
Anonymous Traitor Tracing:
How to Embed Arbitrary Information in a Key

Ryo Nishimaki1?, Daniel Wichs2??, and Mark Zhandry3

1 NTT Secure Platform Laboratories, nishimaki.ryo@lab.ntt.co.jp.
2 Northeastern University, wichs@ccs.neu.edu.

3 MIT/Princeton University, mzhandry@princeton.edu

Abstract. In a traitor tracing scheme, each user is given a different decryption key.
A content distributor can encrypt digital content using a public encryption key and
each user in the system can decrypt it using her decryption key. Even if a coalition
of users combines their decryption keys and constructs some “pirate decoder” that
is capable of decrypting the content, there is a public tracing algorithm that is
guaranteed to recover the identity of at least one of the users in the coalition given
black-box access to such decoder.
In prior solutions, the users are indexed by numbers 1, . . . , N and the tracing
algorithm recovers the index i of a user in a coalition. Such solutions implicitly
require the content distributor to keep a record that associates each index i with
the actual identifying information for the corresponding user (e.g., name, address,
etc.) in order to ensure accountability. In this work, we construct traitor tracing
schemes where all of the identifying information about the user can be embedded
directly into the user’s key and recovered by the tracing algorithm. In particular, the
content distributor does not need to separately store any records about the users of
the system, and honest users can even remain anonymous to the content distributor.
The main technical difficulty comes in designing tracing algorithms that can
handle an exponentially large universe of possible identities, rather than just a
polynomial set of indices i ∈ [N]. We solve this by abstracting out an interesting
algorithmic problem that has surprising connections with seemingly unrelated areas
in cryptography. We also extend our solution to a full “broadcast-trace-and-revoke”
scheme in which the traced users can subsequently be revoked from the system.
Depending on parameters, some of our schemes can be based only on the existence
of public-key encryption while others rely on indistinguishability obfuscation.

1 Introduction

The Traitor-Tracing Problem. Traitor-tracing systems, introduced by Chor, Fiat and Naor
[12], are designed to help content distributors identify the origin of pirate decryption
boxes (such as pirate cable-TV set-top decoders) or pirate decryption software posted on
the Internet.

? This work was done while the author was visiting Northeastern University.
?? Research supported by NSF grants CNS-1347350, CNS-1314722, CNS- 1413964. This work

was done in part while the author was visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography
through NSF grant CNS-1523467.

In the traditional problem description, there is a set of legitimate users with numeric
identities [N] = {1, . . . , N} for some (large) polynomial N . Each user i ∈ [N] is
given a different decryption key ski. A content distributor can encrypt content under
the public key pk of the system and each legitimate user i can decrypt the content with
her decryption key ski. For example this could model a cable-TV network broadcasting
encrypted digital content, where each legitimate customer i is given a set-top decoder
with the corresponding decryption key ski embedded within it.

One of the main worries in this scenario is that a user might make copies of her key
to re-sell or even post in a public forum, therefore allowing illegitimate parties to decrypt
the digital content. While this cannot be prevented, it can be deterred by ensuring that
such “traitors” are held accountable if caught. To evade accountability, a traitor might
modify her secret key before releasing it in the hope that the modified key cannot be
linked to her. More generally, a coalition of several traitors might come together and pool
the knowledge of all of their secret keys to come up with some “pirate decoder” program
capable of decrypting the digital content. Such a program could be made arbitrarily
complex and possibly even obfuscated in the hopes that it will be difficult to link it to any
individual traitor. A traitor-tracing scheme ensures that no such strategy can succeed –
there is an efficient tracing algorithm which is given black-box access to any such pirate
decoder and is guaranteed to output the numeric identity i ∈ [N] of at least one of the
traitors in the coalition that created the program.

Who Keeps Track of User Info? The traditional problem definition for traitor tracing
makes an implicit assumption that there is an external mechanism to keep track of the
users in the system and their identifying information in order to ensure accountability. In
particular, either the content distributor or some third party would need to keep a record
that associates the numeric identities i ∈ [N] of the users with the actual identifying
information (e.g., name, address, etc.). This way, if the tracing algorithm identifies a user
with numeric identity i as a traitor, we can link this to an actual person.

Goal: Embedding Information in Keys. The main goal of our work is to create a traitor
tracing system where all information about each user is embedded directly into their
secret key and there is no need to keep any external record about the honest users of
the system. More concretely, this goal translates to having a traitor tracing scheme
with a flexible, exponential-size universe of identities ID4. A user’s identity id ∈ ID
can then be a string containing all relevant identifying information about the user. The
content distributor has a master secret key msk, and for any user with identity id ∈ ID
the content provider can use msk to create a user secret key skid with this information
embedded inside it. The content provider does not need to keep any records about the
user after the secret key is given out. If a coalition of traitors gets together and constructs
a pirate decoder, the tracing algorithm should recover the entire identity id of a traitor

4 While schemes with exponential identity spaces are normally referred to as “identity-based”,
identity-based traitor tracing already has a defined meaning [1]. In particular, the space of
identities that are traced in an identity-based traitor tracing scheme is still polynomial. We use
the term “flexible” traitor tracing to refer to schemes where the space of identities that can be
traced is exponential.

2

involved in the coalition, which contains all of the information necessary to hold the
traitor accountable.

Moreover, if we have such a traitor tracing scheme with an exponentially large
universe of identities as described above, it is also possible to construct a fully anonymous
traitor tracing system where the content provider never learns who the honest users are.
Instead of a user requesting a secret key for identity id ∈ ID by sending id to the content
provider directly, the user and the content provider run a multiparty computation (MPC)
where the user’s input consists of the string id containing all of her identifying information
(signed by some external identity verification authority), the content provider’s input is
msk, and the computation gives the user skid as an output (provided that the signature
verifies) and the content provider learns nothing. This can even be combined with an
anonymous payment system such as bit-coin to allow users to anonymously pay for digital
content. Surprisingly, this shows that anonymity and traitor tracing are not contradictory
goals; we can guarantee anonymity for honest users who keep their decryption keys
secret while still maintaining the ability to trace the identities of traitors.

Unfortunately, it turns out that prior approaches to the traitor tracing problem cannot
handle large identities and crucially rely on the fact that, in the traditional problem
definition, the set of identities [N] is polynomial in size. We first survey the prior work
on traitor tracing and then present our new results and techniques that allow us to achieve
the above goals.

1.1 Prior Work

Traitor Tracing Overview. Traitor tracing was introduced by Chor, Fiat and Naor [12].
There are many variants of the problem depending on whether the encryption and/or the
tracing algorithm are public key or secret key procedures, whether the tracing algorithm
is black-box, and whether the schemes are “fully collusion resistant” (no bound on the
number of colluding traitors), or whether they are “bounded collusion resistant”. See
e.g., the works of [33,31,19,6,13,37,34,32,38,29,17,11,7,8,9] and references within for a
detailed overview of prior work.

In this work, we will focus on schemes with a public-key encryption and a public-key
and black-box tracing algorithm, and will consider both fully and bounded collusion
resistance. In all prior systems, the set of legitimate users was fixed to [N] = {1, . . . , N}
for some large polynomial N , and the main differences between the prior schemes
depends on how various parameters (public key size, secret key size, ciphertext size)
scale with the number of users N .

Traitor Tracing via Private Broadcast Encryption (PLBE). Boneh, Sahai, and Waters [7]
build the first fully collusion resistant traitor tracing scheme where the ciphertext size is
O(
√
N), private key size is O(1), public key size is O(

√
N) (we ignore factors that are

polynomial in the security parameter but independent of N). The scheme is based on
bilinear groups. This work also presents a general approach for building traitor tracing
schemes, using an intermediate primitive called private linear broadcast encryption
(PLBE). We follow the same approach in this work and therefore we elaborate on it now.

A PLBE scheme can be used to create a ciphertext that can only be decrypted by
users i ∈ [N] with i ≤ T for some threshold value T ∈ {0, . . . , N} specified during

3

encryption. Furthermore, the only way to distinguish between a ciphertext created
with the threshold value T vs. T ′ for some T < T ′ is to have a secret key ski with
i ∈ {T, . . . T ′ − 1} that can decrypt in one case but not the other.

A PLBE scheme can immediately be used as a traitor-tracing scheme. The encryption
algorithm of the tracing scheme creates a ciphertext with the threshold T = N , meaning
that all users can decrypt it correctly. The tracing algorithm gets black-box access to a
pirate decoder and does the following: it tries all thresholds T = 1, . . . , N and tests the
decoder on ciphertext created with threshold T until it finds the first such threshold for
which there is a “big jump” in the decryption success probability between T and T − 1.
It outputs the index T as the identity of the traced traitor. The correctness of the above
approach can be analyzed as follows. We know that the decoder’s success probability on
T = 0 is negligible (since such ciphertexts cannot be decrypted even given all the keys)
and on T = N it is large (by the correctness of the pirate decoder program). Therefore,
there must be some threshold T on which there is a big jump in the success probability,
but by the privacy property of the PLBE, a big jump can only occur if the secret key skT
was used in the construction of the pirate decoder. Note that the run-time of this tracing
algorithm is O(N).

State of the Art Traitor Tracing via Obfuscation. Recently, Garg et al. [21] and Boneh
and Zhandry [9] construct new fully collusion resistant traitor tracing scheme with
essentially optimal parameters where key/ciphertext sizes only depend logarithmically on
N . The schemes are constructed using the same PLBE framework as in [7] and the main
contributions are the construction of a new PLBE scheme with the above parameters.
These constructions both rely on indistinguishability obfuscation. More recently, Garg et
al. [22] construct a PLBE with polylogarithmic parameters based on simple assumptions
on multilinear maps. We note that in all three schemes, the PLBE can be extended to
handle flexible (exponential) identity spaces by setting N = 2n for polynomial n. In this
case, encryption and key generation, as well as ciphertext and secret key sizes, will grow
polynomially in n. However, a flexible PLBE scheme does not directly yield to a flexible
traitor tracing scheme. In particular, the tracing algorithm of [7] cannot be applied in this
setting because it will run in exponential time, namely O(2n).

Broadcast Encryption, Trace and Revoke. We also mention work on a related problem
called broadcast encryption. Similar to traitor tracing, such schemes have a collection of
users [N]. A sender can create a ciphertext that can be decrypted by all of the users of
the system except for specified set of “revoked users” (which may be colluding). See e.g.,
[16,24,26,32,17,18,20,34,39] and references within.

A trace and revoke system is a combination of broadcast encryption and traitor
tracing [34,32]. In other words, once traitors are identified by the tracing algorithm
they can also be revoked from decrypting future ciphertexts. Boneh and Waters [8]
proposed a fully collusion resistant trace and revoke scheme where the private/public
keys and ciphertexts are all of size O(

√
N). It was previously unknown how to obtain

fully collusion resistant trace and revoke schemes with logarithmic parameter sizes.
Separately, though, it is known how to build both broadcast encryption and traitor tracing
with such parameters using obfuscation [41,21,9], and one could reasonably expect that
it is possible to combine the techniques to obtain a broadcast, trace, and revoke system.

4

Watermarking. Lastly, wemention relatedwork onwatermarking cryptographic functions
[35,15,14]. These works show how to embed arbitrary data into the secret key of a
cryptographic function (e.g., a PRF) in such a way that it is impossible to create any
program that evaluates the function (even approximately) but in which the mark is
removed. This is conceptually related to our goal of embedding arbitrary data into the
secret keys of users in a traitor-tracing scheme. Indeed, one could think of constructing
a traitor tracing scheme where we take a standard public-key encryption scheme and
give each user a watermarked version of the decryption key containing the user’s
identity embedded. Unfortunately, this solution does not work with current definitions
of watermarking security, where we assume that each key can only be marked once
with one piece of embedded data. In the traitor tracing scenario, we would want mark
the same key many times with different data for each user. Conversely, solutions to the
traitor tracing problem do not yield watermarking schemes since they only require us to
embed data in carefully selected secret keys chosen by the scheme designer rather than
in arbitrary secret keys chosen by the user.

1.2 Our Results

Our main result is to give new constructions of traitor-tracing schemes that supports
a flexibly large space of identities ID = [2n] where the parameter n is an arbitrary
polynomial corresponding to the bit-length of the string id ∈ ID which should be
sufficiently large encode all relevant identifying information about the user. The user’s
secret key skid contains the identity id embedded within it, so there is no need to keep any
external record of users. The tracing algorithm recovers all of the identifying information
id about a traitor directly from the pirate decoder. We construct such a scheme where the
secret key skid is of length poly(n), which is essentially optimal since it must contain the
data id embedded within it. The first scheme we construct also has ciphertexts of size
poly(n) but we then show how to improve this to ciphertexts of constant size independent
of n (though still dependent on the security parameter). In the latter scheme, the identity
length n need not be specified ahead of time: different users can potentially have different
amounts of identifying information included in their key, and there is no restriction
on the amount of information that can be included. The schemes are secure against an
unbounded number of collusions.

Our schemes are secure assuming the existence of certain types of private broadcast
encryption, which themselves are special cases of functional encryption (FE). Our work
mainly focuses on building traitor tracing from these private broadcast schemes. We then
instantiate the private broadcast schemes using recent constructions of FE, which in turn
are built from indistinguishability obfuscation (iO) and one-way functions (OWF). An
interesting direction for future work is to build private broadcast encryption from milder
assumptions such as LWE.

We also construct schemes which are only secure against collusions of size at most
q, where the ciphertext size is either of length O(n)poly(q) assuming only public-key
encryption, or of only length poly(q) independent of n assuming sub-exponential LWE.5
We also extend the above construction to a full trace and revoke scheme, allowing the

5 The above parameters ignore fixed polynomial factors in the security parameters.

5

content distributor to specify a set of revoked users during encryption. Assuming iO, we
get such a scheme where neither the ciphertexts nor the secret keys grow with the set of
revoked users.

1.3 Our Techniques

Our high level approach follows that of Boneh, Sahai, and Waters [7], using PLBE as an
intermediate primitive to construct traitor tracing. There are two main challenges: the
first is to construct a PLBE scheme that supports an exponentially large identity space
ID = [2n] for some arbitrary polynomial n. The second, more interesting challenge,
and the main focus of this work, is to construct a tracing algorithm which runs in time
polynomial in n rather than N = 2n.

PLBE with Large Identity Space. The work of Boneh and Zhandry [9] already constructs
a PLBE scheme where the key/ciphertext size is polynomial in n. Unfortunately, the
proof of security relies on a reduction that runs in time polynomial in N = 2n which is
exponential in the security parameter. Thus going through their construction we would
need to assume the sub-exponential hardness of iO (and OWFs) to get a secure PLBE. We
instead take a different approach, suggested by [21], and construct PLBE directly from
(indistinguishability based) functional encryption (FE). For technical reasons detailed
below, we actually need an adaptively secure PLBE scheme, and thus an adaptively secure
FE scheme. In the unbounded collusion setting, these can be constructed from iO [40,2]
or from simple assumptions on multilinear maps [22]. Alternatively, we get a PLBE
scheme which is (adaptively) secure against a bounded number of collusions by relying
on bounded-collusion FE which can be constructed from any public-key encryption [25]
or from sub-exponential LWE if we want succinct ciphertexts [23].

A New Tracing Algorithm and the Oracle Jump-Finding Problem. The more interesting
difficulty comes in making the tracing algorithm run in time polynomial in n rather
than N = 2n. We can think of the pirate decoder as an oracle that can be tested on
PLBE ciphertexts created with various thresholds T ∈ {0, . . . , N} and for any such
threshold T it manages to decrypt correctly with probability pT . For simplicity, let us
think of this as an oracle that on input T outputs the probability pT directly (since we
approximate this value by testing the decoder on many ciphertexts). We know that p0 is
close to 0 and that pN is the probability that a pirate decoder decrypts correctly, which
is large – let’s say pN = 1 for simplicity. Moreover, we know that for any T, T ′ with
T < T ′ the values pT and pT ′ are negligibly close unless there is a traitor with identity
i ∈ {T, . . . T ′ − 1}, since encryptions with thresholds T and T ′ are indistinguishable. In
particular this means that for any point T at which there is a “jump” so that |pT − pT−1|
is noticeable, corresponds to a traitor. Since we know that the number of traitors in the
coalition is bounded by some polynomial, denoted by q, we know that there are at most q
jumps in total and that there must be at least one “large jump” with a gap of at least 1/q.
The goal is to find at least one jump. We call this the “oracle jump-finding problem”.

An Algorithm for the Oracle Jump-Finding Problem. The tracing algorithm of [7]
essentially corresponds to a linear search and tests the oracle on every point T ∈ [N]

6

and thus takes at least O(N) steps in the worst case to find a jump. When using flexibly
large identity universes (that is, taking N to be exponential), the tracing algorithm will
therefore run in exponential time. This is true even if the underlying PLBE is efficient for
such identity spaces, including the PLBEs discussed above. Our goal is to design a better
algorithm that takes at most poly(n, q) steps.

It is tempting to simply substitute binary search in place of linear search. We would
first call the oracle on the point T/2 and learn pT/2. Depending on whether the answer
is closer to 0 or 1 we recursively search either the left interval or the right interval. The
good news is in each step the size of the interval decreases by half and therefore there
would be at most n steps. The bad news is that the gap in probabilities between the left
and right end points now also decreases by a half and therefore after i steps we would
only be guaranteed that the interval contains a jump with a gap of 2−i/q which quickly
becomes negligible.

Interestingly, we notice that the same oracle jump-finding problem implicitly appeared
in a completely unrelated context in a work of Boyle, Chung and Pass [10] showing the
equivalence of indistinguishability obfuscation and a special case of differing-inputs
obfuscation. Using the clever approach developed in the context of that work, we show
how to get a poly(n, q) algorithm for the oracle jump finding problem and therefore an
efficient tracing algorithm.

The main idea is to follow the same approach as binary search, but each time that the
probability at the mid-point is noticeably far from both end-points we recurse on both the
left and the right interval. This guarantees that there is always a large jump with a gap of
at least 1/q within the intervals being searched. Furthermore, since the number of jumps
is at most q we can bound the number of recursive steps in which both intervals need to
be searched by q, and therefore guarantee that the algorithm runs in poly(n, q) steps.

Interestingly, due to our tracing algorithm choosing which T to test based on the
results of previous tests, we need our PLBE scheme to be adaptively secure, and hence
also the underlying FE scheme must be adaptively secure. This was not an issue in [7]
for two reasons: (1) their tracing algorithm visits all T ∈ [N], and (2) for polynomial
N statically secure and adaptive secure PLBE are equivalent. Fortunately, as explained
above, we know how to construct PLBE that is adaptively secure against unbounded
collusions from iO or simple multilinear map assumptions. For the bounded collusion
setting, we can obtain adaptively secure PLBE from public key encryption following [25].

We note that in an independent work, Kiayias and Tang [28] give another method
of tracing in large identity spaces; however their analysis applies only to random user
identities, and requires a means to verify that the identity outputted by the tracing
algorithm actually corresponds to a one of the generated decryption keys. Our tracing
algorithm does not have these limitations.

Tracing More General Decoders. In [7], a pirate decoder is considered “useful” if it
decrypts the encryption of a random message with non-negligible probability, and their
tracing algorithm is shown to work for such decoders. However, restricting to decoders
that work for random messages is unsatisfying, as we would like to trace, say, decoders
that work for very particular messages such as cable-TV broadcasts. The analysis of [7]
appears insufficient for this setting. Kiayias andYung [30] consider more general decoders,
but their definition inherently places a lower bound on the min-entropy of the plaintext

7

distribution. In our analysis, we show that even if a decoder can distinguish between two
particular messages (of the adversary’s choice) with non-negligible advantage, then it
can be traced. To our knowledge, ours is the first traitor tracing system that can trace
such general decoders.

Short Ciphertexts. In the above approach we construct traitor-tracing via a PLBE scheme
where the ciphertext is encrypted with respect to some threshold T ∈ {0, . . . , N}. The
ciphertext must encode the entire information about T and is therefore of size at least
n = logN , which corresponds to the bit-length of the user’s identifying information
id. In some cases, if the size of id is truly large (e.g., the identifying information might
contain a JPEG image of the user) we would want the ciphertext size to be much smaller
than n. One trivial option is to first hash the user’s identifying information, and use
our tracing scheme above on the hashes. However, the tracer would then only learn the
hash of the identifying information, and would need to keep track of the information
and hashes to actually accuse a user. This prevents the scheme from being used in the
anonymous setting.

Instead, we show how to have the tracer learn identifying information in its entirety
by generalizing the PLBE approach in a way that lets us divide the user’s identity into
small blocks. Very roughly, we then trace the value contained in each block one at a
time. The ciphertext now only needs to encode the block number that is currently being
traced, and a single threshold for that block. This lets us reduce the ciphertext to size to
only be proportional to logn rather than n. To do so we need to generalize the notion of
PLBE which also leads to a generalization of the oracle-jump-finding problem and the
algorithm that solves it. We note that since we can assume n < 2λ, factors logarithmic in
n can be absorbed into terms involving the security parameter. Thus our ciphertext size
can actually be taken to be independent of the bit length of identities.

We implement our PLBE generalization using FE. As above, we need adaptive
security, which corresponds to an adaptively secure FE scheme. We now also need the FE
to have compact ciphertexts, whose size is independent of the functions being evaluated.
In the unbounded collusion setting, a recent construction of Ananth and Sahai [4] shows
how to build such an FE from iO. Moreover, in their FE scheme, the function size need
not be specified a priori nor known during encryption time, and different secret keys can
correspond to functions of different sizes. In our traitor tracing scheme, this translates to
there being no a priori bound on the length of identities, and different users can have
different amounts of identifying information embedded in their secret keys.

In the bounded collusion setting, we can obtain such an FE from LWE using [23],
though the scheme is only statically secure; we then use complexity leveraging to obtain
an adaptively secure scheme from sub-exponential LWE.

Trace and Revoke. Finally, we extend our traitor tracing scheme to a trace and revoke
system where users can be revoked. It turns out that this problem reduces to the problem
of constructing “revocable functional encryption” where the encryption algorithm can
specify some revoked users which will be unable to decrypt. The ciphertext size is
independent of the size of the revoke list, but we assume that the revoke list is known to
all parties. We construct such a scheme from indistinguishability obfuscation using the

8

technique of somewhere statistically binding (SSB) hashing [27]. However, we omit the
details about the trace and revoke system due to the limited space. See the full version of
this paper [36].

1.4 Outline

In Section 2, we give some definitions and notations that we will use in our work. In
Section 3, we define the oracle jump-finding problem, and show how to efficiently solve
it. In Sections 4 and 5, we use the solution of the jump-finding problem to give our new
traitor tracing schemes.

2 Preliminaries

Throughout this work, we will use the notation [N] to mean the positive integers from 1
to N : [N] = {1, . . . , N}. We will also use the notation [M,N] to denote the integers
formM to N , inclusive. We will use (M,N] as shorthand for [M + 1, N]. We will use
[M,N]R to denote the real numbers betweenM and N , inclusive.

Next, we will define several of the cryptographic primitives we will be discussing
throughout this work. We start with the definition of traitor tracing that we will be
achieving. Then, we will define the primitives we will use to construct traitor tracing. In
all of our definitions, there is an implicit security parameter λ, and “polynomial time”
and “negligible” are with respect to this security parameter.

2.1 Traitor Tracing with Flexible Identities

Here we define traitor tracing. Our definition is similar to that of Boneh, Sahai, and
Waters [7], though ours is at least as strong, and perhaps stronger. In particular, our
definition allows for tracing pirate decoders that can distinguish between encryptions of
any two messages, whereas [7] only allows for tracing pirate decoders that can decrypt
random messages. In Section 4, we discuss why the analysis in [7] appears insufficient
for our more general setting, but nevertheless show that tracing is still possible.

Definition 1. Let ID be some collection of identities, and M a message space. A
flexible traitor tracing scheme forM, ID is a tuple of polynomial time algorithms
(Setup,KeyGen,Enc,Dec,Trace) where:

– Setup() is a randomized procedure with no input (except the security parameter)
that outputs a master secret key msk and a master public key mpk.

– KeyGen(msk, id) takes as input the master secret msk and an identity id ∈ ID, and
outputs a secret key skid for id.

– Enc(mpk,m) takes as input the master public key mpk and a messagem ∈M, and
outputs a ciphertext c.

– Dec(skid, c) takes as input the secret key skid for an identity id and a ciphertext c,
and outputs a messagem.

9

– TraceD(mpk,m0,m1, q, ε) takes as input the master public key mpk, two messages
m0,m1, and parameters q, ε, and has oracle access to a decoder algorithm D. It
produces a (possibly empty) list of identities L.

– Correctness. For any messagem ∈M and identity id ∈ ID, we have that

Pr
[

Dec(skid, c) = m :
(msk,mpk)← Setup(), skid ← KeyGen(msk, id),
c← Enc(mpk,m)

]
= 1

– Semantic security. Informally, we ask that an adversary that does not hold any secret
keys cannot learn the plaintextm. This is formalized by the following experiment
between an adversary A and challenger:
• The challenger runs (msk,mpk)← Setup(), and gives mpk to A.
• A makes a challenge query where it submits two messages m∗0,m∗1. The
challenger chooses a random bit b, and responds with the encryption of m∗b :
c∗ ← Enc(mpk,m∗b).

• A produces a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.
We define the semantic security advantage of A as the absolute difference between
1/2 and the probability the challenger outputs 1. The public key encryption scheme
is semantically secure if, for all PPT adversariesA, the advantage ofA is negligible.

– Traceability. Consider a subset of colluding users that pool their secret keys and
produce a “pirate decoder” that can decrypt ciphertexts. Call a pirate decoder D
“useful” for messagesm0,m1 if D can distinguish encryptions ofm0 fromm1 with
noticeable advantage. Then we require that such a decoder can be traced using
Trace to one of the identities in the collusion. This is formalized using the following
game between an adversary A and challenger, parameterized by a non-negligible
function ε:
• The challenger runs (msk,mpk)← Setup() and gives mpk to A.
• A is allowed tomake arbitrary keygen queries, where it sends an identity id ∈ ID
to the challenger, and the challenger responds with skid ← KeyGen(msk, id).
The challenger also records the identities queries in a list L.

• A then produces a pirate decoderD, two messagesm∗0,m∗1, and a non-negligible
value ε. Let q be the number of keygen queries made (that is, q = |L|). The
challenger computes T ← TraceD(mpk,m∗0,m∗1, q, ε) as the set of accused
users. The challenger says that the adversary “wins” one of the following holds:

∗ T contains any identity outside of L. That is, T \ L 6= ∅ or
∗ Both of the following hold:

· D is ε-useful,meaningPr[D(c) = m∗b : b← {0, 1}, c← Enc(mpk,m∗b)] ≥
1
2 + ε6.

· T does not contain at least one user inside L. That is, T ∩ L = ∅.

6 Checking the “winning” condition requires computing the probabilities a procedure outputs a
particular value, which is in general an inefficient procedure. Thus our challenger as described
is not an efficient challenger. However, it is possible to efficiently estimate these probabilities by
running the procedure many times, and reporting the fraction of the time the particular value
is produced. We could have instead defined our challenger to estimate probabilities instead of
determine them exactly, in which case the challenger would be efficient. The resulting security
definition would be equivalent.

10

The challenger then outputs 1 if the adversary wins, and zero otherwise.
We define the tracing advantage of A as the probability the challenger outputs 1. We
say the public key encryption scheme is traceable if, for all PPT adversaries A and
all non-negligible ε, the advantage of A is negligible.

2.2 Private Broadcast Encryption

In our traitor tracing constructions, it will be convenient for us to use a primitive we call
private broadcast encryption, which is a generalization of the private linear broadcast
encryption of Boneh, Sahai, and Waters [7]. A private broadcast scheme is a broadcast
scheme where the recipient set is hidden. Usually, the collection of possible recipient
subsets is restricted: for example, in private linear broadcast encryption, the possible
recipient sets are simply intervals. It will be useful for us to consider more general
classes of recipient sets, especially for our short-ciphertext traitor tracing construction in
Section 5.

Definition 2. Let ID be the set of identities. Let S be a collection of subsets of ID. Let
M be a message space. A Private Broadcast Encryption (PBE) scheme is a tuple of
algorithms (Setup,KeyGen,Enc,Dec) where:

– Setup() is a randomized procedure with no input (except the security parameter)
that outputs a master secret key msk and a master public key mpk.

– KeyGen(msk, id) takes as input the master secret msk and a user identity id ∈ ID.
It outputs a secret key skid for id.

– Enc(mpk, S,m) takes as input the master public key mpk, a secret set S ∈ S , and a
messagem ∈M. It outputs a ciphertext c.

– Dec(skid, c) takes as input the secret key skid for a user id, and a ciphertext c. It
outputs a messagem ∈M or a special symbol ⊥.

– Correctness. For a secret set S ∈ S, any identity id ∈ S, any identity id′ /∈ S, any
messagem ∈M, we have that

Pr
[

Dec(skid, c) = m :
(msk,mpk)← Setup(), skid ← KeyGen(msk, id),
c← Enc(mpk, S,m)

]
= 1

Pr
[

Dec(skid′ , c) = ⊥ :
(msk,mpk)← Setup(), skid′ ← KeyGen(msk, id′),
c← Enc(mpk, S,m)

]
= 1

In other words, a user id is “allowed” to decrypt if id is in the secret set S. We also
require that if id is not “allowed” (that is, if id /∈ S), then Dec outputs ⊥.

– Message and Set Hiding. Intuitively, we ask that for id that are not explicitly allowed
to decrypt a ciphertext c, that the message is hidden. We also ask that nothing
is learned about the secret set S, except for what can be learned by attempting
decryption with various skid available to the adversary. These two requirements are
formalized by the following experiment between an adversary A and challenger:
• The challenger runs (msk,mpk)← Setup(), and gives mpk to A.

11

• A is allowed tomake arbitrary keygen queries, where it sends an identity id ∈ ID
to the challenger, and the challenger responds with skid ← KeyGen(msk, id).
The challenger also records id in a list L.

• At some point, A makes a single challenge query, where it submits two secret
sets S∗0 , S∗1 ∈ S, and two messages m∗0,m∗1. The challenger flips a random
bit b ∈ {0, 1}, and computes the encryption of m∗b relative to the secret set
S∗b : c∗ ← Enc(mpk, S∗b ,m∗b). Then, the challenger makes the following checks,
which ensure that the adversary cannot trivially determine b from c∗:

∗ Ifm∗0 6= m∗1, then successful decryption of the challenge ciphertext would
allow determining b. Therefore, the challenger requires that none of the
identities the adversary has the secret key for can decrypt the ciphertext. In
other words, for any id ∈ L, id /∈ S∗0 and id /∈ S∗1 . In other words, the sets
L ∩ S∗0 and L ∩ S∗1 must be empty.

∗ If S∗0 6= S∗1 , then successful decryption for S∗b but not for S∗1−b would allow
for determining b (even if m∗0 = m∗1). Therefore, the challenger requires
that all of the identities the adversary has secret keys for can either decrypt
in both cases, or can decrypt in neither. In other words, for any id ∈ L,
id /∈ S∗0∆S∗1 , where ∆ denotes the symmetric difference operator. Notice
that this check is redundant ifm∗0 6= m∗1.

If either check fails, the challenger outputs a random bit and aborts the game.
Otherwise, the challenger sends c∗ to A.

• A is allowed to make additional keygen queries for arbitrary identities id∗,
subject to the constraint that id must satisfy the same checks as above: if
m∗0 6= m∗1, then id /∈ S∗0 and id /∈ S∗1 , and if S∗0 6= S∗1 , then id /∈ S∗0∆S∗1 . If the
adversary tries to query in an id that fails the check, the challenger outputs a
random bit and aborts the game.

• A outputs a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.
We define the advantage of A as the absolute difference between 1/2 and the
probability the challenger outputs 1. We say the private broadcast system is secure if,
for all PPT adversaries A, the advantage of A is negligible.

For a private broadcast scheme, we call the collection S of secret sets the secret class.
We are interested in several metrics for a private broadcast scheme:

– Ciphertext size.Notice that the ciphertext, while hiding the secret set S, information-
theoretically contains enough information to reveal S: given the secret key for every
identity, S can be determined by attempting decryption with every secret key. It
must also contain enough information to entirely reconstruct the messagem. Thus,
we must have |c| ≥ log |S|+ log |M|. We will say the ciphertext size is optimal if
|c| ≤ poly(λ, log |S|) + log |M|.

– Secret key size. Assuming the public and secret classes P,S are expressive enough,
from the secret key skid for identity id, it is possible to reconstruct the entire identity
id by attempting to decrypt ciphertexts meant for various subsets. Therefore, |skid| ≥
log |ID|. We will say the user secret key size is optimal if |skid| ≤ poly(λ, log |ID|).

– Master key size. The master public and secret keys do not necessarily encode any
information, and therefore could be as short as O(λ). We will say the master key
sizes are optimal if |msk|, |mpk| ≤ poly(λ).

12

Notice that in the case where S = {ID}, our notion of private broadcast reduces to
the standard notion of (identity-based) broadcast encryption, and the notions of optimal
ciphertext, user secret key, and master key sizes coincide with the standard notions for
broadcast encryption.

2.3 Functional Encryption

Definition 3. LetM be some message space, Y some other space, and F be a class of
functions f :M→ Y . A Functional Encryption (FE) scheme forM,Y,F is a tuple of
algorithms (Setup,KeyGen,Enc,Dec) where:

– Setup() is a randomized procedure with no input (except the security parameter)
that outputs a master secret key msk and a master public key mpk.

– KeyGen(msk, f) takes as input the master secret msk and a function f ∈ F . It
outputs a secret key skf for f .

– Enc(mpk,m) takes as input the master public key mpk and a messagem ∈M, and
outputs a ciphertext c.

– Dec(skf , c) takes as input the secret key skf for a function f ∈ F and a ciphertext
c, and outputs some y ∈ Y , or ⊥.

– Correctness. For any messagem ∈M and function f ∈ F , we have that

Pr
[

Dec(skf , c) = f(m) :
(msk,mpk)← Setup(), skf ← KeyGen(msk, f),
c← Enc(mpk,m)

]
= 1

– Security. Intuitively, we ask that the adversary, given secret keys f1, . . . , fn, learns
fi(m) for each i, but nothing else about m. This is formalized by the following
experiment between an adversary A and challenger:
• The challenger runs (msk,mpk)← Setup(), and gives mpk to A.
• A is allowed to make arbitrary keygen queries, where it sends a function f ∈ F
to the challenger, and the challenger responds with skf ← KeyGen(msk, f).
The challenger also records f in a list L.

• At some point,A makes a single challenge query, where it submits two messages
m∗0,m

∗
1. The challenger checks that f(m∗0) = f(m∗1) for all f ∈ L. If the

check fails (that is, there is some f ∈ L such that f(m∗0) 6= f(m∗1)), then the
challenger outputs a random bit and aborts. Otherwise, the challenger flips a
random bit b ∈ {0, 1}, and responds with the ciphertext c∗ ← Enc(mpk,m∗b).

• A is allowed to make additional keygen queries for functions f ∈ F , subject to
the constraint that f(m∗0) = f(m∗1).

• A outputs a guess b′ for b. The challenger outputs 1 if b′ = b and 0 otherwise.
We define the advantage of A as the absolute difference between 1/2 and the
probability the challenger outputs 1. We say the functional encryption scheme is
secure if, for all PPT adversaries A, the advantage of A is negligible.

For a functional encryption scheme, we will be interested in the size of the various
parameters (in addition to the security of the system itself):

13

– Ciphertext size. At a minimum, the ciphertext must information-theoretically
encode the entire message (assuming the class F is expressive enough). Therefore
|c| ≥ log |M|. We will consider a scheme to have optimal ciphertext size if
|c| ≤ poly(λ, log |M|)7.

– Secret key size. The secret key must information-theoretically encode the entire
function f , so |skf | ≥ log |F|. However, because we are interested in efficient
algorithms, we cannot necessarily represent functions f using log |F| bits, and may
therefore need larger keys. Generally, f will be a circuit of a certain size, say s. We
will say a scheme has optimal secret key size if |skf | ≤ poly(λ, s).

– Master key size. The master public and secret keys do not necessarily encode any
information, and therefore could be as short as O(λ). We will say the master key
sizes are optimal if |msk|, |mpk| ≤ poly(λ).

Construction. A construction of FE that has above properties is proposed by Ananth and
Sahai [4]. The construction is based on indistinguishability obfuscation for circuits and
one-way function.

3 An Oracle Problem

Here we define the oracle jump finding problem, which abstracts the algorithmic problem
underlying both the iO/diO (differing-inputs obfuscation) conversion of [10] as well as
the tracing algorithm in this work.

Definition 4. The (N, q, δ, ε) jump finding problem is the following. An adversary
chooses a set C ⊆ [1, N] of q unknown points. Then, the adversary provides an oracle
P : [0, N]→ [0, 1]R such that:
– |P (N)− P (0)| > ε. That is, over the entire domain, P varies significantly.
– For any x, y ∈ [0, N], x < y in interval (x, y] that does not contain any points in C
(that is, (x, y] ∩ C = ∅), it must be |P (x)− P (y)| < δ. That is, outside the points
in C, P varies very little.

Our goal is to interact with the oracle P and output some element in C.

A pictorial representation of the jump finding problem is given in Figure 1.
Notice that if ε < qδ, it is possible to have all adjacent values P (x− 1), P (x) be at

less than δ apart, even for x ∈ C. Thus it becomes information-theoretically impossible
to determine an x ∈ C. In contrast, for ε ≥ qδ, if we query the oracle on all points there
must exist some point x such that |P (x)− P (x− 1)| > δ, and this point must therefore
belong to C. Therefore, this problem is inefficiently solvable ε ≥ qδ. The following
shows that for ε somewhat larger that qδ, the problem can even be solved efficiently:

Theorem 1. There is a deterministic algorithm PTraceP (N, q, δ) that runs in time
t = poly(logN, q) (and in particular makes at most t queries to P) that will output at
least one element in C, provided ε ≥ δ(2 + (dlogNe− 1)q). Furthermore, the algorithm
never outputs an element outside C, regardless of the relationship between ε and δ.
7 This property has been referred to as “compactness” [3,5].

14

0" N"

δ"

ε"

Fig. 1: Example of an oracle P when C contains 4 points. The purple curve represents
the outputs of the oracle P on inputs in the interval [0, N]. The red hatch marks on the
number line indicate the positions of the elements in C. The horizontal dashed lines
show that, between the points in C, P is never changes more than δ. At the points in C,
P can make arbitrary jumps in either direction.

Proof. We assume that P (N)− P (0) > ε. The general case can be solved by running
our algorithm once, and then running it a second time with the oracle P ′(x) = 1−P (x),
and outputting the union of the elements produced. We will also assume N = 2n is a
power of 2, the generalization to arbitrary N being straightforward.

The starting point is the observation that if C contains only a single element x,
then this problem is easily solved using binary search. Indeed, we can query P on
0, N/2, N . If x ∈ (0, N/2], then there are no points in C that are in (N/2, N], and
therefore P (N)− P (N/2) < δ. This implies P (N/2)− P (0) > ε− δ > δ. Similarly,
if x ∈ (N/2, N], then P (N/2)− P (0) < δ < ε− δ < P (N)− P (N/2). Therefore, it
is easy to determine which half of (0, N] x lies in. Moreover, on the half that x lies in, P
still varies by ε′ = ε− δ. Therefore, we can recursively search for x on that half. Each
time, we split the interval in which x lies in half, and decrease the total variation on that
interval by only an additive δ. Since we perform at most logN steps in this binary search,
the total variation will decrease by at most δ logN , and our choice of ε guarantees that
the variation stays greater than δ. Therefore, we can proceed all the way down until we’ve
isolated the point x, which we then output.

The problem arises when C contains more than just a single point. In this case, there
may be points in both halves of the interval. If we recurse on both halves, the resulting
algorithm will run in time that grows with N as opposed to logN . The other option is to
pick a single half-interval arbitrarily, and recurse only on that half. However, if there are
points in C among both half-intervals, the variation in each half-interval may decrease
by a factor of two. Recursing in this way will quickly cut the total variation down to
below the threshold δ, at which point we will not be able to tell which intervals have
points in C and which do not. Therefore, we need to be careful in how we choose which
intervals to recurse on.

First we define a recursive algorithmPTraceP0 (I, q, δ)which takes as input an interval
I = (a, b], as well as q, δ. For any interval I = (a, b], let |I| = b − a be the number

15

of points in I and let qI be the number of points of C in I: qI = |I ∩ C|. Define
∆I = P (b)− P (a). PTraceP0 (I, q, δ) works as follows:
– Let I = (a, b]. Query P on a, b to obtain P (a), P (b). Compute∆I = P (b)− P (a)
– If ∆I ≤ δ, abort and output the empty list T = {}
– Otherwise, if |I| = 1, output T = {b}
– Otherwise, partition I into two equal disjoint intervals IL, IR so that IL ∩ IR = ∅,
IL ∪ IR = I , and |IL|, |IR| = |I|/2. Run TL = PTraceP0 (IL, q, δ) and TR =
PTraceP0 (IR, q, δ). Output T = TL ∪ TR.
We then definePTrace to runPTrace0 on the entire domain (0, N]:PTraceP (N, q, δ) =

PTraceP0 ((0, N], q, δ). We now make several claims about PTrace0. The first follows
trivially from the definition of PTrace0:

Claim. Any element outputted by PTrace0 on interval I must be in C ∩ I . In particular,
any element outputted by PTrace is inC. Moreover, we have that any element s outputted
must have P (s)− P (s− 1) > δ

Claim. The running time of PTrace is a polynomial in q and in n = logN .

Proof. The running time ofPTrace is dominated by the number of calls made toPTrace0.
We observe that the intervals I on which PTrace0 is potentially called form a binary
tree: the root is the entire interval (0, N], the leaves are the singleton intervals (x− 1, x],
and each non-leaf node corresponding to interval I has two children corresponding to
intervals IL and IR that are the left and right halves of I . This tree has 1 + logN levels,
where the intervals in level i have size 2i. Based on the definition of PTrace0, PTrace0 is
only called on an interval I if I’s parent contains at least one point in C, or equivalently
that I or its sibling contain at least one point in C. Since there are only q points in C,
PTrace is called on at most 2q intervals in each level. Thus the total number of calls, and
hence the overall running time, is O(q logN).

Claim. Define α(I) ≡ δ(log |I|+ (n− 1)qI − (n− 2)) where n = logN . Any call to
PTrace0 with qI ≥ 1 and ∆I > α(I) will output some element.

Proof. If |I| = 1 and qI = 1, then α(I) = δ((n− 1)− (n− 2)) = δ. We already know
that if∆I > δ = α(I), PTrace will output an element. Therefore, the claim holds in the
case where |I| = 1.

Now assume the claim holds if |I| ≤ r. We prove the case |I| = r+1. Assume qI ≥ 1,
and running PTrace0 on I does not give any elements in C. Then running PTrace0 on
IL and IR does not give any elements. For now, suppose qIL

and qIR
both positive.

By induction this means that∆IL
≤ α(IL) = δ(log |IL|+ (n− 1)qIL

− (n− 2)) and
∆IR

≤ α(IR) = δ(log |IR|+ (n− 1)qIR
− (n− 2)). Recall that log |IR| = log |IL| =

log |I|−1. Together this means that∆I ≤ α(IL)+α(IR) ≤ δ(log |I|+(n−1)qI−(n−
2)− (n− log |I|)) = α(I)− (n− log |I|). Since log |I| ≤ n, we have that∆I ≤ α(I).

Now suppose qIL
= 0, which implies qIR

= qI > 0. The case qIR
= 0 is handled

similarly. Then ∆IL
≤ δ, and by induction ∆IR

≤ α(IR) = δ(log |I| + (n − 1)qI −
(n − 1)). Thus ∆I ≤ δ(log |I| + (n − 1)qI − (n − 1) + 1) = α(I), as desired. This
completes the proof of the claim. ut

16

Notice that α((0, N]) = δ(2 + (n − 1)q) ≤ ε. Also notice that by definition
∆(0,N] > ε. Therefore, the initial call to PTrace0 by PTrace outputs some element, and
that element is necessarily in C. ut

Now we define a related oracle problem, that takes the jump finding problem above,
hides the oracle P inside a noisy oracle Q, and only provides us with the noisy oracle Q.

Definition 5. The (N, q, δ, ε) noisy jump finding problem is as follows. An adversary
chooses a set C ⊆ [1, N] of q unknown points. The adversary then builds an oracle
P : [0, N]→ [0, 1]R as above, but does not provide it directly. As before, P must satisfy:
– |P (N)− P (0)| > ε
– For any x, y ∈ [0, N], x < y in interval (x, y] that does not contain any points in C
(that is, (x, y] ∩ C = ∅), it must be |P (x)− P (y)| < δ.

Instead of interacting with P , we interact with a randomized oracle Q : [0, N]→ {0, 1}
defined as follows: Q(x) chooses and outputs a random bit that is 1 with probability
P (x), and 0 otherwise. A fresh sample is chosen for repeated calls to Q(x), and is
independent of all other samples outputted by Q. Our goal is to interact with the oracle
Q and output some element in C.

Theorem 2. There is a probabilistic algorithm QTraceQ(N, q, δ, λ) that runs in time
t = poly(logN, q, 1/δ, λ) (and in particular makes at most t queries to O) that
will output at least one element in C with probability 1 − negl(λ), provided ε >
δ(5 + 2(dlogNe − 1)q). Furthermore, the algorithm never outputs an element outside
C, regardless of the relationship between ε and δ.

The idea is to, given Q, approximate the underlying oracle P , and run PTrace on
the approximated oracle. Similar to the setting above, QTrace works even for “cheating”
oracles P , as long as |P (x)−P (y)| < δ for all queried pairs x, y such that (x, y] contains
no points in C. We still need Q to be honestly constructed given P .

Proof. Our basic idea is to use O to simulate an approximation P̂ to the oracle P , and
then run PTrace using the oracle P̂ .

QTraceQ(N, q, δ, ε, λ) works as follows. It simulates PTrace(N, q, δ). Whenever
PTrace queries P on input x, QTrace does the following:

– For i = 1, . . . , O(λ/δ2), sample zi ← O(x)
– Output p̂x as the mean of the zi.

Then QTrace outputs the output of PTrace.
As PTrace makes O(q logN) oracle calls to P , QTrace will make O(λq logN/δ2)

oracle calls. Moreover, the running time is bounded by this quantity as well. Therefore
QTrace has the desired running time.

With probability at least 1 − 2−λ, we have that |px − p̂x| < δ/2 for each x that
are queried. This means that, with overwhelming probability, for all intervals (x, y]
that do not contain any elements of x, we have that |py − px| < δ, so |p̂y − p̂x| < 2δ
with overwhelming probability. Moreover, |pN − p0| > ε, so |p̂N − p̂0| > ε− δ. Thus

17

with overwhelming probability the oracle P̂ seen by PTrace is an instance of the
(N, q, δ′ = 2δ, ε′ = ε− δ) noiseless jump finding problem. Notice that

ε′ = ε− δ > δ(5 + 2(n− 1)q)− δ = (2δ)(2 + (n− 1)q) = δ′(2 + (n− 1)q)

Therefore, P̂ satisfies the conditions of Theorem 1, and PTrace outputs at least one
element in C. QTrace outputs the same element, completing the proof.

Remark 1. We note that PTraceP and QTraceQ work even for “cheating” P that do not
satisfy |P (x)−P (y)| < δ for all (x, y] which do not intersect C, as long as the property
holds for all pairs x, y that where queried by PTrace or QTraceQ. This will be crucial
for traitor tracing.

3.1 The Generalized Jump Finding Problem

Here we define a more general version of the jump finding problem that will be useful
for obtaining short-ciphertext traitor tracing. In this version, the domain of the oracle
P is an r × 2N grid that is short but wide (that is, r � N). The elements in C
correspond to non-crossing curves between grid points from the top of the grid to
the bottom, which divide the grid into |C| + 1 contiguous regions. The probabilities
outputted by P are restricted to vary negligibly across each continuous region, but are
allowed to vary arbitrary between different regions. The goal is to recover the complete
description of some curve in C. To help make the problem tractable, we require that
each curve is confined to oscillate about an odd column of the grid. Such curves can be
represented by an integer s ∈ [N] giving the position 2s− 1 of the column, and a bit
string b = (b1, . . . , br) ∈ {0, 1}r specifying which side of the column the curve is on at
each row. A pictorial representation of the generalized jump finding problem is given in
Figure 2, and a precise definition is given below.

Definition 6. The (N, r, q, δ, ε) generalized jump finding problem is the following. The
adversary chooses a set C of q unknown tuples (s, b1, . . . , br) ∈ [N] × {0, 1}r such
that the s are distinct. Each tuple (s, b1, . . . , br) describes a curve between grid points
from the top to bottom of the grid [1, r]× [0, 2N], which oscillates about the column at
position 2s− 1, with b = (b1, . . . , br) specifying which side of the column the curve is
on at each row. These curves divide the grid into |C|+ 1 contiguous regions. For each
pair (i, x) ∈ [1, r]× [0, 2N] the adversary chooses a probability pi,x ∈ [0, 1]R such that
pi,x varies “minimally” within each contiguous region. We also require that overall from
left to right, there is “significant” variation of the pi,x. Formally, this means:
– For any pair of pairs of the form (i, 2x), (j, 2x) ∈ [1, r]×[0, 2N], |pi,2x−pj,2x| < δ.

In other words, since curves in C are restricted to oscillate around odd columns, no
curve crosses between points on the same even column, so each even column lies
entirely in a single contiguous region. We therefore require that the probabilities
associated with any two points on the same even column are close.

– Let Ci be the set of values 2s− bi for tuples in C. Ci is then the set of grid points
in the ith row that are immediately to the right of curves in C. For any two pairs
(i, x), (i, y) ∈ [1, r]× [0, 2N] in the same row such that the interval (x, y] does not

18

contain any points in Ci then |pi,x − pi,y| < δ. In other words, if no curves cross
between points in the same row, those points must be in the same contiguous region
and therefore have close probabilities.

– We also make the requirement that the probabilities in the 0th column are identical,
and the probabilities in the 2N th column are identical. That is, pi,0 = pi′,0 for all
i, i′ ∈ [r] and pi,2N = pi′,2N for all i, i′ ∈ [r]. Define p0 = pi,0 and p2N = pi,2N .

– Finally, |p2N − p0| > ε. That is, the 0th and 2N th columns have very different
probabilities.

We are now presented with one of two oracles, depending on the version of the problem:
– In the noiseless version, we are given an oracle for the pi,x: we are given oracle
access to the function P : [1, r]× [0, 2N]→ [0, 1]R such that P (i, x) = pi,x.

– In the noisy version, we are given a randomized oracleQ with domain [1, r]× [0, 2N]
that, on input (i, x), outputs 1 with probability pi,x. Repeated calls toQ on the same
x yield a fresh bit sampled independently.

Our goal is to output some element in C.

0" 2N"

1"

r"

Fig. 2: Example probabilities pi,x whenC contains 4 items, r = 7, andN = 15. The dots
represent the various probabilities pi,x, where rows are indexed by i ∈ [r] and columns
are indexed by x ∈ [0, 2N]. The shade of the dot at position (i, x) indicates the value of
pi,x, with darker shade indicating higher pi,x. The elements in C describe curves from
the top of the grid to the bottom, which are indicated in red in the figure. Notice (1) that
the curves in C oscillate around odd columns of dots, and (2) that they never intersect,
and (3) that the values of the pi,x only vary minimally between the curves in C, and can
only have large changes when crossing the curves.

Theorem 3. There are algorithms PTrace′P (N, r, q, δ) and QTrace′Q(N, r, q, δ, λ) for
the noiseless and noisy versions of the (N, r, q, δ, ε) generalized jump finding problem that
run in time poly(logN, r, q, 1/δ) and poly(logN, r, q, 1/δ, λ), respectively, and output
an element in C with overwhelming probability, provided ε > δ(4 + 2(dlogNe − 1)q)
(for the noiseless case), or ε > δ(9 + 4(dlogNe − 1)q) (for the noisy case).

19

This theorem is proved analogously to Theorems 1 and 2, and appears in below. Again,
PTrace′,QTrace′ work even if the oracle P is “cheating”, as long as the requirements
on P hold for all points queried by PTrace′ or QTrace′.

Proof. We prove the noiseless version, extending to the noisy version is a simple
extension of Theorem 2. PTrace′P (N, r, q, δ) works as follows:

– First, we determine some of the s for elements in C. Let P ′ : [0, N] → [0, 1]R
where P ′(x) = P (1, 2x). Notice that |P ′(N)−P ′(0)| = |p2N −p0| > ε. Moreover,
for intervals (x, y] that do not contain any of the s, |P ′(y) − P ′(x)| < δ ≤ 2δ.
Therefore, P ′ is an instance of the (N, q, 2δ, ε) problem for ε > 2δ(2 + (n− 1)q).
Therefore, we run PTraceP

′
(N, q, δ′) to obtain a list T of s values, with the property

that |P (1, 2x)− P (1, 2x− 2)| = |P ′(s)− P ′(s− 1)| ≥ 2δ for each s ∈ T .
– For each s ∈ T , and for each i ∈ [r], let bs,i = 1 if |P (i, 2s− 2)− P (i, 2s− 1)| >
|P (i, 2s − 1) − P (i, 2s)|, and bs,i = 0 otherwise. Let (s, b1, . . . , br) ∈ C be
the tuple corresponding to s. Then the set Ci contains 2s − bi, but does not
contain 2s − 1 + bi, since there is no collision between the s values. Therefore,
|P (2s−1+bi)−P (2s−2+bi)| < δ, whichmeans that |P (2s−bi)−P (2s−1−bi)| >
δ. Therefore bs,i = bi

– Output the tuples (s, bs,1, . . . , bs,r).

By the analysis above, since PTrace never outputs a value outside of C, PTrace′
will never output a tuple corresponding to an identity outside of C. Moreover, if
ε > δ(4 + 2(n− 1)q), then PTrace′ will output at least one tuple in C. Finally, PTrace′
runs in time only slightly worse than PTrace, and is therefore still polynomial time.

4 Tracing with Flexible Identities

Let (Setup,KeyGen,Enc,Dec) be a secure private linear broadcast scheme for identity
space ID = [2n]. We now show that such a private broadcast scheme is sufficient for
flexible traitor tracing. The Setup,KeyGen,Enc, and Dec algorithms are as follows:
– Setup,KeyGen are inherited from the private broadcast scheme.
– To encrypt a messagem, run Enc(mpk, S = ID,m). Call this algorithm EncTT .
– To decrypt a ciphertext c, run Dec(skid, c). Call this algorithm DecTT

Theorem 4. Let (Setup,KeyGen,Enc,Dec) be a secure private broadcast scheme for
identity space [2n] and private class S = {[u]}u∈[0,2n]. Then there is a polynomial time
algorithm Trace such that (Setup,KeyGen,EncTT ,DecTT ,Trace) as defined above is
a flexible traitor tracing algorithm.

Proof. Boneh, Sahai, and Waters [7] prove this theorem for the case of logarithmic n
and for the weaker notion of tracing where the pirate decoder is required to decrypt
a random message, as opposed to distinguish between two specific messages of the
adversary’s choice. Their tracing algorithm gets black-box access to a pirate decoder and
does the following: it runs the decoder on encryptions to all sets [u] for u = 0, . . . , 2n
and determines the success probability of the decoder for each u. It outputs an index

20

u such that there is a “large” gap between the probabilities for [u − 1] and [u] as the
identity of the traced traitor. In the analysis, [7] shows that, provided the adversary does
not control the identity u, the pirate succeeds with similar probabilities for [u− 1] and
[u]. To prove this, they run the adversary, answering its secret key queries by making
secret key queries to the PLBE challenger. When the adversary outputs a pirate decoder
D, they make a PLBE challenge on a random messagem and sets [u] and [u− 1]. Then
they run the pirate decoder on the resulting ciphertext, and test whether it decrypts
successfully: if yes, then they guess that the ciphertext was encrypted to [u], and guess
[u − 1] otherwise. The advantage of this PLBE adversary is exactly the difference in
probabilities for decrypting [u− 1] and [u]. The security of the PLBE scheme shows that
this difference must be negligible.

Now, a useful pirate decoder will succeed with high probability on [2n], and with
negligible probability on [0], so there must be some “gap” in probabilities. The above
analysis shows that (1) the tracer will find a gap, and (2) that the gap must occur at an
identity under the adversary’s control.

There are two problems with generalizing to our setting:

– The running time of the tracing algorithm in [7] grows with 2n as opposed to n,
resulting in an exponential-time tracing algorithmwhen using flexibly-large identities.
This is because their tracing algorithm checks the pirate decoder an all identities. We
therefore need a tracing algorithm that tests the decoder on a polynomial number of
identities. To accomplish this, show that tracing amounts to solving the jump-finding
problem in Section 3, and we can therefore use our efficient algorithm for the
jump-finding problem to trace.

– Since we only ask that the pirate decoder can distinguish two messages, we need to
reason about the decoder’s “advantage” (decryption probability minus 1/2) instead
of its decryption probability. In the analysis above, since probabilities are always
positive, any “useful” decoder will contribute positively to the PLBE advantage,
whereas a “useless” decoder will not detract. However, this crucially relies on the
fact that probabilities are positive. In our setting, the advantage is signed and can be
both positive and negative, and the contribution of decoders to the PLBE adversary’s
advantage can cancel out if they have different sign. Thus there is no guarantee
that the obtained PLBE adversary has any advantage. To get around this issue, we
essentially have our reduction estimate the signed advantage of the pirate decoder,
and reject all decoders with negative advantage. The result is that the advantage of
all non-rejected decoders is non-negative, and so all decoders contribute positively
to the PLBE adversary’s advantage.

We now give our proof. Let A be a potential adversary, let C be the set of colluding
parties for which A obtained secret keys, and q = |C|. A produces a pirate decoder D
and messagesm0,m1 such that D can distinguish encryptions ofm0 from encryptions
ofm1. Define the quantities

pid = Pr[D(c) = b : b← {0, 1}, c← Enc(mpk, id,mb)]

for id ∈ S , where Enc is the PLBE encryption algorithm. We first will prove two lemmas:

21

Lemma 1. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible value
δ. Suppose an interval (idL, idR] is chosen adversarially after seeing the set C, the
adversary’s secret keys, the pirate decoder D, and even the internal state of A, and
suppose thatC ∩ (idL, idR] = ∅ (that is, there are no colluding users in (idL, idR]). Then,
except with negligible probability, |pidR

− pidL
| < δ.

Proof. We will prove that pidR
− pidL

< δ with overwhelming probability, as prov-
ing pidL

− pidR
< δ is almost identical. Suppose towards contradiction that, with

non-negligible probability ε, pidR
− pidL

≥ δ. We then describe an adversary for
(Setup,KeyGen,Enc,Dec) that works as follows:
– Run A on input mpk. Whenever A makes a keygen query on identity id, make the

same keygen query. A outputs a pirate decoder D.
– Compute estimates ˆpidR

, ˆpidL
for the probabilities pidL

and pidR
, respectively. To

compute p̂id, do the following. TakeO(λ/δ2) samples ofD(c)⊕ b where b← {0, 1}
and c← Enc(mpk, id,mb), and then output the fraction of those samples that result
in 0. Notice that with probability 1− 2−λ, |p̂id − pid| ≤ δ/4.

– If ˆpidR
− ˆpidL

< 1
2δ, output a random bit and abort. Notice that, with overwhelming

probability,
∣∣(ˆpidR

− ˆpidL
)− (pidR

− pidL
)
∣∣ < δ/2. Therefore, with overwhelming

probability, if we do not abort, pidR
− pidL

> 0. Moreover, if pidR
− pidL

> δ, then
ˆpidR
− ˆpidL

≥ 1
2δ holds and we do not abort with overwhelming probability.

– Now choose a random bit b, and make a challenge query on S∗0 = [idL], S∗1 = [idR],
and messagesm∗0 = m∗1 = mb.

– Upon receiving the challenge ciphertext c∗, compute b′ = D(c∗). Output 1 if b′ = b
and 0 otherwise.
Conditioned on no aborts, in the case the challenge ciphertext is encrypted to idL

(resp. idR), our adversary will output 1 with probability pidL
(resp. pidR

), so our adversary
will “win” with probability 1

2 + (pidR
− pidL

)/2 in this case. Otherwise, during an abort,
our adversary wins with probability 1/2. Moreover, with overwhelming probability,
if we do not abort pidR

− pidL
> 0, and with probability at least ε − negl, we have

pidR
−pidL

> δ/2. Therefore, a simple computation shows that the adversary “wins” with
probability at least 1

2 + (ε− negl)(δ/4− negl), which gives a non-negligible advantage.

Lemma 2. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible value δ.
Then, except with negligible probability, |p0 − 1

2 | < δ.
Proof. The proof is similar to the proof of Lemma 1. We will prove that p0 − 1

2 < δ
with overwhelming probability, the case p0 − 1

2 > −δ is almost identical. Suppose
towards contradiction that, with non-negligible probability ε, p0 − 1

2 ≥ δ. An adversary
for (Setup,KeyGen,Enc,Dec) works as follows:
– Run A on input mpk. Whenever A makes a keygen query on identity id, make the
same keygen query. A outputs a pirate decoder D.

– Compute estimate p̂0 for p0 using the algorithm from Lemma 1, so that except with
probability 2−λ, |p̂0 − p0| < δ/2.

– If p̂0 − 1
2 < 1

2δ, output a random bit and abort. Notice that, with overwhelming
probability,

∣∣(p̂0− 1
2)− (p0− 1

2)
∣∣ < δ/2. Therefore, with overwhelming probability,

if we do not abort, p0 − 1
2 > 0. Moreover, if p0 − 1

2 > δ, with overwhelming
probability we do not abort.

22

– Now make a challenge query on S∗0 = S∗1 = [0] = {}, and messages m∗0 =
m0,m

∗
1 = m1.

– Upon receiving the challenge ciphertext c∗, compute b = D(c∗). Output b
Conditioned on no aborts, our adversary will “win” with probability p0 in this case.

Otherwise, during an abort, our adversary wins with probability 1/2. Moreover, with
overwhelming probability, if we abort p0 − 1

2 > 0, and with probability at least ε− negl,
we have p0 − 1

2 > δ/2. Therefore, a simple computation shows that the adversary has
non-negligible advantage (ε− negl)(δ/2− negl).

Now we define our tracing algorithm TraceD(mpk,m0,m1, q, ε). Trace sets δ =
ε/2(5 + 4(n− 2)q), and then runs QTraceQ(2n, q, δ, λ) where QTrace is the algorithm
from Theorem 2. Whenever QTrace makes a query to Q on identity id, Trace chooses a
random bit b, computes the encryption c← Enc(mpk, id,mb) ofmb to the set [id], runs
b′ ← D(c), and responds with 1 if any only if b = b′. Define pid to be the probability that
Q(id) outputs 1. We now would like to show thatQ is an instance of the (N, q, δ, ε) noisy
jump finding problem, where the set of jumps is the set C. For this it suffices to show that
P (id) = pid is an instance of the (N, q, δ, ε) noiseless jump finding problem. By Lemma 2,
we have that with overwhelming probability useful D have |p2n − p0| ≥ |ε− δ| > ε/2.
Moreover, we have that (ε/2) = δ(5 + 4(n− 2)q).

Now we would hope that for any (idL, idR] that do not contain one of the adversary’s
points, |pidR

− pidL
| < δ. This would seem to follow from Lemma 1. However, we

only have this property for idL, idR that can be efficiently computed. Therefore, P (id)
is potentially a cheating oracle. However, since our tracing algorithm is efficient, any
query it makes can be efficiently computed, and therefore |pidR

− pidL
| < δ holds (with

overwhelming probability) for all queried points such that (idL, idR] does not contain
any of the identities in C. Therefore, following Remark 1, we can still invoke Theorem 2,
which shows that the following hold:
– QTrace, and hence Trace, runs in polynomial time.
– QTrace, and hence Trace, will with overwhelming probability not output an identity
outside S.

– If D is ε-useful, then QTrace, and hence Trace, will output some element in S
(w.h.p.).

Construction. As observed by Garg et al. [21], FE immediately gives a PLBE scheme.
Let F be the set of functions fid : S ×M→ (M∪{⊥}) where fid(S,m) outputsm if
m ∈ S and⊥ ifm /∈ S. Let (SetupFE ,KeyGenFE ,EncFE ,DecFE) be a FE scheme for
this class of functions. The plaintext space S ×M has size 2λ × |M|, and the function
space admits circuits of size O(λ). We then immediately obtain a PLBE scheme: to
encrypt a message to a set S, simply encrypt the pair (S,m). The secret key for identity
id is the secret key for function fid. We use an adaptively secure scheme [21,2,40].

Parameter Sizes. In the above conversion, the PLBE scheme inherits the parameter sizes
of the functional encryption scheme. Using functional encryption for general circuits, the
secret size is poly(n) and the ciphertext size will similarly grow as poly(n, |m|). We can
make the ciphertext size |m|+ poly(n) by turning the PLBE into a key encapsulation

23

protocol where we use the PLBE to encrypt the key for a symmetric cipher, and then
encrypt m using the symmetric cipher. We note that it is inherent that the secret keys
and ciphertexts of a PLBE scheme grow with the identity bit length n, as both terms
must encode a complete identity. Therefore we obtain a PLBE scheme with essentially
optimal parameters:

Corollary 1. Assuming the existence of iO and OWF, then there exists an adaptively
secure traitor tracing scheme whose master key is size is O(1), secret key size is poly(n),
and ciphertext size is |m|+ poly(n).

Note, however, that the obtained traitor tracing scheme is not optimal, as there is no
reason ciphertexts in a traitor tracing scheme need to grow with the identity bit-length.
The large ciphertexts are inherent to the PLBE approach to traitor tracing, so obtaining
smaller ciphertexts necessarily requires a different strategy. In Section 5, we give an
alternate route to obtaining traitor tracing that does not suffer this limitation, and we are
therefore able to obtain an optimal traitor tracing system.

On Bounded Collusions. If we relax the security to bounded-collusion security, then the
assumption can be relaxed to PKE using the q-bounded collusion FE scheme of [25].

Corollary 2. Assume the existence of secure PKE, then there exists a q-bounded
collusion-resistant adaptively secure traitor tracing scheme whose master key and secret
key sizes are O(n)poly(q) and ciphertext size is |m|+O(n)poly(q).

5 Flexible Traitor Tracing with Short Ciphertexts

We now discuss how to achieve traitor tracing with small ciphertexts that do not grow
with the identity size. As noted above, the approach using private linear broadcast is
insufficient due to having ciphertexts that inherently grow with the identity bit-length.
We note that for traitor tracing, secret keys must encode the identities anyway, so they
will always be as long as the identities. Therefore the focus here is just on obtaining short
ciphertexts. To that end, we introduce a generalization of private linear broadcast that
does not suffer from the limitations of the private linear broadcast approach; in particular,
the information contained in the ciphertext is much shorter than the identities.

Let ID0 = [2t+1] be the set of identity “blocks”, and the total identity space
ID = (ID0)n be the set of n-block tuples. Let (Setup,KeyGen,Enc,Dec) be a secure
private broadcast scheme for ID, and the secret class S defined as follows: each set
Si,u ∈ S is labeled by an index i ∈ [n] and “identity block” u ∈ ID0 ∪ {0}. Si,u is the
set of tuples id = (id1, . . . , idn) where idi ≤ u. We call such a private broadcast scheme
a private block linear broadcast encryption (PBLBE) scheme.

Ideally,wewould like to simply add a tracing algorithmon top of (Setup,KeyGen,Enc,Dec)
as we did in the previous section. The tracing algorithm would run the tracing algorithm
from Section 4 on each identity block. For each i ∈ [n], this gives a list of, say, Ti identity
blocks idj,i ∈ ID0 for j ∈ [Ti], where each of the idj,i is the ith block of some identity
owned by the adversary. Repeating this for every i gives a collection of identity blocks
for every block number. However, it is not clear how to use these blocks to construct a
complete identity in ID. There are two problems:

24

– How do we argue that the blocks obtained for each index i come from the same
set of identities? It may be that, for example when n = 2, that the adversary has
identities (id1,1, id1,2) and (id2,1, id2,2), but tracing for i = 1 yields id1,1 whereas
tracing i = 2 yields id2,2. While we have obtained two of the adversary’s blocks,
there may not even be a complete identity among the blocks.

– Even if we resolve the issue above, and show that tracing each block number yields
blocks from the same set of identities, there is another issue. How to we match up
the partial identity blocks? For example, in the case n = 2, we may obtain blocks
id1,1, id2,1, id1,2, id2,2. However, we have noway of telling if the adversary’s identities
were (id1,1, id1,2) and (id2,1, id2,2), or if they were (id1,1, id2,2) and (id2,1, id1,2).
Therefore, while we can obtain the adversary’s blocks for the adversary’s identities,
we cannot actually reconstruct the adversary’s identities themselves.
We will now explain a slightly modified scheme and tracing algorithm to rectify

the issues above. First, by including a fixed tag τ inside every block of id, we can now
identify which blocks belong together simply by matching tags. This resolves the second
point above, but still leaves the first. For this, we give a modified tracing algorithm that
we can prove always outputs a complete collection of blocks.

We now give the scheme derived from any PBLBE. There will be two identity spaces.
Let ID′ = {0, 1}n be the identity space for the actual traitor tracing scheme; that is,
ID′ is the set of identities that we actually want to recover by tracing. We wish to grow n
arbitrarily large without affecting the ciphertext size. The second space will be the space
ID of the underlying PBLBE, which consists of n blocks of t+ 1 bits. In particular, the
bit length of the traitor tracing identity space ID′ will be equal to the number of blocks
in the PBLBE space. Set t = λ, so that the bit-length of each block in the PBLBE grows
with the security parameter, but crucially not in n. Define N = 2t = 2λ.
– Setup is again inherited from the private broadcast scheme.
– To generate the secret key for an identity id′ ∈ ID′, write id′ = (id′1, . . . , id

′
n) where

id′i ∈ {0, 1}. Choose a random s ∈ [N], and define the identity id = (id1, . . . , idn) ∈
ID where idi = 2s− id′i ∈ ID0. Run the private broadcast keygen algorithm on id,
and output the resulting secret key. Call this algorithm KeyGenTT

– Enc,Dec are identical to the basic tracing scheme, except that Dec now uses the
derived user secret key as defined above. Call these algorithms EncTT ,DecTT .

Theorem 5. Let (Setup,KeyGen,Enc,Dec) be a secure private broadcast scheme for
identity space ID and private class S , where ID,S are defined as above. Then there is an
efficient algorithm Trace such that (Setup,KeyGen,EncTT ,DecTT ,Trace) as defined
above is a flexible traitor tracing algorithm.

We prove Theorem 5 using similar techniques as in the proof of Theorem 4, except
that the jump finding problem in Section 3 does not quite capture the functionality we
need. Instead, in Section 3.1, we define a generalized jump finding problem, and show
how to solve it. We then use the solution for the generalized jump finding problem to
trace our scheme above.

Proof. We will take an approach very similar to the proof of Theorem 4. We will use a
pirate decoder D to create an oracle Q as in the generalized jump finding problem. Then

25

we run the tracing algorithm QTrace′ on this Q, which will output the identities of some
the colluders.

Define Q(i, u) to be the randomized procedure that does the following: sample a
random bit b, computes the encryption c← Enc(mpk, (i, u),mb) ofmb to the set Si,u
indexed by (i, u) ∈ [n]× [0, 2N], runs b′ ← D(c), and outputs 1 if and only if b = b′.
Define pi,u to be the probability thatQ(i, u) outputs 1. We now need to show that if D is
useful, then Q satisfies the conditions of Theorem 3.

First, notice that pi,0 = pi′,0 for all i, i′ ∈ [n], since the set indexed by (i, 0) is just
the empty set, independent of i. Define p0 = pi,0. Similarly, pi,2N = p2N , independent
of i, as the set indexed by (i, 2N) is the complete set.

Next, notice that if D is useful, we have |p2N − p0| > ε/2, similar to Theorem 4.
Now set δ = ε/(9 + 4(t− 1)q) (recall that N = 2t). We have the following:

Lemma 3. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible value δ.
Suppose two pairs (i, 2x), (j, 2x) ∈ [n]× [0, 2N] are chosen adversarially after seeing
the set C, the adversary’s secret keys, the pirate decoder D, and even the internal state
of A. Then, except with negligible probability |pi,2x − pj,2x| < δ

Proof. Let id′ be an identity the adversary queries on, with associated tag s. Let
id = (id1, . . . , idn) ∈ ID where idi = 2s− id′i ∈ ID0 as above. It suffices to show that
the set id ∈ Si,2x if and only if id ∈ Sj,2x. This is equivalent to the requirement that
2s − id′i ≤ 2x if and only if 2s − id′j ≤ 2x. Since id′i, id

′
j are binary, this is true. The

lemma then follows from the security of the private block linear broadcast scheme.

Next, define Ci to be the set of values 2s − id′i for identities id′ queried by the
adversary. Equivalently, Ci is the set of ith blocks of the corresponding identities id. The
following also easily follows from the security of private block linear broadcast:

Lemma 4. Suppose (Setup,KeyGen,Enc,Dec) is secure. Fix a non-negligible value δ.
Suppose two pairs (i, x), (i, y) ∈ [n]× [0, 2N] are chosen adversarially after seeing the
set C, the adversary’s secret keys, the pirate decoder D, and even the internal state of A,
such that the interval (x, y] does not contain any points in Ci. Then |pi,x − pi,y| < δ.

We now see that the oracleQ corresponds to the (N, r = n, q, δ, ε)-generalized jump
finding problem. Here, the hidden set C contains tuples (s, id1, . . . , idn) = (s, id) where
where id ∈ ID′ is one of the adversary’s identities, and s is the corresponding tag that
was used to generate the secret key for id. Similar to the basic tracing algorithm, the
pirate decoder may cheat, and the lemmas above may not hold for all possible points.
However, they hold for efficiently computable points, and in particular must hold for the
points queried by the efficient QTrace′ of Theorem 3. Thus, following Remark 1, we can
invoke Theorem 3, so QTrace′ will produce a non-empty list L of tuples (s, id) from C.
This completes the theorem.

Construction and Parameter sizes. Similar to the case of PLBE, it is straightforward
to construct private block linear broadcast encryption from functional encryption, and
the PBLBE scheme will inherit the parameter sizes from the FE scheme. We will use
r = λ-bit blocks and n-bit identities. The circuit size needed for the functional encryption

26

scheme is therefore poly(n), and the plaintext size is |m| + poly(logn) (ignoring the
security parameter).

Some functional encryption schemes are non-compact, meaning the ciphertext size
grows with both the plaintext size and the function size, in which case our ciphertexts will
be |m|+ poly(n), no better than the basic tracing system. Instead, we require compact
functional encryption, where the ciphertext size is independent of the function size. The
original functional encryption scheme of Garg et al. [21] has this property. However, they
only obtain static security, and adaptive security is only obtained through complexity
leveraging. In a very recent work, Ananth and Sahai [4] show how to obtain adaptively
secure functional encryption for Turing machines, and in particular obtain adaptively
secure functional encryption that meets our requirements for optimal ciphertext and
secret key sizes.

Corollary 3. Assuming the existence of iO and OWF, there exists an adaptively secure
traitor tracing scheme whose master key size is poly(logn), secret key size is poly(n),
and ciphertext size is |m|+ poly(logn).

On Bounded Collusions. If we relax security to bounded-collusion security, then the
underlying assumption can be relaxed to the (sub-exponential) LWE assumption using
the succinct FE scheme of [23], which can be made adaptively secure through complexity
leveraging.

Corollary 4. Assume the sub-exponential hardness of the LWE problem with a sub-
exponential factor, then there exists a q-bounded collusion-resistant adaptively secure
traitor tracing scheme whose master key size is poly(logn, q) and secret key size is
poly(n, q) and ciphertext size is |m|+ poly(logn, q).

References

1. Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart, N.P.: Identity-based
traitor tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007: 10th International Conference on
Theory and Practice of Public Key Cryptography. Lecture Notes in Computer Science, vol.
4450, pp. 361–376. Springer, Heidelberg, Germany, Beijing, China (Apr 16–20, 2007)

2. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security
in functional encryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology –
CRYPTO 2015, Part II. Lecture Notes in Computer Science, vol. 9216, pp. 657–677. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015)

3. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption.
In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology – CRYPTO 2015, Part I.
Lecture Notes in Computer Science, vol. 9215, pp. 308–326. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 2015)

4. Ananth, P.V., Sahai, A.: Functional encryption for turing machines. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016-A: 13th Theory of Cryptography Conference, Part I. Lecture Notes in
Computer Science, vol. 9562, pp. 125–153. Springer, Heidelberg, Germany, Tel Aviv, Israel
(Jan 10–13, 2016)

5. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption.
In: Guruswami, V. (ed.) 56th Annual Symposium on Foundations of Computer Science. pp.
171–190. IEEE Computer Society Press, Berkeley, CA, USA (Oct 17–20, 2015)

27

6. Boneh, D., Franklin, M.K.: An efficient public key traitor tracing scheme. In: Wiener, M.J.
(ed.) Advances in Cryptology – CRYPTO’99. Lecture Notes in Computer Science, vol. 1666,
pp. 338–353. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15–19, 1999)

7. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts
and private keys. In: Vaudenay, S. (ed.) Advances in Cryptology – EUROCRYPT 2006.
Lecture Notes in Computer Science, vol. 4004, pp. 573–592. Springer, Heidelberg, Germany,
St. Petersburg, Russia (May 28 – Jun 1, 2006)

8. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In:
Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 06: 13th Conference on Computer and
Communications Security. pp. 211–220. ACM Press, Alexandria, Virginia, USA (Oct 30 –
Nov 3, 2006)

9. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology –
CRYPTO 2014, Part I. Lecture Notes in Computer Science, vol. 8616, pp. 480–499. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2014)

10. Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014:
11th Theory of Cryptography Conference. Lecture Notes in Computer Science, vol. 8349, pp.
52–73. Springer, Heidelberg, Germany, San Diego, CA, USA (Feb 24–26, 2014)

11. Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing schemes.
In: Cramer, R. (ed.) Advances in Cryptology – EUROCRYPT 2005. Lecture Notes in
Computer Science, vol. 3494, pp. 542–558. Springer, Heidelberg, Germany, Aarhus, Denmark
(May 22–26, 2005)

12. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y. (ed.) Advances in Cryptology –
CRYPTO’94. Lecture Notes in Computer Science, vol. 839, pp. 257–270. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 21–25, 1994)

13. Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitors. IEEE Transactions on Information
Theory 46(3), 893–910 (2000)

14. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking
cryptographic capabilities. Cryptology ePrint Archive, Report 2015/1096 (2015), http:
//eprint.iacr.org/2015/1096

15. Cohen, A., Holmgren, J., Vaikuntanathan, V.: Publicly verifiable software watermarking.
Cryptology ePrint Archive, Report 2015/373 (2015), http://eprint.iacr.org/2015/373

16. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum,
J. (ed.) Security and Privacy in Digital Rights Management, ACM CCS-9 Workshop, DRM
2002, Washington, DC, USA, November 18, 2002, Revised Papers. Lecture Notes in Computer
Science, vol. 2696, pp. 61–80. Springer (2002)

17. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive chosen
ciphertext attack. In: Desmedt, Y. (ed.) PKC 2003: 6th International Workshop on Theory
and Practice in Public Key Cryptography. Lecture Notes in Computer Science, vol. 2567, pp.
100–115. Springer, Heidelberg, Germany, Miami, USA (Jan 6–8, 2003)

18. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revoking.
Distributed Computing 17(4), 323–347 (2005)

19. Fiat, A., Tassa, T.: Dynamic traitor training. In: Wiener, M.J. (ed.) Advances in Cryptology
– CRYPTO’99. Lecture Notes in Computer Science, vol. 1666, pp. 354–371. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15–19, 1999)

20. Gafni, E., Staddon, J., Yin, Y.L.: Efficient methods for integrating traceability and broadcast
encryption. In: Wiener, M.J. (ed.) Advances in Cryptology – CRYPTO’99. Lecture Notes in
Computer Science, vol. 1666, pp. 372–387. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 15–19, 1999)

28

http://eprint.iacr.org/2015/1096
http://eprint.iacr.org/2015/1096
http://eprint.iacr.org/2015/373

21. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguisha-
bility obfuscation and functional encryption for all circuits. In: 54th Annual Symposium on
Foundations of Computer Science. pp. 40–49. IEEE Computer Society Press, Berkeley, CA,
USA (Oct 26–29, 2013)

22. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In:
Kushilevitz, E., Malkin, T. (eds.) TCC 2016-A: 13th Theory of Cryptography Conference,
Part II. Lecture Notes in Computer Science, vol. 9563, pp. 480–511. Springer, Heidelberg,
Germany, Tel Aviv, Israel (Jan 10–13, 2016)

23. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled
circuits and succinct functional encryption. In: Boneh, D., Roughgarden, T., Feigenbaum, J.
(eds.) 45th Annual ACM Symposium on Theory of Computing. pp. 555–564. ACM Press,
Palo Alto, CA, USA (Jun 1–4, 2013)

24. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups of low-state
devices. In: Franklin, M. (ed.) Advances in Cryptology – CRYPTO 2004. Lecture Notes in
Computer Science, vol. 3152, pp. 511–527. Springer, Heidelberg, Germany, Santa Barbara,
CA, USA (Aug 15–19, 2004)

25. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions
via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology
– CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 162–179. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

26. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.) Advances
in Cryptology – CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp. 47–60.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2002)

27. Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with
long output. In: Roughgarden, T. (ed.) ITCS 2015: 6th Innovations in Theoretical Computer
Science. pp. 163–172. Association for Computing Machinery, Rehovot, Israel (Jan 11–13,
2015)

28. Kiayias, A., Tang, Q.: Traitor deterring schemes: Using bitcoin as collateral for digital content.
In: Ray, I., Li, N., Kruegel:, C. (eds.) ACM CCS 15: 22nd Conference on Computer and
Communications Security. pp. 231–242. ACM Press, Denver, CO, USA (Oct 12–16, 2015)

29. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knudsen, L.R. (ed.)
Advances in Cryptology – EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2332,
pp. 450–465. Springer, Heidelberg, Germany, Amsterdam, The Netherlands (Apr 28 – May 2,
2002)

30. Kiayias, A., Yung, M.: Copyrighting public-key functions and applications to black-box traitor
tracing. Cryptology ePrint Archive, Report 2006/458 (2006), http://eprint.iacr.org/
2006/458

31. Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmetric schemes. In: Nyberg, K.
(ed.) Advances in Cryptology – EUROCRYPT’98. Lecture Notes in Computer Science, vol.
1403, pp. 145–157. Springer, Heidelberg, Germany, Espoo, Finland (May 31 – Jun 4, 1998)

32. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In:
Kilian, J. (ed.) Advances in Cryptology – CRYPTO 2001. Lecture Notes in Computer Science,
vol. 2139, pp. 41–62. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23,
2001)

33. Naor, M., Pinkas, B.: Threshold traitor tracing. In: Krawczyk, H. (ed.) Advances in Cryptology
– CRYPTO’98. Lecture Notes in Computer Science, vol. 1462, pp. 502–517. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 23–27, 1998)

34. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000: 4th
International Conference on Financial Cryptography. Lecture Notes in Computer Science, vol.
1962, pp. 1–20. Springer, Heidelberg, Germany, Anguilla, British West Indies (Feb 20–24,
2001)

29

http://eprint.iacr.org/2006/458
http://eprint.iacr.org/2006/458

35. Nishimaki, R., Wichs, D.: Watermarking cryptographic programs against arbitrary removal
strategies. Cryptology ePrint Archive, Report 2015/344 (2015), http://eprint.iacr.org/
2015/344

36. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: How to embed arbitrary
information in a key. Cryptology ePrint Archive, Report 2015/750 (2015), http://eprint.
iacr.org/2015/750

37. Safavi-Naini, R., Wang, Y.: Sequential traitor tracing. In: Bellare, M. (ed.) Advances in
Cryptology – CRYPTO 2000. Lecture Notes in Computer Science, vol. 1880, pp. 316–332.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 2000)

38. Silverberg, A., Staddon, J., Walker, J.L.: Efficient traitor tracing algorithms using list decoding.
In: Boyd, C. (ed.) Advances in Cryptology – ASIACRYPT 2001. Lecture Notes in Computer
Science, vol. 2248, pp. 175–192. Springer, Heidelberg, Germany, Gold Coast, Australia
(Dec 9–13, 2001)

39. Tzeng, W.G., Tzeng, Z.J.: A public-key traitor tracing scheme with revocation using dynamic
shares. In: Kim, K. (ed.) PKC 2001: 4th International Workshop on Theory and Practice
in Public Key Cryptography. Lecture Notes in Computer Science, vol. 1992, pp. 207–224.
Springer, Heidelberg, Germany, Cheju Island, South Korea (Feb 13–15, 2001)

40. Waters, B.: A punctured programming approach to adaptively secure functional encryption.
In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology – CRYPTO 2015, Part II.
Lecture Notes in Computer Science, vol. 9216, pp. 678–697. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 16–20, 2015)

41. Zhandry,M.:Adaptively secure broadcast encryptionwith small systemparameters. Cryptology
ePrint Archive, Report 2014/757 (2014), http://eprint.iacr.org/2014/757

30

http://eprint.iacr.org/2015/344
http://eprint.iacr.org/2015/344
http://eprint.iacr.org/2015/750
http://eprint.iacr.org/2015/750
http://eprint.iacr.org/2014/757

	Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key

