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Abstract. We consider the related notions of two-prover and of rela-
tivistic commitment schemes. In recent work, Lunghi et al. proposed a
new relativistic commitment scheme with a multi-round sustain phase
that keeps the binding property alive as long as the sustain phase is
running. They prove security of their scheme against classical attacks;
however, the proven bound on the error parameter is very weak: it blows
up double exponentially in the number of rounds.
In this work, we give a new analysis of the multi-round scheme of Lunghi
et al., and we show a linear growth of the error parameter instead (also
considering classical attacks only). Our analysis is based on a new com-
position theorem for two-prover commitment schemes. The proof of our
composition theorem is based on a better understanding of the bind-
ing property of two-prover commitments that we provide in the form of
new definitions and relations among them. As an additional consequence
of these new insights, our analysis is actually with respect to a strictly
stronger notion of security than considered by Lunghi et al.

1 Introduction

Two-Prover Commitment Schemes. We consider the notion of 2-prover
commitment schemes, as originally introduced by Ben-Or, Goldwasser, Kilian
and Wigderson in their seminal paper [2]. In a 2-prover commitment scheme,
the prover (i.e., the entity that is responsible for preparing and opening the
commitment) consists of two agents, P and Q, and it is assumed that these two
agents cannot communicate with each other during the execution of the protocol.
With this approach, the classical and quantum impossibility results [9] [11] for
unconditionally secure commitment schemes can be circumvented.
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A simple 2-prover bit commitment scheme is the scheme proposed by Crépeau
et al. [5], which works as follows. The verifier V chooses a uniformly random
a ∈ {0, 1}n and sends it to P , who replies with x := y+a · b ∈ {0, 1}n, where b is
the bit to commit to, and y ∈ {0, 1}n is a uniformly random string known (only)
to P and Q. Furthermore, “+” is bit-wise XOR, and “ ·” is scalar multiplication
(of the scalar b with the vector a). To open the commitment (to b), Q sends y to
V , and V checks if x+ y = a · b. This scheme is clearly hiding: the commitment
x = y + a · b is uniformly random and independent of a no matter what b is.
On the other hand, the binding property follows from the observation that in
order to open the commitment to b = 0, Q needs to announce y = x, and in
order to open to b = 1, he needs to announce y = x+ a. Thus, in order to open
to both, he must know x and x + a, and thus a, which is a contradiction to the
no-communication assumption, because a was sent to P only.

Relativistic Commitment Schemes. The idea of relativistic commitment
schemes, as introduced by Kent [7], is to take a 2-prover commitment scheme
as above and enforce the no-communication assumption by means of relativistic
effects: place P and Q spatially far apart, and execute the scheme fast enough, so
that there is not enough time for them to communicate. The obvious downside
of such a relativistic commitment scheme is that the binding property stays alive
only for a very short time: the opening has to take place almost immediately after
the committing, before the provers have the chance to exchange information.
This limitation can be circumvented by considering multi-round schemes, where
after the actual commit phase there is a sustain phase, during which the provers
and the verifier keep exchanging messages, and as long as this sustain phase is
running, the commitment stays binding (and hiding), until the commitment is
finally opened. Such schemes were proposed in [7] and [8], but they are rather
inefficient, and the security analyses are informal (e.g., with no formal security
definitions) and of asymptotic nature.

More recently, Lunghi et al. [10] proposed a new and simple multi-round
relativistic commitment scheme, and provided a rigorous security analysis. Their
scheme works as follows (see also Figure 1). The actual commit protocol is the
commit protocol from the Crépeau et al. scheme: V sends a uniformly random
string a0 ∈ {0, 1}n to P , who returns x0 := y0 + a0 · b. Then, to sustain the
commitment, before P has the chance to tell a0 to Q, V sends a new uniformly
random string a1 ∈ {0, 1}n to Q who replies with x1 := y1 + a1 · y0, where y1 ∈
{0, 1}n is another random string shared between P and Q, and the multiplication
a1 · y0 is in a suitable finite field. Then, to further sustain the commitment, V
sends a new uniformly random string a2 ∈ {0, 1}n to P who replies with x2 :=
y2 +a2 ·y1, etc. Finally, after the last sustain round where xm := ym+am ·ym−1
has been sent to V , in order to finally open the commitment, ym is sent to V by
the other prover. In order to verify the opening, V computes ym−1, ym−2, . . . , y0
inductively in the obvious way, and checks if x0 + y0 = a0 · b.

What is crucial is that in round i (say for odd i), when preparing xi, the
prover Q must not know ai−1, but he is allowed to know a1, . . . , ai−2. Thus,
execution must be timed in such a way that between subsequent rounds there
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is not enough time for the provers to communicate, but they may communicate
over multiple rounds.

P V Q

commit: ←− a0

x0 := y0 + a0 · b −→

sustain: a1 −→
←− x1 := y1 + a1 · y0

←− a2

x2 := y2 + a2 · y1 −→

a3 −→
←− x3 := y3 + a3 · y2

open: y3 −→

Fig. 1. The Lunghi et al. multi-round scheme (for m = 3).

As for the security of this scheme, it is obvious that the hiding property
stays satisfied up to the open phase: every single message V receives is one-
time-pad encrypted. As for the binding property, Lunghi et al. prove that the
scheme with a m-round sustain phase is εm-binding against classical attacks,
where εm satisfies ε0 = 2−n (this is just the standard Crépeau et al. scheme)
and εm ≤ 2−n−1 +

√
εm−1 for m ≥ 1. Thus, even when reading this recursive

formula liberally by ignoring the 2−n−1 term, we obtain

εm . 2m
√
ε0 = 2−

n
2m ,

i.e., the error parameter blows up double exponentially in m.1 In other words, in
order to have a non-trivial εm we need that n, the size of the strings that are
communicated, is exponential inm. This means that Lunghi et al. can only afford
a very small number of rounds. For instance, in their implementation where they
can manage n = 512 (beyond that, the local computation takes too long), asking
for an error parameter εm of approximately 2−32, they can do m = 4 rounds.2
This allows them to keep a commitment alive for 2ms.

1 Lunghi et al. also provide a more complicated recursive formula for εm that is slightly
better, but the resulting blow-up is still double exponential.

2 Note that [10] mentions εm ≈ 10−5 ≈ 2−16, but this is an error, as communicated to
us by the authors, and as can easily be verified. Also, [10] mentions m = 5 rounds,
but this is because they include the commit round in their counting, and we do not.
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Our Results. Our main goal is to improve the bound on the binding param-
eter of the above multi-round scheme. Indeed, our results show that the binding
parameter blows up only linearly in m, rather than double exponentially. Ex-
plicitly, our results show that (for classical attacks)

εm ≤ (m+ 1) · 2−n
2 +2 .

Using the same n and error parameter as in the implementation of Lunghi et al.,
we can now afford approximately m = 2222 rounds. Scaling up the 2ms from the
Lunghi et al. experiment for 4 rounds gives us a time that is in the order of 1056

years. On top of having a hugely improved error parameter, our analysis is with
respect to a strictly stronger definition of the binding property.

We use the following strategy to obtain our improved bound on εm. We
observe that the first sustain round can be understood as committing on the
opening information y0 of the actual commitment, using an extended version
of the Crépeau et al. scheme that commits to a string rather than to a bit.
Similarly, the second sustain round can be understood as committing on the
opening information y1 of that commitment from the first sustain round, etc.
Thus, thinking of the m = 1 version of the scheme, what we have to prove is that
if we have two commitment schemes S and S ′, and we modify the opening phase
of S in that we first commit to the opening information (using S ′) and then open
that commitment, then the resulting commitment scheme is still binding; note
that, intuitively, this is what one would indeed expect. Given such a composition
theorem, we can then apply it inductively and conclude security (i.e. the binding
property) of the Lunghi et al. multi-round scheme.

Our main result is such a general composition theorem, which shows that if
S and S ′ are respectively ε- and δ-binding (against classical attacks) then the
composed scheme is (ε+ δ)-binding (against classical attacks), under some mild
assumptions on S and S ′. Hence, the error parameters simply add up; this is what
gives us the linear growth. The proof of our composition theorem crucially relies
on a new definition of the binding property of 2-prover commitment schemes,
which seems to be handier to work with than the p0 + p1 ≤ 1 + ε definition
as for instance used by Lunghi et al. Our definition formalizes the intuitive
requirement that after the commit phase, no matter how the provers behaved,
there should exist a bit b̂ (or a string in case of a string commitment scheme)
such that opening the commitment to b 6= b̂ fails (with high probability). This
new definition is strictly stronger than the p0+p1 definition, and thus we improve
the Lunghi et al. result also in that direction.

One subtle issue is that the extended version of the Crépeau et al. scheme to
strings, as it is used in the sustain phase, is not a fully secure string commitment
scheme. The reason is that for any y that may be announced in the opening
phase, there exists a string s such that x + y = a · s; as such, the provers
can commit to some fixed string, and then can still decide to either open the
commitment to that string (by running the opening phase honestly), or to open
it to a random string that is out of their control (by announcing a random y). We
deal with this by also introducing a relaxed version of the binding property (which
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we call fairly-binding), which captures this limited freedom for the provers, and
we show that it is satisfied by the (extended version of the) Crépeau et al.
scheme and that our composition theorem holds for this relaxed version; finally,
we observe that the composed fairly-binding string commitment scheme is a
binding bit commitment scheme when restricting the domain to a bit.

As such, we feel that our techniques and insights not only give rise to an
improved analysis of the Lunghi et al. multi-round scheme, but they significantly
improve our understanding of the security of 2-prover commitment schemes, and
as such are likely to find further applications.

Open Problems. Our work gives rise to a list of interesting and challenging
open problems. For instance, our composition theorem only applies to pairs
S,S ′ of commitment schemes of a certain restricted form, e.g., only one prover
should be involved in the commit phase (as it is the case in the Crépeau et al.
scheme). Our proof crucially relies on this, but there seems to be no fundamental
reason for such a restriction. Thus, we wonder if it is possible to generalize our
composition theorem to a larger class of pairs of schemes, or, ultimately, to all
pairs of schemes (that “fit together”).

Also, generalizing our composition theorem to the quantum setting is an
interesting open problem. This seems particularly non-trivial because our defini-
tion for the binding property does not generalize (immediately) to the quantum
setting. Furthermore, in order to obtain security of the Lunghi et al. multi-round
scheme against quantum attacks, beyond a quantum version of the composition
theorem, one also needs to prove security (of the string-commitment version) of
the Crépeau et al. scheme with respect to a suitable definition of the binding
property against quantum attacks.

Concurrent Work. In independent and concurrent work, Chakraborty,
Chailloux and Leverrier [3] showed (almost) the same linear bound for the Lunghi
et al. scheme, but with respect to the original—and thus weaker—notion of se-
curity. Their approach is more direct and tailored to the specific scheme; our
approach is more abstract and provides more insight, and our result applies
much more generally.

2 Preliminaries

2.1 Basic Notation

Probability Distributions. For the purpose of this work, a (probability)
distribution is a function p : X → [0, 1], x 7→ p(x), where X is a finite non-empty
set, with the property that

∑
x∈X p(x) = 1. For specific choices x◦ ∈ X , we tend

to write p(x=x◦) instead of p(x◦). For any subset Λ ⊂ X , called an event, the
probability p(Λ) is naturally defined as p(Λ) =

∑
x∈Λ p(x), and it holds that

p(Λ) + p(Γ ) = p(Λ ∪ Γ ) + p(Λ ∩ Γ ) ≤ 1 + p(Λ ∩ Γ ) (1)
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for all Λ, Γ ⊂ X . For a distribution p : X × Y → R on two (or more) variables,
probabilities like p(x=y), p(x=f(y)), p(x 6=y) etc. are naturally understood as

p(x = y) = p
(
{(x, y) ∈ X × Y |x = y}

)
=

∑
x∈X ,y∈Y
s.t. x=y

p(x, y)

etc., and the marginals p(x) and p(y) are given by p(x) =
∑
y p(x, y) and by

p(y) =
∑
x p(x, y), respectively. Finally, given that p(y) > 0, we write p(x|y) for

the conditional distribution p(x|y) := p(x, y)/p(y).

Protocols. In this work, we will consider 3-party (interactive) protocols, where
the parties are named P , Q and V (the two “provers” and the “verifier”). Such
a protocol protPQV consists of a triple (protP , protQ, protV ) of L-round inter-
active algorithms for some L ∈ N. Each interactive algorithm takes an input,
and for every round ` ≤ L computes the messages to be sent to the other algo-
rithms/parties in that round as deterministic functions of its input, the messages
received in the previous rounds, and the local randomness. In the same way, the
algorithms produce their respective outputs after the last round. We write

(outP ‖outQ‖outV )←
(
protP (inP )‖protQ(inQ)‖protV (inV )

)
to denote the execution of the protocol protPQV on the respective inputs inP , inQ
and inV , and that the respective outputs outP , outQ and outV are produced.
Clearly, for any protocol protPQV and any input inP , inQ, inV , the probability
distribution p(outP , outQ, outV ) of the output is naturally well defined.

If we want to make the local randomness explicit, we write protP [ξP ](inP )
etc., and understand that ξP is correctly sampled. We write protP [ξPQ](inP ) and
protQ[ξPQ](inQ) to express that protP and protQ use the same randomness, in
which case we speak of joint randomness.

We can compose two interactive algorithms protP and prot′P in the obvious
way, by applying prot′P to the output of protP . The resulting interactive algorithm
is denoted as prot′P ◦protP . Composing the respective algorithms of two protocols
protPQV = (protP , protQ, protV ) and prot′PQV = (prot′P , prot

′
Q, prot

′
V ) results in

the composed protocol prot′PQV ◦ protPQV .

2.2 2-Prover Commitment Schemes

We formally introduce the notion of 2-prover commitment schemes and discuss
the security properties. Defining the binding property is non-trivial; this will be
further discussed in Section 3.

Definition 2.1. A 2-prover (string) commitment scheme S consists of two in-
teractive protocols, the commit protocol comPQV = (comP , comQ, comV ) and the
opening protocol openPQV = (openP , openQ, openV ) between the two provers P
and Q and the verifier V , with the following syntactics. The commit protocol
comPQV uses joint randomness ξPQ for P and Q and takes a string s ∈ {0, 1}n
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as input for P and Q (and independent randomness and no input for V ), and it
outputs a commitment c to V and some state information to P and Q:

(stateP ‖stateQ‖c)←
(
comP [ξPQ](s)‖comQ[ξPQ](s)‖comV

)
.

The opening protocol openPQV uses joint randomness ηPQ for P and Q, and
outputs a string or a rejection symbol to V , and nothing to P and Q:

(∅‖∅‖s)←
(
openP [ηPQ](stateP )‖openQ[ηPQ](stateQ)‖openV (c)

)
with s ∈ {0, 1}n ∪ {⊥}. The set {0, 1}n is called the domain of S; if n = 1 then
we refer to S as a bit commitment scheme instead, and we tend to use b rather
than s to denote the committed bit.

Remark 2.2. By convention, we assume throughout the paper that the commit-
ment c output by V equals the communication that takes place between V and
the provers during the commit phase. This is without loss of generality since, in
general, c is computed as a (possibly randomized) function of the communica-
tion, which V just as well can apply in the opening phase.

Remark 2.3. Note that we specify that P and Q use fresh joint randomness ηPQ
in the opening phase, and, if necessary, the randomness ξPQ from the commit
phase can be “handed over” to the opening phase via stateP and stateQ; this
will be convenient later on. Alternatively, one could declare that P and Q re-use
the joint randomness from the commit phase.

Whenever we refer to such a 2-prover commitment scheme, we take it as un-
derstood that the scheme is complete and hiding, as defined below, for “small”
values of η and δ. Since our focus will be on the binding property, we typically
do not make the parameters η and δ explicit.

Definition 2.4. A 2-prover commitment scheme is η-complete if in an honest
execution V ’s output s of openPQV equals P and Q’s input s to comPQV except
with probability η, for any choice of P and Q’s input s ∈ {0, 1}n.

The standard definition for the hiding property is as follows:

Definition 2.5. A 2-prover commitment scheme is δ-hiding if for any commit
strategy comV and any two strings s0 and s1, the respective distributions of the
commitments c0 and c1, produced as

(stateP ‖stateQ‖cb)←
(
comP [ξPQ](sb)‖comQ[ξPQc](sb)‖comV

)
for b ∈ {0, 1}, have statistical distance at most δ. A 0-hiding scheme is also
called perfectly hiding.

Defining the binding property is more subtle. First, note that an attack
against the binding property consists of an “allowed” commit strategy comPQ =
(comP , comQ) and an “allowed” opening strategy openPQ = (openP , openQ) for
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P and Q. Any such attack fixes p(s), the distribution of s ∈ {0, 1}n ∪ {⊥} that
is output by V after the opening phase, in the obvious way.

What exactly “allowed” means may depend on the scheme and needs to be
specified. Typically, in the 2-prover setting, we only allow strategies comPQ and
openPQ with no communication at all between the two provers during the course
of the scheme, but we may also be more liberal and allow some well-controlled
communication, as in the Lunghi et al. multi-round scheme. Furthermore, in this
work, we focus on classical attacks, where comP , comQ, openP and openQ are
classical interactive algorithms as specified in the previous section, with access
to joint randomness, but one could also consider quantum attacks, where the
provers can perform measurements on an entangled quantum state.

A somewhat accepted definition for the binding property of a 2-prover bit
commitment scheme, as it is for instance used in [5], [6] or [10] (up to the factor
2 in the error parameter), is as follows. Here, we assume it has been specified
which attacks are allowed, e.g., those where P and Q do not communicate during
the course of the scheme.

Definition 2.6. A 2-prover bit commitment scheme is ε-binding in the sense of
p0 + p1 ≤ 1 + 2ε if for every allowed commit strategy comPQ, and for every pair
of allowed opening strategies open0PQ and open1PQ, which fix distributions p(b0)
and p(b1) for V ’s respective outputs, it holds that

p(b0 =0) + p(b1 =1) ≤ 1 + 2ε .

In the literature (see e.g. [5] or [10]), the two probabilities p(b0 =0) and p(b1 =1)
above are usually referred to as p0 and p1, respectively.

2.3 The CHSHn Scheme

Our main example is the bit commitment scheme by Crépeau et al. [5] we
mentioned in the introduction, and which works as follows. The commit phase
comPQV instructs V to sample and send to P a uniformly random a ∈ {0, 1}n,
and it instructs P to return x := r+ a · b to V , where r is the joint randomness,
uniformly distributed in {0, 1}n, b is the bit to commit to, and the opening phase
openPQV instructs Q to send y := r to V , and V outputs the (smaller) bit b that
satisfies x+ y = a · b, or b := ⊥ in case no such bit exists.

It is easy to see that this scheme is 2−n-complete and perfectly hiding (com-
pleteness fails in case a = 0). For classical provers that do not communicate
during the course of the scheme, the scheme is 2−n−1-binding in the sense of
p0 + p1 ≤ 1 + 2−n, i.e. according to Definition 2.6. As for quantum provers, Cré-
peau et al. showed that the scheme is 2−n/2-binding; this was recently minorly
improved to 2−(n+1)/2 by Sikora, Chailloux and Kerenidis [12].

We also want to consider an extended version of the scheme, where the bit b
is replaced by a string s ∈ {0, 1}n in the obvious way (where the multiplication
a · s is then understood in a suitable finite field), and we want to appreciate this
version as a 2-prover string commitment scheme. However, it is a priori not clear

8



what is a suitable definition for the binding property, especially because for this
particular scheme, the dishonest provers can always honestly commit to a string
s, and can then decide to correctly open the commitment to s by announcing
y := r, or open to a random string by announcing a randomly chosen y—any y
satisfies x+ y = a · s for some s (unless a = 0, which almost never happens).3

Due to its close relation to the CHSH game [4], in particular to the arbitrary-
finite-field version considered in [1], we will refer to this string commitment
scheme as CHSHn.

3 On the Binding Property of 2-Prover Commitments

We introduce a new definition for the binding property of 2-prover commitment
schemes. In the case of bit commitment schemes, it implies Definition 2.6, as
we will show. Our new definition is not only stronger, but we also feel that it
is closer to the intuition of what is expected from a commitment scheme, and
as such it is easier to work with. Indeed, the proof of our composition result
is heavily based on our new definition. Also, our new notion is more flexible in
terms of tweaking it; for instance, we modify it to obtain a relaxed notion for the
binding property, which captures the binding property that is satisfied by the
string commitment scheme CHSHn.

Throughout this section, when quantifying over attacks against (the binding
property of) a scheme, it is always understood that there is a notion of allowed
attacks for that scheme (e.g., all attacks for which P and Q do not communicate),
and that the quantification is over all such allowed attacks.

3.1 Defining The Binding Property

Intuitively, we say that a scheme is binding if after the commit phase there
exists a string ŝ so that no matter what the provers do in the opening phase,
the verifier will output either s = ŝ or s = ⊥ (except with small probability).
Formally, we require that for every possible commit strategy, such a string ŝ is
uniquely determined by the commitment c and the provers’ joint randomness.

Definition 3.1 (Binding property). A 2-prover commitment scheme S is ε-
binding if for every commit strategy comPQ[ξ̄PQ] there exists a function ŝ(ξ̄PQ, c)
of the joint randomness ξ̄PQ and the commitment c such that for every opening
strategy openPQ it holds that p(s 6= ŝ(ξ̄PQ, c) ∧ s 6= ⊥) ≤ ε. In short:

∀ comPQ ∃ ŝ(ξ̄PQ, c) ∀ openPQ : p(s 6= ŝ ∧ s 6= ⊥) ≤ ε . (2)

The string commitment scheme CHSHn does not satisfy this definition (the bit
commitment version does, as we will show): after the commit phase, the provers
3 This could easily be prevented by asking Q to also announce s (rather than letting
V compute it), but we want the information announced during the opening phase
to fit into the domain of the commitment scheme.
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can still decide to open the commitment to a fixed string, chosen before the
commit phase, or to a random string that is out of their control. We capture this
by the following relaxed version of the binding property. In this relaxed version,
we allow V ’s output s to be different from ŝ and ⊥, but in this case the provers
should have little control over s: for any target string s◦ (computed as a function
of the provers’ randomness), it should be unlikely that s = s◦. Formally, this is
captured as follows; we will show in Section 3.3 that CHSHn is fairly-binding in
this sense.

Definition 3.2 (Fairly binding property). A 2-prover commitment scheme
S is ε-fairly-binding if for every commit strategy comPQ[ξ̄PQ] there exists a func-
tion ŝ(ξ̄PQ, c) such that for every opening strategy openPQ[η̄PQ] and all functions
s◦(ξ̄PQ, η̄PQ) it holds that p(s 6= ŝ(ξ̄PQ, c) ∧ s = s◦(ξ̄PQ, η̄PQ)) ≤ ε. In short:

∀ comPQ ∃ ŝ(ξ̄PQ, c) ∀ openPQ ∀ s◦(ξ̄PQ, η̄PQ) : p(s 6= ŝ ∧ s = s◦) ≤ ε . (3)

Remark 3.3. By means of standard techniques, one can easily show that it is
sufficient for the (fairly) binding property to consider deterministic provers. In
this case, ŝ is a function of c only, and, in the case of fairly-binding, s◦ runs over
all fixed strings.

Remark 3.4. Clearly, the ordinary binding property (i.e., as in Definition 3.1)
implies the fairly-binding property. Also, in the case of bit commitment schemes
it obviously holds that p(b 6= b̂ ∧ b 6= ⊥) = p(b 6= b̂ ∧ b = 0) + p(b 6= b̂ ∧ b = 1),
and thus the fairly-binding property implies the ordinary one, up to a factor-2
loss. Furthermore, every fairly-binding string commitment scheme gives rise to
an ordinary-binding bit commitment scheme in a natural way, as shown by the
following proposition.

Proposition 3.5. Let S be an ε-fairly-binding string commitment scheme. Fix
any two distinct strings s0, s1 ∈ {0, 1}n and consider the bit-commitment scheme
S ′ obtained as follows. To commit to b ∈ {0, 1}, the provers commit to sb using
S, and in the opening phase V checks if s = sb for some b ∈ {0, 1} and outputs
this bit if it exists and else outputs b = ⊥. Then, S ′ is 2ε-binding.

Proof. Fix some commit strategy comPQ for S ′ and note that it can also be
used to attack S. Thus, there exists a function ŝ(ξ̄PQ, c) as in Definition 3.2. We
define

b̂(ξ̄PQ, c) =

{
0 if ŝ(ξ̄PQ, c) = s0

1 otherwise

Now fix an opening strategy openPQ for S ′, which again is also a strategy against
S. Thus, we have p(ŝ 6= s = s◦) ≤ ε for any s◦ (and in particular s◦ = s0 or s1).
This gives us

p(b̂ 6= b 6= ⊥) = p(b̂ = 1 ∧ b = 0) + p(b̂ = 0 ∧ b = 1)

= p(ŝ 6= s0 ∧ s = s0) + p(ŝ = s0 ∧ s = s1)
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≤ p(ŝ 6= s0 ∧ s = s0) + p(ŝ 6= s1 ∧ s = s1) ,

≤ 2ε

and thus S ′ is a 2ε-binding bit-commitment scheme. ut

Remark 3.6. The proof of Proposition 3.5 generalizes in a straightforward way
to k-bit string commitment schemes: given an ε-fairly-binding n-bit string com-
mitment scheme S, for k < n, we define a k-bit string commitment scheme Sk
as follows: to commit to a k-bit string, the provers pad the string with n − k
zeros and then commit to the padded string using S. In the opening phase, the
verifier outputs the first k bits of s if the remaining bits in s are all zeros, and
⊥ otherwise. Then, S ′ is 2kε-binding.

3.2 Relation To The Standard Definition

For bit commitment schemes, our binding property implies the (p0+p1)-definition.

Theorem 3.7. A 2-prover bit-commitment scheme that is ε-binding (in the
sense of Definition 3.1) is ε-binding in the sense of p0 + p1 ≤ 1 + 2ε.

Proof. Consider a scheme that is ε-binding. Fix comPQ and let b̂(ξ̄PQ, c) be a
function as promised by Definition 3.1, i.e., such that for every opening strategy
openPQ we have p(b 6= b̂ ∧ b 6= ⊥) ≤ ε. Now, fix two opening strategies open0PQ
and open1PQ, and consider the two respective output bits b0 and b1. It holds that
p(b̂ 6= bi 6= ⊥) ≤ ε for i ∈ {0, 1}, and thus

p(b0 = 0) + p(b1 = 1) = p(b0 = 0 ∧ b̂ = 0) + p(b0 = 0 ∧ b̂ = 1)

+ p(b1 = 1 ∧ b̂ = 0) + p(b1 = 1 ∧ b̂ = 1)

≤ p(b̂ = 0) + p(b̂ 6= b0 6= ⊥) + p(b̂ 6= b1 6= ⊥) + p(b̂ = 1)

≤ 1 + 2ε

which proves our claim. ut

On the other hand, our Definition 3.1 is strictly stronger than the p0 + p1
based Definition 2.6. Consider the following (artificial and very non-complete)
scheme: in the commit phase, V chooses a uniformly random bit and sends it
to the provers, and then accepts everything or rejects everything during the
opening phase, depending on that bit. Then, p0 +p1 = 1, yet a commitment can
be opened to 1− b̂ (no matter how b̂ is defined) with probability 1

2 .
Since a non-complete separation example may not be fully satisfying, we

note that it can be converted into a complete (but even more artificial) scheme.
Fix a “good” (i.e., complete, hiding and binding with low parameters) scheme
and call our example scheme above the “bad” scheme. We define a combined
scheme as follows: at the start, the first prover can request either the “good”
or “bad” scheme to be used. The honest prover is instructed to choose the for-
mer, guaranteeing completeness. The dishonest prover may choose the latter, so
the combined scheme inherits the binding properties of the “bad” scheme: it is
binding according to the (p0+p1)-definition, but not according to Definition 3.1.
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3.3 Security of CHSHn

In this section, we show that CHSHn is a fairly-binding string commitment
scheme.4 To this end, we introduce yet another version of the binding property
and show that CHSHn satisfies this property. Then we show that this version
of the binding property implies the fairly-binding property (up to some loss in
the parameter, and under some mild restriction on the scheme).

This new binding property is based on the intuition that it should not be
possible to open a commitment to two different values simultaneously (except
with small probability). For this, we observe that, when considering a commit
strategy comPQ, as well as two opening strategies openPQ and open′PQ, we can
run both opening strategies simultaneously on the produced commitment with
two (independent) copies of openV , by applying openPQ and open′PQ to two
copies of the respective internal states of P and Q. This gives rise to a joint
distribution p(s, s′) of the respective outputs s and s′ of the two copies of openV .

Definition 3.8 (Simultaneous opening). A 2-prover commitment scheme S
is ε-fairly-binding in the sense of simultaneous opening5 if for all comPQ, all
pairs of opening strategies openPQ and open′PQ, and all pairs s◦, s′◦ of distinct
strings, we have p(s = s◦ ∧ s′ = s′◦) ≤ ε.

Remark 3.9. Also for this notion of fairly-binding, it is sufficient to consider
deterministic strategies, as can easily be seen.

Proposition 3.10. The commitment scheme CHSHn is 2−n-fairly-binding in
the sense of simultaneous opening.

Proof. By Remark 3.9, it suffices to consider deterministic attack strategies. Fix
a deterministic strategy comPQ and two deterministic opening strategies openPQ
and open′PQ. The strategy comPQ specifies P ’s output x as a function f(a) of
the verifier’s message a. The opening strategies are described by constants y and
y′. By definition of CHSHn, s = s◦ implies f(a)+y = a ·s◦ and likewise, s′ = s′◦
implies f(a)+y′ = a·s′◦. Therefore, s = s◦∧s′ = s′◦ implies a = (y−y′)/(s◦−s′◦).
It thus holds that p(s = s◦ ∧ s′ = s′◦) ≤ p

(
a = (y − y′)/(s◦ − s′◦)

)
≤ 1

2n , which
proves our claim. ut

Remark 3.11. It follows directly from (1) that every bit commitment scheme that
is ε-fairly-binding in the sense of simultaneous opening is ε-binding in the sense
of p0 + p1 ≤ 1 + 2ε. The converse is not true though: the schemes described at
the end of Section 3.2 again serve as counterexamples.

Theorem 3.12. Let S = (comPQV , openPQV ) be a 2-prover commitment scheme.
If S is ε-fairly-binding in the sense of simultaneous opening and openV is deter-
ministic, then S is 2

√
ε-fairly-binding.

4 It is understood that the allowed attacks against CHSHn are those where the provers
do not communicate during the course of the scheme.

5 We use “fairly” here to distinguish the notion from a possible “non-fairly” version
with p(⊥ 6= s 6= s′ 6= ⊥) ≤ ε; however, we do not consider this latter version any
further here.
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Proof. By Remark 3.3, it suffices to consider deterministic strategies for the
provers. We fix some deterministic commit strategy comPQ and an enumeration
{openiPQ}Ni=1 of all deterministic opening strategies. Since we assume that openV
is deterministic, for any fixed opening strategy for the provers, the verifier’s
output s is a function of the commitment c. Thus, for each opening strategy
openiPQ there is a function fi such that the verifier’s output is s = fi(c). We
will now define the function ŝ(c) that satisfies the properties required by the
fairly-binding property. Our definition depends on a parameter α > 0 which we
fix later. In order to define ŝ, we partition the set C of all possible commitments
into disjoint sets C = R∪

⋃
s,i Cs,i that satisfy the following three properties for

every i and every s:

Cs,i ⊆ f−1i ({s}) , p(c ∈ Cs,i) ≥ α or Cs,i = ∅ , and p(c ∈ R ∧ fi(c) = s) < α .

The second property implies that there are at most α−1 non-empty sets Cs,i. It
is easy to see that such a partitioning exists: start with R = C and while there
exist s and i with p(c ∈ R ∧ fi(c) = s) ≥ α, let Cs,i = {c ∈ R | fi(c) = s}
and remove the elements of Cs,i from R. For any c ∈ C, we now define ŝ(c) as
follows. We set ŝ(c) = s for c ∈ Cs,i and ŝ(c) = 0 for c ∈ R.

Now fix some opening strategy openiPQ and a string s◦, and write si for the
verifier’s output. Using C6=s◦ as a shorthand for

⋃
s6=s◦

⋃
j Cs,j , we note that if

ŝ(c) 6= s◦ then c ∈ R ∪ C 6=s◦ . Thus, it follows that

p(si 6= ŝ(c) ∧ si = s◦) = p(ŝ(c) 6= s◦ ∧ si = s◦)

≤ p
(
c ∈ (R ∪ C 6=s◦) ∧ fi(c) = s◦

)
= p(c ∈ R ∧ fi(c) = s◦) +

∑
s6=s◦,j

p(c ∈ Cs,j ∧ fi(c) = s◦)

≤ p(c ∈ R ∧ fi(c) = s◦) +
∑
s6=s◦,j

s.t. Cs,j 6=∅

p(fj(c) = s ∧ fi(c) = s◦)

< α+ α−1 · ε

where the final inequality holds because p(c ∈ R∧ fi(c) = s◦) < α by the choice
of R, because p(fj(c) = s ∧ fi(c) = s◦) ≤ ε by the assumed binding property,
and because the number of non-empty Cs,j ’s is at most 1/α. It is easy to see
that the upper bound α+ α−1 · ε is minimized by setting α =

√
ε. We conclude

that p(si 6= ŝ(c) ∧ si = s◦) < 2
√
ε. ut

By combining Theorem 3.7 with Theorem 3.12, we obtain the following statement
for the (fairly-)binding property of CHSHn.
Corollary 3.13. CHSHn is 2−

n
2 +1-fairly-binding.

4 Composing Commitment Schemes

4.1 The Composition Operation

We consider two 2-prover commitment schemes S and S ′ of a restricted form,
and we compose them to a new 2-prover commitment scheme S ′′ = S ? S ′ in
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a well-defined way; our composition theorem then shows that S ′′ is secure if S
and S ′ are. We start by specifying the restriction to S and S ′ that we impose.

Definition 4.1. Let S and S ′ be two 2-prover string commitment schemes. We
call the pair (S,S ′) eligible if the following three properties hold, or they hold
with the roles of P and Q exchanged.

1. The commit phase of S is a protocol comPV = (comP , comV ) between P and
V only, and the opening phase of S is a protocol openQV = (openQ, openV )
between Q and V only. In other words, comQ and openP are both trivial and
do nothing.6 Similarly, the commit phase of S ′ is a protocol com′QV between
Q and V only (but both provers may be active in the opening phase).

2. The opening phase openQV of S is of the following simple form: Q sends
a bit string y ∈ {0, 1}m to V , and V computes s deterministically as s =
Extr(y, c), where c is the commitment.7

3. The domain of S ′ contains (or equals) {0, 1}m.

Furthermore, we specify that the allowed attacks on S are so that P and Q do
not communicate during the course of the entire scheme, and the allowed attacks
on S ′ are so that P and Q do not communicate during the course of the commit
phase but there may be limited communication during the opening phase.

An example of an eligible pair of 2-prover commitments is (CHSHn,XCHSHn),
where XCHSHn coincides with scheme CHSHn except that the roles of P and
Q are exchanged.

Remark 4.2. For an eligible pair (S,S ′), it will be convenient to understand
openQ and openV as non-interactive algorithms, where openQ produces y as its
output, and openV takes y as additional input (rather than viewing the pair as
a protocol with a single one-way communication round).

We now define the composition operation. Informally, committing is done by
means of committing using S, and to open the commitment, Q uses openQ to
locally compute the opening information y and he commits to y with respect to
the scheme S ′, and then this commitment is opened (to y), and V computes and
outputs s = Extr(y, c). Formally, this is captured as follows (see also Figure 2).

Definition 4.3. Let S = (comPV , openQV ) and S ′ = (com′QV , open
′
PQV ) be an

eligible pair of 2-prover commitment schemes. Then, their composition S ? S ′ is
defined as the scheme consisting of comPV = (comP , comV ) and

open′′PQV = (open′P , open
′
Q ◦ com′Q ◦ openQ, openV ◦ open′V ◦ com′V ) .

6 Except that comQ may output the shared randomness in order to hand it over to
the opening protocol openQ.

7 Our composition theorem also works for a randomized Extr, but for simplicity, we
restrict to the deterministic case.
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If in this composition the output in open′V is y = ⊥, we define the output of
openV to be s = ⊥ as well.

When considering attacks against the binding property of the composed scheme
S ? S ′, we declare that the allowed deterministic attacks8 are those of the form
(comP , open

′
PQ◦ptoqPQ◦com′Q), where comP is an allowed deterministic commit

strategy for S, com′Q and open′PQ are allowed deterministic commit and open-
ing strategies for S ′, and ptoqPQ is the one-way communication protocol that
communicates P ’s input to Q (see also Figure 3).9

com com

com' com'

open

open'open'

open  :         s := Extr(y, c)

c

y

y

s

V

V

V

V

P

Q

Q

PQ

open''PQ

c

open''V

s

Fig. 2. The composition of S = (comPV , openQV ) and S ′ = (com′QV , open′PQV ). The
dotted arrows indicate communication allowed to the dishonest provers.

Remark 4.4. It is immediate that S ?S ′ is a commitment scheme in the sense of
Definition 2.1, and that it is complete if S and S ′ are, with the error parameters
adding up. Also, the hiding property is obviously inherited from S; however,
the point of the composition is to keep the hiding property alive for longer,
namely up to before the last round of the opening phase—recall that, using
the terminology used in context of relativistic commitments, these rounds of the
8 The allowed randomized attacks are then naturally given as those that pick one of
the deterministic attacks according to some distribution.

9 This one-way communication models that in the relativistic setting, sufficient time
has passed at this point for P to inform Q about what happened during comP .
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opening phase up to before the last would then be referred to as the sustain
phase. We show in Appendix A that S ?S ′ is hiding up to before the last round,
with the error parameters adding up.

It is intuitively clear that S ? S ′ should be binding if S and S ′ are: com-
mitting to the opening information y and then opening the commitment allows
the provers to delay the announcement of y (which is the whole point of the
exercise), but it does not allow them to change y, by the binding property of S ′;
thus, S ? S ′ should be (almost) as binding as S. This intuition is confirmed by
our composition theorem below.

Remark 4.5. We point out that the composition S ? S ′ can be naturally defined
for a larger class of pairs of schemes (e.g. where both provers are active in the
commit phase of both schemes), and the above intuition still holds. However,
our proof only works for this restricted class of (pairs of) schemes. Extending
the composition result in that direction is an open problem.

Remark 4.6. We observe that if (S,XS) is an eligible pair, where XS coincides
with S except that the roles of P and Q are exchanged, then so is (XS,S ?XS).
As such, we can then compose XS with S ?XS, and obtain yet another eligible
pair (S,XS ? S ? XS), etc. Applying this to the schemes S = CHSHn, we
obtain the multi-round scheme from Lunghi et al. [10]. As such, our composition
theorem below implies security of their scheme—with a linear blow-up of the
error term (instead of double exponential).

We point out that formally we obtain security of the Lunghi et al. scheme
as a 2-prover commitment scheme under an abstract restriction on the provers’
communication: in every round, the active prover cannot access the message that
the other prover received in the previous round. As such, when the rounds of
the protocol are executed fast enough so that it is ensured that there is no time
for the provers to communicate between subsequent rounds, then security as a
relativistic commitment scheme follows immediately.

Before stating and proving the composition theorem, we need to single out one
more relevant parameter.

Definition 4.7. Let (S,S ′) be an eligible pair, which in particular means that
V ’s action in the opening phase of S is determined by a function Extr. We define
k(S) := maxc,s |{y |Extr(y, c) = s}|.

I.e., k(S) counts the number of ys that are consistent with a given string s (in
the worst case). Note that k(CHSHn) = 1: for every a, x, s ∈ {0, 1}n there is
exactly one y ∈ {0, 1}n such that x+ y = a · s.

4.2 The Composition Theorem

In the following composition theorem, we take it as understood that the assumed
respective binding properties of S and S ′ hold with respect to a well-defined
respective classes of allowed attacks.
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Theorem 4.8. Let (S,S ′) be an eligible pair of 2-prover commitment schemes,
and assume that S and S ′ are respectively ε-fairly-binding and δ-fairly-binding.
Then, their composition S ′′ = S ? S ′ is (ε+ k(S) · δ)-fairly-binding.

Proof. We first consider the case k(S) = 1. We fix an attack (comP , open
′′
PQ)

against S ′′. Without loss of generality, the attack is deterministic, so open′′PQ is
of the form open′′PQ = open′PQ ◦ ptoqPQ ◦ com′Q.

Note that comP is also a commit strategy for S. As such, by the fairly-
binding property of S, there exists a function ŝ(c), only depending on comP , so
that the property specified in Definition 3.2 is satisfied for every opening strategy
openQ for S. We will show that it is also satisfied for the (arbitrary) opening
strategy open′′PQ for S ′′, except for a small increase in ε: we will show that
p(ŝ(c) 6= s ∧ s = s◦) ≤ ε+ δ for every fixed target string s◦. This then proves
the claim.

In order to show this property on ŝ(c), we “decompose and reassemble” the
attack strategy (comP , open

′
PQ ◦ ptoqPQ ◦ com′Q) for S ′′ into an attack strategy

(com′Q, newopen
′
PQ) for S ′ with newopen′PQ formally defined as

newopen′PQ[c](state
′
Q) := open′PQ

(
stateP (c)‖(stateP (c), state

′
Q)
)

where
(stateP (c)‖c)←

(
comP ||comV

)
.

Informally, this means that ahead of time, P and Q simulate an execution of
(comP ||comV ) and take the resulting communication/commitment10 c as shared
randomness, and then newopen′PQ computes stateP from c as in comP , and runs
open′PQ (see Figure 3).11 It follows from the fairly-binding property that there
is a function ŷ(c′) of the commitment c′ so that p(ŷ(c′) 6= y ∧ y = y◦(c)) ≤ δ for
every function y◦(c).

The existence of ŷ now gives rise to an opening strategy openQ for S; namely,
simulate the commit phase of S ′ to obtain the commitment c′, and output ŷ(c′).
By Definition 3.2, for s̃ := Extr(ŷ(c′), c) and every s◦, p(ŝ(c) 6= s̃ ∧ s̃ = s◦) ≤ ε.

We are now ready to put things together. Fix an arbitrary target string s◦.
For any c we let y◦(c) be the unique string such that Extr(y◦(c), c) = s◦ (and
some default string if no such string exists); recall, we assume for the moment
that k(S) = 1. Omitting the arguments in ŝ(c), ŷ(c′) and y◦(c), it follows that

p(ŝ 6= s ∧ s = s◦) ≤ p(ŝ 6= s ∧ s = s◦ ∧ s = s̃) + p(s = s◦ ∧ s 6= s̃)

≤ p(ŝ 6= s̃ ∧ s̃ = s◦) + p
(
Extr(y, c) 6= Extr(ŷ, c) ∧ Extr(y, c) = s◦

)
≤ p(ŝ 6= s̃ ∧ s̃ = s◦) + p(y 6= ŷ ∧ y = y◦)

≤ ε+ δ.

10 Recall that by convention (Remark 2.2), the commitment c equals the communica-
tion between V and, here, P .

11 We are using here that Q is inactive during comPQ and P during com′PQ, and thus
the two “commute”.
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Fig. 3. Constructing the opening strategy newopen′PQ against S ′.

Thus, ŝ is as required.
For the general case where k(S) > 1, we can reason similarly, except that we

then list the k ≤ k(S) possibilities y1◦(c), . . . , yk◦ (c) for y◦(c), and conclude that
p(s 6= s̃ ∧ s = s◦) ≤

∑
i p
(
y 6= ŷ ∧ y = yi◦

)
≤ k(S) · δ, which then results in the

claimed bound. ut

Remark 4.9. Putting things together, we can now conclude the security (i.e.,
the binding property) of the Lunghi et al. multi-round commitment scheme.
Corollary 3.13 ensures the fairly-binding property of CHSHn, i.e., the Crépeau
et al. scheme as a string commitment scheme, with parameter 2−n/2+1. The
composition theorem (Theorem 4.8) then guarantees the fairly-binding prop-
erty of the m-fold composition as a string commitment scheme, with parameter
(m+ 1) · 2−n/2+1. Finally, Proposition 3.5 implies that the m-fold composition
of CHSHn with itself is a εm-binding bit commitment scheme with error param-
eter εm = (m + 1) · 2−n/2+2 as claimed in the introduction, or, more generally,
and by taking Remark 3.6 into account, a (m+1)·2−n/2+k+1-binding k-bit-string
commitment scheme.

Finally, for completeness, we point out that the composition theorem also
holds for regularly (i.e., “non-fairly”) binding schemes.

Theorem 4.10. Let (S,S ′) be an eligible pair of 2-prover commitment schemes,
and assume that S and S ′ are respectively ε-binding and δ-binding against clas-
sical attacks. Then, their composition S ′′ = S ? S ′ is a (ε+ δ)-binding 2-prover
commitment scheme against classical attacks.

Proof. The proof is almost the same as that of Theorem 4.8, except that now
there are no s◦ and y◦, and in the end we simply conclude that

p(s 6= ŝ ∧ s 6= ⊥) ≤ p(s 6= ŝ ∧ s 6= ⊥ ∧ s = s̃) + p(s 6= s̃ ∧ s 6= ⊥)
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≤ p(s̃ 6= ŝ ∧ s̃ 6= ⊥) + p(y 6= ŷ ∧ y 6= ⊥)

≤ ε+ δ ,

where the second inequality holds since y = ⊥ implies s = ⊥. ut
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A The Hiding Property of Composed Schemes

We already mentioned that the standard hiding property is not good enough
for multi-round relativistic bit commitment schemes, where we want the hiding
property to hold until the last round of communication. In this appendix, we
define a variation of the hiding property that captures this requirement, and we
prove that a composed scheme S ′′ = S ? S ′ is hiding “up to the last round” if
both S and S ′ are (with the error parameters adding up).

Definition A.1. Let S = (comPQV , openPQV ) be a 2-prover commitment scheme.
We say that S is ε-hiding until the last round if for any dishonest verifier V and
any two inputs s0 and s1 to the honest provers, we have d(p(v|s0), p(v|s1)) ≤ ε,
where v is the verifier’s view immediately before the last round of communication
in (openPQ‖openV ) ◦ (comPQ‖comV )(sb‖sb‖∅).

Theorem A.2. Let S be an ε-hiding commitment scheme and S ′ a scheme that
is δ-hiding until the last round. If (S,S ′) is eligible, then the composed scheme
S ′′ = S ? S ′ is (ε+ δ)-hiding until the last round.

Proof. Fix some strategy against the hiding-until-the-last-round property of S ′′.
We consider the distribution p(v, y, v′|s) where s is the string that the provers
commit to, v the verifier’s view after comPQV has been executed, y the opening
information to which Q commits using the scheme S ′, and v′ the verifier’s view
immediately before the last round of communication. We need to show that
d(p(v′|s0), p(v′|s1)) ≤ ε+ δ for any s0 and s1.

First, note that p(v′|v, y, sb) = p(v′|v, y) since v′ is produced by P , Q and V
acting on y and v only. From any strategy against S ′′, we can obtain a strategy
against S ′ by fixing v. Thus, by the hiding property of S ′, for any y0 and y1, we
have d(p(v′|v, y = y0), p(v′|v, y = y1)) ≤ δ and it follows by the convexity of the
statistical distance in both arguments that

p(v′|v, s0) =
∑
y

p(y|v, s0)p(v′|v, y) ≈δ
∑
y

p(y|v, s1)p(v′|v, y) = p(v′|v, s1)

where we use ≈δ to indicate that the two distributions have statistical distance
at most δ. Since we have d(p(v|s0), p(v|s1)) ≤ ε by the hiding property of S, it
follows that

p(v′|s0) = p(v, v′|s0) = p(v|s0)p(v′|v, s0) ≈δ p(v|s0)p(v′|v, s1)

≈ε p(v|s1)p(v′|v, s1) = p(v, v′|s1) = p(v′|s1)

where the first and last equalities hold because v′ contains v since v′ is the view
of V at a later point in time. ut
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