z′ and then run an argument for the knowledge of a′, b′ of length n
m .

Given n = mµmµ−1 · · ·m1, we recursively apply this reduction over the factors
of n to obtain, after µ− 1 iterations, vectors of length m1. The prover concludes
the argument by revealing a short witness associated with the last statement.

4.2 Formal description

We now give a formal description of the argument of knowledge introduced above.

16

Common input: (G, p, g, A,h, B, z,mµ = m,mµ−1 = m′, . . . ,m1) such that
g,h ∈ Gn, A,B ∈ G and n =

∏µ
i=1mi.

Prover’s witness: (a1, . . . ,am, b1, . . . , bm) satisfying

A =

m∏
i=1

gaii B =

m∏
i=1

hbi
i

m∑
i=1

ai · bi = z

Argument if µ = 1:
P → V: Send (a1, . . . , am, b1, , . . . , bm).
P ← V: Accept if and only if

A =

m∏
i=1

gaii B =

m∏
i=1

hbii

m∑
i=1

aibi = z

Reduction if µ 6= 1:
P → V: Send A1−m, B1−m, z1−m, . . . , Am−1, Bm−1, zm−1 where

Ak =

min(m,m−k)∏
i=max(1,1−k)

g
ai+k
i Bk =

min(m,m−k)∏
i=max(1,1−k)

h
bi+k
i zk =

min(m,m−k)∑
i=max(1,1−k)

ai · bi+k

Observe A0 = A,B0 = B, z0 = z so they can be omitted from the message.
P ← V: x← Z∗p.

Both prover and verifier compute a reduced statement of the form

(G, p, g′, A′,h′, B′, z′,mµ−1, . . . ,m1)

where

g′ = (g′1, . . . , g
′
m′) =

m∏
i=1

gx
−i

i A′ =

m−1∏
k=1−m

Ax
k

k

h′ = (h′1, . . . ,h
′
m′) =

m∏
i=1

hx
i

i B′ =

m−1∏
k=1−m

Bx
−k

k z′ =

m−1∑
k=1−m

zkx
−k

The prover computes a new witness as (a′1, . . . ,a
′
m′) =

∑m
i=1 aix

i and
(b′1, . . . , b

′
m′) =

∑m
i=1 bix

−i.

Security Analysis.

Theorem 2. The argument has perfect completeness and statistical witness
extended emulation for either extracting a non-trivial discrete logarithm relation
or a valid witness.

Proof. Perfect completeness can be verified directly. To prove witness-extended
emulation we start by giving an extractor that either extracts a witness for the
original statement or a non-trivial discrete logarithm relation.

17

For µ = 1 we have (perfect) witness-extended emulation since the prover
reveals a witness and the verifier checks it.

Before discussing extraction in the recursive step, note that if we get a non-
trivial discrete logarithm relation for g′1, . . . , g

′
m′ then we also get a non-trivial

discrete logarithm relation for g1, . . . , gm, since x 6= 0. A similar argument applies
to h′1, . . . ,h

′
m′ and h1, . . . ,hm.

Now, assume we get witness a′, b′ such that

A′ =

m−1∏
k=1−m

Ax
k

k =

(
m∏
i=1

gx
−i

i

)a′

B′ =

m−1∏
k=1−m

Bx
−k

k =

(
m∏
i=1

hx
i

i

)b′

a′·b′ =

m−1∑
k=1−m

zkx
−k

for 2m − 1 different challenges x ∈ Z∗p. We will show that they yield either a
witness for the original statement, or a non-trivial discrete logarithm relation for
either g1, . . . , gm or h1, . . . ,hm.

Take 2m− 1 different challenges x ∈ Z∗p. They form a shifted Vandermonde
matrix with rows (x1−m, x2−m, . . . , xm−1). By taking appropriate linear combi-
nations of the vectors we can obtain any unit vector (0, . . . , 0, 1, 0, . . . , 0). Taking
the same linear combinations of the 2m− 1 equations

m−1∏
k=1−m

Ax
k

k =

(
m∏
i=1

gx
−i

i

)a′

we get vectors ak,i such that Ak =

m∏
i=1

g
ak,i
i

For each of the 2m−1 challenges, we now have
∏m−1
k=1−mA

xk

k =
(∏m

i=1 g
x−i

i

)a′
,

which means that for all i we have

x−ia′ =

m−1∑
k=1−m

ak,ix
k

unless we encounter a non-trivial discrete logarithm relation for g1, . . . , gm. This
means that a′ =

∑m−1
k=1−m ak,ix

k+i for all i, and in particular
∑m−1
k=1−m ak,ix

k+i =∑m−1
k=1−m ak,1x

k+1 =
∑m−1
k=1−m ak,mx

k+m. Matching terms of degree outside
{1, . . . ,m} reveals ak,i = 0 for k + i /∈ {1, . . . ,m}. Defining ai = a0,i, and
matching terms of similar degree we get

ak,i =

{
ak+i if k + i ∈ {1, . . . ,m}
0 otherwise

This means

a′ =

m−1∑
k=1−m

ak,1x
k+1 =

m−1∑
k=0

ak+1x
k+1 =

m∑
i=1

aix
i

A similar analysis of B1−m, . . . , Bm−1 and openings b′ for 2m− 1 different
challenges x−1 ∈ Z∗p gives us either a non-trivial discrete logarithm relation for

h1, . . . ,hm or vectors bi such that b′ =
∑m
i=1 bix

−i and B =
∏m
i=1 h

bi
i .

18

Finally, with
∑m
i=1 aix

i ·
∑m
j=1 bjx

−j =
∑m−1
k=1−m zkx

−k for 2m− 1 different

challenges we get z = z0 =
∑m
i=1 ai · bi.

We can now apply the forking lemma to a tree of size (2mµ − 1)(2mµ−1 −
1) · · · (2m2 − 1) ≤ n2, which is polynomial in λ, to conclude that the argument
has witness-extended emulation. ut

Efficiency. The recursive argument uses 2µ− 1 moves. The communication cost
of all steps sums up to 4

∑µ
i=2(mi− 1) group elements and 2

∑µ
i=2(mi− 1) + 2m1

field elements.
At each iteration, the main cost for the prover is computing the Ak and

Bk values, using less than
4(m2

µmµ−1...m1)

log(mµ...m1)
group exponentiations via multi-

exponentiation techniques, and the zk values using m2
µmµ−1 · · ·m1 field mul-

tiplications. The cost of computing the reduced statements is dominated by
2(mµmµ−1...m1)

logmµ
group exponentiations for both the prover and the verifier. In the

case where mµ = . . . = m1 = m, the verifier complexity is bounded above by
2mµ

logm
m
m−1 group exponentiations. The prover complexity is bounded above by

6mµ+1

logm
m
m−1 group exponentiations and mµ+1 m

m−1 field multiplications.

Zero-knowledge version. The above argument can be modified to become
zero-knowledge. We leave the details to the reader as zero-knowledge is not
needed for our use of this argument in the next section.

5 Logarithmic Communication Argument for Arithmetic
Circuit Satisfiability

In this section, we revisit zero knowledge arguments for the satisfiability of an
arithmetic circuit under the discrete logarithm assumption. We will explain how
to build an argument with square root communication complexity, and superior
efficiency to the argument of [21]. We then observe that our new argument
involves computing a large inner product, and can achieve as good as logarithmic
communication complexity by using our recursive inner product argument.

At a high level, we transform an arithmetic circuit into two kinds of equations.
Multiplication gates are directly represented as equations of the form a · b = c,
where a, b, c represent the left, right and output wires. We will arrange these
values in matrix form producing a Hadamard matrix product. This process will
lead to duplicate values, when a wire is the output of one multiplication gate and
the input of another, or when it is used as input multiple times. We keep track of
this by using a series of linear constraints. For example, if the output of the first
multiplication gate is the right input of the second, we would write c1 − b2 = 0.

We also add linear constraints representing the addition and multiplication
by constant gates of the circuit. We then rewrite those equations so that the
only wires that are referenced in the equations are those linked to (non-constant)
multiplication gates. We describe this process in Appendix A.

19

Finally, we fold both the Hadamard matrix product and the linear constraints
into a single polynomial equation, where a Laurent polynomial has 0 as its constant
term, and use the construction of Section 3 to prove this. We can optionally
integrate the inner product argument of Section 4 to reduce communication.

Our technique improves on the efficiency of [21] by making three main changes,
each resulting in efficiency improvements.

1. We do not need commitments to the input and output wires of addition gates.
We handle addition gates with linear consistency equations thus yielding a
significant performance improvement proportional to the number of addition
gates. This parallels [13] who also manage to eliminate addition gates when
constructing Quadratic Arithmetic Programs from circuits.

2. We avoid black-box reductions to zero-knowledge arguments for generic linear
algebra statements and instead design an argument directly for arithmetic
circuit satisfiability. As a result, our square-root argument has only 5 moves,
while the argument from [21] requires 7 moves. We note that [36] reduced
the complexity of [21] to 5 moves as well, but at a significant computational
overhead whereas we also reduce the computational cost.

3. We use our protocol from Section 3 to reduce the communication costs of a
polynomial commitment.

These improvements give us a square root communication complexity with
respect to the number of multiplication gates in the circuit. This is because for a
circuit with N = mn multiplication gates, the prover makes 3m commitments to
wire values in his first move, and later provides an opening consisting of n field
elements to a homomorphic combination of these commitments. Optimising the
parameters by choosing m ≈ n ≈

√
N leads to square root complexity.

In our square root complexity argument, the verifier uses the n field elements
to check an inner product relation. Our key idea to reduce communication further
is to use our inner product evaluation argument instead of sending these field
elements. This allows for verification of the inner product, and also provides an
argument of knowledge of the opening of the commitment. We no longer need
to open a large commitment, leading to a drastic reduction in communication
complexity depending on the settings for the inner product argument.

Below we give a first informal exposition of our arguments, and follow with a
formal description.

Reduction of Circuit Satisfiability to a Hadamard Matrix Product and
Linear Constraints. We consider an arithmetic circuit containing N = mn
multiplication gates over a field Zp. Without loss of generality, we assume that
the circuit has been pre-processed (see the full version of the paper for a way
to do this), so that the input and the output wires feed into and go out from
multiplication gates only. We number the multiplication gates from 1 to N and
we arrange the inputs and outputs of these gates into three m× n matrices A,B
and C such that the (i, j) entries of the matrices correspond to the left input,
right input and output of the same multiplication gate.

20

An arithmetic circuit can be described as a system of equations in the entries
of the above matrices. The multiplication gates define a set of N equations

A ◦B = C (1)

where ◦ is the Hadamard (entry-wise) product. The circuit description also
contains constraints on the wires between multiplication gates. Denoting the
rows of the matrices A,B,C as

ai = (ai,1, . . . , ai,n) bi = (bi,1, . . . , bi,n) ci = (ci,1, . . . , ci,n) for i ∈ {1, . . . ,m}

these constraints can be expressed as Q < 2N linear equations of inputs and
outputs of multiplication gates of the form

m∑
i=1

ai ·wq,a,i +

m∑
i=1

bi ·wq,b,i +

m∑
i=1

ci ·wq,c,i = Kq for q ∈ {1, . . . , Q} (2)

for constant vectors wq,a,i,wq,b,i,wq,c,i and scalars Kq.
For example, suppose that the circuit contains a single addition gate, with

a1,1 and a1,2 as inputs, and b1,1 as output. In this case, Q = 1 and we would set
w1,a,1 = (1, 1, 0, . . . , 0), w1,b,1 = (−1, 0, . . . , 0), and all other w vectors would be
set to 0. Then (2) would simply read

a1,1 + a1,2 − b1,1 = 0

to capture the constraint imposed by the addition gate.
In total, to capture all multiplications and linear constraints, we have N +Q

equations that the wires must satisfy in order for the circuit to be satisfiable.

Reduction to a Single Polynomial Equation. Let Y be a formal indetermi-
nate. We will reduce the N +Q equations above to a single polynomial equation
in Y by embedding each equation into a distinct power of Y . In our argument
we will then require the prover to prove that this single equation holds when
replacing Y by a random challenge received from the verifier.

Let Y ′ denote the vector (Y m, . . . , Y mn) and Y denote (Y, Y 2, . . . , Y m).
Then, we can multiply (1) by Y from the left and Y ′T on the right to obtain
Y (A ◦B)Y ′T = Y CY ′T , or equivalently

m∑
i=1

Y i(ai ◦ bi) · Y ′ =

m∑
i=1

Y i(ci · Y ′)

Since (a ◦ b) · Y ′ = a · (b ◦ Y ′), we obtain the following expression

m∑
i=1

ai · (bi ◦ Y ′)Y i =

(
m∑
i=1

ciY
i · Y ′

)

21

This is easily seen to be equivalent to (1), because ai,jbi,j = ci,j appears in
the coefficients of Y i+jm, and i+ jm takes every value from m+1 to M = N +m
exactly once.

Moreover, the Q linear constraints on the wires in Eq. 2 are satisfied if and
only if

Q∑
q=1

(
m∑
i=1

ai ·wq,a,i +

m∑
i=1

bi ·wq,b,i +

m∑
i=1

ci ·wq,c,i

)
Y q =

Q∑
q=1

KqY
q

since the qth constraint arises from comparing the coefficients of Y q. Combining
the two polynomial equations by adding them after multiplying the latter by
YM , and swapping summations, we see that the circuit is satisfied if and only if(

m∑
i=1

ai · (bi ◦ Y ′)Y i
)

+

m∑
i=1

ai ·

(
Q∑
q=1

wq,a,iY
M+q

)
+

m∑
i=1

bi ·

(
Q∑
q=1

wq,b,iY
M+q

)

+

m∑
i=1

ci ·

(
−Y iY ′ +

Q∑
q=1

wq,c,iY
M+q

)
=

(
Q∑
q=1

KqY
M+q

)

Let us define

wa,i(Y) =

Q∑
q=1

wq,a,iY
M+q wb,i(Y) =

Q∑
q=1

wq,b,iY
M+q

wc,i(Y) = −Y iY ′ +
Q∑
q=1

wq,c,iY
M+q K(Y) =

Q∑
q=1

KqY
M+q

Then the circuit is satisfied if and only if

m∑
i=1

ai ·(bi◦Y ′)Y i+
m∑
i=1

ai ·wa,i(Y)+

m∑
i=1

bi ·wb,i(Y)+

m∑
i=1

ci ·wc,i(Y)−K(Y) = 0

(3)

In the argument, the prover will commit to ai, bi and ci. The verifier will
then issue a random challenge y ← Z∗p and the prover will convince the verifier
that the committed values satisfy Eq. 3, evaluated on y. If the committed values
do not satisfy the polynomial equation, the probability the equality holds for a
random y is negligible, so the prover is unlikely to be able to convince the verifier.

5.1 Square Root Communication Argument

In order to show that (3) is satisfied, we craft a special Laurent polynomial t(X)
in a second formal indeterminate X, whose constant coefficient is exactly twice
the left-hand side of (3). Therefore, this polynomial will have zero constant term

22

if and only if (3) is satisfied. In our argument this is proved using the polynomial
commitment protocol of Section 3. We define

r(X) :=

m∑
i=1

aiy
iXi +

m∑
i=1

biX
−i +Xm

m∑
i=1

ciX
i + dX2m+1

s(X) :=

m∑
i=1

wa,i(y)y−iX−i +

m∑
i=1

wb,i(y)Xi +X−m
m∑
i=1

wc,i(y)X−i

r′(X) := r(X) ◦ y′ + 2s(X)

t(X) := r(X) · r′(X)− 2K(y)

Here y′ is the vector Y ′ evaluated at y, and d is a blinding vector consisting of
random scalars that the prover commits to in the first round. In the square root
argument the prover will reveal r(x) for a randomly chosen challenge x ∈ Z∗p, and
the blinding vector d ensures that we can reveal r(x) without leaking information
about ai, bi and ci. We also observe that s(x) is efficiently computable from
public information about the circuit and the challenges.

We have designed these polynomials such that the constant term of r · (r ◦y′)
is equal to 2

∑m
i=1 ai · (bi ◦ y′)yi and the constant term of r · s is equal to∑m

i=1 ai ·wa,i(y) +
∑m
i=1 bi ·wb,i(y) +

∑m
i=1 ci ·wc,i(y). We conclude that the

constant term of t(X) is exactly twice the left-hand side of (3), and is therefore
zero if and only if the circuit is satisfied.

We are now in a position to describe an argument with square root communi-
cation complexity.

The prover first commits to vectors ai, bi, ci and d and the verifier replies with
a challenge y ← Z∗p. The prover computes t(X) and commits to it by using the
algorithm PolyCommit defined in Section 3. Then, the verifier sends a random
challenge x← Z∗p and the prover responds by revealing r(x) and blinded openings
pe of t(X) obtained by running algorithm PolyEval as described in Section 3.

The verifier first checks that r(x) is consistent with the previously sent com-
mitments of ai, bi, ci and d using the homomorphic properties of the commitment
scheme. She also computes s(x), r′(x) and K. Then, she computes v = t(x) using
the PolyVerify algorithm of Section 3, and checks if v = r(x) · r′(x)− 2K. The
verifier accepts the argument if both checks are satisfied.

As described so far, the argument requires communicating O(m) group ele-
ments and O(n) field elements, so setting m ≈ n leads to square root communi-
cation. The argument improves on [21, 36] by requiring only 5 moves without
computational overhead and significantly reduces the computational complexity.
However, breaking this ostensible square root communication barrier requires
new ideas that we describe in the next section.

5.2 Breaking the Square Root Barrier

The square root complexity argument described above was designed so that the
verifier uses r = r(x) to check the inner product v = r · r′ − 2K, where v is

23

the evaluation of a committed polynomial at x. Sending r has a cost of n field
elements. In order to break the square root barrier we try to avoid sending r
directly so that we can then let n be larger and m be smaller and thus globally
lower the communication of the argument.

Rather than sending r to the verifier, the prover could instead send commit-
ments to r and r′, and use our inner product argument to show that v + 2K
was a correctly formed inner product. In fact, the prover does not even need to
send commitments to r and r′! The verifier can compute a commitment to r(x)
directly from Ai, Bi, Ci and D, the commitments to ai, bi, ci and d which were
previously used to check that r is correctly formed

Comck(r; 0) = Comck(0;−ρ)

[
m∏
i=1

Ax
iyi

i

][
m∏
i=1

Bx
−i

i

][
m∏
i=1

Cx
m+i

i

]
Dx2m+1

= gr

where ρ is an appropriate randomness value, which is sent by the prover to
the verifier, and the vector g = (g1, . . . , gn) for a given commitment key ck =
(G, p, g, g1, . . . , gn).

As for a commitment to r′, we observe that the Pedersen commitment, besides
its well-known homomorphic properties with respect to the message and the
randomness, also has the useful property that it is homomorphic with respect to

the commitment key. Specifically, let h = (gy
−m

1 , . . . , gy
−mn

n), so that gr = hr◦y′ .

Multiplying gr by h2s, the verifier obtains Comck′(r
′; 0) = hr′ , with respect to

the new commitment key ck′ which uses h instead of g. We note that h and
s = s(x) can be computed by the verifier.

Now the prover and verifier can run the inner product argument with statement

(G, p, g, r,h, r′, v + 2K,mµ,mµ−1, . . . ,m1) where

ck = (G, p, g, g) n = mµmµ−1 · · ·m1

g = (g1, g2, . . . , gn) h = (gy
−m

1 , gy
−2m

2 , . . . , gy
−mn

n)

R = Comck(0;−ρ)
[∏m

i=1A
xiyi

i

] [∏m
i=1B

x−i

i

] [∏m
i=1 C

xm+i

i

]
Dx2m+1

= gr

R′ = R · h2s = hr′

and the prover’s witness is r, r′.
The values of mµ, . . . ,m1 can be chosen according to the desired efficiency of

the circuit satisfiability argument.

5.3 Formal Description

We now give the formal description of the above arguments of knowledge for the
satisfiability of an arithmetic circuit C. Both prover and verifier take the move
parameter µ as common input. For square root communication complexity, the
inner product argument is not used and we set µ = 0. For µ > 0, the common
input includes the values (mµ, . . . ,m1) used in the inner product argument. The
description of the arithmetic circuit C is given as a number N of multiplica-
tion gates and the values wq,a,i,wq,b,i,wq,c,i, which specify linear consistency
constraints between the input and output values of the multiplication gates.

24

Common Input: (ck, C,N,m, n,m′1,m
′
2, n
′,mµ, . . . ,m1, µ) where ck is a com-

mitment key, C is the description of an arithmetic circuit with N = mn
multiplication gates, µ is the move parameter and n = mµ · · ·m1. Parameters
(m′1,m

′
2, n
′) are set to satisfy both 3m ≤ m′1n′ and 4m+ 2 ≤ m′2n′.

Prover’s Witness: Satisfying assignments ai, bi and ci to the wires of C.
Argument:
P → V: Pick randomness α1, β1, γ1, . . . , αm, βm, γm, δ ← Zp and blinding vec-

tor d← Znp . Compute for i ∈ {1, . . . ,m}

Ai = Com(ai;αi) Bi = Com(bi;βi) Ci = Com(ci; γi) D = Com(d; δ).

Send to the verifier A1, B1, C1, . . . , Am, Bm, Cm, D.
P ← V: y ← Z∗p.

As argued before, the circuit determines vectors of polynomials wa,i(Y),
wb,i(Y), wc,i(Y) and K(Y) such that C is satisfiable if and only if

m∑
i=1

ai ·(bTi ◦Y ′)Y i+
m∑
i=1

ai ·wa,i(Y)+

m∑
i=1

bi ·wb,i(Y)+

m∑
i=1

ci ·wc,i(Y) = K(Y)

where Y ′ = (Y m, . . . , Y mn). Given y, both the prover and verifier can
compute K = K(y), wa,i = wa,i(y), wb,i = wb,i(y) and wc,i = wc,i(y).

P → V: Compute Laurent polynomials r, s, r′, which have vector coefficients,
and Laurent polynomial t, in the indeterminate X

r(X) =

m∑
i=1

aiy
iXi +

m∑
i=1

biX
−i +Xm

m∑
i=1

ciX
i + dX2m+1

s(X) =

m∑
i=1

wa,iy
−iX−i +

m∑
i=1

wb,iX
i +X−m

m∑
i=1

wc,iX
−i

r′(X) = r(X) ◦ y′ + 2s(X)

t(X) = r(X) · r′(X)− 2K =

4m+2∑
k=−3m

tkX
k

When the wires ai, bi, ci correspond to a satisfying assignment, the Laurent
polynomial t(X) will have constant term t0 = 0.
Commit to t(X) by running

(pc, st)← PolyCommit(ck,m′1,m
′
2, n
′, t(X))

Send pc to the verifier.
P ← V: x← Z∗p
P → V: Compute PolyEval(st, x)→ pe, and

r =

m∑
i=1

aix
iyi +

m∑
i=1

bix
−i + xm

m∑
i=1

cix
i + dx2m+1

ρ =

m∑
i=1

αix
iyi +

m∑
i=1

βix
−i + xm

m∑
i=1

γix
i + δx2m+1

25

• If µ = 0 : the inner product argument is not used. The prover sends
(pe, r, ρ) to the verifier.
• If µ > 0 : the inner product argument is used. The prover computes
r′ = r′(x) and sends (pe, ρ) to the verifier.

Verification: First, the verifier computes

PolyVerify(ck,m′1,m
′
2, n
′, pc, pe, x)→ v

and rejects the argument if v = ⊥.

• If µ= 0 : the inner product argument is not used. The verifier computes
r′ = r ◦ y′ + 2s(x), and accepts only if

r · r′ − 2K = v

Comck(r; ρ) =
[∏m

i=1A
xiyi

i

] [∏m
i=1B

x−i

i

] [∏m
i=1 C

xm+i

i

]
Dx2m+1

• If µ > 0 : prover and verifier run the inner product argument with
common input

(G, p, g, R,h, R′, v + 2K,mµ,mµ−1, . . . ,m1) where

ck = (G, p, g, g) n = mµmµ−1 · · ·m1

g = (g1, g2, . . . , gn) h = (gy
−m

1 , gy
−2m

2 , . . . , gy
−mn

n)

R = Comck(0;−ρ)
[∏m

i=1A
xiyi

i

] [∏m
i=1B

x−i

i

] [∏m
i=1 C

xm+i

i

]
Dx2m+1

= gr

R′ = R · h2s(x) = hr′

and the prover’s witness is r and r′.
The verifier accepts if the inner product argument is accepting.

Security Analysis. In the full version of the paper, we prove the following.

Theorem 3. The argument for satisfiability of an arithmetic circuit has perfect
completeness, perfect special honest verifier zero-knowledge and statistical witness-
extended emulation for extracting either a breach of the binding property of the
commitment scheme or a witness for the satisfiability of the circuit.

Efficiency.

Square Root Communication. When we set µ = 0, the argument above has a
communication cost of m′1 +m′2 + 2 + 1 + 3m commitments and n+ n′ + 2 field

elements. Setting m ≈
√

N
3 , n ≈

√
3N , n′ ≈

√
7m, m′1 ≈ 3

√
m
7 and m′2 ≈ 4

√
m
7

we get a total communication complexity where the total number of group and
field elements sent is as low as possible and approximately 2

√
N each. The

main computational cost for the prover is computing the initial commitments,
corresponding to 3mn

logn group exponentiations. The prover can compute t(X) using

FFT-based techniques. Assuming that p is of a suitable form [9], the dominant

26

number of multiplications for this process is 3
2mn logm. The main cost in the

verification is computing s(X) given the description of the circuit which requires
in the worst case Qn multiplications in Zp, considering arbitrary fan-in addition
gates. In case of O(N)-size circuits with fan-in 2 gates, computing s(X) requires
O(N) multiplications. Evaluating s(x) requires 3N multiplications. The last

verification equation costs roughly (n+3m)
logn+3m group exponentiations to the verifier.

(µ+ 1)-Root Communication. We can reduce communication by using µ = O(1)

iterations of the inner product argument. Choosing m = N
1

µ+1 , n = N
µ
µ+1 and

mi = (Nm)
1
µ will give us a communication complexity of 4µN

1
µ+1 group elements

and 2µN
1

µ+1 field elements. The prover’s complexity is dominated by 6µN
logN group

exponentiations and fewer than 3N
2µ logN field multiplications. The verifier’s cost

is dominated by 2µN
logN group exponentiations and O(N) field multiplications.

Logarithmic Communication. By increasing the number of iteration of the inner
product argument we can further reduce the communication complexity.

To minimize the communication, we set µ = logN − 1, n = N
2 , m = mi = 2,

m′1 = 2, m′2 = 3 and n′ = 4 in the above argument gives us 2 logN + 1
moves. The total communication amounts to 4 logN + 7 group elements and
2 logN + 6 field elements. The prover computational cost is dominated by 12N
group exponentiations, and O(N) multiplications in Zp.The main verification
cost is bounded by 4N group exponentiations and O(N) multiplications in Zp.

Alternatively, we can optimize the computation while maintaining logarithmic
communication by setting µ = logN − log log 2N , m = logN , n = N

logN , n′ ≈
√

7 logN , m′1 ≈ 3
√

logN
7 , m′2 ≈ 4

√
logN

7 , mi = 2 for 1 ≤ i ≤ µ. In this way

we obtain a 2 logN − 2 log logN + 1 moves argument. With respect to the
previous settings, we now save 2 log logN moves by starting the inner product
argument with a smaller statement. The resulting communication is at most
7 logN +

√
7 logN group elements and at most 2 logN +

√
7 logN field elements.

Thus, the prover computation is dominated by 3N
logN group exponentiations and

11N log logN field multiplications. For the verifier, it is bounded from above by
4N

logN log logN group exponentiations and O (N) field multiplications.

6 Implementation using Python

To verify the practicality of our construction we produced a proof of concept imple-
mentation in Python using the NumPy [33] package. The more costly operations
are executed natively: we use Petlib [11] to outsource elliptic curve operations
to the OpenSSL library, and also use a small C++ program to calculate the
polynomial multiplication producing t(X) using NTL [37]. Our implementation
is single-threaded, but the operations performed are easily parallelisable.

Our implementation accepts the circuit description format used by Pinoc-
chio [34], which it preprocesses to remove addition and multiplication by constant

27

gates, encoding them as a constraint table. Pinocchio also supports split gates,
taking as input a single arithmetic wire and producing a fixed number of binary
wires as outputs, so the binary wires correspond to the binary representation of
the arithmetic wire. We handle split gates by adding appropriate multiplication
gates and constraints to ensure binary wires can only carry zeroes or ones, and
that their values scaled by the appropriate powers of 2 sum up to the gate’s
input.

Performance Comparison. We compared the performance of our implemen-
tation to that of Pinocchio [34] for a set of circuits produced by Pinocchio’s
toolchain. The circuits implement multiplication of a vector by a fixed matrix,
multiplication of two matrices, evaluation of a multivariate polynomial, and other
applications for which we refer to [34]. We used an i5-4690K running Pinocchio
under Windows 10 and our software under Ubuntu 14.04 for the tests.

We note here that Pinocchio operates in a pairing-based setting, using knowl-
edge of exponent assumptions, whereas we operate in the discrete log setting.
Even so, we feel the comparison is meaningful, as we are not aware of previous
implementations of circuit-evaluation arguments in our setting.

Application

This work Pinocchio
Square Root Logarithmic (Constant)

Mult. Key Proof Key Proof Key Proof
Gates Gen Size Prove Verify Size Gen Size Prove Verify Size Gen Size Prove Verify Size

s B s s B s B s s B s B s s B

Vector Matrix 600 0.07 1120 0.38 0.25 6K 0.03 3872 0.55 0.31 3552 0.42 0.3M 0.23 .023 288
Product 1000 0.10 1440 0.76 0.61 8K 0.06 6464 1.05 0.67 3744 0.93 0.5M 0.53 .035 288

Matrix 347K 1.1 19K 14.7 3.4 76K 5.3 618K 49.9 22.9 5792 47.3 97.9M 167.4 .201 288
Product 1343K 2.7 37K 60.8 12.7 160K 18.6 2.2M 187.0 81.7 6496 170.4 374.8M 706.8 .503 288

Polynomial 203K 1.0 14K 30.0 2.1 88K 3.3 383K 53.1 14.0 5440 24.4 55.9M 146.8 .007 288
Evaluation 571K 1.7 24K 97.0 5.6 160K 8.3 962K 164.5 36.0 6272 60.2 156.8M 422.1 .007 288

Image 86K 0.7 9K 2.6 1.0 44K 1.5 171K 11.4 6.2 5120 15.2 23.6M 25.1 .007 288
Matching 278K 1.2 17K 7.4 2.9 72K 4.2 490K 34.3 18.1 5920 38.9 75.8M 88.8 .007 288

Shortest 366K 1.5 19K 9.3 3.7 52K 5.6 644K 45.6 23.9 5792 50.4 99.6M 130.7 .015 288
Paths 1400K 2.6 38K 35.1 12.6 72K 19.2 2.2M 169.8 84.0 6496 177.6 381.4M 523.3 .026 288

Gas 144K 0.8 12K 8.8 6.1 64K 2.3 271K 23.7 13.9 5440 22.6 39.6M 47.6 .007 288
Simulation 283K 1.2 17K 26.7 20.7 160K 4.3 503K 54.8 34.5 5920 45.9 77.7M 103.1 .007 288

SHA-1 24K 0.18 5K 3.7 3.3 24K 0.5 54K 6.5 4.3 4992 7.9 6.5M 9.0 .007 288

Table 2. Performance comparison between our implementation and Pinocchio. Pinoc-
chio was set to use public verifiability and zero-knowledge.

From the comparison in Table 2, it is clear that our implementation is
extremely competitive in terms of prover computation, with the square root
version outperforming Pinocchio by a factor larger than 10 for some applications.
There is a significant amount of variance in terms of the speedups achieved. The
worst cases are those where the number of constraints is high in comparison with
the number of multiplication gates: the calculation of s(X) is performed entirely
in Python and thus becomes the dominant term in the computation. We expect
that in a fully compiled implementation, optimisation would prevent this issue.

The logarithmic communication version is slower in comparison but still
outperforms Pinocchio for most applications. The performance also becomes
more even, as the constraints are irrelevant in the recursive part.

28

Our verification times are much higher than Pinocchio’s, which can often
verify circuit evaluation faster than native execution of an equivalent program. As
with the prover, some speedups can be gained by moving to a compiled language,
but we would still not expect to match Pinocchio’s performance; our verification
cost would still be linear. Our proofs are considerably larger as well, especially
for the square root version.

Our key generation is simply a commitment key generation, and is not
application-specific. Therefore, it can be easily amortised even across different
circuits. For a circuit with N multiplication gates, the size of our commitment
key is

√
N elements for the square root version and N

logN for the log version. In
comparison, Pinocchio’s key generation is bound to specific circuits and produces
keys of size 8N . Thus, if the keys need to be communicated, our arguments are
competitive in terms of total communication if the number of circuit evaluations
is up to

√
N for the square root version, and up to N

logN for the log version.

A Arithmetic Circuits

Our satisfiability arguments consider arithmetic circuits described as a list of
multiplication gates together with a set of linear consistency equations relating
the inputs and outputs of the gates. In this section, we show how to reduce an
arbitrary arithmetic circuit to this format.

An arithmetic circuit over a field Zp and variables (a1, . . . , am) is a directed
acyclic graph whose vertices are called gates. Gates of in-degree 0 are inputs to
the circuit and labelled with some ai or a constant field element. All other gates
are labelled + or ×. We may consider fan-in 2 circuits, in which case all of the +
and × gates have in-degree 2, or arbitrary fan-in circuits.

We show how to remove addition and multiplication-by-constant gates from
an arithmetic circuit A, and replace them with bilinear consistency equations
on the inputs and outputs of the remaining gates, such that satisfiability of the
equations is equivalent to satisfiability in the original circuit.

Let B be the sub-circuit of A containing all wires and gates before a multi-
plication gate, with m input wires and n output wires. Label the m inputs of
B with the unit vectors ei = (0, . . . , 1, . . . , 0) of length m. For every addition
gate with inputs labelled as x,y, label the output wire as x + y. For every
multiplication-by-constant gate with inputs x and constant c label the output
with cx. By proceeding inductively, the n outputs of B are now labelled with
vectors of length m representing them as linear combinations of the inputs.

We can now remove the gates of B from A. We also remove any multiplication
gates whose inputs are the inputs of the new circuit. Now we simply repeat
the process of finding consistency equations until we have considered the whole
of A. In Figure 1 there is an example of a circuit together and the corresponding
consistency equations.

29

×
a1

b1

×
a2

b2

×
a3

b3

×

×
4

c1 = a4

c2 = b4

c3

•

+

•

×

•

×

c4 a5

b6

b5

a6

c5

c6

c1 = a4

c2 = b4

c4 = a5

4c3 + c4 = b5

4c3 + c4 = a6

4c3 = b6

Fig. 1. A simple arithmetic circuit, and the corresponding consistency equations.

References

1. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Advances in Cryptology – EUROCRYPT 2012. pp. 263–280 (2012)

2. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with
application to blacklists. In: Advances in Cryptology – EUROCRYPT 2013. pp.
646–663 (2013)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM conference on Computer and communications security
– CCS 1993. pp. 62–73 (1993)

4. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in Zero Knowledge. In: Advances in
Cryptology – CRYPTO 2013. pp. 90–108 (2013)

5. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: USENIX Security Symposium 2014.
pp. 781–796 (2014)

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision re-
sistance to succinct non-interactive arguments of knowledge, and back again. In:
Innovations in Theoretical Computer Science – ITCS 2012. pp. 326–349 (2012)

7. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In: Symposium on Theory of
Computing Conference – TCC 2013. pp. 111–120 (2013)

8. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences 37(2), 156–189 (1988)

9. Cantor, D.G.: On arithmetical algorithms over finite fields. Journal of Combinatorial
Theory, Series A 50(2), 285–300 (1989)

10. Cramer, R., Damg̊ard, I.: Zero-knowledge proofs for finite field arithmetic; or: Can
zero-knowledge be for free? In: Advances in Cryptology – CRYPTO 1998. pp.
424–441 (1998)

11. Danezis, G.: petlib: A python library that implements a number of privacy enhancing
technologies (PETs) (2015), https://github.com/gdanezis/petlib

12. Garay, J.a., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols using
signatures. Journal of Cryptology 19(2), 169–209 (2006)

13. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Advances in Cryptology – EUROCRYPT 2013.
pp. 626–645 (2013)

14. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.: Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs.
Journal of Cryptology pp. 1–24 (2014)

https://github.com/gdanezis/petlib

30

15. Goldreich, O., H̊astad, J.: On the complexity of interactive proofs with bounded
communication. Information Processing Letters 67(4), 205–214 (1998)

16. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM
38(3), 691–729 (1991)

17. Goldreich, O., Vadhan, S.P., Wigderson, A.: On interactive proofs with a laconic
prover. Computational Complexity 11(1-2), 1–53 (2002)

18. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proofs. SIAM Journal on Computing 18(1), 186–208 (1989)

19. Groth, J.: Honest verifier zero-knowledge arguments applied. Ph.D. thesis, University
of Aarhus (2004)

20. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In: Advances in Cryptology – ASIACRYPT 2009. pp. 431–448 (2009)

21. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Advances
in Cryptology – CRYPTO 2009. pp. 192–208 (2009)

22. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Ad-
vances in Cryptology – ASIACRYPT 2010. pp. 321–340 (2010)

23. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.
In: Advances in Cryptology – EUROCRYPT 2008, pp. 379–396 (2008)

24. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Advances in Cryptology – EUROCRYPT 2015. p. 764 (2014)

25. Guillou, L.C., Quisquater, J.J.: A practical zero-knowledge protocol fitted to
security microprocessor minimizing both trasmission and memory. In: Advances in
Cryptology – EUROCRYPT 1998. pp. 123–128 (1988)

26. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials
and their applications. In: Advances in Cryptology – ASIACRYPT 2010. pp. 177–194
(2010)

27. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Symposium
on Theory of Computing Conference – TCC 1992. pp. 723–732 (1992)

28. Lim, C.H.: Efficient multi-exponentiation and application to batch
verification of digital signatures (2000), manuscript available at
http://dasan.sejong.ac.kr/∼chlim/pub/multi exp.ps

29. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
Journal of Cryptology 16(3), 143–184 (2003)

30. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Theory of Cryptography Conference – TCC 2012. pp.
169–189 (2012)

31. Möller, B.: Algorithms for multi-exponentiation. In: Selected Areas in Cryptography
– SAC 2001. pp. 165–180. Springer (2001)

32. Möller, B., Rupp, A.: Faster multi-exponentiation through caching: accelerating
(EC) DSA signature verification. In: Security and Cryptography for Networks –
SCN 2008, pp. 39–56. Springer (2008)

33. Oliphant, T.E.: A guide to NumPy, vol. 1. Trelgol Publishing USA (2006)
34. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable

computation. In: IEEE Symposium on Security and Privacy. pp. 238–252 (2013)
35. Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology

4(3), 161–174 (1991)
36. Seo, J.H.: Round-efficient sub-linear zero-knowledge arguments for linear algebra.

In: Public Key Cryptography – PKC 2011. pp. 387–402 (2011)
37. Shoup, V.: NTL: A library for doing number theory (2001), http://www.shoup.

net/ntl/

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

	Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting
	Introduction
	Our Contributions
	Related Work

	Preliminaries
	The Discrete Logarithm Assumption
	Pedersen Commitments
	Zero-knowledge Arguments of Knowledge

	Commitments to Polynomials
	Recursive Argument for Inner Product Evaluation
	Main Idea
	Formal description

	Logarithmic Communication Argument for Arithmetic Circuit Satisfiability
	Square Root Communication Argument
	Breaking the Square Root Barrier
	Formal Description

	Implementation using Python
	Arithmetic Circuits

