
Hash-Function based PRFs: AMAC and its
Multi-User Security

Mihir Bellare1, Daniel J. Bernstein2, and Stefano Tessaro3

1 Department of Computer Science and Engineering, University of California San
Diego, USA. http://cseweb.ucsd.edu/~mihir/

2 University of Illinois at Chicago, USA, and Technische Universiteit Eindhoven,
Netherlands. https://cr.yp.to/djb.html

3 Department of Computer Science, University of California Santa Barbara, USA.
http://www.cs.ucsb.edu/~tessaro/

Abstract. AMAC is a simple and fast candidate construction of a PRF
from an MD-style hash function which applies the keyed hash function
and then a cheap, un-keyed output transform such as truncation. Spurred
by its use in the widely-deployed Ed25519 signature scheme, this paper
investigates the provable PRF security of AMAC to deliver the follow-
ing three-fold message: (1) First, we prove PRF security of AMAC. (2)
Second, we show that AMAC has a quite unique and attractive feature,
namely that its multi-user security is essentially as good as its single-user
security and in particular superior in some settings to that of competi-
tors. (3) Third, it is technically interesting, its security and analysis in-
trinsically linked to security of the compression function in the presence
of leakage.

1 Introduction

This paper revisits a classical question, namely how can we turn a hash function
into a PRF? The canonical answer is HMAC [4], which (1) first applies the keyed
hash function to the message and then (2) re-applies, to the result, the hash
function keyed with another key. We consider another, even simpler, candidate
way, namely to change step (2) to apply a simple un-keyed output transform such
as truncation. We call this AMAC, for augmented MAC. This paper investigates
and establishes provable-security of AMAC, with good bounds, when the hash
function is a classical MD-style one like SHA-512.

Why? We were motivated to determine the security of AMAC by the follow-
ing. Usage. AMAC with SHA-512 is used as a PRF in the Ed25519 signature
scheme [8]. (AMAC under a key that is part of the signing key is applied to the
hashed message to get coins for a Schnorr-like signature.) Ed25519 is widely de-
ployed, including in SSH, Tor, OpenBSD and dozens of other places [10]. The se-
curity of AMAC for this usage was questioned in cfrg forum debates on Ed25519

Date of this paper: 2016.02.21.

2 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

as a proposed standard. Analysis of AMAC is important to assess security of this
usage and allow informed choices. Speed. AMAC is faster than HMAC, particu-
larly on short messages. See [3]. Context. Sponge-based PRFs, where truncation
is the final step due to its already being so for the hash function, have been
proven secure [17, 20, 1, 9, 11]. Our work can be seen as stepping back to ask if
truncation works in a similar way for classical MD-style hash functions.

Findings in a nutshell. Briefly, the message of this paper is the following: (1)
First, we are able to prove PRF security of AMAC. (2) Second, AMAC has a quite
unique and attractive feature, namely that its multi-user security is essentially as
good as its single-user security and in particular superior in some settings to that
of competitors. (3) Third, it is technically interesting, its security and analysis
intrinsically linked to security of the compression function in the presence of
leakage, so that leakage becomes of interest for reasons entirely divorced from
side-channel attacks. We now step back to provide some background and discuss
our approach and results.

The basic cascade. Let h: {0, 1}c×{0, 1}b → {0, 1}c represent a compression
function taking a c-bit chaining variable and b-bit message block to return a c-bit
output. The basic cascade of h is the function h∗: {0, 1}c × ({0, 1}b)+ → {0, 1}c
defined by

Basic Cascade h∗(K,X)

Y ← K ; For i = 1, . . . , n do Y ← h(Y,X[i]) ; Return Y

where X is a vector over {0, 1}b whose length is denoted n and whose i-th compo-
nent is denoted X[i]. This construct is the heart of MD-style hash functions [13,
21] like MD5, SHA-1, SHA-256 and SHA-512, which are obtained by setting K
to a fixed, public value and then applying h∗ to the padded message.

Now we want to key h∗ to get PRFs. We regard h itself as a PRF on domain
{0, 1}b, keyed by its c-bit chaining variable. Then h∗ is the natural candidate
for a PRF on the larger domain ({0, 1}b)+. Problem is, h∗ isn’t secure as a
PRF. This is due to the well-known extension attack. If I obtain Y1 = h∗(K,X1)
for some X1 ∈ {0, 1}b of my choice, I can compute Y2 = h∗(K,X1X2) for any
X2 ∈ {0, 1}b of my choice without knowing K, via Y2 ← h(Y1, X2). This clearly
violates PRF security of h∗.

Although h∗ is not a PRF, BCK2 [5] show that it is a prefix-free PRF. (A
PRF as long as no input on which it is evaluated is a prefix of another. The two
inputs X1, X1X2 of the above attack violate this property.) When b = 1 and all
inputs on which h∗ is evaluated are of the same fixed length, the cascade h∗ is
the GGM construction of a PRF from a PRG [18].

To get a full-fledged PRF, NMAC applies h, under another key, to h∗. The
augmented cascade ACSC = Out◦h∗ that we discuss next replaces NMAC’s outer
application of a keyed function with a simple un-keyed one.

Augmented cascade. The augmented cascade is parameterized by some (key-
less) function Out: {0, 1}c → Out.R that we call the output transform, and is
obtained by simply applying this function to the output of the basic cascade:

AMAC and its Multi-User Security 3

Augmented Cascade (Out ◦ h∗)(K,X)

Y ← h∗(K,X) ; Z ← Out(Y) ; Return Z

AMAC is obtained from ACSC just as HMAC is obtained from NMAC, namely by
putting the key in the input to the hash function rather than directly keying the
cascade: AMAC(K,M) = Out(H(K‖M)). Just as NMAC is the technical core of
HMAC, the augmented cascade is the technical core of AMAC, and our analysis
will focus in it. We will be able to bridge to AMAC quite simply with the tools
we develop.

The ACSC construction was suggested by cryptanalysts with the intuition
that “good” choices of Out appear to allow Out ◦ h∗ to evade the extension
attack and thus possibly be a PRF. To understand this, first note that not all
choices of Out are good. For example if Out is the identity function then the
augmented cascade is the same as the basic one and the attack applies, or if
Out is a constant function returning 0r then Out ◦ h∗ is obviously not a PRF
over range {0, 1}r. Cryptanalysts have suggested some specific choices of Out,
the most important being (1) truncation, where Out: {0, 1}c → {0, 1}r returns,
say, the first r < c bits of its input, or (2) the mod function, as in Ed25519,
where Out treats its input as an integer and returns the result modulo, say, a
public r-bit prime number. Suppose r is sufficiently smaller than c (think c = 512
and r = 256). An adversary querying X1 in the PRF game no longer gets back
Y1 = h∗(K,X1) but rather Z1 = Out(Y1), and this does not allow the extension
attack to proceed. On this basis, and for the choices of Out just named, the
augmented cascade is already seeing extensive usage and is suggested for further
usage and standardization.

This raises several questions. First, that Out◦h∗ seems to evade the extension
attack does not mean it is a PRF. There may be other attacks. The goal is to
get a PRF, not to evade some specific attacks. Moreover we would like a proof
that this goal is reached. Second, for which choices of Out does the construction
work? We could try to analyze the PRF security of Out ◦ h∗ in an ad hoc way
for the specific choices of Out named above, but it would be more illuminating
and useful to be able to establish security in a broad way, for all Out satisfying
some conditions. These are the questions our work considers and resolves.

Connection to leakage. If we want to prove PRF security of Out ◦ h∗, a
basic question to ask is, under what assumption on the compression function h?
The natural one is that h is itself a PRF, the same assumption as for the proof
of NMAC [2, 16]. We observe that this is not enough. Consider an adversary who
queries the one-block message X1 to get back Z1 = Out(Y1) and then queries
the two-block message X1X2 to get back Z2 = Out(Y2) where by definition
Y1 = h∗(K,X1) = h(K,X1) and Y2 = h∗(K,X1X2) = h(Y1, X2). Note that Y1 is
being used as a key in applying h to X2. But this key is not entirely unknown
to the adversary because the latter knows Z1 = Out(Y1). If the application of h
with key Y1 is to provide security, it must be in the face of the fact that some
information about this key, namely Out(Y1), has been “leaked” to the adversary.

4 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

As a PRF, h must thus be resilient to some leakage on its key, namely that
represented by Out viewed as a leakage function.

Approach and qualitative results. We first discuss our results at the quali-
tative level and then later at the (in our view, even more interesting) quantitative
level. Theorems 3 and 4 show that if h is a PRF under Out-leakage then Out◦h∗
is indistinguishable from the result of applying Out to a random function. (The
compression function h being a PRF under Out-leakage means it retains PRF
security under key K even if the adversary is given Out(K). The formal defini-
tion is in Section 4.) This result makes no assumptions about Out beyond that
implicit in the assumption on h, meaning the result is true for all Out, and is in
the standard model. As a corollary we establish PRF security of Out ◦ h∗ for a
large class of output functions Out, namely those that are close to regular. (This
means that the distribution of Out(Y) for random Y is close to the uniform
distribution on the range of Out.) In summary we have succeeded in providing
conditions on Out, h under which Out ◦ h∗ is proven to be PRF. Our conditions
are effectively both necessary and sufficient and cover cases proposed for usage
and standardization.

The above is a security proof for the augmented cascade Out ◦ h∗ under the
assumption that the compression function h is resistant to Out leakage. To assess
the validity of this assumption, we analyze the security under leakage of an ideal
compression function. Theorem 6 shows that an ideal compression function is
resistant to Out-leakage as long as no range point of Out has too few pre-images.
This property is in particular true if Out is close to regular. As a result, in
the ideal model, we have a validation of our Out-leakage resilience assumption.
Putting this together with the above we have a proof-based validation of the
augmented cascade.

Multi-user security. The standard definition of PRF security of a function
family F [18] is single user (su), represented by there being a single key K such
that the adversary has access to an oracle Fn that given x returns either F(K,x)
or the result of a random function F on x. But in “real life” there are many users,
each with their own key. If we look across the different entities and Internet
connections active at any time, the number of users / keys is very large. The
more appropriate model is thus a multi-user (mu) one, where, for a parameter u
representing the number of users, there are u keys K1, . . . ,Ku. Oracle Fn now
takes i, x with 1 ≤ i ≤ u and returns either F(Ki, x) or the result of a random
function Fi on x. It is in this setting that we should address security.

Multi-user security is typically neglected because it makes no qualitative dif-
ference: BCK2 [5], who first formalized the notion, also showed by a hybrid
argument that the advantage of an adversary relative to u users is not more
than u times the advantage of an adversary of comparable resources relative to
a single user. Our Lemma 1 is a generalization of this result. But this degra-
dation in advantage is quite significant in practice, since u is large, and raises
the important question of whether one can do quantitatively better. Clearly one
cannot in general, but perhaps one can for specific, special function families F. If

AMAC and its Multi-User Security 5

so, these function families are preferable in practice. This perspective is reflected
in recent work like [22, 25].

These special function families seem quite rare. But we show that the aug-
mented cascade is one of them. In fact we show that mu security gives us a
double benefit in this setting, one part coming from the cascade itself and the
other from the security of the compression function under leakage, the end result
being very good bounds for the mu security of the augmented cascade.

Theorem 3 establishes su security of the augmented cascade based not on
the su, but on the mu security of the compression function under Out-leakage.
The bound is very good, the advantage dropping only by a factor equal to the
maximum length of a query. The interesting result is Theorem 4, establishing
mu security of the augmented cascade under the same assumptions and with
essentially the same bounds as Theorem 3 establishing its su security. In partic-
ular we do not lose a factor of the number of users u in the advantage. This is
the first advance.

Now note that the assumption in both of the above-mentioned results is the
mu (not su) security of the compression function under Out-leakage. Our final
bound will thus depend on this. The second advance is that Theorem 6 shows
mu security of the compression function under Out-leakage with bounds almost
as good as for su security. This represents an interesting result of independent
interest, namely that, under leakage, the mu security of an ideal compression
function is almost as good as its su security. This is not true in the absence of
leakage. The results are summarized via Fig. 4.

Quantitative results. We obtain good quantitative bounds on the mu prf
security of the augmented cascade in the ideal compression function model by
combining our aforementioned results on the mu prf security under leakage of
an ideal compression function with our also aforementioned reduction of the
security of the cascade to the security of the compression function under leakage.
We illustrate these results for the case where the compression function is of form
h: {0, 1}c × {0, 1}b → {0, 1}c and the output transform Out simply outputs the
first r bits of its c-bit input, for r ≤ c. We consider an attacker making at
most q queries to a challenge oracle (that is either the augmented cascade or a
random function), each query consisting of at most ` b-bit blocks, and qf queries
to the ideal compression function oracle. We show that such an attacker achieves
distinguishing advantage at most

`2q2 + `qqf
2c

+
cr · (`2q + `qf)

2c−r
, (1)

where we have intentionally omitted constant factors and lower order terms. Note
that this bound holds regardless of the number of users u. Here c is large, like
c = 512, so the first term is small. But c−r is smaller, for example c−r = 256 with
r = 256. The crucial merit of the bound of Equation (1) is that the numerator in
the second term does not contain quadratic terms like q2 or q · qf. In practice, qf
and q are the terms we should allow to be large, so this is significant. To illustrate,
say for example ` = 210 (meaning messages are about 128 KBytes if b = 1024)

6 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

and qf = 2100 and q = 290. The bound from Equation (1) is about 2−128, which
is very good. But, had the second term been of the form `2(q2f + q2)/2c−r then
the bound would be only 2−36. See Section 8 for more information.

2-tier cascade. We introduce and use an extension of the basic cascade h∗. Our
2-tier cascade is associated to two function families g, h. Under key K, it applies
g(K, ·) to the first message block to get a sub-key K∗ and the applies h∗(K∗, ·)
to the rest of the message. The corresponding augmented cascade applies Out
to the result. Our results about the augmented cascade above are in fact shown
for the augmented 2-tier cascade. This generalization has both conceptual and
analytical value. We briefly mention two instances. (1) First, we can visualize
mu security of Out◦h∗ as pre-pending the user identity to the message and then
applying the 2-tier cascade with first tier a random function. This effectively
reduces mu security to su security. With this strategy we prove Theorem 4 as
a corollary of Theorem 3 and avoid a direct analysis of mu security. Beyond
providing a modular proof this gives some insight into why the mu security is
almost as good as the su security. (2) Second, just as NMAC is the technical core
and HMAC the function used (because the latter makes blackbox use of the hash
function), in our case the augmented cascade is the technical core but what will
be used is AMAC, defined by AMAC(K,M) = Out(H(K,M)) where H is the
hash function derived from compression function h: {0, 1}c × {0, 1}b → {0, 1}c
and K is a k-bit key. For the analysis we note (assuming k = b) that this is simply
an augmented 2-tier cascade with the first tier being the dual of h, meaning the
key and input roles are swapped. We thus directly get an analysis and proof
for this case from our above-mentioned results. Obtaining HMAC from NMAC
was more work [4, 2] and required assumptions about PRF security of the dual
function under related keys.

Davies-Meyer. Above we have assessed the PRF security under Out-leakage of
the compression function by modeling the latter as ideal (random). But, following
CDMP [12], one might say that the compression functions underlying MD-style
hash functions are not un-structured enough to be treated as random because
they are built from blockciphers via the Davies-Meyer (DM) construction. To
address this we analyze the mu PRF security under Out-leakage of the DM
construction in the ideal-cipher model. One’s first thought may be that such an
analysis would follow from our analysis for a random compression function and
the indifferentiability [19, 12] of DM from a random oracle, but the catch is that
DM is not indifferentiable from a RO so a direct analysis is needed. The one we
give in [3] shows mu security with good bounds. Similar analyses can be given
for other PGV [24] compression functions.

2 Related work

Sponges. SHA-3 already internally incorporates a truncation output transform.
The construction itself is a sponge. The suggested way to obtain a PRF is to
simply key the hash function via its IV, so that the PRF is a keyed, truncated

AMAC and its Multi-User Security 7

sponge. The security of this construct has been intensively analyzed [17, 20, 1, 9,
11] with Gaži, Pietrzak and Tessaro (GPT) [17] establishing PRF security with
tight bounds. Our work can be seen as stepping back to ask whether the same
truncation method would work for MD-style hash functions like SHA-512. Right
now these older hash functions are much more widely deployed than SHA-3, and
current standardization and deployment efforts continue to use them, making
the analysis of constructions based on them important with regard to security
in practice. The underlying construction in this case is the cascade, which is
quite different from the sponge. The results and techniques of GPT [17] do not
directly apply but were an important inspiration for our work.

We note that keyed sponges with truncation to an r-bit output from a c-bit
state can easily be distinguished from a random function with advantage roughly
q2/2c−r or qqf/2

c−r, as shown for example in [17]. The bound of Equation (1) is
better, meaning the augmented cascade offers greater security. See [3] for more
information.

Cascade. BCK2 [5] show su security of the basic cascade (for prefix-free queries)
in two steps. First, they show su security of the basic cascade (for prefix-free
queries) assuming not su, but mu security of the compression function. Second,
they apply the trivial bound mentioned above to conclude su security of the basic
cascade for prefix-free queries assuming su security of the compression function.
We follow their approach to establish su security of the augmented cascade, but
there are differences as well: They have no output transform while we do, they
assume prefix-free queries and we do not, we have leakage and they do not.
They neither target nor show mu security of the basic cascade in any form, mu
security arising in their work only as an intermediate technical step and only for
the compression function, not for the cascade.

Chop-MD. The chop-MD construction of CDMP [12] is the case of the aug-
mented cascade in which the output transform is truncation. They claim this
is indifferentiable from a RO when the compression function is ideal. This im-
plies PRF security but their bound is O(`2(q + qf)

2/2c−r) which as we have
seen is significantly weaker than our bound of Equation (1). Also, they have no
standard-model proofs or analysis for this construction. In contrast our results
in Section 5 establish standard-model security.

NMAC and HMAC. NMAC takes keys Kin,Kout and input X to return h(Kout,
h∗(Kin,X)‖pad) where pad is some (b − c)-bit constant and b ≥ c. Through
a series of intensive analyses, the PRF security of NMAC has been established
based only on the assumed PRF security of the compression function h, and with
tight bounds [4, 2, 16]. Note that NMAC is not a special case of the augmented
cascade because Out is not keyed but the outer application of h in NMAC is keyed.
In the model where the compression function is ideal, one can show bounds for
NMAC that are somewhat better than for the augmented cascade. This is not
surprising. Indeed, when attacking the augmented cascade, the adversary can
learn far more information about the internal states of the hash computation.
What is surprising (at least to us) is that the gap is actually quite small. See

8 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

[3] for more information. We stress also that this is in the ideal model. In the
standard model, there is no proof that NMAC has the type of good mu prf
security we establish for the augmented cascade in Section 5.

AES and other MACs. Why consider new MACs? Why not just use an AES-
based MAC like CMAC? The 128 bit key and block size limits security compared
to c = 512 for SHA-512. A Schnorr signature takes the result of the PRF modulo
a prime; the PRF output must have at least as many bits as the prime, and even
more bits for most primes, to avoid the Bleichenbacher attack discussed in [23].
Also in that context a hash function is already being used to hash the message
before signing so it is convenient to implement the PRF also with the same hash
function. HMAC-SHA-512 will provide the desired security but AMAC has speed
advantages, particularly on short messages, as discussed in [3], and is simpler.
Finally, the question is in some sense moot since AMAC is already deployed and
in widespread use via Ed25519 and we need to understand its security.

Leakage. Leakage-resilience of a PRF studies the PRF security of a function
h when the attacker can obtain the result of an arbitrary function, called the
leakage function, applied to the key [15, 14]. This is motivated by side-channel
attacks. We are considering a much more restricted form of leakage where there
is just one, very specific leakage function, namely Out. This arises naturally,
as we have seen, in the PRF security of the augmented cascade. We are not
considering side-channel attacks.

3 Notation

If x is a vector then |x| denotes its length and x[i] denotes its i-th coordinate. (For
example if x = (10, 00, 1) then |x| = 3 and x[2] = 00.) We let ε denote the empty
vector, which has length 0. If 0 ≤ i ≤ |x| then we let x[1..i] = (x[1], . . . ,x[i]),
this being ε when i = 0. We let Sn denote the set of all length n vectors over
the set S. We let S+ denote the set of all vectors of positive length over the
set S and S∗ = S+ ∪ {ε} the set of all finite-length vectors over the set S. As
special cases, {0, 1}n and {0, 1}∗ denote vectors whose entries are bits, so that
we are identifying strings with binary vectors and the empty string with the
empty vector.

For sets A1, A2 we let [[A1, A2]] denote the set of all vectors X of length
|X| ≥ 1 such that X[1] ∈ A1 and X[i] ∈ A2 for 2 ≤ i ≤ |X|.

We let x←$X denote picking an element uniformly at random from a set X
and assigning it to x. For infinite sets, it is assumed that a proper measure can
be defined on X to make this meaningful. Algorithms may be randomized unless
otherwise indicated. Running time is worst case. If A is an algorithm, we let
y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . . and
assigning the output to y. We let y←$A(x1, . . .) be the result of picking r at
random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all
possible outputs of A when invoked with inputs x1,

We use the code based game playing framework of [6]. (See Fig. 1 for an
example.) By Pr[G] we denote the probability that game G returns true.

AMAC and its Multi-User Security 9

For an integer n we let [1..n] = {1, . . . , n}.

4 Function-family distance framework

We will be considering various generalizations and extensions of standard prf
security. This includes measuring proximity not just to random functions but to
some other family, multi-user security and leakage on the key. We also want to
allow an easy later extension to a setting with ideal primitives. To enable all this
in a unified way we introduce a general distance metric on function families and
then derive notions of interest as special cases.

Function families. A function family is a two-argument function F: F.K ×
F.D → F.R that takes a key K in the key space F.K and an input x in the
domain F.D to return an output y ← F(K,x) in the range F.R. We let f ←$ F
be shorthand for K←$ F.K ; f ← F(K, ·), the operation of picking a function at
random from family F.

An example of a function family that is important for us is the compression
function underlying a hash function, in which case F.K = F.R = {0, 1}c and
F.D = {0, 1}b for integers c, b called the length of the chaining variable and the
block length, respectively. Another example is a block cipher. However, families
of functions do not have to be efficiently computable or have short keys. For
sets D,R the family A: A.K × D → R of all functions from D to R is defined
simply as follows: let A.K be the set of all functions mapping D to R and let
A(f, x) = f(x). (We can fix some representation of f as a key, for example the
vector whose i-th component is the value f takes on the i-th input under some
ordering of D. But this is not really necessary.) In this case f ←$ A denotes
picking at random a function mapping D to R.

Let F: F.K × F.D → F.R be a function family and let Out: F.R → Out.R be
a function with domain the range of F and range Out.R. Then the composition
Out ◦ F: F.K× F.D→ Out.R is the function family defined by (Out ◦ F)(K,x) =
Out(F(K,x)). We will use composition in some of our constructions.

Basic distance metric. We define a general metric of distance between func-
tion families that will allow us to obtain other metrics of interest as special cases.
Let F0,F1 be families of functions such that F0.D = F1.D. Consider game DIST
on the left of Fig. 1 associated to F0,F1 and an adversary A. Via oracle New,
the adversary can create a new instance Fv drawn from Fc where c is the chal-
lenge bit. It can call this oracle multiple times, reflecting a multi-user setting.
It can obtain Fi(x) for any i, x of its choice with the restriction that 1 ≤ i ≤ v
(instance i has been initialized) and x ∈ F1.D. It wins if it guesses the challenge
bit c. The advantage of adversary A is

AdvdistF0,F1
(A) = 2 Pr[DISTF0,F1(A)]− 1 (2)

= Pr[DISTF0,F1(A) | c = 1]− (1− Pr[DISTF0,F1(A) | c = 0]) . (3)

10 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

Game DISTF0,F1(A)

v ← 0

c←$ {0, 1} ; c′←$ANew,Fn

Return (c = c′)

New()

v ← v + 1 ; Fv←$ Fc

Fn(i, x)

Return Fi(x)

Game DISTF0,F1,Out(A)

v ← 0

c←$ {0, 1} ; c′←$ANew,Fn

Return (c = c′)

New()

v ← v + 1 ; Kv←$ F1.K

If (c = 1) then Fv ← F1(Kv, ·) else Fv←$ F0

Return Out(Kv)

Fn(i, x)

Return Fi(x)

Fig. 1. Games defining distance metric between function families F0,F1. In
the basic (left) case there is no leakage, while in the extended (right) case there is
leakage represented by Out.

Equation (2) is the definition, while Equation (3) is a standard alternative for-
mulation that can be shown equal via a conditioning argument. We often use
the second in proofs.

Let F be a function family and let A be the family of all functions from F.D to
F.R. Let AdvprfF (A) = AdvdistF,A(A). This gives a metric of multi-user prf security.
The standard (single user) prf metric is obtained by restricting attention to
adversaries that make exactly one New query.

Distance under leakage. We extend the framework to allow leakage on the
key. Let Out: F1.K→ Out.R be a function with domain F1.K and range a set we
denote Out.R. Consider game DIST on the right of Fig. 1, now associated not
only to F0,F1 and an adversary A but also to Out. Oracle New picks a key Kv

for F1 and will return as leakage the result of Out on this key. The instance Fv

is either F1(Kv, ·) or a random function from F0. Note that the leakage is on a
key for a function from F1 regardless of the challenge bit, meaning even if c = 0,
we leak on the key Kv drawn from F1.K. The second oracle is as before. The
advantage of adversary A is

AdvdistF0,F1,Out(A) = 2 Pr[DISTF0,F1,Out(A)]− 1 (4)

= Pr[DISTF0,F1,Out(A) | c = 1]− (1− Pr[DISTF0,F1,Out(A) | c = 0]) . (5)

This generalizes the basic metric because AdvdistF0,F1
(A) = AdvdistF0,F1,Out(A) where

Out is the function that returns ε on all inputs.

As a special case we get a metric of multi-user prf security under leakage.
Let F be a function family and let A be the family of all functions from F.D to
F.R. Let Out: F.K→ Out.R. Let AdvprfF,Out(A) = AdvdistF,A,Out(A).

AMAC and its Multi-User Security 11

Naive mu to su reduction. Multi-user security for PRFs was first explicitly
considered in [5]. They used a hybrid argument to show that the prf advantage
of an adversary A against u users is at most u times the prf advantage of an
adversary of comparable resources against a single user. The argument extends to
the case where instead of prf advantage we consider distance and where leakage
is present. This is summarized in Lemma 1 below.

We state this lemma to emphasize that mu security is not qualitatively dif-
ferent from su security, at least in this setting. The question is what is the
quantitative difference. The lemma represents the naive bound, which always
holds. The interesting element is that for the 2-tier augmented cascade, Theo-
rem 4 shows that one can do better: the mu advantage is not a factor u less than
the single-user advantage, but about the same. In the proof of the lemma in [3]
we specify the adversary for the sake of making the reduction concrete but we
omit the standard hybrid argument that establishes that this works.

Lemma 1 Let F0,F1 be function families with F0.D = F1.D and let Out: F1.K→
Out.R be an output transform. Let A be an adversary making at most u queries
to its New oracle and at most q queries to its Fn oracle. The proof specifies an
adversary A1 making one query to its New oracle and at most q queries to its
Fn oracle such that

AdvdistF0,F1,Out(A) ≤ u · AdvdistF0,F1,Out(A1) . (6)

The running time of A1 is that of A plus the time for u computations of F0 or
F1.

5 The augmented cascade and its analysis

We first present a generalization of the basic cascade construction that we call
the 2-tier cascade. We then present the augmented (2-tier) cascade construction
and analyze its security.

2-tier cascade construction. Let K be a set. Let g, h be function families
such that g: g.K × g.D → K and h: K × h.D → K. Thus, outputs of both g
and h can be used as keys for h. This is the basis of our 2-tier version of the
cascade. This is a function family CSC[g, h]: g.K × [[g.D, h.D]] → K. That is, a
key is one for g. An input —as per the notation [[·, ·]] defined in Section 3— is a
vector X of length at least one whose first component is in g.D and the rest of
whose components are in h.D. Outputs are in K. The function itself is defined
as follows:

Function CSC[g, h](K,X)

n← |X| ; Y ← g(K,X[1])
For j = 2, . . . , n do Y ← h(Y,X[j])
Return Y

We say that a function family G is a 2-tier cascade if G = CSC[g, h] for some g, h.
If f: K×f.D→ K then its basic cascade is recovered as CSC[f, f]: K×f.D+ → K.
We will also denote this function family by f∗.

12 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

Recall that even if f: {0, 1}c×{0, 1}b → {0, 1}c is a PRF, f∗ is not a PRF due
to the extension attack. It is shown by BCK2 [5] to be a PRF when the adversary
is restricted to prefix-free queries. When b = 1 and the adversary is restricted to
queries of some fixed length `, the cascade f∗ is the GGM construction of a PRF
from a PRG [18]. Bernstein [7] considers a generalization of the basic cascade in
which the function applied depends on the block index and proves PRF security
for any fixed number ` of blocks.

Our generalization to the 2-tier cascade has two motivations and correspond-
ing payoffs. First, it will allow us to reduce mu security to su security in a simple,
modular and tight way, the idea being that mu security of the basic cascade is
su security of the 2-tier one for a certain choice of the 1st tier family. Second, it
will allow us to analyze the blackbox AMAC construction in which the cascade
is not keyed directly but rather the key is put in the input to the hash function.

The augmented cascade. With K, g, h as above let Out: K → Out.R be a
function we call the output transform. The augmented (2-tier) cascade ACSC[g,
h,Out]: g.K × [[g.D, h.D]] → Out.R is the composition of Out with CSC[g, h],
namely ACSC[g, h,Out] = Out ◦ CSC[g, h], where composition was defined
above. In code:

Function ACSC[g, h,Out](K,X)

Y ← CSC[g, h](K,X) ; Z ← Out(Y)
Return Z

We say that a function family G+ is an augmented (2-tier) cascade if G+ =
ACSC[g, h,Out] for some g, h,Out.

The natural goal is that an augmented cascade G+ be a PRF. This however
is clearly not true for all Out. For example Out may be a constant function, or a
highly irregular one. Rather than restrict Out at this point we target a general
result that would hold for any Out. Namely we aim to show that ACSC[g, h,Out]
is close under our distance metric to the result of applying Out to a random
function. Next we formalize and prove this.

Single-user security of 2-tier augmented cascade. Given g, h,Out defin-
ing the 2-tier augmented cascade Out ◦ CSC[g, h], we want to upper bound
AdvdistOut ◦A,Out ◦CSC[g,h](A) for an adversary A making one New query, where A
is the family of all functions with the same domain as CSC[g, h]. We will do
this in two steps. First, in Lemma 2, we will consider the case that the first
tier is a random function, meaning g = r is the family of all functions with the
same domain and range as g. Then, in Theorem 3, we will use Lemma 2 to
analyze the general case where g is a PRF. Most interestingly we will later use
these single-user results to easily obtain, in Theorem 4, bounds for multi-user
security that are essentially as good as for single-user security. This showcases a
feature of the 2-tier cascade that is rare amongst PRFs. We now proceed to the
above-mentioned lemma.

Lemma 2 Let K,D be non-empty sets. Let h: K × h.D → K be a function
family. Let r be the family of all functions with domain D and range K. Let

AMAC and its Multi-User Security 13

Out: K → Out.R be an output transform. Let A be the family of all functions
with domain [[D, h.D]] and range K. Let A be an adversary making exactly one
query to its New oracle followed by at most q queries to its Fn oracle, the second
argument of each of the queries in the latter case being a vector X ∈ [[D, h.D]]
with 2 ≤ |X| ≤ `+ 1. Let adversary Ah be as in Fig. 2. Then

AdvdistOut ◦A,Out ◦CSC[r,h](A) ≤ ` · Advprfh,Out(Ah) . (7)

Adversary Ah makes at most q queries to its New oracle and at most q queries
to its Fn oracle. Its running time is that of A plus the time for q` computations
of h.

With the first tier being a random function, Lemma 2 is bounding the single-user
(A makes one New query) distance of the augmented 2-tier cascade to the result
of applying Out to a random function under our distance metric. The bound of
Equation (7) is in terms of the multi-user security of h as a PRF and grows
linearly with one less than the maximum number of blocks in a query.

We note that we could apply Lemma 1 to obtain a bound in terms of the
single-user PRF security of h, but this is not productive. Instead we will go
the other way, later bounding the multi-user security of the 2-tier augmented
cascade in terms of the multi-user PRF security of its component functions.

The proof below follows the basic paradigm of the proof of BCK2 [5], which
is itself an extension of the classic proof of GGM [18]. However there are several
differences: (1) The cascade in BCK2 is single-tier and non-augmented, meaning
both the r component and Out are missing (2) BCK2 assume the adversary
queries are prefix-free, meaning no query is a prefix of another, an assumption
we do not make (3) BCK2 bounds prf security, while we bound the distance.

Proof (Lemma 2). Consider the hybrid games and adversaries in Fig. 2. The
following chain of equalities establishes Equation (7) and will be justified below:

` · Advprfh,Out(Ah) =
∑`

g=1Adv
prf
h,Out(Ag) (8)

=
∑`

g=1 Pr[Hg−1]− Pr[Hg] (9)

= Pr[H0]− Pr[H`] (10)

= AdvdistOut ◦A,Out ◦CSC[r,h](A) (11)

Adversary Ah (bottom left of Fig. 2) picks g at random in the range 1, . . . , ` and

runs adversary Ag (right of Fig. 2) so Advprfh,Out(Ah) = (1/`) ·
∑`

g=1 Adv
prf
h,Out(Ag),

which explains Equation (8). For the rest we begin by trying to picture what is
going on.

We imagine a tree of depth ` + 1, meaning it has ` + 2 levels. The levels
are numbered 0, 1, . . . , ` + 1, with 0 being the root. The root has |D| children
while nodes at levels 1, . . . , ` have |h.D| children each. A query X of A in game
DISTOut ◦A,Out ◦CSC[r,h],Out(A) specifies a path in this tree starting at the root
and terminating at a node at level n = |X|. Both the path and the final node
are viewed as named by X. To a queried node X we associate two labels, an

14 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

Game Hs (0 ≤ s ≤ `)

b′←$ANew∗,Fn∗

Return (b′ = 1)

New∗()

f ←$ A

Fn∗(i,X)

n← |X|
If (n ≤ s) then Y ← f(X)

Else

Y ← f(X[1..s + 1])

For j = s+2, . . . , n do Y ← h(Y,X[j])

T1[X]← Y ; T2[X]← Out(T1[X])

Return T2[X]

Adversary ANew,Fn
h

g←$ {1, . . . , `} ; b′←$ANew,Fn
g

Return b′

Adversary ANew,Fn
g (1 ≤ g ≤ `)

v ← 0 ; b′←$ANew∗,Fn∗ ; Return b′

New∗()

Fn∗(i,X)

n← |X|
If (n ≤ g − 1) then

If (not T1[X]) then

T1[X]←$K ; T2[X]← Out(T1[X])

If (n ≥ g) then

If (not U [X[1..g]]) then

v ← v + 1 ; U [X[1..g]]← v

T2[X[1..g]]← New()

If (n ≥ g + 1) then

T1[X[1..g+1]]← Fn(U [X[1..g]],X[g+1])

For j = g + 2, . . . , n do

T1[X[1..j]]← h(T1[X[1..j − 1]],X[j])

T2[X]← Out(T1[X])

Return T2[X]

Fig. 2. Games and adversaries for proof of Theorem 2.

internal label T1[X] ∈ K and an external label T2[X] = Out(T1[X]) ∈ Out.R.
The external label is the response to query X. Since the first component of
our 2-tier cascade is the family r of all functions from D to K, we can view
DISTOut ◦A,Out ◦CSC[r,h],Out(A) as picking T1[X[1]] at random from K and then
setting T1[X] = h∗(T1[X[1]],X[2..n]) for all queries X of A.

Now we consider the hybrid games H0, . . . ,H` of Fig. 2. They simulate
A’s New,Fn oracles via procedures New∗,Fn∗, respectively. By assumption
A makes exactly one New∗ query, and this will have to be its first. In response
Hs picks at random a function f : [[D,K]] → K. A query Fn∗ has the form
(i,X) but here i can only equal 1 and is ignored in responding. By assumption
2 ≤ |X| ≤ `. The game populates nodes at levels 2, . . . , s of the tree with T1[·]
values that are obtained via f and thus are random elements of K. For a node
X at level n ≥ s + 1, the T1[X[1..s + 1]] value is obtained at random and then
further values (if needed, meaning if n ≥ s + 2) are computed by applying the
cascade h∗ with key T1[X[1..s+ 1]] to input X[s+ 2..n].

Consider game H0, where s = 0. By assumption n ≥ 2 so we will always
be in the case n ≥ s + 1. In the Else statement, Y ← f(X[1]) is initialized
as a random element of K. With this Y as the key, h∗ is then applied to
X[2..n] to get T1[X]. This means H0 exactly mimics the c = 1 case of game

AMAC and its Multi-User Security 15

DISTOut ◦A,Out ◦CSC[r,h],Out(A), so that

Pr[H0] = Pr[DISTOut ◦A,Out ◦CSC[r,h](A) | c = 1] . (12)

At the other extreme, consider game H`, where s = `. By assumption n ≤ `+ 1,
yielding two cases. If n ≤ ` we are in the n ≤ s case and the game, via f , the
assigns T1[X] a random value. If n = ` + 1 we are in the n ≥ s + 1 case, but
the For loop does nothing so T1[X] is again random. This means H` mimics the
c = 0 case of game DISTOut ◦A,Out ◦CSC[r,h],Out(A), except returning true exactly
when the latter returns false. Thus

Pr[H`] = 1− Pr[DISTOut ◦A,Out ◦CSC[r,h](A) | c = 0] . (13)

We will justify Equation (9) in a bit but we can now dispense with the rest of
the chain. Equation (10) is obvious because the sum “telescopes.” Equation (11)
follows from Equations (12) and (13) and the formulation of dist advantage of
Equation (5).

It remains to justify Equation (9), for which we consider the adversaries
A1, . . . ,A` on the right side of Fig. 2. Adversary Ag is playing the PRF, formally
game DISTB,h on the left of Fig. 1 in our notation, with B the family of all
functions from h.D to K. It thus has oracles New,Fn. It will make crucial
use of the assumed multi-user security of h, meaning its ability to query New
many times, keeping track in variable u of the number of instances it creates.
It simulates the oracles of A of the same names via procedures New∗,Fn∗,
sampling functions lazily rather than directly as in the games. Arrays T1, T2, U
are assumed initially to be everywhere ⊥ and get populated as the adversary
assigns values to entries. A test of the form “If (not T1[X]) ... ” returns true
if T1[X] = ⊥, meaning has not yet been initialized. In response to the (single)
New∗ query of A, adversary Ag does nothing. Following that, its strategy is to
have the T1[·] values of level g nodes populated, not explicitly, but implicitly by
the keys in game DISTB,h created by the adversary’s own New queries, using
array U to keep track of the user index associated to a node. T1[·] values for nodes
at levels 1, . . . , g− 1 are random. At level g+ 1, the T1[·] values are obtained via
the adversary’s Fn oracle, and from then on via direct application of the cascade
h∗. One crucial point is that, if Ag does not know the T1[·] values at level g, how
does it respond to a length g query X with the right T2[·] value? This is where
the leakage enters, the response being the leakage provided by the New oracle.
The result is that for every g ∈ {1, . . . , `} we have

Pr[DISTB,h(Ag) | c = 1] = Pr[Hg−1] (14)

1− Pr[DISTB,h(Ag) | c = 0] = Pr[Hg] , (15)

where c is the challenge bit in game DISTB,h. Thus

Advprfh,Out(Ag) = Pr[DISTB,h(Ag) | c = 1]− (1− Pr[DISTB,h(Ag) | c = 0])

= Pr[Hg−1]− Pr[Hg] . (16)

16 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

This justifies Equation (9).

We now extend the above to the case where the first tier g of the 2-tier cascade
is a PRF rather than a random function. We will exploit PRF security of g
to reduce this to the prior case. Since the proof uses standard methods, it is
relegated to [3].

Theorem 3 Let K be a non-empty set. Let g: g.K×g.D→ K and h: K×h.D→
K be function families. Let Out: K → Out.R be an output transform. Let A be
the family of all functions with domain [[g.D, h.D]] and range K. Let A be an
adversary making exactly one query to its New oracle followed by at most q
queries to its Fn oracle, the second argument of each of the queries in the latter
case being a vector X ∈ [[g.D, h.D]] with 2 ≤ |X| ≤ ` + 1. The proof shows how
to construct adversaries Ah,Ag such that

AdvdistOut ◦A,Out ◦CSC[g,h](A) ≤ ` · Advprfh,Out(Ah) + 2Advprfg (Ag) . (17)

Adversary Ah makes at most q queries to its New oracle and at most q queries
to its Fn oracle. Adversary Ag makes one query to its New oracle and at most
q queries to its Fn oracle. The running time of both constructed adversaries is
about that of A plus the time for q` computations of h.

Multi-user security of 2-tier augmented cascade. We now want to
assess the multi-user security of a 2-tier augmented cascade. This means we
want to bound AdvdistOut ◦A,Out ◦CSC[g,h](A) with everything as in Theorem 3 above
except that A can now make any number u of New queries rather than just one.
We could do this easily by applying Lemma 1 to Theorem 3, resulting in a bound
that is u times the bound of Equation (17). We consider Theorem 4 below the
most interesting result of this section. It says one can do much better, and in
fact the bound for the multi-user case is not much different from that for the
single-user case.

Theorem 4 Let K be a non-empty set. Let g: g.K×g.D→ K and h: K×h.D→
K be function families. Let Out: K → Out.R be an output transform. Let A be
the family of all functions with domain [[g.D, h.D]] and range K. Let A be an
adversary making at most u queries to its New oracle and at most q queries to
its Fn oracle, the second argument of each of the queries in the latter case being
a vector X ∈ [[g.D, h.D]] with 2 ≤ |X| ≤ `+ 1. The proof shows how to construct
adversaries Ah,Ag such that

AdvdistOut ◦A,Out ◦CSC[g,h](A) ≤ ` · Advprfh,Out(Ah) + 2Advprfg (Ag) . (18)

Adversary Ah makes at most q queries to its New oracle and at most q queries
to its Fn oracle. Adversary Ag makes u queries to its New oracle and at most
q queries to its Fn oracle. The running time of both constructed adversaries is
about that of A plus the time for q` computations of h.

A comparison of Theorems 3 and 4 shows that the bound of Equation (18) is
the same as that of Equation (17). So where are we paying for u now not being

AMAC and its Multi-User Security 17

one? It is reflected only in the resources of adversary Ag, the latter in Theorem 4
making u queries to its New oracle rather than just one in Theorem 3.

The proof below showcases one of the advantages of the 2-tier cascade over
the basic single-tier one. Namely, by appropriate choice of instantiation of the
first tier, we can reduce multi-user security to single-user security in a modular
way. In this way we avoid re-entering the proofs above. Indeed, the ability to do
this is one of the main reasons we introduced the 2-tier cascade.

Proof (Theorem 4). Let D = [1..u]. Let r be the family of all functions with
domain D and range g.K. Let function family g: r.K× (D×g.D)→ K be defined
by g(f, (i, x)) = g(f(i), x). Let B be the family of all functions with domain
[[D × g.D, h.D]] and range K. The main observation is as follows. Suppose i ∈ D
and X ∈ [[g.D, h.D]]. Let Y ∈ [[D × g.D, h.D]] be defined by Y[1] = (i,X[1]) and
Y[j] = X[j] for 2 ≤ j ≤ |X|. Let f : D → g.K be a key for g. Then f(i) ∈ g.K is
a key for g, and

CSC[g, h](f,Y) = CSC[g, h](f(i),X) . (19)

Think of f(i) as the key for instance i. Then Equation (19) allows us to obtain
values of CSC[g, h] for different instances i ∈ D via values of CSC[g, h] on a
single instance with key f . This will allow us to reduce the multi-user security
of CSC[g, h] to the single-user security of CSC[g, h]. Theorem 3 will allow us to
measure the latter in terms of the prf security of h under leakage and the (plain)
prf security of g. The final step will be to measure the prf security of g in terms
of that of g.

Proceeding to the details, let adversary B be as follows:

Adversary BNew,Fn

New()

b′←$ANew∗,Fn∗
; Return b′

New∗()

Fn∗(i,X)

Y[1]← (i,X[1])
For j = 2, . . . , |X| do Y[j]← X[j]
Z ← Fn(1,Y) ; Return Z

Then we have

AdvdistOut ◦A,Out ◦CSC[g,h](A) = AdvdistOut ◦B,Out ◦CSC[g,h](B) (20)

≤ ` · Advprfh,Out(Ah) + 2Advprfg (Ag) (21)

Adversary B is allowed only one New query, and begins by making it so as to
initialize instance 1 in its game. It answers queries of A to its New oracle via
procedure New∗. Adversary A can make up to u queries to New∗, but, as the
absence of code for New∗ indicates, this procedure does nothing, meaning no
action is taken when A makes a New∗ query. When A queries its Fn oracle, B
answers via procedure Fn∗. The query consists of an instance index i with 1 ≤
i ≤ u and a vector X. Adversary B creates Y from X as described above. Namely
it modifies the first component of X to pre-pend i, so that Y[1] ∈ D × g.D is in
the domain of g. It leaves the rest of the components unchanged, and then calls
its own Fn oracle on vector Y ∈ [[D×g.D, h.D]]. The instance used is 1, regardless

18 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

of i, since B has only one instance active. The result Z of Fn is returned to A as
the answer to its query. Equation (20) is now justified by Equation (19), thinking
of f(i) as the key Ki chosen in game DISTOut ◦A,Out ◦CSC[g,h](A) where f is the
(single) key chosen in game DISTOut ◦B,Out ◦CSC[g,h](B). Theorem 3 applied to
g, h and adversary B provides the adversaries Ah,Ag of Equation (21).

Now consider adversary Ag defined as follows:

Adversary ANew,Fn
g

For i = 1, . . . , u do New()

b′←$ANew∗,Fn∗

g ; Return b′

New∗()

Fn∗(j,X)

(i, x)← X ; Y ← Fn(i, x)
Return Y

Adversary Ag begins by calling its New oracle u times to initialize u instances.
It then runs Ag, answering the latter’s oracle queries via procedures New∗,Fn∗.
By Theorem 3 we know that Ag makes only one New∗ query. In response the
procedure New∗ above does nothing. When Ag makes query j,X to Fn∗ we
know that j = 1 and X ∈ D × g.D. Procedure Fn∗ parses X as (i, x). It then
invokes its own Fn oracle with instance i and input x and returns the result Y
to Ag. We have

Advprfg (Ag) = Advprfg (Ag) . (22)

Equations (21) and (22) imply Equation (18).

One might ask why prove Theorem 4 for a 2-tier augmented cascade Out ◦
CSC[g, h] instead of a single tier one Out ◦ CSC[h, h]. Isn’t the latter the one
of ultimate interest in usage? We establish a more general result in Theorem 4
because it allows us to analyze AMAC itself by setting g to the dual of h [2], and
also for consistency with Theorem 3.

6 Framework for ideal-model cryptography

In Section 5 we reduced the (mu) security of the augmented cascade tightly
to the assumed mu prf security of the compression function under leakage. To
complete the story, we will, in Section 7, bound the mu prf security of an ideal
compression function under leakage and thence obtain concrete bounds for the
mu security of the augmented cascade in the same model. Additionally, we will
consider the same questions when the compression function is not directly ideal
but obtained via the Davies-Meyer transform on an ideal blockcipher, reflecting
the design in popular hash functions. If we gave separate, ad hoc definitions
for all these different constructions in different ideal models for different goals,
it would be a lot of definitions. Accordingly we introduce a general definition
of an ideal primitive (that may be of independent interest) and give a general
definition of PRF security of a function family with access to an instance of an
ideal primitive, both for the basic setting and the setting with leakage. A reader

AMAC and its Multi-User Security 19

Game PRFF,P(A)

v ← 0

c←$ {0, 1} ; P←$ P ; c′←$ANew,Fn,Prim

Return (c = c′)

New()

v ← v + 1

If (c = 1) then Fv←$ FPrim

Else Fv←$ A

Fn(i, x)

Return Fi(x)

Prim(x)

y ← P(x) ; Return y

Game PRFF,Out,P(A)

v ← 0

c←$ {0, 1};P←$ P; c′←$ANew,Fn,Prim

Return (c = c′)

New()

v ← v + 1 ; Kv←$ F.K

If (c = 1) then Fv ← FPrim(Kv, ·)
Else Fv←$ A

Return Out(Kv)

Fn(i, x)

Return Fi(x)

Prim(x)

y ← P(x) ; Return y

Fig. 3. Games defining prf security of function family F in the presence of an
ideal primitive P. In the basic (left) case there is no leakage, while in the extended
(right) case there is leakage represented by Out.

interested in our results on the mu prf security of ideal primitives can jump
ahead to Section 7 and refer back here as necessary.

Idealized cryptography. We define an ideal primitive to simply be a function
family P: P.K×P.D→ P.R. Below we will provide some examples but first let
us show how to lift security notions to idealized models using this definition by
considering the cases of interest to us, namely PRFs and PRFs under leakage.

An oracle function family F specifies for each function P in its oracle space
F.O a function family FP: F.K × F.D → F.R. We say F and ideal primitive P
are compatible if { P(KK, ·) : KK ∈ P.K } ⊆ F.O, meaning instances of P are
legitimate oracles for F. These represent constructs whose security we want to
measure in an idealized model represented by P.

We associate to F,P and adversary A the game PRF in the left of Fig. 3. In
this game, A is the family of all functions with domain F.D and range F.R. The
game begins by picking an instance P: P.D→ P.R of P at random. The function
P is provided as oracle to F and to A via procedure Prim. The game is in the
multi-user setting, and when c = 1 it selects a new instance Fv at random from
the function family FP. Otherwise it selects Fv to be a random function from
F.D to F.R. As usual a query i, x to Fn must satisfy 1 ≤ i ≤ v and x ∈ F.D. A
query to Prim must be in the set P.D. We let AdvprfF,P(A) = 2 Pr[PRFF,P(A)]−1
be the advantage of A.

We now extend this to allow leakage on the key. Let Out: F.K → Out.R be
a function with domain F.K and range Out.R. Game PRF on the right of Fig. 3

20 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

is now associated not only to F,P and an adversary A but also to Out. The
advantage of A is AdvprfF,Out,P(A) = 2 Pr[PRFF,Out,P(A)]− 1.

Capturing particular ideal models. The above framework allows us to
capture the random oracle model, ideal cipher model and many others as different
choices of the ideal primitive P. Not all of these are relevant to our paper but
we discuss them to illustrate how the framework captures known settings.

Let Y be a non-empty set. Let P.K be the set of all functions P: {0, 1}∗ → Y.
(Each function is represented in some canonical way, in this case for example
as a vector over Y of infinite length.) Let P: P.K × {0, 1}∗ → Y be defined by
P(P, x) = P(x). Then P←$ P is a random oracle with domain {0, 1}∗ and range
Y. In this case, an oracle function family compatible with P is simply a function
family in the random oracle model, and its prf security in the random oracle
model is measured by AdvprfF,P(A).

Similarly let P.K be the set of all functions P: {0, 1}∗×N→ {0, 1}∗ with the
property that |P(x, l)| = l for all (x, l) ∈ {0, 1}∗×N. Let P: P.K×({0, 1}∗×N)→
{0, 1}∗ be defined by P(P, (x, l)) = P(x, l). Then P←$ P is a variable output
length random oracle with domain {0, 1}∗ and range {0, 1}∗.

Let D be a non-empty set. To capture the single random permutation model,
let P.K be the set of all permutations π: D → D. Let P.D = D × {+,−}. Let
P.R = D. Define P(π, (x,+)) = π(x) and P(π, (y,−)) = π−1(y) for all π ∈ P.K
and all x, y ∈ D. An oracle for an instance P = P(π, ·) of P thus allows evaluation
of both π and π−1 on inputs of the caller’s choice.

Finally we show how to capture the ideal cipher model. If K,D are non-empty
sets, a function family E: K×D → D is a blockcipher if E(K, ·) is a permutation
on D for every K ∈ K, in which case E−1: K×D → D denotes the blockcipher in
which E−1(K, ·) is the inverse of the permutation E(K, ·) for all K ∈ K. Let P.K
be the set of all block ciphers E: K ×D → D. Let P.D = K ×D × {+,−}. Let
P.R = D. Define P(E, (K,X,+)) = E(K,X) and P(E, (K,Y,−)) = E−1(K,Y)
for all E ∈ P.K and all X,Y ∈ D. An oracle for an instance P = P(E, ·) of P
thus allows evaluation of both E and E−1 on inputs of the caller’s choice.

7 Security of the compression function under leakage

In Section 5 we reduced the (multi-user) security of the augmented cascade
tightly to the assumed multi-user prf security of the compression function under
leakage. To complete the story, we now study (bound) the multi-user prf secu-
rity of the compression function under leakage. This will be done assuming the
compression function is ideal. Combining these results with those of Section 5
we will get concrete bounds for the security of the augmented cascade for use in
applications, discussed in [3].

In the (leak-free) multi-user setting, it is well known that prf security of a
compression function decreases linearly in the number of users. We will show that
this is an extreme case, and as the amount of leakage increases, the multi-user prf
security degrades far more gracefully in the number of users (Theorem 6). This
(perhaps counterintuitive) phenomenon will turn out to be essential to obtain

AMAC and its Multi-User Security 21

AdvprfCF,F(B) AdvprfCF,Out,F(B)

su
qf
2c

qf
2c−r

mu, trivial
u(q + qf)

2c
u(q + qf)

2c−r

mu, dedicated
u2 + 2uqf

2c+1

u2 + 2uqf + 1

2c
+

3crqf
2c−r

Fig. 4. Upper bounds on prf advantage of an adversary B attacking an ideal
compression function mapping {0, 1}c × X to {0, 1}c. Left: Basic case, without
leakage. Right: With leakage Out being the truncation function that returns the first
r ≤ c bits of its output. First row: Single user security, qf is the number of queries to
the ideal compression function. Second row: Multi-user security as obtained trivially
by applying Lemma 1 to the su bound, u is the number of users. Third row: Multi-
user security as obtained by a dedicated analysis, with the bound in the leakage case
being from Theorem 6.

good bounds on augmented cascades. We begin below with an informal overview
of the bounds and why this phenomenon occurs.

Overview of bounds. The setting of an ideal compression function mapping
K × X → D is formally captured, in the framework of Section 6, by the ideal
primitive F: F.K × (K × X) → K defined as follows. Let F.K be the set of
all functions mapping K × X → K and let F(f, (K,X)) = f(K,X). Now, the
construction we are interested in is the simplest possible, namely the compression
function itself. Formally, again as per Section 6, this means we consider the oracle
function family CF whose oracle space CF.O consists of all functions f: K×X →
K, and with CFf = f.

For this overview we let K = {0, 1}c. We contrast the prf security of an ideal
compression function along two dimensions: (1) Number of users, meaning su or
mu, and (2) basic (no leakage) or with leakage. The bounds are summarized in
Fig. 4 and discussed below. When we say the (i, j) table entry we mean the row
i, column j entry of the table of Fig. 4.

First consider the basic (no leakage) case. We want to upper bound AdvprfCF,F(B)
for an adversary B making qf queries to the ideal compression function (oracle
Prim) and q queries to oracle Fn. In the su setting (one New query) it is easy
to see that the bound is the (1, 1) table entry. This is because a fairly standard
argument bounds the advantage by the probability that B makes a Prim query
containing the actual secret key K used to answer Fn queries. We refer to issuing
such a query as guessing the secret key K. Note that this probability is actually
independent of the number q of Fn queries and q does not figure in the bound.
Now move to the mu setting, and let B make u queries to its New oracle. Entry

22 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

(2,1) of the table is the trivial bound obtained via Lemma 1 applied with F1

being our ideal compression function and F0 a family of all functions, but one
has to be careful in applying the lemma. The subtle point is that adversary A1

built in Lemma 1 runs B but makes an additional q queries to Prim to compute
the function F1, so its advantage is the (1, 1) table entry with qf replaced by
qf +q. This term gets multiplied by u according to Equation (6), resulting in our
(1, 2) table entry. A closer look shows one can do a tad better: the bound of the
(1, 1) table entry extends with the caveat that a collisions between two different
keys also allows the adversary to distinguish. In other words, the advantage is
now bounded by the probability that B guesses any of the u keys K1, . . . ,Ku,
or that any two of these keys collide. This yields the (1, 3) entry of the table.
Either way, the (well known) salient point here is that the advantage in the mu
case is effectively u times the one in the su case.

We show that the growth of the advantage as a function of the number of
users becomes far more favorable when the adversary obtains some leakage about
the secret key under some function Out. For concreteness we take the leakage
function to be truncation to r bits, meaning Out = TRUNCr is the function
that returns the first r ≤ c bits of its input. (Theorem 6 will consider a general

Out.) Now we seek to bound AdvprfCF,Out,F(B). Now, given only TRUNCr(K) for a

secret key K, then there are only 2c−r candidate secret keys consistent with this
leakage, thus increasing the probability that the adversary can guess the secret
key. Consequently, the leakage-free bound from of the (1,1) entry generalizes to
the bound of the (2,1) entry. Moving to multiple users, the (2,2) entry represents
the naive bound obtained by applying Lemma 1. It is perhaps natural to expect
that this is best possible as in the no-leakage case. We however observe that this
is overly pessimistic. To this end, we exploit the following simple fact: Every
Prim query (K,X) made by B to the ideal compression function can only help
in guessing a key Ki such that Out(K) = Out(Ki). In particular, every Prim
query (K,X) has only roughly m · 2−(c−r) chance of guessing one of the u keys,
where m is the number of generated keys Ki such that Out(Ki) = K. A standard
balls-into-bins arguments (Lemma 5) can be used to infer that except with small
probability (e.g., 2−c), we always have m ≤ 2u/2r + 3cr for any K. Combining
these two facts yields our bound, which is the (3,2) entry of the table. Theorem 6
gives a more general result and the full proof. Note that if r = 0, i.e., nothing
is leaked, this is close to the bound of the (1,3) entry and the bound does grow
linearly with the number of users, but as r grows, the 3crqf·2−(c−r) term becomes
the leading one, and does not grow with u. We now proceed to the detailed proof
of the (3,2) entry.

Combinatorial preliminaries. Our statements below will depend on an ap-
propriate multi-collision probability of the output function Out: Out.D→ Out.R.
In particular, for any X1, . . . , Xu ∈ Out.R, we first define

µ(X1, . . . , Xu) = max
Y ∈Out.R

|{ i : Xi = Y }| ,

i.e., the number of occurrences of the most frequent value amongst X1, . . . , Xu.
In particular, this is an integer between 1 and u, and µ(X1, . . . , Xu) = 1 if all

AMAC and its Multi-User Security 23

elements are distinct, whereas µ(X1, . . . , Xu) = u if they are all equal. (Note
when u = 1 the function has value 1.) Then, the m-collision probability of Out
for u users is defined as

Pcoll
Out(u,m) = PrK1,...,Ku←$ Out.D [µ(Out(K1), . . . ,Out(Ku)) ≥ m] . (23)

We provide a bound on Pcoll
Out(u,m) for the case where Out(K), for a random K,

is close enough to uniform. (We stress that a combinatorial restriction on Out is
necessary for this probability to be small – it would be one if Out is the contant
function, for example.) To this end, denote

δ(Out) = SD(Out(K),R) =
1

2

∑
y∈Out.R

∣∣∣∣Pr[Out(K) = y]− 1

|Out.R|

∣∣∣∣ , (24)

i.e., the statistical distance between Out(K), where K is uniform on Out.D, and
a random variable R uniform on Out.R.

We will use the following lemma, which we prove using standard balls-into-
bins techniques. The proof is deferred to [3].

Lemma 5 (Multi-collision probability) Let Out : Out.D → Out.R, u ≥ 1,
and λ ≥ 0. Then, for any m ≤ u such that

m ≥ 2u

|Out.R|
+ λ ln |Out.R| , (25)

we have

Pcoll
Out(u,m) ≤ u · δ(Out) + exp(−λ/3) .

We stress that the factor 2 in Equation (25) can be omitted (one can use an
additive Chernoff bound when u is sufficiently large in the proof given below,
rather than a multiplicative one) at the cost of a less compact statement. As
this factor will not be crucial in the following, we keep this simpler variant.

For the analysis below, we also need to use a lower bound the number of
potential preimages of a given output. To this end, given Out: Out.D→ Out.R,
we define

ρ(Out) = min
y∈Out.R

∣∣Out−1(y)
∣∣ .

Security of ideal compression functions. The following theorem estab-
lishes the multi-user security under key-leakage of a random compression func-
tion. We stress that the bound here does not depend on the number of queries
the adversary B makes to oracle Fn. Also, the parameter m can be set arbitrar-
ily in the theorem statement for better flexibility, even though our applications
below will mostly use the parameters from Lemma 5.

Theorem 6 Let Out: K → Out.R. Then, for all m ≥ 1, and all adversaries B
making u queries to New, and qf queries to Prim,

AdvprfCF,Out,F(B) ≤ u2

2 |K|
+ Pcoll

Out(u,m) +
(m− 1) · qf
ρ(Out)

.

24 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

Game G0, G1

v ← 0

c′←$ BNew,Fn,Prim

Return (c′ = 1)

New()

v ← v + 1 ; Kv←$K
Return Out(Kv)

Prim(k, x)

if Tf[k, x] = ⊥ then

Tf[k, x]←$K
If ∃j : k = Kj and TFn[j, x] 6= ⊥ then

bad1 ← true

Tf[k, x]← TFn[j, x]

Return Tf[k, x]

Fn(i, x)

If TFn[i, x] = ⊥ then

TFn[i, x]←$K
If Tf[Ki, x] 6= ⊥ then

bad1 ← true

TFn[i, x]← Tf[Ki, x]

else if ∃j 6= i: Kj = Ki

and TFn[j, x] 6= ⊥ then

bad2 ← true

TFn[i, x]← TFn[j, x]

Return TFn[i, x]

Fig. 5. Games G0 and G1 in the proof of Theorem 6. The boxed assignment
statements are only executed in Game G1, but not in Game G0.

The statement could be rendered useless whenever ρ(Out) = 1 because a
single point has a single pre-image. We note here that Theorem 6 can easily be
generalized to use a “soft” version of ρ(Out) guaranteeing that the number of
preimages of a point is bounded from below by ρ(Out), except with some small
probability ε, at the cost of an extra additive term u·ε. This more general version
will not be necessary for our applications. We also note that it is unclear how to
use the average number of preimages of Out(K) in our proof.

Proof (Theorem 6). The first step of the proof involves two games, G0 and G1,
given in Fig. 5. Game G1 is semantically equivalent to PRFCF,Out,F with challenge
bit c = 1, except that we have modified the concrete syntax of the oracles. In
particular, the randomly sampled function f←$ F is now implemented via lazy
sampling, and the table entry Tf[k, x] contains the value of f(k, x) if it has been
queried. Otherwise, Tf is ⊥ on all entries which have not been set. Also, the
game keeps another table TFn such that TFn[i, x] contains the value returned
upon a query Fn(i, x). Note that the game enforces that any point in time, if
TFn[i, x] and Tf[Ki, x] are both set (i.e., they are not equal ⊥), then we also have
TFn[i, x] = Tf[Ki, x] and that, moreover, if Ki = Kj , then TFn[i, x] = TFn[j, x]
whenever both are not ⊥. Finally, whenever any of these entries is set for the
first time, then it is set to a fresh random value from K. This guarantees that
the combined behavior of the Fn and the Prim oracles are the same as in
PRFCF,Out,F for the case c = 1. Thus,

Pr[G1] = Pr[PRFCF,Out,F | c = 1] .

AMAC and its Multi-User Security 25

Game H0

v ← 0

c′←$ BNew,Fn,Prim

Return (∃j, x: Tf[Kj , x] 6= ⊥)

Game H1

v ← 0

c′←$ BNew,Fn,Prim

for i = 0 to v − 1 do

K′i←$ { k′ : Out(k′) = Yi }
Return (∃j, x: Tf[K

′
j , x] 6= ⊥)

New()

v ← v+1;Kv←$K;Yv ← Out(Kv)

Return Yv

Prim(k, x)

if Tf[k, x] = ⊥ then Tf[k, x]←$K
Return Tf[k, x]

Fn(i, x)

If TFn[i, x] = ⊥ then TFn[i, x]←$K
Return TFn[i, x]

Fig. 6. Games H0 and H1 in the proof of Theorem 6. Both games share the same
New, Prim, and Fn oracles, the only difference being the additional re-sampling of
the secret keys K′i in the main procedure of H1.

It is easier to see that in game G0, in contrast, the Prim and Fn oracles always
return random values, and thus, since we are checking whether c′ equals 1, rather
than c, we get Pr[G0] = 1− Pr[PRFCF,Out,F | c = 0], and consequently,

AdvprfCF,Out,F(B) = Pr[G1]− Pr[G0] .

Both games G0 and G1 also include two flags bad1 and bad2, initially false,
which can be set to true when specific events occur. In particular, bad1 is set
whenever one of the following two events happens: Either B queries Fn(i, x)
after querying Prim(Ki, x), or B queries Prim(Ki, x) after querying Fn(i, x).
Moreover, bad2 is set whenever B queries Fn(i, x) after Fn(j, x), Ki = Kj ,
and Prim(Ki, x) = Prim(Kj , x) was not queried earlier. (Note that if the latter
condition is not true, then bad1 has been set already.) It is immediate to see that
G0 and G1 are identical until bad1 ∨ bad2 is set. Therefore, by the fundamental
lemma of game playing [6],

AdvprfCF,Out,F(B) = Pr[G1]− Pr[G0] ≤ Pr[G0 sets bad1] + Pr[G0 sets bad2] . (26)

We immediately note that in order for bad2 to be set in G0, we must have
Ki = Kj for distinct i 6= j, i.e., two keys must collide. Since we know that at
most u calls are made to New, a simple Birthday bound yields

Pr[G0 sets bad2] ≤ u2

2 · |K|
. (27)

The rest of the proof thus deals with the more difficult problem of bounding
Pr[G0 sets bad1]. To simplify this task, we first introduce a new game, called H0

(cf. Fig. 6), which behaves as G0, except that it only checks at the end of the
game whether the bad event triggering bad1 has occurred during the interaction,
in which case the game outputs true. Note that we are relaxing this check a bit

26 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

further compared with G0, allowing it to succeed as long as a query to Prim of
form (Kj , x) for some j and some x was made, even if Fn(j, x) was never queried
before. Therefore,

Pr[G0 sets bad1] ≤ Pr[H0] . (28)

Note that in H0, the replies to all oracle calls made by B do not depend on
the keys K1,K2, . . . anymore, except for the leaked values Out(K1),Out(K2), . . .
returned by calls to New. We introduce a new and final game H1 which modifies
H0 by pushing the sampling of the actual key values as far as possible in the game:
That is, we first only gives values to B with the correct leakage distribution, and
in the final phase of H1, when computing the game output, we sample keys that
are consistent with this leakage. In other words, in the final check we replace the
keys K1,K2, . . . with freshly sampled key K ′1,K

′
2, . . ., which are uniform, under

the condition that Out(Ki) = Out(K ′i) = Yi.

It is not hard to see that Pr[H0] = Pr[H1]. This follows from two observations:
First, for every i, the joint distribution of (Ki, Yi = Out(Ki)) is identical to that
of (K ′i, Yi = Out(Ki)), since given Yi, both Ki and K ′i are uniformly distributed
over the set of pre-images of Yi. Second, the behavior of both H0 and H1, before
the final check to decide their outputs, only depends on values Yi = Out(Ki), and
not on the Ki’s. The actual keys Ki are only used for the final check, and since
the probability distributions of Ki and K ′i conditioned on Out(Yi) are identical,
then so are the probabilities of outputting true in games H0 and H1.

Thus, combining Equation (26), Equation (27), and Equation (28), we have

AdvprfCF,Out,F(B) ≤ u2

2 · |K|
+ Pr[H1] . (29)

We are left with computing an upper bound on Pr[H1]. For this purpose, denote
by S the set of pairs (k, x) on which Tf[k, x] 6= ⊥ after B outputs its bit c′ in
H1. Also, let Y be the multi-set {Y0, Y1, . . . , Yu−1} of values output by New to
B, and denote Y the resulting set obtained by removing repetitions. Note that
|S| ≤ qf and

∣∣Y∣∣ ≤ |Y| ≤ u, and the first inequality may be strict, since some
elements can be repeated due to collisions Out(Ki) = Out(Kj).

Asume that now S and Y are given and fixed. We proceed to compute the
probability that H1 outputs true conditioned on the event that S and Y have
been generated. For notational help, for every y ∈ Y, also denote

Sy = { (k, x) ∈ S : Out(k) = y } ,

and let qy = |Sy|. Also, let ny be the number of occurrence of y ∈ Y in Y. Note
that except with probability Pcoll(u,m), we have ny ≤ m− 1 for all y ∈ Y, and
thus

Pr[H1] ≤ Pr[∃y ∈ Y : ny ≥ m] + Pr[H1 | ∀y ∈ Y : ny < m]

= Pcoll
Out(u,m) + Pr[H1 | ∀y ∈ Y : ny < m] .

(30)

Therefore, let us assume we are given S and Y sich that ny ≤ m − 1 for all
y ∈ Y. Denote by Pr[H1 | S,Y] the probability that H1 outputs true conditioned
on the fact that this S and Y has been generated. Using the fact that the keys

AMAC and its Multi-User Security 27

K ′0,K
′
1, . . .K

′
u−1 are sampled independently of S, we compute

Pr[H1 | S,Y] = Pr[∃j, x : (K ′j , x) ∈ S] ≤
∑
y∈Y

qy · ny∣∣Out−1(y)
∣∣

≤ (m− 1) ·
∑
y∈Y

qy∣∣Out−1(y)
∣∣ ≤ m− 1

ρ(Out)

∑
y∈Y

qy ≤
(m− 1)qf
ρ(Out)

.

Since the bound holds for all such S and Y, we also have

Pr[H1 | ∀y ∈ Y : ny < m] ≤ (m− 1)qf
ρ(Out)

. (31)

The final bound follows by combining Equation (29), Equation (30), and Equa-
tion (31).

Security of the Davies-Meyer construction. One might object that
practical compression functions are not un-structured enough to be treated as
random because they are built from blockciphers via the Davies-Meyer con-
struction. Accordingly, in [3], we study the mu PRF security under leakage of
the Davies-Meyer construction with an ideal blockcipher and show that bounds
of the quality we have seen for a random compression function continue to hold.

8 Quantitative bounds for augmented cascades and
AMAC

We consider two instantiations of augmented cascades, one using bit trunca-
tion, the other using modular reduction. We give concrete bounds on the mu prf
security of these constructions in the ideal compression function model, combin-
ing results from above. This will give us good guidelines for a comparison with
existing constructions – such as NMAC and sponges – in [3].

Bit truncation. Let K = {0, 1}c, and Out = TRUNCr : {0, 1}c → {0, 1}r,
for r ≤ c, outputs the first r bits of its inputs, i.e., TRUNCr(X) = X[1..r].
Note that δ(TRUNCr) = 0, since omitting c− r bits does not affect uniformity,
and ρ(TRUNCr) = 2c−r, since every r-bit strings has 2c−r preimages. Then,
combining Lemma 5 with Theorem 6, using m = 2u/2r + 3cr, we obtain the
following corollary, denoting with Fc the ideal compression function for K =
{0, 1}c. (We do not specify X further, as it does not influence the statement.)

Corollary 7 For any c ≤ r, and all adversaries B making u queries to New and
qf queries to Prim,

AdvprfCF,TRUNCr,Fc
(B) ≤ u2

2c+1
+

2u · qf
2c

+
3cr · qf
2c−r

+ exp(−c) .

We can then use this result to obtain our bounds for the augmented cascade
ACSC[CF,CF,TRUNCr] when using an ideal compression function {0, 1}c×X →
{0, 1}c. The proof is in [3].

28 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

Theorem 8 (mu prf security for r-bit truncation) For any r ≤ n, and all
adversaries A making q queries to Fn consisting of vectors from X ∗ of length at
most `, qf queries to Prim, and u ≤ q queries to New,

AdvprfACSC[CF,CF,TRUNCr],Fc
(A) ≤ 5`2q2 + 3`qqf

2c
+

3cr` · (q`+ qf)

2c−r
+ ` exp(−c)

Modular reduction. Our second example becomes particularly important for
the application to the Ed25519 signature scheme.

Here, we let K = ZN , and consider the output function Out = MODM :
ZN → ZM for M ≤ N is such that MODM (X) = X mod M . (Note that as a
special case, we think of K = {0, 1}c here as Z2c .) We need the following two
properties of MODM , proved in [3].

Lemma 9 For all M ≤ N : (1) ρ(MODM) ≥ N
M − 1, (2) δ(MODM) ≤M/N .

Then, combining Lemma 5 and Lemma 9 with Theorem 6, using m =
2u/M + 3 lnN lnM , we obtain the following corollary, denoting with FN the
ideal compression function with K = ZN . (As above, we do not specify X fur-
ther, as it does not influence the statement.)

Corollary 10 For any M ≤ N/2, and all adversaries B making u queries to
New and qf queries to Prim,

AdvprfCF,MODM ,FN
(B) ≤ u2

2N
+
uM

N
+

4u · qf
N

+
6M lnN lnM · qf

N
+

1

N
.

This can once again be used to obtain the final analysis of the augmented
cascade using modular reduction. The proof is similar to that of Theorem 8 and
is deferred to [3].

Theorem 11 (mu prf security for modular reduction) For any M ≤ N/2,
and all adversaries A making q queries to Fn consisting of vectors from X ∗ of
length at most `, qf queries to Prim, and u ≤ q queries to New,

AdvprfACSC[CF,CF,MODM],FN
(A) ≤ 5`2q2 + 3`qqf

N

+
7M lnN lnM(`2q + `qf)

N
+

`

N
.

Bounds for AMAC. The above bounds are for augmented cascades, but they
can easily be adapted to AMAC, at the cost of adding an extra additive term,
which we now discuss. Recall that AMAC(K,M) = Out(H(K‖M)), where the
iterated hash function H is derived from a compression function h. We only
consider here the special case where the key K is completely handled by the
first compression function call of H (and is exactly a random element of X), and
the message is processed from the second call onwards. In other words, AMAC
is the 2-tier cascade with the first tier being the dual of h, meaning the key and

AMAC and its Multi-User Security 29

input roles are swapped. In particular, we can use Theorem 4, which would give
us a modified version of the above bounds with an additional additive term,
accounting 2Advprfg (Ag) for Ag as given in the reduction. This can easily be
upper bounded (using the dedicated mu bound from Fig. 4) as

2 · Advprfg (Ag) ≤
u2 + u(qf + q`)

|X |
≤ q2 + q(qf + q`)

|X |
.

Acknowledgments

Bellare was supported in part by NSF grants CNS-1526801 and CNS-1228890,
ERC Project ERCC FP7/615074 and a gift from Microsoft. Bernstein was sup-
ported in part by NSF grant CNS-1314919 and NWO grant 639.073.005. Tessaro
was supported in part by NSF grant CNS-1423566. This work was done in part
while Bellare and Tessaro were visiting the Simons Institute for the Theory of
Computing, supported by the Simons Foundation and by the DIMACS/Simons
Collaboration in Cryptography through NSF grant CNS-1523467. We thank the
Eurocrypt 2016 reviewers for their comments.

References

1. E. Andreeva, J. Daemen, B. Mennink, and G. V. Assche. Security of keyed sponge
constructions using a modular proof approach. In G. Leander, editor, FSE 2015,
volume 9054 of LNCS, pages 364–384. Springer, Heidelberg, Mar. 2015.

2. M. Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
602–619. Springer, Heidelberg, Aug. 2006.

3. M. Bellare, D. J. Bernstein, and S. Tessaro. Hash-function based PRFs: AMAC
and its multi-user security. Cryptology ePrint Archive, Report 2016/142, 2016.
https://eprint.iacr.org/.

4. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages
1–15. Springer, Heidelberg, Aug. 1996.

5. M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: The
cascade construction and its concrete security. In 37th FOCS, pages 514–523. IEEE
Computer Society Press, Oct. 1996.

6. M. Bellare and P. Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 409–426. Springer, Heidelberg, May / June 2006.

7. D. J. Bernstein. Extending the Salsa20 nonce. In Symmetric key encryption work-
shop (SKEW), February 2011. URL: https://cr.yp.to/papers.html#xsalsa.

8. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-
security signatures. In B. Preneel and T. Takagi, editors, CHES 2011, volume 6917
of LNCS, pages 124–142. Springer, Heidelberg, Sept. / Oct. 2011.

9. G. Bertoni, J. Daemen, M. Peeters, and G. Assche. On the security of the keyed
sponge construction. In Symmetric key encryption workshop (SKEW), February
2011.

30 Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro

10. N. Brown. Things that use Ed25519. http://ianix.com/pub/

ed25519-deployment.html.
11. D. Chang, M. Dworkin, S. Hong, J. Kelsey, and M. Nandi. A keyed sponge con-

struction with pseudorandomness in the standard model. In The Third SHA-3
Candidate Conference (March 2012), 2012.

12. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 430–448. Springer, Heidelberg, Aug. 2005.

13. I. Damg̊ard. A design principle for hash functions. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 416–427. Springer, Heidelberg, Aug.
1990.

14. Y. Dodis and K. Pietrzak. Leakage-resilient pseudorandom functions and side-
channel attacks on Feistel networks. In T. Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 21–40. Springer, Heidelberg, Aug. 2010.

15. S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In 49th FOCS,
pages 293–302. IEEE Computer Society Press, Oct. 2008.

16. P. Gaži, K. Pietrzak, and M. Rybár. The exact PRF-security of NMAC and HMAC.
In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 113–130. Springer, Heidelberg, Aug. 2014.

17. P. Gazi, K. Pietrzak, and S. Tessaro. The exact PRF security of truncation:
Tight bounds for keyed sponges and truncated CBC. In R. Gennaro and M. J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 368–387.
Springer, Heidelberg, Aug. 2015.

18. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, Oct. 1986.

19. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In
M. Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, Heidel-
berg, Feb. 2004.

20. B. Mennink, R. Reyhanitabar, and D. Vizár. Security of full-state keyed sponge
and duplex: Applications to authenticated encryption. In T. Iwata and J. H.
Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 465–489.
Springer, Heidelberg, Nov. / Dec. 2015.

21. R. C. Merkle. One way hash functions and DES. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 428–446. Springer, Heidelberg, Aug.
1990.

22. N. Mouha and A. Luykx. Multi-key security: The Even-Mansour construction
revisited. In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 209–223. Springer, Heidelberg, Aug. 2015.

23. E. D. Mulder, M. Hutter, M. E. Marson, and P. Pearson. Using Bleichenbacher’s
solution to the hidden number problem to attack nonce leaks in 384-bit ECDSA.
In G. Bertoni and J.-S. Coron, editors, CHES 2013, volume 8086 of LNCS, pages
435–452. Springer, Heidelberg, Aug. 2013.

24. B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In D. R. Stinson, editor, CRYPTO’93, volume 773 of LNCS,
pages 368–378. Springer, Heidelberg, Aug. 1994.

25. S. Tessaro. Optimally secure block ciphers from ideal primitives. In T. Iwata and
J. H. Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages
437–462. Springer, Heidelberg, Nov. / Dec. 2015.

