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Abstract. s2n is an implementation of the TLS protocol that was re-
leased in late June 2015 by Amazon. It is implemented in around 6,000
lines of C99 code. By comparison, OpenSSL needs around 70,000 lines of
code to implement the protocol. At the time of its release, Amazon an-
nounced that s2n had undergone three external security evaluations and
penetration tests. We show that, despite this, s2n — as initially released
— was vulnerable to a timing attack in the case of CBC-mode cipher-
suites, which could be extended to complete plaintext recovery in some
settings. Our attack has two components. The first part is a novel variant
of the Lucky 13 attack that works even though protections against Lucky
13 were implemented in s2n. The second part deals with the randomised
delays that were put in place in s2n as an additional countermeasure
to Lucky 13. Our work highlights the challenges of protecting imple-
mentations against sophisticated timing attacks. It also illustrates that
standard code audits are insufficient to uncover all cryptographic attack
vectors.

Keywords TLS, CBC-mode encryption, timing attack, plaintext recov-
ery, Lucky 13, s2n.

1 Introduction

In late June 2015, Amazon announced a new implementation of TLS (and
SSLv3), called s2n [Lab15,Sch15]. A particular feature of s2n is its small
code-base: while s2n relies on OpenSSL or any of its forks for low-level
cryptographic processing the core of the TLS protocol implementation is
written in around 6,000 lines of C99. This is intended to make s2n easier
to audit. Indeed, Amazon also announced that s2n had undergone three
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external security evaluations and penetration tests prior to release. No
details of these audits appear to be in the public domain at the time of
writing. Given the recent travails of SSL/TLS in general and the OpenSSL
implementation in particular, s2n generated significant interest in the
security community and technical press.1

We show that s2n — as initially released — was vulnerable to a tim-
ing attack on its implementation of CBC-mode ciphersuites. Specifically,
we show that the two levels of protection offered against the Lucky 13
attack [AP13] in s2n at the time of first release were imperfect, and that
a novel variant of the Lucky 13 attack could be mounted against s2n.

The attack is particularly powerful in the web setting, where an at-
tack involving malicious client-side Javascript (as per BEAST, POO-
DLE [MDK14] and Lucky 13) results in the complete recovery of HTTP
session cookies, and user credentials such as BasicAuth passwords. In this
setting, an adversary runs malicious JavaScript in a victim’s browser and
additionally performs a Person-in-the-Middle attack. We note, though,
that many modern browsers prefer TLS 1.2 AEAD cipher suites avoiding
CBC-mode, making them immune to the attack described in this work if
the sever also supports TLS 1.2 cipher suites as s2n does. The issues iden-
tified in this work have since been addressed in s2n, partly in response
to this work, and current versions are no longer vulnerable to the attacks
described in this work.

We stress that the problem we identify in s2n does not arise from
reusing OpenSSL’s crypto code, but rather from s2n’s own attempt to
protect itself against the Lucky 13 attack when processing incoming TLS
records. It does this in two steps: (1) using additional cryptographic op-
erations, to equalise the running time of the record processing; and (2)
introducing random waiting periods in case of an error such as a MAC
failure.

Step (1) involves calls to a function s2n_hmac_update, which in turn
makes hash compression function calls to, for example, OpenSSL or Li-
breSSL. The designers of s2n chose to draw a line above which to start
their implementation, roughly aligned at the boundary between low-level
crypto functions and the protocol itself. The first part of our attack is fo-
cused at the lowest level above that line. Specifically, we show that the de-
sired additional cryptographic operations may not be carried out as antici-
pated: while s2n always fed the same number of bytes to s2n_hmac_update,

1 See for example http://www.theregister.co.uk/2015/07/01/amazon_s2n_tls_
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to defeat timing attacks, this need not result in the same number of com-
pression function calls of the underlying hash function. Indeed this latter
number may vary depending on the padding length byte which controls
after how many bytes s2n_hmac_digest is called, this call producing a
digest over all data submitted so far. We can also arrange that subse-
quent calls to s2n_hmac_update do not trigger any compression function
calls at all. This has the effect of removing the timing equalisation and
reopening the window for an attack in the style of Lucky 13.

The second part of our attack is focussed on step (2), the random
waiting periods introduced in s2n as an additional protection against
timing attacks. The authors of [AP13] showed that adding random de-
lays as a countermeasure to Lucky 13 would be ineffective if the maximum
delay was too small. The s2n code had a maximum waiting period that
is enormous relative to the processing time for a TLS record, 10s com-
pared to around 1µs, putting the attack techniques of [AP13] well out
of contention. However, the initial release of s2n used timing delays gen-
erated by calls to sleep and usleep, giving them a granularity much
greater than the timing differences arising from the failure to equalise the
running time in step (1). Consequently, at a high level, we were able to by-
pass step (2) by “mod-ing out” the timing delays provided by sleep and
usleep. However, the reality is slightly more complex than this simple
description would suggest, because those functions do not provide delays
that are exact multiples of 1µs but instead themselves have distributions
that need to be taken into account in our statistical analysis. Weaknesses
in random delays as countermeasures to timing side-channels have been
point out before, cf. [CK10]. In contrast to previous work, though, here
the source of timing differences was not close enough to uniform, allowing
our analysis of the low-level code to “leak through” the random timing
delays, despite them being very large.

Our attack illustrates that protecting TLS’s CBC construction against
attacks in the style of Lucky 13 is hard (cf. [AIES15]). It also shows that
standard code audits may be insufficient to uncover all cryptographic
attack vectors.

Our attack can be prevented by more carefully implementing coun-
termeasures to the Lucky 13 attack that were presented in [AP13]. A
fully constant time/constant memory access patch can be found in the
OpenSSL implementation; its complexity is such that around 500 lines
of new code were required to implement it, and it is arguable whether
the code would be understandable by all but a few crypto-expert devel-
opers. It is worth noting that the countermeasure against Lucky 13 in



OpenSSL does not respect the separation adopted in the s2n design, i.e.
it avoids higher-level interfaces to HMAC but makes hash compression
function calls directly on manually constructed blocks.2 The s2n code was
patched to prevent our attacks using a different strategy, (mostly) main-
taining the above-mentioned separation. At a high-level, the first step of
our attacks exploits that s2n counted bytes submitted to HMAC instead
of compression function calls. In response, s2n now counts the number of
compression function calls. Furthermore, the second s2n countermeasure
was strengthened by switching from using usleep to using nanosleep.

1.1 Disclosure and Remediation

We notified Amazon of the issue in step (1) of their countermeasures, in
the function s2n_verify_cbc in s2n on 5th July 2015. Subsequently and
in response, this function was revised to address the issue reported. This
issue in itself does not constitute a successful attack because s2n also im-
plemented step (2), the randomised waiting period, as was pointed out to
us by the developers of s2n. This countermeasure has since been strength-
ened by switching to the use of nanosleep to implement randomised wait
periods. This transition was already planned by the developers of s2n
prior to learning about our work, but the change was accelerated in re-
sponse to it. Our work shows that the switch to using nanosleep was
a good decision because this step prevents the attacks described in this
work.3

1.2 Lucky 13 Remedies in other Libraries

As mentioned above OpenSSL prevents the Lucky 13 attack in 500 lines of
code which achieves fully constant time/memory access [Lan13]. GnuTLS
does not completely eliminate all potential sources of timing differences,
but makes sure the number of compression function calls is constant and
other major sources of timing differences are eliminated. As reported
in [Mav13] this results in timing differences in the tens of nanonseconds,
likely too small to be exploited in practice. In contrast, GoTLS as of now
does not implement any countermeasure to Lucky 13. However, a patch

2 See [Lan13] for a detailed description of the patch.
3 We also note that the first fix was still vulnerable to a timing attack in step (1),

as reported in [ABBD15]. This further highlights the delicacy of protecting against
timing side-channel attacks and that the move towards using nanosleep was a good
decision.



is currently under review to equalise the number of compression func-
tion calls regardless of padding value [VF15]. This fix does not promise
constant time/memory access. Botan does not implement any counter-
measure to Lucky 13.4 WolfSSL implements the recommended counter-
measures to Lucky 13 from [AP13].5

2 The TLS Record Protocol and s2n

The main component of TLS of interest here is the Record Protocol, which
uses symmetric key cryptography (block ciphers, stream ciphers and MAC
algorithms) in combination with sequence numbers to build a secure chan-
nel for transporting application-layer data. In SSL and versions of TLS
prior to TLS 1.2, the only encryption option uses a MAC-Encode-Encrypt
(MEE) construction. Here, the plaintext data to be transported is first
passed through a MAC algorithm (along with a group of 13 header bytes)
to create a MAC tag. The supported MAC algorithms are all HMAC-
based, with MD5, SHA-1 and SHA-256 being typical hash algorithms.
Then an encoding step takes place. For the RC4 stream cipher, this just
involves concatenation of the plaintext and the MAC tag, while for CBC-
mode encryption (the other possible option), the plaintext, MAC tag,
and some encryption padding of a specified format are concatenated. In
the encryption step, the encoded plaintext is encrypted with the selected
cipher. In the case where CBC-mode is selected, the block cipher is DES,
3DES or AES (with DES being deprecated in TLS 1.2). The s2n imple-
mentation supports 3DES and AES. Following [PRS11], we refer to this
MEE construction as MEE-TLS-CBC.

The MEE construction used in the TLS has been the source of many
security issues and attacks [Vau02,CHVV03,Moe04,PRS11,AP12,AP13].
These all stem from how the padding that is required in MEE-TLS-CBC
is handled during decryption, specifically the fact that the padding is
added after the MAC has been computed and so forms unauthenticated
data in the encoded plaintext. This long sequence of attacks shows that
handling padding arising during decryption processing is a delicate and
complex issue for MEE-TLS-CBC. It, along with the attacks on RC4 in
TLS [ABP+13], has been an important spur in the TLS community’s
push to using TLS 1.2 and its Authenticated Encryption modes. AES-
GCM is now widely supported in implementations. However, the MEE

4 https://github.com/randombit/botan/blob/master/src/lib/tls/tls_record.

cpp#L398
5 http://www.yassl.com/forums/topic328-wolfssl-releases-protocol-fix-
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construction is still in widespread use, as highlighted by the fact that
Amazon chose to support it in its minimal TLS implementation s2n.

2.1 MEE-TLS-CBC

We now explain the core encryption process for MEE-TLS-CBC in more
detail.

Data to be protected by TLS is received from the application and may
be fragmented and compressed before further processing. An individual
record R (viewed as a byte sequence of length at least zero) is then pro-
cessed as follows. The sender maintains an 8-byte sequence number SQN

which is incremented for each record sent, and forms a 5-byte field HDR

consisting of a 2-byte version field, a 1-byte type field, and a 2-byte length
field. The sender then calculates a MAC over the bytes SQN||HDR||R; let
T denote the resulting MAC tag. Note that exactly 13 bytes of data are
prepended to the record R here before the MAC is computed. The size
of the MAC tag is 16 bytes (HMAC-MD5), 20 bytes (HMAC-SHA-1), or
32 bytes (HMAC-SHA-256). We let t denote this size in bytes.

The record is then encoded to create the plaintext P by setting P =
R||T ||pad. Here pad is a sequence of padding bytes chosen such that the
length of P in bytes is a multiple of b, where b is the block-size of the
selected block cipher (so b = 8 for 3DES and b = 16 for AES). In all
versions of TLS, the padding must consist of p + 1 copies of some byte
value p, where 0 ≤ p ≤ 255. In particular, at least one byte of padding
must always be added. The padding may extend over multiple blocks, and
receivers must support the removal of such extended padding. In SSL the
padding format is not so strictly specified: it is only required that the last
byte of padding must indicate the total number of additional padding
bytes. The attack on s2n that we present works irrespective of whether
the padding format follows the SSL or the TLS specification.

In the encryption step, the encoded record P is encrypted using CBC-
mode of the selected block cipher. TLS 1.1 and 1.2 mandate an explicit
IV, which should be randomly generated. TLS 1.0 and SSL use a chained
IV; our attack works for either option. Thus, the ciphertext blocks are
computed as:

Cj = EKe(Pj ⊕ Cj−1)

where Pi are the blocks of P , C0 is the IV, and Ke is the key for the block
cipher E. For TLS (and SSL), the ciphertext data transmitted over the
wire then has the form:

HDR||C



where C is the concatenation of the blocks Ci (including or excluding
the IV depending on the particular SSL or TLS version). Note that the
sequence number is not transmitted as part of the message.

Simplistically, the decryption process reverses this sequence of steps:
first the ciphertext is decrypted block by block to recover the plaintext
blocks:

Pj = DKe(Cj)⊕ Cj−1,

where D denotes the decryption algorithm of the block cipher. Then the
padding is removed, and finally, the MAC is checked, with the check
including the header information and a version of the sequence number
that is maintained at the receiver.

However, in order to avoid a variety of known attacks, these opera-
tions must be performed without leaking any information about what the
composition of the plaintext blocks is in terms of message, MAC field and
padding, and indeed whether the format is even valid. The difficulties and
dangers inherent in this are explained at length in [AP13].

For TLS, any error arising during decryption should be treated as
fatal, meaning an encrypted error message is sent to the sender and the
session terminated with all keys and other cryptographic material being
disposed of.

2.2 Details of HMAC

As mentioned above, TLS exclusively uses the HMAC algorithm [KBC97],
with HMAC-MD5, HMAC-SHA-1, and HMAC-SHA-256 being supported
in TLS 1.2.6 To compute the MAC tag T for a message M with key
Ka, HMAC applies the specified hash algorithm H twice, in an iterated
fashion:

T = H((Ka ⊕ opad)||H((Ka ⊕ ipad)||M)).

Here opad and ipad are specific 64-byte values, and the key Ka is zero-
padded to bring it up to 64 bytes before the XOR operations are per-
formed. All the hash functions H used in TLS have an iterated structure,
processing messages in chunks of 64 bytes (512 bits) using a compression
function, with the output of each compression step being chained into
the next step. Also, for all relevant hash functions used in TLS, an 8-byte
length field followed by padding of a specified byte format are appended

6 TLS ciphersuites using HMAC with SHA-384 are specified in RFC 5289 (ECC cipher
suites for SHA256/SHA384) and RFC 5487 (Pre-Shared Keys SHA384/AES) but
we do not consider the SHA-384 algorithm further here.



to the message M to be hashed. The padding is at least 1 byte in length
and extends the data to a (56 mod 64)-byte boundary.

In combination, these features mean that HMAC implementations for
MD5, SHA-1 and SHA-256 have a distinctive timing profile. Messages
M of length up to 55 bytes can be encoded into a single 64-byte block,
meaning that the first, inner hash operation in HMAC is done in 2 com-
pression function evaluations, with 2 more being required for the outer
hash operation, for a total of 4 compression function evaluations. Mes-
sages M containing from 56 up to 64 + 55 = 119 bytes can be encoded in
two 64-byte blocks, meaning that the inner hash is done in 3 compression
function evaluations, with 2 more being required for the outer operation,
for a total of 5. In general, an extra compression function evaluation is
needed for each additional 64 bytes of message data. A single compression
function evaluation takes typically a few hundred clock cycles.7

Implementations typically implement HMAC via an “IUF” interface,
meaning that the computation is first initialised (I), then the computation
is updated (U) as many times as are needed with each update involving
the buffering and/or hashing of further message bytes. When the com-
plete message has been processed, a finalisation (F) step is performed.
In s2n, OpenSSL or any of its forks is used to implement HMAC. The
initialisation step s2n_hmac_init carries out a compression function call
on the 64-byte string Ka ⊕ ipad. The update step s2n_hmac_update in-
volves buffering of message bytes and calls to the compression function on
buffered 64-byte chunks of message. Note that no compression function
call will be made until at least 64 bytes have been buffered. The finali-
sation step s2n_hmac_digest consists of adding the length encoding and
padding, performing final compression function calls to compute the in-
ner hash and then performing the outer hash operation (itself involving
2 compression function evaluations).

2.3 HMAC Computations after Decryption in s2n

The s2n implementation uses the code in Figure 1 to check the MAC
on a record in the function s2n_verify_cbc. This code is followed by
a constant-time padding check that need not concern us here (except
to note that the fact that it is constant time helps our attack, since it
enables us to isolate timing differences coming from this code fragment).
In Figure 1, the content of buffer decrypted->data is the plaintext after

7 For example, SHA-256 takes about 550 cycles per block on one of our test systems,
an Intel Core i7–4850HQ CPU @ 2.30GHz, whereas SHA-1 takes about 300 cycles.



CBC-mode decryption. The header SQN||HDR of 13 bytes is dealt with by
the calling function.

Notice how the code first computes, using the last byte of plaintext, a
value for padding_length, the presumed length of padding that should
be removed (excluding the pad length byte). Arithmetic is then performed
to find payload_length, the presumed length of the remaining payload
over which the HMAC computation is to be done. The actual HMAC
computation is performed via an initialise call (not shown), and then
the code in line 78 (update via the function s2n_hmac_update) and line
84 (finalise via the function s2n_hmac_digest). Line 86 compares the
computed HMAC value with that contained in the plaintext, and sets a
flag mismatches if they do not match as expected.

Line 79 copies the HMAC state to a dummy state, so that line 89
can perform a dummy s2n_hmac_update computation on data from the
plaintext buffer. This attempts to ensure that the number of hash com-
putations carried out is the same, irrespective of the amount of padding
that should be removed. This is in an effort to remove the timing channel
exploited in the Lucky 13 attack. The number of bytes over which the
update is performed is equal to decrypted->size - payload_length -
mac_digest_size - 1, which is one less than the number of bytes in the
plaintext buffer excluding the 13 bytes of SQN||HDR, the message, and the
MAC value. Recall, however, that this update operation may not actu-
ally result in any compression function computations being carried out.
What happens depends on exactly how many bytes are already sitting
unprocessed in the internal buffer and how many are added to it in the
call.

2.4 Randomised Waiting Period

In order to additionally protect against attacks exploiting timing side-
channels, s2n implements the following countermeasure: whenever an er-
ror occurs, the implementation waits for a random period of time before
sending an error message. We reproduce the relevant code excerpts in
Figure 2; at a high level, when a MAC failure occurs, the following steps
are taken:

– All available data is erased. Depending on the amount of buffered
data, the time this takes may vary.

– All connection data is wiped, which may also introduce a timing dif-
ference.



67 int payload_and_padding_size = decrypted ->size - mac_digest_size;

68

69 /* Determine what the padding length is */

70 uint8_t padding_length = decrypted ->data[decrypted ->size - 1];

71

72 int payload_length = payload_and_padding_size - padding_length \

- 1;

73 if (payload_length < 0) {

74 payload_length = 0;

75 }

76

77 /* Update the MAC */

78 GUARD(s2n_hmac_update(hmac , decrypted ->data , payload_length ));

79 GUARD(s2n_hmac_copy (&copy , hmac ));

80

81 /* Check the MAC */

82 uint8_t check_digest[S2N_MAX_DIGEST_LEN ];

83 lte_check(mac_digest_size , sizeof(check_digest ));

84 GUARD(s2n_hmac_digest(hmac , check_digest , mac_digest_size ));

85

86 int mismatches = s2n_constant_time_equals(decrypted ->data +

payload_length ,

check_digest ,

mac_digest_size) ^ 1;

87

88 /* Compute a MAC on the rest of the data so that we perform

the same number of hash operations */

89 GUARD(s2n_hmac_update (&copy , decrypted ->data + payload_length +

mac_digest_size ,

decrypted ->size - payload_length -

mac_digest_size - 1));

Fig. 1. Excerpt from s2n verify cbc, s2n’s code for checking the MAC on a TLS
record

– A random integer x between 1,000 and 10,001,000 is requested. Since
rejection sampling is used to generate x, this might also introduce
some timing variation.

– This random integer is then fed to usleep and sleep calls (after the
appropriate scaling), causing a random delay of at least x µs.

We note that this countermeasure, which is activated by default, is
designed as an API mode which can in principle be disabled. This is to
support implementations which provide their own timing channel counter-
measures. If the variable blinding is not equal to S2N_BUILT_IN_BLINDING
then none of the countermeasure code is run.8 Since this countermeasure

8 However, we note that a bug in the version of s2n that we studied prevented this
from ever happening, because the call to wipe the connection data erased this con-
figuration flag as well.



s2n_record_read.c

91 int s2n_record_parse(struct s2n_connection *conn)

...

238 /* Padding */

239 if (cipher_suite ->cipher ->type == S2N_CBC) {

240 if (s2n_verify_cbc(conn , mac , &en) < 0) {

241 GUARD(s2n_stuffer_wipe (&conn ->in));

242 S2N_ERROR(S2N_ERR_BAD_MESSAGE );

243 return -1;

244 }

s2n_recv.c

36 int s2n_read_full_record(struct s2n_connection *conn , \

uint8_t *record_type , int *isSSLv2)

97 /* Decrypt and parse the record */

98 if (s2n_record_parse(conn) < 0) {

99 GUARD(s2n_connection_wipe(conn ));

100 if (conn ->blinding == S2N_BUILT_IN_BLINDING) {

101 int delay;

102 GUARD(delay = s2n_connection_get_delay(conn ));

103 GUARD(sleep(delay / 1000000));

104 GUARD(usleep(delay % 1000000));

105 }

106 return -1;

107 }

Fig. 2. Excerpts from s2n_record_read.c and s2n_recv.c, s2n’s code for adding a
random waiting period

introduces a delay of up to 10s in case of an error, it might be tempting
for some application developers to disable it. However, note that the s2n
documentation strongly advises against disabling this counter measure
without replacing it by an equivalent one on the application level.

3 The Attack without the Random Waiting Period
Countermeasure

We first describe our variant of the Lucky 13 attack against s2n assuming
the random waiting period countermeasure is not present. We show how
to deal with this additional countermeasure in Section 4.

For simplicity of presentation, in what follows, we assume the CBC-
mode IVs are explicit (as in TLS 1.1 and 1.2). We also assume that b = 16
(so our block cipher is AES). It is easy to construct variants of our attacks
for implicit IVs and for b = 8. The MAC algorithm is HMAC-H where
H is either MD5, SHA-1 or SHA-256. We focus at first on the case where
the MAC algorithm is HMAC-SHA-256, so that t = 32. We explain below



how the attack can be adapted to t = 16 and t = 20 (HMAC-MD5 and
HMAC-SHA-1, respectively).

Let C∗ be any ciphertext block whose corresponding plaintext P ∗ the
attacker wishes to recover. Let C ′ denote the ciphertext block preced-
ing C∗. Note that C ′ may be the IV or the last block of the preceding
ciphertext if C∗ is the first block of a ciphertext. We have:

P ∗ = DKe(C
∗)⊕ C ′.

Let ∆ be an arbitrary block of 16 bytes and consider the decryption
of a ciphertext Catt(∆) of the form

Catt(∆) = HDR||C0||C1||C2||C3||C ′ ⊕∆||C∗

consisting of a header field HDR containing an appropriate value in the
length field, an IV block, and 5 non-IV blocks. The IV block and the
first 3 non-IV blocks are arbitrary, the penultimate block C4 = C ′ ⊕ ∆
is an XOR-masked version of C ′ and the last block is C5 = C∗. The
corresponding 80-byte plaintext is P = P1||P2||P3||P4||P5 in which

P5 = DKe(C
∗)⊕ (C ′ ⊕∆)

= P ∗ ⊕∆.

Notice that P5 is closely related to the unknown, target plaintext block
P ∗. Notice also that, via line 67 of the code in Figure 1, the variable
payload_and_padding_size is set to 80 − 32 = 48 (recall that the 13-
byte string SQN||HDR was fed to HMAC by the calling function and is
buffered but otherwise unprocessed at this point). We now consider 2
distinct cases:

1. Suppose P5 ends with a byte value from the set {0x00, . . . , 0x04}.
In this case, the code sets padding_length to be at most 4 and
then, at line 72, payload_length is set to a value that is at least
48− 4− 1 = 43 (and at most 47). This means that when the HMAC
computation is performed in lines 78 (update) and 84 (finalise), the
internal buffer contains at least 56 bytes (because 13 bytes were al-
ready buffered by the calling function) and exactly 5 calls to the
compression function will be made, including one call that initialises
HMAC and 2 that finalises it. The time equalising code at line 89
adds between 0 and 4 bytes to the internal buffer, which still holds
the previous message bytes. However, because of the short length of
our chosen ciphertext, the buffer ends up being exactly 60 bytes in



size. This number is obtained by considering the 13 bytes of SQN||HDR,
the payload_length bytes added to the buffer at line 78 and the
decrypted->size - payload_length - mac_digest_size - 1 bytes
added to the buffer at line 89. Combining these, one arrives at there
being 12 + decrypted->size - mac_digest_size bytes in the buffer.
This evaluates to 60 for the particular values in the attack. Notably,
this number is independent of payload_length and padding_length.
The call at line 89 is to the update function rather than the finalise
function, so at least 64 bytes would be needed in the buffer to cause
any compression function computations to be performed at this point.
Thus no compression function call is made as a consequence of the call
to s2n_hmac_update at line 89.

2. Suppose P5 ends with a byte value from the set {0x05, . . . , 0xff}. In
this case, the code sets padding_length to be at least 5 and then, at
line 72, payload_length is set to a value that is at most 48−5−1 = 42
(and at least 0). This means that when the HMAC computation is
performed in lines 78 (update) and 84 (finalise), the internal buffer
contains at most 55 bytes and exactly 4 calls to the compression func-
tion will be made (again, including the initialisation and finalisation
calls). The time equalising code at line 89 will again result in no ad-
ditional calls to the compression function being made, as the internal
buffer is again too small at exactly 60 bytes in size (recall that the
buffer size is independent of payload_length and padding_length).

Based on this case analysis, a timing difference will arise in HMAC
processing of the attack ciphertext Catt(∆), according to whether the last
byte of P5 = P ∗ ⊕∆ is from the set {0x00, . . . , 0x04} or not. The differ-
ence is equal to that taken by one compression function call. This timing
difference becomes evident on the network in the form of a difference in
the arrival time of an error message at the man-in-the-middle attacker
who injects the attack ciphertext. The difference is of the same size as
that observed in the plaintext recovery attack presented in [AP13], a few
hundred clock cycles on a modern processor. Of course, as in [AP13],
this time difference would be affected by noise arising from network jit-
ter, but it is sufficiently big to enable it to be detected. Furthermore,
if the attacker can arrange to be co-resident with the victim in a cloud
environment, a realistic prospect as shown by a line of work culminating
in [VZRS15], the attacker can perform a Person-in-the-Middle attack and
observe the usage of resources on the server by being co-resident.

As was the case in [AP13], the attack can be iterated as often as is
desired and with different values of ∆, provided the same plaintext is



repeated at a predictable location across multiple sessions. The attack
as presented already takes care of the complication that each trial will
involve a different key in a different TLS session; only P ∗ needs to be
constant for it to work.

By carefully exploring the timing behaviour for different values in the
last byte of ∆ (each value being tried sufficiently often so as to minimise
the effect of noise), the attacker can deduce the value of the last byte of
P ∗. For example, the attacker can try every value in the 6 most significant
bits in the last byte of ∆ to identify a value ∆∗ for which the time taken
is relatively high. This indicates that the last byte of P ∗⊕∆∗ is in the set
{0x00, . . . , 0x04}; a more refined analysis can then be carried out on the
3 least significant bits of the last byte of ∆∗ to identify the exact value
of the last byte of P ∗. The worst case cost of this version of the attack is
64 + 8 = 72 trials (multiplied by a factor corresponding to the number of
trials per ∆ needed to remove noise).

The attack cost can be reduced further by using initially longer ci-
phertexts, because the peculiar characteristics of the s2n code mean that
this choice results in there being a greater number of values for (the last
byte of) ∆ that result in a higher processing time; the precise value of the
last byte of P ∗ can then be pinned down by using progressively shorter
ciphertexts. We omit the details of this enhancement.

3.1 Extending to Full Plaintext Recovery

In the web setting, with HTTP session cookies as the target, the at-
tack extends in a straightforward manner to full plaintext recovery us-
ing by-now-standard techniques involving malicious client-side Javascript
and careful HTTP message padding. A good explanation of how this is
achieved can be found in [MDK14] describing the POODLE attack on
TLS. BasicAuth passwords also form a good target; see [GPdM15] for
details.

3.2 Variants for HMAC-MD5 and HMAC-SHA-1

Assume b = 16 (as in AES) and consider the case of HMAC-MD5. Then,
because t = 16 in this case, and t is still a multiple of b, the attack
described above works perfectly, except that we need to use a ciphertext
having 4 non-IV blocks instead of 5. The attack also works for b = 8
for both HMAC-MD5 and HMAC-SHA-256 by doubling the number of
non-IV blocks used.



For HMAC-SHA-1, we have t = 20. Assume b = 16 (AES). Then a
similar case analysis as above shows that using a ciphertext with 4 blocks
result in a slow execution time if and only if the last plaintext block P4

ends with 0x00. This leads to a plaintext recovery attack requiring, in
the worst case, 256 trials per byte. The attack adapts to the b = 8 case
by again doubling the number of non-IV blocks used.

4 Defeating the Random Wait Period Countermeasure

As described in Section 2.4, s2n implemented a second countermeasure
against attacks exploiting timing channels. In this section, we show how
it could be defeated.

4.1 Characterising the Timing Delays

To start off, we notice that at the price of increasing the number of samples
by a factor of roughly ten, we can assume that sleep at line 103 in the
code in Figure 2 is called with parameter zero, by rejecting in an attack
any sample where the overall time is more than 1s. This removes one
potential source of randomness. As shown in Figure 3, calling sleep(0)

has a rather stable timing profile.

0 50 100 150 200 250 300 350 400 450 500

0

5 · 10−2

0.1
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Fig. 3. Distribution of clock ticks for calling sleep(0) on Intel(R) Xeon(R) CPU E5-
2667 v2 @ 3.30GHz.

Next, we consider calls to usleep with a random delay as a source of
timing randomness. For this, note that usleep has a granularity of 1µs.
On our main test machine, which is clocked at 3.3Ghz, this translates to



3,300 clock cycles.9 From this, we might expect that if we take our timings
modulo the clock ticks per µs (namely, 3,300 on our test machine), we
could filter out all the additional noise contributed by the usleep(delay)
call. However, usleep(delay) does not guarantee to return after exactly
delay µs, or even to return after an exact number of µs. Instead, it merely
guarantees that it will return after at least delay µs have elapsed. Indeed,
on a typical UNIX system, waking up a process from sleep can take an
unpredictable amount of time depending on global the state of the OS.

However, despite this, usleep does show exploitable non-uniform be-
haviour on the systems we tested. Figures 4 and 5 illustrate this be-
haviour. Figure 4 shows raw timings (in clock cycles) for usleep(d), nor-
malised to remove the minimum possible delay, namely 3, 300 · d clock
cycles. Figure 5 shows the distribution of timings (in clock cycles) for
usleep(delay) with delay uniformly random in an interval [0, d), but
now taken modulo 3,300. Both figures are generated from data captured
on our main test machine. They exhibit the non-uniformity needed to
bypass the random waiting period countermeasure in s2n.

Figures 6 and 7 show that, like the call to usleep, the calls to the
functions s2n_stuffer_wipe and s2n_public_random also do not pro-
duce timing profiles which are uniform modulo 1µs (3,300 clock cycles).

However, it is not enough to simply characterise the timing profile of
the calls to usleep; rather it is necessary to study the distribution of the
running time of the entire random timing delay code in Figure 2, in combi-
nation with the code for checking the MAC on a TLS record in Figure 1,
for different values of the mask ∆ in the attack in Section 3. Figure 8
brings different sources of timing difference together and shows that the
timing distributions (modulo 3,300) that are obtained for different mask
values are indeed still rather easily distinguishable. The figure is for sam-
ples with the maximum delay restricted to 100,000µs instead of 10s. We
stress that this is a synthetic benchmark for studying the behaviour of
the various sources of timing randomness and does not necessarily repre-
sent actual behaviour. See Section 5 for experiments with the actual s2n
implementation of these countermeasures.

4.2 Distinguishing Attack

Having characterised the timing behaviour of the s2n code, as exemplified
in Figure 8, we are now in a position to describe a statistical attack

9 We note, however, that modern CPUs reclock their CPUs dynamically both below
the base operating frequency and above it (e.g. Intel Turbo Boost). This must be
taken into account when measuring time delays in elapsed clock cycles.
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Fig. 4. Distribution of usleep(d)−3, 300 ·d (in clock cycles) on Intel(R) Xeon(R) CPU
E5-2667 v2 @ 3.30GHz. Probability on the y axis.
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Fig. 5. Distribution of clock ticks modulo 3,300 for usleep(delay) with delay uni-
formly random in [0, d), on Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz.
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Fig. 6. Distribution of clock ticks for calling s2n_stuffer_wipe on Intel(R) Xeon(R)
CPU E5-2667 v2 @ 3.30GHz.
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Fig. 7. Distribution of clock ticks modulo 3300 for calling s2n_public_random on In-
tel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz.

recovering plaintext bytes and its performance. In fact, the approach is
completely standard: given the preceding analysis, we expect the timing
distributions modulo 1µs for ciphertexts in the attack of Section 3 to fall
into two classes depending on the value of the last byte of P ∗ ⊕ ∆, one
class H = {0x00, . . . , 0x04}, the other class L = {0x05, . . . , 0xff}; if the
observed distributions for all values in L (resp. H) are close to each other
but the Kullback-Leibler (KL) divergence between distributions from L
and H is large (and equal to D, say), then, applying standard statistical
machinery, we know that we will require about 1/D samples to distinguish
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Fig. 8. Distribution of clock ticks modulo 3,300 for timing signals on Intel(R) Xeon(R)
CPU E5-2667 v2 @ 3.30GHz with the maximum delay restricted to d = 100, 000.

samples from the two distributions. As Tables 1 and 2 demonstrate, the
requirements on KL divergence for values in L and H are indeed satisfied,
even for relatively large values for the maximum delay.

0x00 0x04 0x05 0x10 0x20 0x30 0x40 0x64 0xc8

0x00 .0 .7 14.1 15.1 17.7 13.2 18.4 17.4 17.6
0x04 .7 .0 15.4 16.8 19.5 15.3 20.0 18.9 19.3

0x05 14.0 15.3 .0 .1 .2 .3 .3 .2 .2
0x10 15.0 16.6 .1 .0 .1 .2 .2 .1 .1
0x20 17.4 19.2 .2 .1 .0 .5 .0 .0 .0
0x30 13.0 15.1 .3 .2 .5 .0 .7 .5 .5
0x40 18.2 19.7 .3 .2 .0 .7 .0 .0 .0
0x64 17.2 18.7 .2 .1 .0 .5 .0 .0 .0
0xc8 17.4 19.0 .2 .1 .0 .5 .0 .0 .0

Table 1. KL divergence multiplied by 1,000 of time distributions in clock cycles modulo
3,300 with the maximum delay limited to 1,000µs on Intel(R) Xeon(R) CPU E5-2667
v2 @ 3.30GHz.

For example, assuming for the sake of argument that no additional
noise is introduced by network jitter or other sources, we would be able
to distinguish the value 0x00 from 0xc8 in the last byte of P ∗ ⊕∆ with
1/(3.6/1, 000) ≈ 280 TLS sessions if the maximum delay were restricted
to 100,000µs. Using rejection sampling, i.e. discarding all samples with



0x00 0x04 0x05 0x10 0x20 0x30 0x40 0x64 0xc8

0x00 .0 .0 2.4 1.9 2.3 2.0 2.8 2.1 3.6
0x04 .0 .0 2.3 1.8 2.1 2.0 2.6 1.9 3.3

0x05 2.4 2.3 .0 .0 .0 .1 .0 .0 .2
0x10 1.9 1.8 .0 .0 .1 .1 .1 .0 .3
0x20 2.3 2.1 .0 .1 .0 .2 .0 .0 .1
0x30 2.0 2.0 .1 .1 .2 .0 .3 .2 .5
0x40 2.8 2.7 .0 .1 .0 .3 .0 .1 .0
0x64 2.1 1.9 .0 .0 .0 .2 .1 .0 .2
0xc8 3.6 3.4 .2 .3 .1 .5 .0 .2 .0

Table 2. KL divergence (scaled by 1,000 for readability) of time distributions in clock
cycles modulo 3,300 with the maximum delay limited to 100,000µs on Intel(R) Xeon(R)
CPU E5-2667 v2 @ 3.30GHz.

a delay greater than 100,000µs from the actual distribution produced by
s2n (where the maximum delay is 10s), this increases to roughly 28, 000
TLS sessions for a successful distinguishing attack. We stress that this
estimate is optimistic because it is derived from a synthetic benchmark
not the actual implementation and because the surrounding code and
network jitter will introduce additional noise.

4.3 Plaintext Recovery Attack

We can extend this distinguishing attack to a plaintext recovery attack
in the following (standard) way. We assume that in a characterisation
step, we have obtained, for possible value x of the last byte in block P5, a
histogram of the timing distribution modulo 1µs for ciphertexts Catt(∆)
of the form used in the attack. We assume these timings are distributed
into B equal-sized bins, and so the empirical probability of each bin px,b
for 0 ≤ b < B can be calculated. (In fact, since we expect that timing
behaviours for the classes H and L are similar, it is sufficient to sample
for two values x, one from each class.)

Now, in the actual attack, for each value δ of the last byte of ∆, we
obtain N samples for ciphertexts Catt(∆) for which the timing delay is
at most 100,000µs. This then requires a total of about 256 · 100 ·N TLS
sessions. We bin these into B bins as above, letting nδ,b denote the number
of values in bin b for last byte value δ. Now for each candidate value y
for the last byte of P ∗, we compute the log likelihood for the candidate,



Byte value Cycles Byte value Cycles Byte value Cycles

0x00 2251.96 0x05 1746.49 . . . . . .
0x01 2354.57 0x06 1747.65 0xfc 1640.79
0x02 2252.07 0x07 1705.62 0xfd 1634.61
0x03 2135.11 0x08 1808.73 0xfe 1648.70
0x04 2130.02 0x09 1806.50 0xff 1634.64

Table 3. Timing of function s2n verify cbc (in cycles) withH = SHA-256 for different
values of last byte in the decrypted buffer, each cycle count averaged over 28 trials.

using the formula:

LL(y) =
∑

δ∈{0x00,...,0xFF}

nδ,b · log(pδ⊕y,b) .

We then output as the preferred candidate for the last plaintext byte the
value y∗ having the highest value of LL(y) amongst all candidates.

We omit the detailed analysis of the performance of this attack, paus-
ing only to note that it will require more samples than the distinguishing
attack because the underlying statistical problem is to now separate one
correct candidate from 255 wrong candidates, and this is more demanding
than the basic distinguishing problem.

To wrap up, we note that nanosleep, which is now used in s2n to
add a random time delay, has a granularity of nanoseconds, does not show
this behaviour, and therefore thwarts the attacks described in this work.

5 Proof of Concept

We confirmed that s2n does indeed behave as expected using the following
two experiments.

For the first experiment, we setup a s2n_blob buffer of length 93 and
filled it with random data. Then, we assigned all possible padding length
values 0x00 to 0xff by overwriting the last byte of the buffer and timed
how long the function s2n_verify_cbc took to return. As expected, the
padding length values between 0x00 and 0x04 resulted in timings about
500–550 cycles longer than all other values. The timing difference was
clear and stable. Some sample data is shown in Tables 3 and 4. We note
that at present we cannot explain the variation within the second and
third columns of those tables.

For the second experiment, we ran the attack against the actual s2n
implementation instead of running a synthetic benchmark. That is, we



Byte value Cycles Byte value Cycles Byte value Cycles

0x00 1333.99 0x05 1095.01 . . . . . .
0x01 1174.29 0x06 1092.68 0xfc 1062.37
0x02 1178.52 0x07 1065.08 0xfd 1035.48
0x03 1156.56 0x08 1102.31 0xfe 1035.15
0x04 1140.14 0x09 1101.04 0xff 1036.02

Table 4. Timing of function s2n verify cbc (in cycles) with H = SHA-1 for different
values of last byte in the decrypted buffer, each cycle count averaged over 210 trials.

timed the execution of s2n_recv under the attack described in Section 3.
However, to speed up execution we patched s2n to only sample random
delays up to 10,000µs. As highlighted in Table 5, this, too, shows marked
non-uniform timing behaviour modulo 1µs.

0x00 0x01 0x02 0x03 0x04 0x05 0x0a 0x10 0x20

0x00 .0 .4 .2 .1 .4 1.7 1.6 1.9 2.2
0x01 .4 .0 .4 .3 .3 2.6 2.6 2.8 3.2
0x02 .2 .4 .0 .1 .2 2.3 2.2 2.6 2.8
0x03 .1 .3 .1 .0 .3 2.1 1.9 2.3 2.7
0x04 .4 .3 .2 .3 .0 2.6 2.6 2.9 3.2

0x05 1.7 2.6 2.3 2.1 2.6 .0 .1 .2 .3
0x0a 1.6 2.6 2.2 1.9 2.6 .1 .0 .2 .3
0x10 1.9 2.8 2.6 2.3 2.9 .2 .2 .0 .2
0x20 2.2 3.2 2.8 2.7 3.2 .3 .3 .2 .0

Table 5. KL divergence observed the full attack against actual s2n implementation
(scaled by 105 for readability) using 224 samples on Intel(R) Xeon(R) CPU E5-2667
v2 @ 3.30GHz.

We did not adjust our proof-of-concept code to realise a full plaintext
recovery attack, because (a) s2n has since been patched in response to
this work and because (b) the cost is somewhat dependent on the tar-
get machine and operating system. We note, though, that an attack can
establish the characteristics of a target machine by establishing genuine
TLS sessions (where, hence, padding bytes are known) but with some
random bits flipped.

The complete source codes for our experiments (which borrow heavily
from the s2n test suite) are available at https://bitbucket.org/malb/
research-snippets.



6 Discussion

Our attack successfully overcomes both levels of defence against timing
attacks that were instituted in s2n, the first level being the inclusion
of extra cryptographic operations in an attempt to equalise the code’s
running time and the second level being the use of a random wait interval
in the event of an error such as a MAC failure.

Fundamentally, the first level could be bypassed because s2n counted
bytes going into s2n_hmac_update instead of computing the number
of compression function calls that need to be performed as suggested
in [AP13]. A call to s2n_hmac_update in itself will not necessarily trigger
a compression function call if insufficient data for such a call is provided.
A call to s2n_hmac_digest, however, will pad the data and trigger sev-
eral compression function calls, the number also depending on the data
already submitted at the time of the call. We note that in OpenSSL this
issue is avoided by effectively re-implementing HMAC in the function
ssl3_cbc_digest_record, i.e. by performing lower-level cryptographic
operations within the protocol layer. In contrast, s2n is specifically aimed
at separating those layers. In response to this work, s2n now sensibly
counts the number of compression function calls performed, somewhat
maintaining this separation.

The second level could be bypassed because, while the randomised
wait periods were large, they were not sufficiently random to completely
mask the timing signal remaining from the first step of our attack. Note
that the analysis in [AP13] of the effectiveness of random delays in pre-
venting the Lucky 13 attack assumed the delays were uniformly dis-
tributed; under this assumption, their analysis shows that the count mea-
sure is not effective unless the maximum delay is rather large. What the
second step of our attack shows is that, even if the maximum delay is very
large, non-uniformity in the distribution of the delay can be exploited. In
short, it is vital to carefully study any source of timing delay to ensure it
is of an appropriate quality when using it for this kind of protection.

Our experiments indicate that the distribution of nanonsleep as im-
plemented on Linux is sufficiently close to uniform to thwart the attack
described in this work. We note, however, that this puts a high security
burden on this function which is not designed for this purpose. In partic-
ular, nanosleep(2) states (emphasis added): “nanosleep() suspends the
execution of the calling thread until either at least the time specified in
*req has elapsed, or the delivery of a signal that triggers the invocation
of a handler in the calling thread or that terminates the process.”



Finally, since randomised waiting can also have a significant perfor-
mance impact, this work further highlights that MAC-then-Encrypt con-
structions such as MEE-TLS should be avoided where possible.
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