
On the Power of Hierarchical
Identity-Based Encryption

Mohammad Mahmoody? and Ameer Mohammed??

Abstract. We prove that there is no fully black-box construction of
collision-resistant hash functions (CRH) from hierarchical identity-based
encryption (HIBE) with arbitrary polynomial number of identity levels.
To the best of our knowledge this is the first limitation proved for HIBE.
As a corollary, we obtain a series of separations that are not directly
about HIBE or CRH but are interesting on their own right. Namely, we
show that primitives such as IBE and CCA-secure public-key encryp-
tion cannot be used in a black-box way to construct fully homomorphic
encryption or any primitive that implies CRH in a black-box way.

Our proof relies on the reconstruction paradigm of Gennaro and Trevisan
(FOCS 2000) and Haitner et al. (FOCS 2007) and extends their tech-
niques for one-way and trapdoor permutations to the setting of HIBE.
A main technical challenge in the proof of our separation stems from the
adaptivity of the HIBE adversary who is allowed to obtain keys for differ-
ent identities before she selects the attacked identity. Our main technical
contribution is to develop compression/reconstruction techniques that
can be achieved relative to such adaptive attackers.

Keywords: Hierarchical Identity-based Encryption, Collision Resistant
Hashing, Homomorphic Encryption, Black-Box Separations.

1 Introduction

Modern cryptography is based on well-defined hardness assumptions and formal
proofs of security. For example, a sequence [49,21,41,24,19,31,27,35,34] of fun-
damental work has led to constructions of private key encryption, pseudoran-
dom generators, pseudorandom functions and permutations, bit commitment,
and digital signatures solely based on the assumption that one-way function ex-
ists. On the other hand, cryptographic primitives such as public key encryption,
oblivious transfer, and key agreement that are perhaps more “structured” are
not known to be implied by one-way functions alone. The goal of founding cryp-
tography on minimal assumptions has led to an extensive study of the power
and limitation of cryptographic primitives. As a result, for every (newly intro-
duced) primitive P, researchers aim to answer two questions: (1) What are the
minimal computational assumptions necessary for constructing P? (2) What are
the power and limitation of P as a computational assumption? In particular,
what other cryptographic primitives could be constructed from P?

? University of Virginia, mohammad@cs.virginia.edu. Supported by NSF CAREER
award CCF-1350939.

?? University of Virginia, am8zv@virginia.edu. Supported by University of Kuwait.

Hierarchical identity-based encryption. In this work, we study the limitations
of the power of identity based encryption and its hierarchical variant as strong
forms of encryption. A traditional public-key encryption scheme allows Alice
to send messages to Bob privately over a public channel knowing only Bob’s
public key. An identity-based encryption scheme does not require Alice to know
a specific individual’s public-key and allows Alice to encrypt messages for Bob
by only knowing Bob’s identity and a single master public key that is the same
for all identities. A decryption key for Bob can also be generated using the
(single) master secret key and Bob’s (public) identity. The notion of IBE was
first proposed by Shamir [44]. Later on many papers did try to construct IBE
schemes (e.g., [33] presented an scheme with a rather slightly inefficient key
generation) but the first fully functional IBE was first constructed by Boneh
and Franklin [7] based on assumptions about bilinear maps.

A hierarchical identity based encryption scheme (see Definition 8) takes the
versatility of IBE to the next level: each identity’s decryption key can be con-
sidered as a master secret key on its own to generate decryption keys for “sub-
identities”. So as the name suggests it allows delegating encrypting power in a
hierarchy of identities. HIBE was first defined and constructed in [17,25] where
the security was based on the hardness of the Bilinear Diffie-Hellman problem
in the random oracle model. Later, Boneh and Boyen [4] proposed a more effi-
cient HIBE scheme in the standard (plain) model but only achieved selective-ID
security. This construction was further improved in [5], and in [1] Agrawal et al.
showed how to construct fully-secure efficient HIBE based on the learning with
errors (LWE) assumption [39].

It was shown by [6] that IBE can be used to obtain CCA secure public-
key encryption in a black-box way, and Gentry et al. [16] showed a perhaps
surprising application of IBE to garbling RAM programs. Canetti, Halevi, and
Katz [10] showed how to achieve forward-secure encryption scheme from IBE
and HIBE. More recently, Naor and Ziv [37] used HIBE in their construction of
Primary-Secondary-Resolver Membership Proof Systems. In this work, we study
the following question about HIBE as a cryptographic primitive/assumption:

What are the limitations of the power of IBE/HIBE? Namely, what
crypto primitives can or cannot be constructed from IBE/HIBE?

The Black-Box Framework. We study our main question in the black-box frame-
work of [28]. Impagliazzo and Rudich [28] were the first to develop such frame-
work which enabled the possibility of ruling out the existence of an important and
powerful class of reductions between primitives. The work of Reingold, Trevisan,
and Vadhan [40] formalized this framework further and established a taxonomy
for the field. Intuitively, many cryptographic constructions are black-box in the
sense that (1) the algorithm implementing the construction of Q uses another
cryptographic primitive P (e.g., one-way functions) only as an oracle, and (2)
the security reduction takes any adversary Adv who breaks QP as an oracle and
turns it into an attack against P. Black-box constructions are also considered
important due to their (typical) efficiency advantage over their non-black-box

counterparts. Following the work of [28] a sequence of results known as “black-
box separations” emerged in which limitation of the power of cryptographic
primitives are proved with respect to black-box constructions/reductions. In this
work we study the power of fully black-box reductions as defined in [40] which
is the most common form of black-box constructions used in cryptography.

1.1 Our Results

In this work we prove a black box separation result for hierarchical IBE which,
to the best of our knowledge, is the first such result. Namely, we show that there
is no fully black box construction of collision-resistant hash functions (CRH)
from HIBE schemes.

Theorem 1 (Main Theorem). There is no black-box construction of collision-
resistant hash functions from hierarchical identity-based encryption with an ar-
bitrary polynomial number of levels.

Separating homomorphic encryption from HIBE. A primary corollary of our
main theorem above is that HIBE does not imply fully homomorphic encryption
(FHE) in a black-box way. This follows from the result of Ishai, Kushilevitz,
and Ostrovsky [29], where they show that FHE implies (private-coin) CRH in
a black-box way. Note that while their result achieves only private-coin CRH,
which does not in general imply public-coin CRH [26], our separating oracle is
oblivious to whether the CRH is public-coin or not so the proof works either way.
Furthermore, Theorem 1 together with the result of [6] implies that CCA secure
public-key encryption does not imply CRH or FHE in a black-box way. Since
CCA-secure public key encryption can be constructed from trapdoor permuta-
tions one might think that this separation follows form the work of Haitner et al.
[23] who ruled out black-box constructions of CRH from trapdoor-permutations.
However the construction of CCA secure encryption from TDP is non-black-box
[36,42,30] due to its use of non-interactive zero knowledge proofs.1

The work of [29] provides several other primitives (than FHE) whose exis-
tence also implies CRH in a black-box way. These primitives include: one-round
private information retrieval (PIR) protocols as well as homomorphic one-way
commitments. As a direct corollary, our main theorem above extends to all these
primitives as well. Our separations also holds when the goal of the construction
is to achieve statistically hiding commitment schemes with o(n/ log n) round

1 We shall also note that even the techniques behind the proof of [23] do not seem
to extend to a separation of CCA secure encryption from TDPs, even though CCA
secure encryption could be constructed from TDP and random oracles [3]. The reason
is that the “collision finding oracle” (see Definition 9) of [45,23] prevents the random
TDP oracle from being independent of the other subroutines of the oracle to be used
as a random oracle.

HIBE

IBE

CCA-PKE

FHE

CRHF

O(n/log(n))xRound
Stat.xHidingx
Commitment

Black-Box

Claw-free
Permutations

PIR

Fig. 1: Our works shows that primitives on the left side do not imply any of the
primitives on the right side in a black-box way.

complexity (where n is the security parameter).2 However, for simplicity of the
presentation here we focus on the simpler primitive of CRH.

Previous separations regarding IBE. In this work we present the first black-box
separation for hierarchical IBE. However previous separations about IBE are
known. The work of Boneh et al. [8] proved that there is no black-box construc-
tion of IBE from trapdoor permutations. Furthermore, Goyal et al. [22] proved
the first limitation for IBE and separated it from fuzzy IBE schemes [43]. Our
techniques are quite different from those of [22]. At a high level, [22] uses a
random IBE oracle and aims at breaking any fuzzy IBE construction relative to
this oracle with only a polynomial number of queries to this oracle, while our
approach uses a random HIBE oracle together with the collision-finding oracle
of [45,23] (see Section 2.4). The challenging part of our proof is to show that
the random HIBE oracle remains secure in the presence of the collision-finding
oracle rather than finding a poly-query attack to break CRH of the oracle.

Comparison with [2]. A corollary of our Theorem 1 for the case of IBE could
be also derived [47] from the concurrent and independent beautiful work of [2].
Asharov and Segev [2] showed that there is no black-box construction of CRH
from indistinguishability obfuscation (iO) and one-way functions, even if the
iO primitive could be applied to OWF in a non-black-box way. Technically,
they prove this result using an oracle O with OWF and iO subroutines while
the iO sub-oracle could accept circuits with OWF gates in them. On the other
hand Waters [48] showed how to construct general (adaptively secure) functional
encryption [9] from iO and OWFs. Note that IBE (and not HIBE) is a special
case of functional encryption. The construction of [48] also uses OWF in a non-
black-box way but only for applying the iO to circuits with OWF gates, therefore

2 Statistically hiding commitment is known to be implied by CRH [12,35] and so
proving separation for statistically hiding commitment is stronger than a similar
result for CRH.

it can be implemented using the separating oracle of [2]. In other words, [2] shows
how to construct an oracle relative to which the functional encryption (and thus
IBE) construction of [48] exists, but relative to the same oracle no CRH is secure.

As we will describe below, our proof is quite different from that of [2] and
our compression techniques do not have a counterpart in [2]. While the result of
[2] handles richer class of functional encryption schemes beyond IBE, our result
extends to arbitrary levels of hierarchies.

1.2 Technical Overview

In this subsection we give an overview of our techniques in the proof of our main
theorem. Here we focus on the case of IBE (i.e., HIBE with one hierarchy) since
some of the main challenges already show up for the (adaptively secure) IBE,
and after resolving them we can scale the proof up easily with the number of
hierarchy levels.

We first need to recall tools and techniques from Haitner et al. [23] and [15]
which we use as building blocks in our proof. Our starting point for the proof of
Theorem 1 is the result of Haitner et al. [23] that separates CRH from trapdoor
permutations. In their separation, they employed an oracle O = (T, SamT) where
T is a random trapdoor permutation and SamT is (a variant of) the collision
finding oracle of Simon [45] (see Definition 9) which returns a collision (x, x′)
for any given input circuit C with T gates. It is easy to see that relative to O
there is no secure construction of CRH that only uses T gates. To derive the
separation it is enough to show that relative to O, T remains a secure TDP (see
Lemma 10 for a proof). The main technical argument in [23] was to show that
a random trapdoor permutation T remains secure in the presence of SamT . We
will sketch some components of this proof first, and then we will discuss how to
use these tools in addition to our new compression lemmas to prove our result.

Hardness of random permutations in the presense of Sam. The seminal work
of [14] showed that a random permutation π : {0, 1}n 7→ {0, 1}n is hard to in-
vert by introducing the compresson/reconstruction technique. For any supposed
adversary Aπ who inverts an 1/ poly(n) fraction of {0, 1}n, [14] showed how to
represent the permutation π with Ω(n) bits fewer than it is takes to represent a
random permutation. That would be sufficient to show that the probability that
π is “easy” for such A is at most exponentially small 2−Ω(n).3

The work of [23] extended the result of [14] by showing that the hardness of
random permutations π holds, even if we allow the adversary access the collision
finding oracle Samπ that takes as input any circuit C with π gates (that shrinks
its input) and returns a collision for it (chosen from a specific distribution). This
immediately implies a (fully) black-box separation for CRH from TDP since
for every black-box construction H it gives an oracle (π,Samπ) relative to which

3 In fact [15] achieves exponential compression and doubly exponentially small prob-
ability of success for a fixed A. This lets them do a union bound over all poly-sized
circuits A when π is chosen at random.

secure TDP exists (i.e., π) but the implementation H of CRH using π is insecure.
This is indeed sufficient to derive the fully black-box separation [40,18].

Extension to TDPs. [23] extended their result to trapdoor permutations using a
similar argument to that of [13] who also proved the hardness of random trapdoor
permutation as follows. Let T = (G,F, F−1) be a random trapdoor permutation
in which G is a random permutation over {0, 1}n, F [pk](·) is a random permu-
tation for every pk ∈ {0, 1}n and F−1[sk](·) be the inverse of F [pk](·) whenever

G(sk) = pk. Let A(T,SamT) be an adversary who inverts a random y under a ran-
dom public key pk with probability 1/ poly(n). Then A is implicitly doing either
of the following. Case 1: A finds sk = G−1(pk) for the given random pk. In this
case A has inverted the random permutation G. Case 2: A succeeds at finding
x = F−1[sk](y) without asking G(sk) = pk. Since A does not ask G(sk) = pk the
permutation F [pk](·) would be a random permutation inverted by A. In both
cases the existence of A leads to an efficient-query algorithm inverting random
permutations in the presence of Sam. However, as we saw this is impossible.

Beyond TDP: The Case of IBE and HIBE First, let us recall IBE in-
formally (see Definition 8 for a formal definition). An identity-based encryption
(IBE) scheme for security parameter n and messages {0, 1}n is defined using
PPTs (Setup,KeyGen,Enc, Dec):
– Setup(MSK) = MPK takes as input a random master secret key and gener-

ates the master public key MPK.
– KeyGen[MSK](id) = td generates a trapdoor td for a given identity id.
– Enc[MPK, id](x) = y encrypts x under identity id and outputs ciphertext y.
– Dec[MPK, id, td](y) = x decrypts y using the trapdoor td and gets back x.

Security variants. The basic CPA security of an IBE requires that no adversary
can distinguish between the encryptions of any two messages of his choice even if
he is allowed to choose the challenge identity id∗ of the encryption after getting
trapdoors for identities id 6= id∗ of his choice. Here we first focus on the basic
CPA security for IBE, but our full proof handles the stronger notion of CCA
secure IBE/HIBE. For simplicity in this exposition we assume that the IBE’s
adversary aims at decrypting a randomly selected message x (encrypted under
challenge identity id∗).4

As in the case of TDPs, here our goal is to design an oracle O = (U,SamU)
such that U implements IBE/HIBE in way that it remains secure even in the
presence of the SamU oracle. We first start by a direct generalization of the above
arguments to oracles with more than one level of trapdoor, and then will see what
aspects of the security of IBE will require us to change our oracle and the proof
of hardness accordingly. Our first try is to use hierarchical random trapdoor
permutations to implement, but to prove the full fledged adaptive security of
IBE/HIBE we will change this oracle to use injective random functions.

4 By the Goldreich Levin lemma [20] these two notions of security are equivalent in a
black-box way.

Hierarchical random permutations. We first use a direct adaptation from random
TDPs to implement our IBE oracle. Let U = (S,G, F, F−1) be an oracle that we
call a “random IBE oracle” defined and used as follows. S implements the setup
and is a random permutation over {0, 1}n that maps master secret key MSK to
master public key MPK. G[MSK](·) implements the trapdoor generation and is a
random permutation over {0, 1}n that maps identities to their trapdoor. Finally
F [MPK, id](·) and F−1[MPK, td]) are random permutations over {0, 1}n that
are used for encryption and decryption.

Our goal here would be to show that any adversary A who breaks the IBE
implemented by U by accessing O = (U,SamU) will be forced to invert some
random permutation (to derive the contradiction). Let us list the possible cases
through which an adversary can win the security game:

– Case 1: A finds MSK = S−1(MPK).
– Case 2: A does not find MSK, but it finds the trapdoor td∗ for id∗.
– Case 3: A does not find the trapdoor for identity id∗, but it still manages

to invert the challenge ciphertext y.

Problem with Case 2: adaptivity of adversary. Similarly to the case of random
TDP, Case 1 and Case 3 will imply that A is indeed inverting a random
permutation, which can only happen with negligible probability. However, Case
2 does not imply so for two reasons:

1. While inverting id∗ to find its trapdoor, the adversary A is allowed to obtain
trapdoors td 6= td∗ for other identities id 6= id∗.

2. The adversary gets to choose id∗ as opposed to being given a random one.

In the following we will show how to resolve the two issues above. First we
will ignore the second issue above by working with a weaker security definition
for IBE in which the adversary does not choose id∗ but rather is given a random
one (but still gets to ask the trapdoor for other identities). And then we will
describe our new oracle to handle both issues above.

Attacks against random challenge identity. Note that we are focusing on the

scenario in which the adversary AU,Sam
U

breaks the IBE by causing Case 2 to
occur with non-negligible probability. We are also assuming, for now, that the
adversary does not choose an identity of his choice, bur rather finds the trapdoor
of a random identity. Our goal is to reduce this case to when (a variant of) A
is essentially inverting a random permutation using Sam oracle. Think of the
permutation G−1[MPK](·) as the inverse of G[MSK]. It can be verified that
when A succeeds in Case 2, it is in fact inverting G−1 on a random point while
he is able to ask some “inversion queries” to G−1 before “inverting” the random
challenge id∗ on its own.

To rule out successful attackers against random challenge identity we gener-
alize the results of [14] for hardness of random permutations π to the setting in
which the adversary is allowed to ask inversion queries to π−1(·) in addition to
direct queries to π(·). Namely, we show that a random permutation, is adaptively
one-way [38] even in the presence of the Sam oracle.

Lemma 2 (Informal: Adaptive/CCA hardness of random permuta-
tions in the presence of Sam). For any permutation π over {0, 1}n, define
O = (π, π−1) to be an oracle giving access to π in both directions. Let A be a
poly(n)-query circuit that accepts a challenge y∗ ∈ {0, 1}n and whose goal is to
find x = π−1(y∗) using O while all queries to O are allowed except for π−1(y∗).
Then, with overwhelming probability over the choice of random permutation π it
holds that: the probability of success for A is negligible, even if it is allowed to
call the SamO oracle.

We show that the argument of [15] for the case of “basic” (i.e., non-CCA)
attackers does indeed extend to the CCA setting described in Lemma 2. We

also show that the Sam(π,π−1) oracle will not help the attacker much, using the
techniques of [23] (see Section 3 for a proof of this more general setting and the
full version of this paper [32] for a simpler variant restricted to the setting where
Sam oracle does not exist.)

Fully adaptive attacks. The most challenging aspect of our proof for handling
general IBE attacks stems from the fact that here the adversary is allowed to
choose the challenge identity. Note that such an adversary does not necessarily
invert a “randomly sampled” identity id∗ to win according to Case 2, and it has
has full control over id∗. Unfortunately, we are not able to prove a variant of
Lemma 2 in which the adversary chooses y∗ itself since as soon as we sample
and fix the permutation π, there is always a trivial adversary whose description
depends on π and “knows” a pair π(x) = y (through non-uniformity) and that
proposes y as the challenge and inverts it!

Compression Amplification. The way we can rule out such attacks in the context
of IBE/HIBE (for Case 2) is by relying on the fact that the adversary needs to
succeed for a randomly given master public-key out of his choice. The idea is
that even though one cannot prove a strong hardness of inverting π when the
adversary chooses the inversion point y, we can still compress the description of
π by ≈ Ω(n) bits. Even though the above compression for the oracle achieved
in Case 2 as described above is quite small (i.e., Ω(n) as opposed to the needed
2Ω(n) bits of compression) we show how to amplify this compression for our
random IBE oracle. The key point is that the adversary A who has 1/ poly(n)
chance of winning in Case 2 is still winning in Case 2 for 2n/poly(n) number of
the master public keys given to him. As a result, we achieve Ω(n) · 2n/ poly(n)
bits of compression on the total representation of the random IBE oracle, which
is sufficient to derive its hardness against poly-size (oracle-aided) circuits.

Using random injective functions for trapdoor generation. A seemingly minor
technical obstacle against our compression amplification argument sketched in
the previous paragraph is that we need to represent the key (MPK or MSK) for
each of the sub-oracles G[MSK](·) for which we achieve Ω(n) bits of compres-
sion, so that we can reconstruct the full oracle (S,G, F, F−1). Unfortunately, if

we do so, we will lose all the (little) compression that we could achieve for repre-
sentation of G[MSK](·) (for many MSKs). To resolve this issue, we use random
injective functions with large image length to generate the identity trapdoors.
This enables us to gain compression for representation of each G[MSK](·) over
which the attacker succeeds in finding matching G[MSK](id∗) = td∗ even if we
explicitly represent the corresponding MSK. We formally state and prove this
simple, yet useful building block of our compression argument (when there is
no Sam oracle) in the full version [32], which we will invoke when we switch to
using injective functions for generating identity trapdoors.

Extension to HIBE. Our proof sketched above scales well with the number of
identity hierarchies. We will do so by expanding Case 2 of the analysis into many
more subcases corresponding to each level. However, the fundamental difference
between the first (master key general) and last (encryption/decryption) levels
compared to other levels (generating identity trapdoors) remain different and is
handled as described above using injective functions with long output.

Comparison to [11]. At an abstract level, our compression amplification tech-
nique described above allows us to achieve exponential compression for primitives
that are of the “family” form (here we are interpreting the MPK as an index
over which the (sub) primitive and the attack are launched) and can potentially
be applied to more applications. In particular, we conjecture that our technique
could give an alternative approach to that of Chung et al [11] whose goal was to
show how to achieve hardness against non-uniform attackers (circuits) when the
primitive is of the “family” form. [11] achieved this by employing an informa-
tion theoretic lemma by Unruh [46], while our approach uses the compression
technique of [15].

2 Preliminaries

For any n ∈ N, let Πn be a family of permutations where π ← Πn is a random
permutation mapping {0, 1}n to {0, 1}n. Furthermore, let Fn,m be a family of
injective functions where f ← Fn,m is random injective function mapping {0, 1}n
to {0, 1}m. For a set S by x← S we refer to the process of sampling x uniformly
at random from S. We use [i..j] for {i, . . . , j} and [N] for [1..N].

2.1 Black-Box Constructions

We use the following definition of black-box constructions due to Reingold et al.
[40]. Unless specified otherwise, in this work we use the terms black-box and
fully black-box equivalently.

Definition 3. [Fully black-box constructions [40]] A fully black-box construc-
tion of a primitive Q from a primitive P consists of two PPT algorithms (Q,S):

1. Implementation: For any oracle P that implements P, QP implements Q.

2. For any oracle P implementing P and for any oracle adversary A successfully
breaking the security of QP , it holds that SP,A breaks the security of P .

Even though the notion above was formalized in [40], the original work of
Impagliazzo and Rudich were the first to note that black-box constructions “rel-
ativize”; namely they hold relative to any oracle. Thus to rule out black-box
constructions it is sufficient to rule out relativizing constructions. The following
argument has its roots in the work of Gertner et al. [18] and is a strengthening
of this argument. Informally speaking it asserts that it is enough to choose the
separating oracle after (and based on) a candidate construction. Another inter-
pretation of this technique is known as the two-oracle technique of Hsiao and
Reyzin [26]. Here we describe this lemma and prove it for sake of completeness.
This lemma is implicitly used in the work of Haitner et al. [23]. Here we abstract
out this lemma and use it in our proof of Section 3.

Lemma 4. For any primitives P and Q let O = (O1, O2) be a randomized oracle
with two subroutines such that:

1. Primitive P could be implemented using (any sample for) the first part O1.
2. Any fixed (computationally unbounded) poly(n)-query adversary B who could

call both of O1 or O2 could break the implementation of P relative to O1 with
probability negl(n) where n is the security parameter. This probability is over
the selection of O as well as attacker B.

3. For any implementation Q of Q that only calls O1 there is a poly(n)-query
attacker A who breaks QO1 with probability ≥ 1− 1/n2 where the probability
is over O and the attacker A.

Then there is no fully black-box construction of Q from P.

Breaking a primitive could mean different thing for different primitives, but
in this paper we deal with Q being CRH whose attackers have to find collisions
with non-negligible probability.

Proof. For sake of contradiction, suppose (Q,S) is a fully black-box construction
of Q from P. Sample O = (O1, O2) and use the implementation of P that exists
relative to O1 to get implementation QO1 of Q, and let A be the attacker who
breaks this scheme (whose existence is guaranteed by the property 3 of O). Since
A succeeds with probability 1 − 1/n2 and

∑
n 1/n2 = O(1) by Borel-Cantelli

lemma, with measure one over the choice of O, A succeeds for an infinite set of
security parameters. We call such A a good adversary relative to O.

Now, consider SP,A where P is the implementation of P using O1 and A is
the above adversary. By the definition of fully black-box constructions, for any
sampled O such that A is a good adversary relative to O, SP,A will break PO1

also for an infinite sequence of security parameters. Therefore, with measure one
over the choice of O, SP,A will break PO1 for an infinite sequence of security
parameters. But we will show below that this cannot happen.

Let us “merge” the algorithm A into S and consider BO = (SA)O as a new
poly(n)-query attacker who calls O and tries to break PO1 directly. By property

2 of O, this attacker would have negl(n) chance of doing so. By an averaging
argument, for each fixed security parameter, with probability 1 − negl(n) ≥
1 − 1/n2 over the choice of O it holds that BO breaks PO1 with probability at
most negl(n) = α(n). By another application of Borel-Cantelli lemma, it follows
that with measure one over the choice of O it holds that: the number of security
parameters for which BO = (SA)O breaks PO1 with probability more than α(n)
is finite, which is a contradiction.

2.2 Collision-resistant Hash Functions

In this work we define collision-resistant hash functions only for those that shrink
their input by a factor of two. It is well known that any CRH with only one bit
of shrinkage could be turned into one defined below. We use this definition as it
simplifies some of the arguments needed for the separation.

Definition 5. For m = poly(n), a collision resistant hash function H = {h |
h : {0, 1}m×{0, 1}n 7→ {0, 1}n/2} is a family of functions such that for any PPT
adversary A there is a negligible function ε(n) such that:

Pr
d←{0,1}m

[A(d) = (x1, x2) ∈ {0, 1}2n ∧ x1 6= x2 ∧ hd(x1) = hd(x2)] ≤ ε(n).

where hd(x) = h(d, x).

2.3 Hierarchical Identity-Based Encryption

Definition 6 (Identity vector). For i ≥ 0, an i-level identity vector IDi =
〈id0, ..., idi〉 is a tuple of i identities, where idj ∈ {0, 1}∗ ∀ j ∈ [0, i]. Furthermore,
the corresponding private-key for identity vector IDi is given as tdIDi . If i < 0,
we let IDi = ε, the empty vector.

Definition 7 (Prefix vector). We define a prefix vector for identity vector
IDi = 〈id0, ..., idi〉 as any tuple 〈s0, ..., sj〉 such that j ≤ i and sk = idk for
0 ≤ k ≤ j. We denote the set of all prefix vectors of IDi as pre(IDi).

Definition 8 (Hierarchical identity-based encryption [25]). Given se-
curity parameter n, an l-depth hierarchical identity-based encryption (l-HIBE)
scheme for messages in M and ciphertext space C consists of l + 3 PPT algo-
rithms (Setup, {KeyGeni}li=1,Enc,Dec) defined as follows. (For simplicity and
without loss of generality we assume that n is the security parameter as well as
the length of the master secret and public keys.)
– Setup(1n) takes as input security parameter n and outputs a pair of keys

(MSK,MPK) ∈ {0, 1}n×{0, 1}n. We let ID0 = 〈id0〉 = 〈MPK〉 and tdID0
=

〈td0〉 = MSK.
– For i ∈ [1, l],KeyGeni(IDi−1, tdIDi−1

, idi) takes as input the parent iden-
tity vector IDi−1, the corresponding private-key tdIDi−1 and identity idi then
outputs the corresponding i-level private key vector tdIDi .

5

5 Note that we define a key generation algorithm for each level (as opposed to a single
algorithm) in order to simplify our HIBE construction using our ideal oracle.

– Enc(IDl, x) takes as input the full public identity vector IDl, and a message
x ∈M, and outputs ciphertext y ∈ C.6

– Dec(IDl, tdIDl
, y) takes as input the identity vector IDl, a corresponding

private-key vector tdIDl
, and ciphertext y ∈ C, and it returns the message

x ∈M.

Correctness: Given any (MSK,MPK)← Setup(1n), an HIBE scheme must sat-
isfy Dec(IDl, tdIDl

,Enc(IDl, x)) = x for all x ∈ M and all (IDl, tdIDl
) where

tdIDl
is the corresponding private-key of IDl = 〈MPK, id1, ..., idl〉, the identity

vector obtained through an iterative call to KeyGeni.

Security: An HIBE scheme is said to be CCA secure if for all adaptive PPT
adversaries A:

Pr[CCAHIBE
A (1n) = 1] ≤ 1

2
+ negl(n)

where CCAHIBE
A is shown in Figure 2. In Step 2, A can adaptively ask key

generation queries for IDi to oracle HMSK which returns tdIDi
, the private-key

associated with this identity vector, by recursively applying the key generation
procedure KeyGeni(IDi−1, tdIDi−1 , idi) = tdIDi given that tdID0 = MSK. Its cho-

sen identity IDA
l must not be asked as a query to HMSK. Furthermore, A can

adaptively ask decryption queries DMSK(IDl, c) to decrypt ciphertext c ∈ C with
respect to any identity IDl. In Step 4, A can still issue queries to HMSK but only
for identities IDi that are not in pre(IDA

l), and it can still issue queries to DMSK

but not for inputs (IDA
l , c), where c is the challenge ciphertext.

Experiment CCAHIBE
A (1n):

1. (MSK,MPK)← Setup(1n)
2. (x0, x1, ID

A
l)← AHMSK(.),DMSK(.,.)(MPK)

3. c← Enc(IDA
l , xb) where b

$←− {0, 1}
4. b′ ← AHMSK(.),DMSK(.,.)(c)
5. Output (b = b′)

Fig. 2: The CCAHIBE
A Experiment

Note that, for l = 0, this reduces to a standard CCA secure public-key en-
cryption system, and for l = 1 this reduces to a CCA-secure IBE scheme.

Definitional Variations: The standard CCA security of HIBE as given in
the previous definition can be weakened in multiple ways. We present here some
variations of the security definition that we might refer to later, noting only the
differences from the original definition.

6 Some of the subsequent definitions of HIBE use a more general definition in which
one can encrypt messages under partial identity vectors IDi = 〈id0, ..., idi〉 of depth
i < `. Our impossibility result directly extends to this more general setting as well.
However, for sake of simplicity here we focus on the original definition of [25].

– CPA (resp. CCA1): The adversary’s capabilities are limited to chosen plain-
text (resp. non-adaptive chosen ciphertext) attacks.

– rID-CCA/rID-CPA: Instead of having the adversary choose IDA
l , the target

identity will be chosen uniformly at random by the challenger and provided
to the adversary along with MPK.

– OW-CCA/OW-CPA: Instead of distinguishing between two ciphertexts, the
goals of the adversary here is to “invert” the given challenge ciphertext and
find the corresponding (randomly selected) message. These notions could be
combined into notions like OW-rID-CPA, OW-CCA, etc.

Black-box construction of HIBE. The definition of a black-box construction of
CRH from HIBE could be derived from Definition 3 and Definition 8.

2.4 Collision Finding (Sam) Oracle

In this section, we define the collision finding oracle Sam of [45,23]. Roughly
speaking and in its simplest form, Sam is a (possibly inefficient) algorithm that
accepts some description of a circuit C and outputs (x, x′), both uniformly dis-
tributed, such that C(x) = C(x′). This oracle was originally introduced by Simon
[45] and then was extended into the nested Sam oracle of Haitner et al. [23].7

Definition 9 (Collision-finding oracle [45,23]). For any arbitrary oracle O,
the algorithm SamO

r (C) for C with input length n samples a uniformly random
x ∈ {0, 1}n and then (after sampling x) samples another uniformly random point
x′ conditioned on C(x) = C(x′).8 It then returns (x, x′). Note that this oracle
is randomized but the randomness rC is independent for each circuit C (and is
sampled only once). The randomness of Sam for each query is provided by the
randomized function r(C) = rC that for each circuit query C provides a random
point in the inputs of C as well as a random permutation over the input space of
C. The first is used to sample x and then the random permutation is enumerated
till we get a collision x′.

It is easy to see that using Sam one can efficiently find collisions for any circuit
C whose output length m is smaller than its input length n. Specifically, if n > m
then one guarantees the existence of some pair (x, x′) such that C(x) = C(x′)
(i.e., a collision), which results in Sam successfully returning such a pair. The
following lemma provides a general tool to use Sam for separating primitives
from CRH.

7 In this work we focus on using the simpler collision finding oracle that is not inter-
active. However, all of our separation results hold with respect to the stronger Sam
oracle of “low” (i.e., o(n/ logn)) as well. We refer the proof for the more general case
to the full version [32] of the paper.

8 Note that the returned “collision” (x, x′) is not necessarily distributed like a uni-
formly sampled collision from all possible collisions.

Lemma 10. Let P be any primitive and Q represent the collision-resistant hash
function primitive. Let U = (O,SamO) be a randomized oracle with two subrou-
tines such that: (1) Primitive P could be implemented using O. (2) Any fixed
(even computationally unbounded) poly(n)-query adversary B who could call both
of O and SamO could break the implementation of P relative to O with proba-
bility negl(n) where n is the security parameter. Then there is no fully black-box
construction of collision-resistant hash functions from P.

Proof. The lemma almost directly follows from Lemma 4; we just have to prove
the third property needed by Lemma 4. In fact, for any implementationQ of CRH
that only calls O there is a 1-query attacker A who breaks QO with probability
1 − negl(n). All A does is to take d as the index of hash function, turn hd(·)
into a poly(n)-size circuit C with input length n, and call SamO over C and
outputs the result. It is easy to see that since h is shrinking its input by a factor
of two, with 1− negl(n) probability over the first sampled point x1, the number
of “siblings” of x1 relative to the function hd(·) are exponentially large, and
therefore the two colliding points (x1, x2) returned by SamO will be different
points with probability 1− negl(n).

3 Separating Hierarchical IBE from Collision Resistant
Hashing

In this section we will formally prove our main Theorem 1. Namely, we will
prove that there exists no fully black-box construction of collision-resistant hash
functions from l-level hierarchical identity-based encryption for any polynomial
l = poly(n).

Theorem 11. For any security parameter n and an arbitrary polynomial num-
ber of levels ` = poly(n) there is no fully black-box construction of collision-
resistant hash functions from `-level OW-CCA secure hierarchical identity-based
encryption scheme.

Corollary of Theorem 11. The above theorem, together with the result of Boneh
et al. [6] shows the separation of (standard) CCA-secure HIBE from CRH. In
particular, we apply Theorem 11 for `+ 1 levels of identity with one-way CCA
security (in fact one-way CPA also suffices). Then using Goldreich-Levin lemma
and bit-by-bit encryption, we can achieve CPA security as a black-box, and the
result of [6] gives us an CCA secure HIBE for ` levels of identity relative to the
same oracle.

To prove Theorem 11, we will state and use the following claim, which shows
the existence of a separating oracle for which a secure implementation of a hier-
archical IBE exists.

Claim 12. There exists a randomized oracle U = (O,SamO) such that the fol-
lowing holds:

1. An implementation P of OW-CCA-secure l-HIBE exists relative to O.
2. Any poly(n)-query adversary A with access to U can break P only with neg-

ligible probability.

Proof (of Theorem 11). Using Claim 12, we can assume the existence of oracle
U = (O,SamO) for which OW-CCA-secure l-HIBE exists. Since such an oracle
exists, an immediate application of Lemma 10 yields that there is no black-box
construction of collision-resistant hash functions from OW-CCA-secure l-HIBE.

We now dedicate the rest of this section to proving Claim 12. We first
start in Section 3.1 by giving a formal description of the first subroutine O
of our separating oracle, which represents an (idealized) random hierarchical
trapdoor injective function, so that we will later use it to implement HIBE in
Section 3.2. The proof proper starts in Section 3.3 where we will use the ran-
domized oracle U = (O,SamO) such that (1) a OW-CCA-secure l-level HIBE
implementation exists relative to O, and (2) the HIBE implementation remains
secure against any poly(n)-query computationally unbounded adversary even
after adding SamO.

3.1 Description of Oracle O

In this section, we describe the distribution of our oracle O, which will be used
to show that with overwhelming probability over the choice of this oracle, `-
level OW-CCA HIBE exists relative to it. In the following definition we will use
our notation of identity vectors as defined in Definition 6 but, for simplicity of
presentation, all of our identities will be strings of length n. Our proof can be di-
rectly extended to handle the case of unbounded-length identities as well, but for
sake of the simplicity of the presentation we focus on the case of bounded-length
identities; see the full version of this paper [32] for a sketch of the modifications
needed for the case of unbounded identity lengths.

Note about notation. In definition below, we use several functions as part of the
oracle. The inverse of some of these functions are also involved in the definition
of these functions (in a recursive way). So we will define (injective) functions

like f−1(·) and then subsequently use f(·) for f−1
−1

(·). Also, for the sake of
clarity and separating actual inputs from indices, we use the notation of f [x](y)
to denote f(x, y) if we envision x as the index (or key) and y as the actual input.

Definition 13 (Random Hierarchical Trapdoor Injective Functions).
For any security parameter integer n ∈ N and number of hierarchies ` = `(n),
let m = 10n · `. Our random hierarchical injective function oracle On consists of
2`+3 subroutines: {h−10 , g1, h

−1
1 , . . . , g`+1, h

−1
`+1} distributed as follows. (Although

functions hi(·) are not publicly available as subroutines of O we still use them
to describe the subroutines of O more easily.)
– The key generation oracle h−10 (·) := S(·), the encryption oracle h−1`+1[ID`](·)

:= F [ID`](·) and the decryption oracle g`+1[ID`−1, td`](·) := F−1[ID`](·) are
random permutations over {0, 1}n.

– For i ∈ [1..`], and index IDi−1 = (MPK, id1, . . . , idi−1) ∈ {0, 1}i·n, let
hi[IDi−1](·) : {0, 1}n 7→ {0, 1}m be a random injective function. We define
h−1i [IDi−1](tdi) = idi if hi[IDi−1](idi) = tdi for some idi ∈ {0, 1}n and we
define h−1i [IDi−1](tdi) = ⊥ if no such idi exists.

– For i ∈ [1..`] and (IDi−2, tdi−1) ∈ {0, 1}(i−1)n+m function gi[IDi−2, tdi−1](·) :
{0, 1}n 7→ {0, 1}m is defined as follow: For given input idi, if we have
h−1i−1[IDi−2](tdi−1) = idi−1 for some idi−1 6= ⊥, then gi[IDi−2, tdi−1](idi) =
hi[IDi−1](idi). If no such idi−1 exists, then gi[IDi−2, tdi−1](idi) = ⊥.

Our actual oracle (for applying Lemma 10) will be (O,SamO) where O is
sampled from the distribution of the oracles of Definition 13, and SamO is the
Sam oracle as defined in Section 2.4 where the input circuits to SamO are allowed
to have O-gates.

3.2 Implementing `-level HIBE Using Oracle O

Here we show how to use the oracle O of Definition 13 to implement `-level
HIBE. Then we will turn into proving the security which is the main part of
the proof. Although the security of the sampled O is intuitive, due to the fully
random nature of the permutations used in the implementation, since our actual
oracle also has SamO attached to it, the proof of security becomes nontrivial.

Intuition. We use the subroutine h−10 (·) to generate the master public key. We
use gi(·) to generate the ID’s of the i’th layer, and we use h−1`+1(·) to encrypt and
g`+1(·) to decrypt. Therefore, for sake of clarity of the presentation, we will use
the following alternative names for the subroutines of the first and last layers:
h−10 (·) = S(·), h−1`+1· = F ·, g`+1· = F−1·. We will also treat the
master public key as the identity of level zero, the ciphertexts as identity of the
level `+ 1, and the plaintexts as the trapdoors of the level `+ 1.

Note that we elected to use random trapdoor injective functions to represent
h−1i . in O as opposed to using random trapdoor permutations as one would
first naturally assume. This is to prevent the adversary from trivially breaking
the scheme using a call to the h−1i . subroutines. Specifically, if we used a
trapdoor permutation, since the adversary can choose the challenge identity,
it can first call h−1i . for any i ∈ [1..l] to find an identity for his own (say
randomly selected) trapdoor of level i and announce that specific identity as the
one he will use in the attack! Therefore, it was crucial that either we remove
the subroutines h−1i . from O or change the oracle in way that mitigates such
an attack. We thus chose to use random injective functions with a sparse range
to make it hard for an adversary to discover a valid trapdoor tdi such that
h−1i [IDi−1](tdi) 6= ⊥ for any IDi−1.

Construction 14 (Implementing `-level HIBE Using Oracle O) For any
security parameter n, and oracle On sampled according to Definition 13, we will
implement an l-HIBE scheme as follows. Our message space and the identities
of each level are all {0, 1}n. To get unbounded message length, we will use bit-by-
bit encryption after the scheme is turned into an CPA secure scheme. For larger

poly(n) identity lengths, we will change the security parameter n into poly(n)
in the first step of the construction. As described below, for any identity vector
IDi, we will represent its trapdoor tdIDi as (IDi−1, tdi) for the “correct” tdi. The
algorithms for the constructed scheme work as follows:
– Setup(1n): Choose MSK ∈ {0, 1}n uniformly at random then get MPK =
S(MSK). We let ID0 = 〈id0〉 = 〈MPK〉 and tdID0 = td0 = MSK. Output
(MSK,MPK).

– For i ∈ [1..l],KeyGeni(ID
∗
i−1, tdIDi−1

, idi) where ID∗i−1 = 〈id∗0, ..., id∗i−1〉:
Parse tdIDi−1

= (IDi−2, tdi−1). If ID∗i−2 = IDi−2 then set tdi =
gi[IDi−2, tdi−1](idi) and output tdIDi

= (IDi−1, tdi). Otherwise, output ⊥.
– Enc(IDl,m): Output F (IDl−1, idl,m).
– Dec(ID∗l , tdIDl

, c): Parse tdIDl
= (IDl−1, tdl). If ID∗l−1 = IDl−1 then output

F−1(IDl−1, tdl, c). Otherwise, output ⊥.

3.3 Security of Implemented HIBE Relative to O

We prove that the constructed HIBE of Construction 14 (using the oracle O
of Definition 13) is OW-CCA secure relative to (O,SamO). The proof has the
following two steps:

1. Compression and Reconstruction. Assuming the existence of any (de-
terministic) adversary A who can break the OW-CCA security of the con-
structed HIBE (using O of Definition 13) with probability ε ≥ 1/ poly(n) and
q = poly(n) queries, we show how to (1) compress O to represent it using
a “fewer” bits than is necessary to represent a general sampled O, and (2)
show how to reconstruct O. This compression is relative to the fixed adver-
sary A and both compression and reconstruction heavily depend on A. The
number of bits saved in the representation of O will directly imply a bound
on the number of such oracles that A can successfully attack. This would
imply that with overwhelming probability over the choice of O it will not be
a good oracle for A’s attack. As usual with reconstruction-type arguments,
the bound obtained with this argument allows us to even do a union bound
over all possible adversaries that are implemented as circuits of polynomial
size. Thus, with overwhelming probability no efficient attacker would exist.

2. Adding SamO. The second step of the proof shows that adding SamO (and
allowing A to call it) does not interfere with the compression and reconstruc-
tion. The argument of this step is identical to that of [23] but we provide
our sketch of the proof in later in this section.

Formalizing the Adversary A. Without loss of generality, we assume that
A is a deterministic adversary who asks q queries (to O and the challenger
combined) and wins against a fixed oracle O with probability ≥ ε:

Pr
(MPK,y)

[A(MPK, y) = (id∗1, . . . , id
∗
` , x) | F (MPK, id∗1, . . . , id

∗
` , x) = y] ≥ ε

where A is participating in the OW-CCA security game, i.e. no vector of identi-
ties (id∗1, . . . , id

∗
`) is given to the adversary and he is the one who chooses them,

but A is given a random master public key MPK and a random ciphertext y
and he wants to invert y in a CCA attack. We can assume A is deterministic
since we are working with non-uniform adversaries and we will prove that our
oracle is secure against all circuits, and a non-uniform attacker can always fix
its randomness to the “best” value.

Notation. Throughout this section, we might occasionally use the simplifying
notation in which MPK = id∗0, y = id∗`+1, and so the full identity vector of the
attack is simply ID∗`+1 = (MPK, id∗1, . . . , id

∗
` , y), but the first and last compo-

nents of this vector are not chosen by the adversary but are selected at random.
In addition we use td∗i to denote the corresponding trapdoor for id∗i with respect
to the prefix ID∗i−1. So we will also have the selected MSK = td∗0 and x = td∗`+1

for x the inverse of y.

Putting A in canonical form. We will modify A as follows.

1. Whenever A wants to output x as its final answer, it queries the encryption
on x by calling F [ID∗`](x).

2. Whenever A is about to ask the query gi[IDi−2, tdi−1](idi) (which returns
tdi) A will first ask the query h−1i−1[IDi−3, idi−2](tdi−1) from O (that returns
idi−1 corresponding to tdi−1 for prefix IDi−2). This modification potentially
increases the number of queries asked by A by a factor of two which we can
safely ignore (and assume that A is in canonical form to start with).

Now we define the following events, which somehow capture the “level” in
which the adversary finds a relevant trapdoor. This “trapdoor” could be finding
the message x itself (which as described before, is interpreted as the “trapdoor”
for its corresponding challenge ciphertext y), or it could be finding the relevant
master secret key MSK (which we interpret as the trapdoor of the “identity”
MPK), or it could be finding a trapdoor somewhere in between for idi for i ∈ [`].
Note that finding trapdoor for smaller i is a “stronger” attack that lets A find
the relevant trapdoors for bigger i and eventually invert y.

Definition 15 (Events Ei). For i ∈ [0..` + 1] we say that the event Ei has
happened during the execution of A in the (OW-CCA) security game, if A calls
the query h−1i [ID∗i−1](td∗i) and receives an answer other than ⊥. We also let E−1
be an empty event (and so ¬E−1 holds with probability one).

The first canonical modification of A implies that the success probability of
A (and the notation we use to denote x as td∗`+1 and MPK = id∗0) simply means
that what we are assuming about A’s success attack is equivalent to saying:

Pr
ID∗

`+1

[E`+1] ≥ ε.

In the following we assume this is the case.

Lemma 16. For events Ei’s defined according to Definition 15, there exists
i ∈ [0..`+ 1] such that PrID∗

`+1
[Ei ∧ ¬Ei−1] ≥ ε/(`+ 2).

Proof. It holds that:

E`+1 ⊆
⋃

i∈[0..`+1]

(Ei ∧ ¬Ei−1 ∧ · · · ∧ ¬E0) ⊆
⋃

i∈[0..`+1]

(Ei ∧ ¬Ei−1) .

Also note that Pr[E`+1] ≥ ε. Therefore, there should exists an index i for which
Pr[Ei ∧ ¬Ei−1] ≥ ε/(`+ 2).

Fixing parameters. In the rest of the proof, we fix i to the value that satisfies
Lemma 16, and we let ε′ = ε/(`+ 2). However, we will not always fix the master
public-key MPK nor the challenge ciphertext y using an averaging argument.
Whether or not we fix either of them will depend on i.

The sub-oracle h(·) = {h0(·), . . . , h`+1(·)}. So far we only defined h−1(·) with-
out referring to h(·) (which was not a subroutine provided as part of the ora-
cle O). Here we introduce this subroutine module and allow A to call it in a
“restricted” way. To elaborate, note that in the CCA security game, the ad-
versary can call the oracles HMSK(.) and DMSK(., .), which allow him get the
trapdoors for any identity as long as it is not a prefix of the challenge identity,
and get decryption of any message other than challenge ciphertext y. Both of
these queries are special cases of queries that are the inverse of h−1(·). Namely,
for i ∈ [1..` + 1] let hi(IDi) = hi[IDi−1](idi) be defined to be equal to tdi
whenever h−1i [IDi−2, idi−1](tdi) = h−1i [IDi−1](tdi) = idi. Then any query of the
adversary A to both of the oracles HMSK(.), DMSK(., .) is a special case of a
query to hi(·) for some i ∈ [1..`+ 1]. For simplicity, we will even define h0 even
though the adversary is not calling such queries directly (since the MPK = id∗0
is given by the challenger and is fixed). The restriction on adversary’s queries to
HMSK(.), DMSK(., .) translates into a natural restriction on how he accesses the
oracle h(·): none of these queries are allowed to be a prefix of ID∗`+1.

Step 1: Compression and reconstruction of O without the presence of
SamO. We now begin the first step of the proof by showing how we can use
a fixed adversary A (with the behaviour and capabilities that were described
earlier in this section) to compress the description of oracle O.

Full representation of O with no compression. To represent a general oracle
O fully (while there is no attacker) without redundant information, it suffices
to represent only the injective oracles hi[IDi−1](·) for all i ∈ [0..` + 1] and all
IDi−1 ∈ {0, 1}in. Note that for i = {0, ` + 1} these injective functions happen
to be a permutation as well! Now any query to h−1i [IDi−1](·) can be answered
using its corresponding explicitly represented inverse function hi[IDi−1](·). To
answer the gi[IDi−2, tdi−1](idi) queries, we employ induction on i. Recall that
the master public key generation S(·) sub-routine of O is the same as h−10 (·).

Now, for i ∈ [1..`+1] and a given query gi[IDi−2, tdi−1](idi), we can first find the
relevant identity of tdi−1 by looking up the value of h−1i−1[IDi−2](tdi−1), whose
answer is represented in the description of the permutation hi−1[IDi−2](·), and
get idi−1. This will enable us to find hi(IDi) = hi[IDi−1](idi), which is also the
answer to gi[IDi−2, tdi−1](idi).

Intuition behind the compression of O relative to A. Here we describe the high
level idea behind how to compress O relative to A, using the ideas described in
Lemma 2 At a very high level we will compress O as follows.

1. If i = l + 1 (i.e., adversary wins by inverting y = idl+1 without finding
any trapdoor for any of the identities he proposes): In this case, we apply a
similar idea to Lemma 2 and compress O by representing it using three pieces
of information: the description of the fixed master public key id∗0 = MPK∗

that maximizes the adversary’s success probability, the full description of
h−1i [IDi−1](·) for all i ∈ [0..`] and all IDi−1 ∈ {0, 1}i·n, and the “compressed”
description of h−1l+1[ID∗l] = F [ID∗l] where ID∗l = 〈id∗0, id∗1, ..., id∗l 〉 for some
adversarially chosen identities (id∗1, ..., id

∗
l).

The idea behind compressing h−1l+1[ID∗l](·) is as follows. Note that the identity
vector ID∗l (and its corresponding trapdoor) determines a single permuta-
tion that is described in different directions by h−1l+1[ID∗l](·), hl+1[ID∗l](·), and
gl+1[ID∗l−1, td

∗
l](·). The main difference between these three permutations is

that h−1l+1[ID∗l](·) provides the access from trapdoors to identities, while the
other two provide the access in the opposite direction. The algorithm A is
“inverting” a random ciphertext idl+1 with respect to the identity vector
ID∗l , and it finds its related tdl+1 with probability ε′. Now, if we can show
that A’s access to the three permutations h−1l+1[ID∗l](·), hl+1[ID∗l](·), and
gl+1[ID∗l−1, td

∗
l](·) does not let him find tdl+1 “trivially” we can apply the

compression algorithm of Lemma 2. The queries that let A find tdl+1 triv-
ially are the two queries hl+1[ID∗l](idl+1) and gl+1[ID∗l−1, td

∗
l](idl+1). How-

ever, we already know that none of these queries are asked by A (before he
asks h−1l+1[ID∗l](tdl+1)). The reason that A is not asking hl+1[ID∗l](·) is that
h(·) is not a subroutine publicly available as part of oracle O, and is only
provided due to the CCA nature of the attack, yet this particular query
hl+1[ID∗l](idl+1) is prohibited to be asked by A since it violates the CCA
attack’s requirements (asking this query is akin to allowing the adversary to
query the oracle with the challenge!). In addition, the reason that A is not
asking gl+1[ID∗l−1, td

∗
l](idl+1) is that if he does so, he would be asking the

query h−1l [ID∗l−1](td∗l) right before that, which means the event El is happen-
ing (which we already assumed is not happening). Therefore, the behaviour
of A lets us apply the compression algorithm of Lemma 2 to compress the
description of h−1l+1[ID∗l](·).

2. If i = 0 (i.e., adversary wins by finding the master secret key): In this
case, we apply a similar idea to Lemma 2 and compress O by representing
it using three pieces of information: the description of the fixed challenge
ciphertext id∗l+1 = y∗ that maximizes the adversary’s success probability, the

full description of h−1i [IDi−1](·) for all i ∈ [1..`+ 1] and all IDi−1 ∈ {0, 1}i·n,
and the “compressed” description of h−10 (which corresponds to S). The same
idea that was described for i = (l + 1) applies here as well except that we
need not care about queries that could be used to trivially find td0.

3. If i ∈ [1..`]: This is the part of the proof for the OW-CCA security game
that differs from the other two cases significantly. First we will fix y to
whatever that maximizes the winning probability of the adversary. Now,
the only remaining randomness (over which the adversary wins with some
probability ≥ ε′) is the randomly selected master public key. We call a MPK
good (for adversary) if the adversary manages to make (Ei ∧ ¬Ei−1) hold
given this MPK (and the fixed challenge ciphertext y).

We compress O as follows. We represent each “subtree” of the oracle O that
correspond to different MPKs differently. For MPKs that are not good, we
will give a full representation. However, for each good MPK, we will represent
the part of O that corresponds to this MPK in a compressed manner using
the basic compression algorithm of Lemma 2 (for the case of inverting ran-
dom injective functions) applied to the single injective function hi[ID

∗
i−1](·).

We will also represent (ID∗i−1) (for this particular MPK) but the number of
bits that we save by compressing hi[ID

∗
i−1](·) is more than |ID∗i−1| because

m � n · `. Finally, since the adversary is succeeding for all good MPK’s
and there are super-polynomially many of them, our compression algorithm
compresses the description of O by a super-polynomial number of bits.

Now we proceed with stating the formal claims that we will focus on from now
on for proving that there exists a secure HIBE with respect to O. In particular,
we will have two claims: one for handling the two identical cases of i = 0 and
i = l + 1 (where an adversary would find the corresponding MSK∗ = td∗0 or
x∗ = td∗l+1), and another for treating the case of i ∈ [1..l] (where an adversary
finds an intermediate trapdoor) as mentioned during the intuition.

Claim 17. Let O be an l-level random hierarchical trapdoor injective function
oracle and n be the security parameter. Let A = (A1, A2) be a q-query circuit that
accepts a master public key MPK ∈ {0, 1}n, chooses an identity vector ID∗l =
〈MPK, id∗1, ..., id

∗
l 〉, then receives a challenge ciphertext y∗ ← F [ID∗l](x

∗) =
h−1l+1[ID∗l](x

∗) for a random x∗ ∈ {0, 1}n. Then for q ≤ 2n/5, ε′ ≥ 2−n/5, and
i ∈ {0, l + 1} (and large enough n) we have:

Pr
O

 Pr
MPK←{0,1}n
x∗←{0,1}n

[
AO1 (MPK) = (ID∗l , σ), AO2 (σ,MPK, h−1l+1[ID∗l](x

∗)) = td∗i
]
≥ ε′


≤ 2−2

n/2

Therefore, the oracle O can be represented using α − 2n/2 bits where α is the
number of bits required to represent a random O.

Claim 18. Let O be an l-level random hierarchical trapdoor injective function
oracle and n be the security parameter. Let A be a q-query circuit that ac-
cepts a master public key MPK∗ ∈ {0, 1}n, chooses an identity vector ID∗l =
〈MPK∗, id∗1, ..., id

∗
l 〉, then receives a challenge ciphertext y∗ ← F [ID∗l](x

∗) =
h−1l+1[ID∗l](x

∗) for a random x∗ ∈ {0, 1}n. Then for q ≤ 2n/5, ε′ ≥ 2−n/5,
m = 10nl, and i ∈ [1, l] (and large enough n) we have:

Pr
O

 Pr
MPK←{0,1}n
x∗←{0,1}n

[
ID∗l ← AO(MPK) : AO(MPK, h−1l+1[ID∗l](x

∗)) = td∗i
]
≥ ε′


≤ 2−2

3n/5

Therefore, the oracle O can be represented using α − 23n/5 bits where α is the
number of bits required to represent a random O.

Proof (of Claim 17). We show here the compression of the oracle in case i = 0
or i = (l + 1) since these two cases are identical in nature. As described before,
the compressed representation of O will contain the fixed i, the fixed master
public key or challenge ciphertext, as well as full representation of permutations
h−1j [IDj−1](·) for all j ∈ [0..` + 1] and all IDj−1 6= ID∗i−1. In the following

we describe how to represent the description of h−1i [ID∗i−1](·) by describing the
encoding and decoding algorithms.

Encoder: Fix i and let c = |i − (l + 1)|. Fix id∗c such that Lemma 16 is
satisfied. Note that id∗c represents the fixed master public key if i = (l + 1),
and represents the fixed ciphertext challenge when i = 0. Let N = 2n and
let I ⊆ {0, 1}n be the set of i-level identities id∗i ∈ {0, 1}n for which A can
successfully find their corresponding trapdoor td∗i (so |I| ≥ ε′N), and let Y = ∅.
The encoder works as follows:

1. Remove the lexicographically first element ĩd∗i from I and put it in Y

2. Run AO(id∗c , ĩd
∗
i). If A asks query:

– h−1i [ID∗i−1](td∗i) = id∗i and id∗i ∈ I then remove id∗i from I
– hi[ID

∗
i−1](id∗i) and id∗i ∈ I then remove id∗i from I

Note that since event Ei−1 does not happen here, A will not call function
gi[ID

∗
i−2, td

∗
i−1](·)

3. If |I| 6= ∅, go back to Step 1. Otherwise go to the next step.
4. Output the following:

– Description of i
– Description of id∗c
– The compressed representation of h−1i [ID∗i−1] which consists of:
• Description of Y ⊆ I
• Description of X = hi[ID

∗
i−1](Y)

• Description of Z = {(id∗i , hi[ID
∗
i−1](id∗i) | id∗i ∈ {0, 1}n\Y }, which

describes the remaining part of the permutation necessary to recon-
struct it.

– The full representation of all the other permutations H = {h−1j [IDj−1] |
j ∈ [0, .., l + 1], IDj−1 6= ID∗i−1}

Decoder: Given A, the descriptions of X,Y ,Z, and H, and the description
of i and id∗c , the decoder can reconstruct O as follows:

1. Remove first lexicographically ordered id∗i from Y and call it ĩd∗i
2. Run AO(id∗c , ĩd

∗
i). If A asks query:

– h−1i [ID∗i−1](td∗i) for any td∗i ∈ {0, 1}n:

• If td∗i /∈ X: value of h−1i [ID∗i−1](td∗i) is given by Z.

• If td∗i ∈ X and h−1i [ID∗i−1](td∗i) <lex ĩd
∗
i : value of h−1i [ID∗i−1](td∗i)

would have been precomputed before this call.

• If td∗i ∈ X and h−1i [ID∗i−1](td∗i) = ĩd∗i : A has hit ĩd∗i and found its

corresponding trapdoor, so we set h−1i [ID∗i−1](td∗i) = ĩd∗i .

– hi[ID
∗
i−1](id∗i) = td∗i for any id∗i ∈ {0, 1}n\ĩd∗i

• If td∗i /∈ X: value of hi[ID
∗
i−1](id∗i) is given by Z.

• If td∗i ∈ X and id∗i <lex ĩd
∗
i : value of hi[ID

∗
i−1](id∗i) would have been

precomputed before this call and can be inferred from the description
of h−1i [ID∗i−1]

– h−1j [IDj−1](tdj) for any tdj ∈ {0, 1}n, and either j 6= i or IDj−1 6= ID∗i−1:
the result idj can be obtained using the given full representation of
h−1j [IDj−1]

– hj [IDj−1](idj) for any idj ∈ {0, 1}n, and either j 6= i or IDj−1 6= ID∗i−1:
the result tdj can be obtained using the given full representation of
h−1j [IDj−1]

– gj [IDj−2, tdj−1](idj) for any tdj ∈ {0, 1}n, and either j 6= i or IDj−1 6=
ID∗i−1: due to the canonical behaviour of A, h−1j−1[IDj−2](tdj−1) will be
called first to get idj−1. Then we can find the desired trapdoor tdj using
hj [IDj−1](idj) whose answer is represented in h−1j [IDj−1].

3. If |Y | = ∅ then stop. Otherwise go to step 1.

Since for each id∗i that is inserted into Y we remove at most q from I, the
size of Y is at least a := |I|/(q+ 1) ≥ ε′N/(q+ 1). Let Enc(O) represent the size
(in bits) of the compressed oracle. The only difference in the description of the
permutations between Enc(O) and O is that in the compressed oracle we are
saving on the representation of h−1i [ID∗i−1]. Specifically, while h−1i [ID∗i−1] requires

logN ! bits to be fully represented in O, we only need 2 log
(
N
a

)
+log((N −a)!) to

represent the compressed h−1i [ID∗i−1], which consists ofX,Y and Z. Furthermore,
we need n + log(l + 2) = O(n + l) to represent id∗c and i. Thus, the amount of
bits we save in our compression is:

logN !− 2 log

(
N

a

)
− log((N − a)!)−O(n+ l)

and since l = poly(n), the overhead we incur due to representing the index i and
identity id∗c in the compressed oracle is relatively insignificant. In particular, the

fraction of oracles O on which A can do ε′-well is at most:

2|Enc(O)|

2|O|
= 22 log (N

a)+log((N−a)!)+O(n+l)−logN !

=

(
N
a

)2
(N − a)!

N !
· 2O(n+l)

=

(
N
a

)
a!
· 2O(n+l)

≤
(
Ne2

a2

)a
· 2O(n+l)

If we let q ≤ 2n/5 and ε′ ≥ 2−n/5 we get that a ≥ 2−n/52n

2n/5 + 1
≥ 23n/5/2. So the up-

per bound reduces to

(
(4)2ne2

26n/5

)a
2O(n+l) =

(
4e2

2n/5

)a
2O(n+l) ≤ 2−a+O(n+l) ≤

2−2
3n/5−1+O(n+l) ≤ 2−2

n/2

for sufficiently large n.

Proof (of Claim 18). We show here the compression of the oracle in case i ∈ [1..l].
In the following we describe how to represent the description of the injective
function hi[ID

∗
i−1](·) by describing the encoding and decoding algorithms.

Encoder: Fix i and y such that Lemma 16 is satisfied. Let N = 2n,M =
2m and let I ⊆ {0, 1}n be the set of master public keys MPK ∈ {0, 1}n for
which A can successfully find some ID∗i such that id∗i was obtained by calling
h−1i [ID∗i−1](td∗i) without any prior invocation to hi[ID

∗
i−1](id∗i). Thus, |I| ≥ ε′N .

Initialize the set Y = ∅. The encoder works as follows:

1. Remove the lexicographically first element M̃PK from I and put it in Y

2. Run AO(M̃PK, y). If A asks query:
– hi[ID

∗
i−1](id∗i) and id∗0 ∈ I then remove id∗0 from I

Note that since event Ei−1 does not happen here, A will not call function
gi[ID

∗
i−2, td

∗
i−1](·)

3. If |I| 6= ∅, go back to Step 1. Otherwise go to the next step.
4. Output the following:

– Description of i and y
– Description of Y ⊆ I
– For each MPK = id∗0 ∈ Y :
• Description of ID∗i−1 on which A was successful
• The compressed representation of hi[ID

∗
i−1] which consists of:

∗ Description of point id∗i
∗ Description of the injective function h′i[ID

∗
i−1] : [N − 1] → [M]

on all points except id∗

∗ The query index k ∈ [q] during which h−1i [ID∗i−1](td∗i) = id∗i is
called

• The full representation of all the other injective functions H =
{hj [IDj−1] | IDj−1 6= ID∗i−1}

– The full representation of all injective functions for “bad” MPK: R =
{hj [IDj−1] | id0 /∈ Y }

Decoder: Given A, the descriptions of i, y, Y,H,R, and the |Y | compressed
representations of hi[ID

∗
i−1] (including ID∗i−1 the query index k for each repre-

sentation), the decoder can reconstruct O as follows:

1. Remove first lexicographically ordered MPK from Y and call it M̃PK. Let
ID∗i−1 be the target identity that specifies which function has been com-
pressed.

2. Reconstruct all the answers of hi(ID
∗
i−1) using h′i[ID

∗
i−1] except for the value

of hi(ID
∗
i−1)(id∗i) which is yet to be determined

3. Run AO(M̃PK, y). If A asks query:
– h−1i [ID∗i−1](td∗i) for any td∗i ∈ {0, 1}m:
• If this is the kth query then we have found the corresponding id∗i so

set hi[ID
∗
i−1](id∗i) = td∗i

• Otherwise answer using h′i[ID
∗
i−1]

– hi[ID
∗
i−1](id∗i) = td∗i for any id∗i ∈ {0, 1}n: answer using h′i[ID

∗
i−1]

– h−1j [IDj−1](tdj) for any tdj ∈ {0, 1}m, and id0 ∈ Y and IDj−1 6= ID∗i−1:
answer using the given full representation from H. The same applies for
hj [IDj−1] queries.

– h−1j [IDj−1](tdj) for any tdj ∈ {0, 1}m, and id0 /∈ Y : answer using the
given full representation from R. The same applies for hj [IDj−1] queries.

– gj [IDj−2, tdj−1](idj) for any tdj ∈ {0, 1}m: due to the canonical be-
haviour of A, h−1j−1[IDj−2](tdj−1) will be called first to get idj−1. Then
we can find the desired trapdoor tdj using hj [IDj−1](idj) whose answer
is represented in the description of h−1j [IDj−1].

4. If |Y | = ∅ then stop. Otherwise go to step 1.

Since for each MPK that is inserted into Y we remove at most q from I,
the size of Y is at least a := |I|/(q + 1) ≥ ε′N/(q + 1). Let Enc(O) represent
the size (in bits) of the compressed oracle. The only difference in the description
of the injective functions between Enc(O) and O is that in the compressed
oracle, we are saving on the representation of hi[ID

∗
i−1] for the master public

keys represented in Y . Specifically, for each MPK ∈ Y , we are compressing a
single injective function from requiring αN,M = Πi∈[N](M−i−1) bits to αN−1,M
bits whilst incurring an overhead of at most n(l + 1) + log(q) to represent ID∗i
and the query index k. Thus if q < 2n/5 and m = 10nl and l = poly(n), we have
that, for each good MPK, the net savings (in bits) of:

log(αN,M)− log(αN−1,M)− nl − n− log(q) = log

(
αN,M
αN−1,M

)
− nl − n− log(q)

= log(M −N − 1)− nl − n− log(q)

≥ log(M/2)− nl − n− log(2n/5)

≥ m− 1− nl − n− (n− 1)

= 10nl − nl − 2n ≥ 6nl

Since we have a ≥ ε′N/(q + 1) “good” master public keys and given that q <
2n/5 and ε′ > 2−n/5, the total number of savings we get is at least a × 6nl ≥
(6nl)23n/5/2 ≥ 23n/5 for sufficiently large n.

Step 2: Adding the SamO oracle. The second step of the proof shows that
giving access to the oracle SamO to A does not interfere with the compression and
reconstruction procedures. The argument of this step is identical to that of [23].
However, we sketch the steps of this argument for sake of completeness. Our goal
here is to show that the same compression level of the oracle O (relative to which
the adversary “succeeds” with non-negligible probability) could be obtained even
when we add the SamO oracle (with an arbitrary fixed randomness) and allow
A to call it. This would show that, with high probability over the choice of the
oracle O and the randomness of the oracle SamO the implementation of HIBE
using O remains secure.

Looking ahead, the only change would be that this time we need to use the
augmented query complexity of the attacker instead, and we lose a factor of 3 in
the success probability of A. Therefore, the hardness of the constructed HIBE
using the sampled oracle O would be almost the same as before (as a parameter
of ε and the augmented query complexity q). The augmented query complexity
of an attacker A is equal to its standard query complexity to the oracle O plus
the total number of indirect O queries in the form of O gates that are planted
in circuits that are queried to from SamO by the adversary. The new modified
proof goes through the following two steps.

1. First note that the job of the adversary is essentially to “hit” the preimage
of the challenge ciphertext y or an identity id∗i , or the master public key.
This event could be either as a result of a direct query to O or as a result of
an indirect query to O through a circuit C asked to Sam. The exact hitting
event that the adversary is looking for depends on which case Ei ∧ ¬Ei−1
we are focusing on, but let us assume we are dealing with a fixed i and the
adversary is able to make the event Ei∧¬Ei−1 happen with a decent chance
by “hitting” the trapdoor td∗i of id∗i . An indirect hitting of td∗i would happen
if and only if the adversary sends a circuit C to SamO(C) with O gates in
it and returns a collision (x, x′) and either of C(x) or C(x′) hits td∗i .
A crucial argument due to [23] shows that one can always modify the attacker
to ask a few more queries so that it hits its goal td∗i directly (before it happens
indirectly) with a probability that is at most a factor of 3 less than the the
total probability of hitting it (directly or indirectly). The intuition behind
this argument is that the distributions of the two points x and x′ are both
uniform over the inputs of C (even though they are distributed in a correlated
way). So, if the adversary chooses a random point x′′ and evaluates C(x′′)
before asking C from the SamO oracle, it keeps the chance of hitting td∗i
directly at least half of hitting it indirectly!9

9 The actual argument is more subtle, but the main idea is the linearity of expectation
over different probabilities.

In the second part of the argument below we will safely assume that the
event Ei ∧ ¬Ei−1 ∧ ¬SamHit is happening with non-negligible probability,
while SamHit refers to to an the event that td∗i is being hit first indirectly
through a Sam query by the adversary.

2. The second part of the proof shows that if we start with the guarantee that
Ei ∧ ¬Ei−1 ∧ ¬SamHit is happening with a noticeable probability, we can
achieve the same compression of the oracle O even if we fix the randomness
of Sam. This argument indeed holds because of the way our compression and
decompression algorithms work. Note that at the heart of our compression
and decompression algorithms we basically run the adversary over different
inputs till it hits a special point. What is crucial in these arguments is that
while we have not hit the final point of interest we can still continue the
execution of the adversary and hope that the answer to the current queries
are already reconstructed. Now if we have the guarantee that no SamO(C)
query by adversary is hitting td∗i indirectly, and if we have already fixed the
randomness of the Sam oracle, we can still run the encoding and decoding
algorithms with almost no change. Namely, suppose C is a circuit query to
Sam. The first thing Sam does is to run C on a random (but not fixed) input
x. We have the guarantee that the execution of C(x) does not encounter any
query whose answer is not already reconstructed. Moreover, the second point
x′ is the lexicographically first input to C such that C(x) = C(x′) where x′ is
being chosen from a random permutation (that is also fixed!) over the inputs
of C. To find the same x′ while doing the reconstruction, all we have to do is
to run C over all inputs one by one using the same permutation order (that
is now fixed) till we manage to finish an execution C(x′) that happens to
output the same C(x). This means that we can run the same encoding and
decoding algorithms even in the presence of Sam oracle.

Proof (of Claim 12). Given the implementation of the HIBE scheme using O in
Construction 14, we prove the first part of the claim, by referring to Claims 17
and 18. In particular, the combined claims show that for any given adversary of
the HIBE scheme whose goal is to invert its challenge ciphertext for an identity
vector of its choice, the probability of doing so is negligible in the security pa-
rameter when it is trying to invert an identity at level i. Thus, a union bound
over all possible i ∈ [l], where l = poly(n) still results in negligible probability of
success. The second part of the claim (that is, that the HIBE is secure even in
the presence of SamO) follows by extension from the discussion in Section 3.3,
and in particular from the techniques of [23].

Acknowledgement. We thank Vinod Vaikuntanathan for very useful discussions.

References

1. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the
standard model. In Henri Gilbert, editor, Advances in Cryptology EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages 553–572. Springer
Berlin Heidelberg, 2010. 2

2. Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfus-
cation and functional encryption. Cryptology ePrint Archive, Report 2015/341,
2015. http://eprint.iacr.org/. 4, 5

3. Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In ACM Conference on Computer and Commu-
nications Security, pages 62–73, 1993. 3

4. Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryp-
tion without random oracles. In Christian Cachin and JanL. Camenisch, editors,
Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 223–238. Springer Berlin Heidelberg, 2004. 2

5. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryp-
tion with constant size ciphertext. In Proceedings of the 24th Annual Interna-
tional Conference on Theory and Applications of Cryptographic Techniques, EU-
ROCRYPT’05, pages 440–456, Berlin, Heidelberg, 2005. Springer-Verlag. 2

6. Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext
security from identity-based encryption. SIAM J. Comput., 36(5):1301–1328, De-
cember 2006. 2, 3, 14

7. Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil
Pairing. SIAM J. Comput., 32(3):586–615, 2003. 2

8. Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis, and
Brent Waters. On the impossibility of basing identity based encryption on trapdoor
permutations. In FOCS, pages 283–292. IEEE Computer Society, 2008. 4

9. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In TCC, pages 253–273, 2011. 4

10. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key en-
cryption scheme. In Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture
Notes in Computer Science, pages 255–271. Springer, 2003. 2

11. Kai-Min Chung, Huijia Lin, Mohammad Mahmoody, and Rafael Pass. On the
power of nonuniformity in proofs of security. In Proceedings of the 4th conference
on Innovations in Theoretical Computer Science, pages 389–400. ACM, 2013. 9

12. Ivan B. Damg̊ard, Torben P. Pedersen, and Birgit Pfitzmann. On the existence of
statistically hiding bit commitment schemes and fail-stop signatures. Journal of
Cryptology, pages 163–194, 1997. Preliminary version in CRYPTO ’93. 4

13. Gennaro, Gertner, and Katz. Lower bounds on the efficiency of encryption and
digital signature schemes. In STOC: ACM Symposium on Theory of Computing
(STOC), 2003. 6

14. Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the
efficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246,
2005. 5, 7

15. Rosario Gennaro and Luca Trevisan. Lower Bounds on the Efficiency of Generic
Cryptographic constructions. In FOCS, pages 305–313, 2000. 5, 8, 9

16. Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Garbled ram
revisited, part i. Cryptology ePrint Archive, Report 2014/082, 2014. http://

eprint.iacr.org/. 2
17. Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In Pro-

ceedings of the 8th International Conference on the Theory and Application of
Cryptology and Information Security: Advances in Cryptology, ASIACRYPT ’02,
pages 548–566, London, UK, UK, 2002. Springer-Verlag. 2

18. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The Relationship between Public Key Encryption and Oblivious
transfer. In FOCS, pages 325–335, 2000. 6, 10

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

19. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986. 1

20. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In Proc. 21st STOC, pages 25–32. ACM, 1989. 6

21. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270–299, 1984. 1

22. Vipul Goyal, Virendra Kumar, Satya Lokam, and Mohammad Mahmoody. On
black-box reductions between predicate encryption schemes. In Ronald Cramer,
editor, Theory of Cryptography, volume 7194 of Lecture Notes in Computer Science,
pages 440–457. Springer Berlin Heidelberg, 2012. 4

23. Iftach Haitner, Jonathan J. Hoch, Omer Reingold, and Gil Segev. Finding colli-
sions in interactive protocols - A tight lower bound on the round complexity of
statistically-hiding commitments. In 48th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI,
USA, Proceedings, pages 669–679. IEEE Computer Society, 2007. 3, 4, 5, 6, 8, 10,
13, 17, 26, 27

24. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999. 1

25. Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In
LarsR. Knudsen, editor, Advances in Cryptology EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 466–481. Springer Berlin Heidelberg,
2002. 2, 11, 12

26. Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do
secure hash functions need secret coins? In CRYPTO: Proceedings of Crypto, 2004.
3, 10

27. Russell Impagliazzo and Michael Luby. One-way functions are essential for com-
plexity based cryptography (extended abstract). In FOCS, pages 230–235, 1989.
1

28. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing (STOC), pages 44–61. ACM Press, 1989. 2, 3

29. Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Sufficient conditions for
collision-resistant hashing. In In Proceedings of the 2nd Theory of Cryptography
Conference, pages 445–456, 2005. 3

30. Yehuda Lindell. A simpler construction of CCA2-secure public-key encryption
under general assumptions. J. Cryptology, 19(3):359–377, 2006. 3

31. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput., 17(2):373–386, 1988. 1

32. Mohammad Mahmoody and Ameer Mohammed. On the power of hierarchical
identity-based encryption. Cryptology ePrint Archive, Report 2015/815, 2015.
http://eprint.iacr.org/. 8, 9, 13, 15

33. Ueli M Maurer and Yacov Yacobi. Non-interactive public-key cryptography. In
Advances in CryptologyEUROCRYPT91, pages 498–507. Springer, 1991. 2

34. Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–
158, 1991. 1

35. Moni Naor and Moti Yung. Universal one-way hash functions and their cryp-
tographic applications. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing (STOC), pages 33–43. ACM Press, 1989. 1, 4

http://eprint.iacr.org/

36. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In In Proc. of the 22nd STOC, pages 427–437. ACM
Press, 1990. 3

37. Moni Naor and Asaf Ziv. Primary-secondary-resolver membership proof systems.
In Theory of Cryptography, pages 199–228. Springer, 2015. 2

38. Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive One-Way
Functions and Applications. In CRYPTO, pages 57–74, 2008. 7

39. Oded Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. In STOC: ACM Symposium on Theory of Computing (STOC), 2005.
2

40. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility be-
tween cryptographic primitives. In Theory of Cryptography, First Theory of Cryp-
tography Conference, TCC 2004, volume 2951 of Lecture Notes in Computer Sci-
ence, pages 1–20. Springer, 2004. 2, 3, 6, 9, 10

41. John Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOC, pages 387–394, 1990. 1

42. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Proceedings of the 40th Annual Symposium on Foundations
of Computer Science (FOCS), pages 543–553, 1999. 3

43. Amit Sahai and Brent Waters. Fuzzy Identity-Based Encryption. In EURO-
CRYPT, pages 457–473, 2005. 4

44. Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In CRYPTO,
pages 47–53, 1984. 2

45. Daniel R. Simon. Finding Collisions on a One-Way Street: Can Secure Hash
Functions Be Based on General Assumptions? In EUROCRYPT, pages 334–345,
1998. 3, 4, 5, 13

46. Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, editor,
CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 205–223.
Springer, 2007. 9

47. Vinod Vaikunthanatan. Personal communication. Personal Communication. 4
48. Brent Waters. A punctured programming approach to adaptively secure functional

encryption. Cryptology ePrint Archive, Report 2014/588, 2014. http://eprint.

iacr.org/. 4, 5
49. Andrew C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd

FOCS, pages 80–91. IEEE, 1982. 1

http://eprint.iacr.org/
http://eprint.iacr.org/

	On the Power of Hierarchical Identity-Based Encryption

