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Abstract. We study the security of the concatenation combiner H1(M)‖H2(M)
for two independent iterated hash functions with n-bit outputs that are
built using the Merkle-Damg̊ard construction. In 2004 Joux showed that
the concatenation combiner of hash functions with an n-bit internal state
does not offer better collision and preimage resistance compared to a
single strong n-bit hash function. On the other hand, the problem of de-
vising second preimage attacks faster than 2n against this combiner has
remained open since 2005 when Kelsey and Schneier showed that a single
Merkle-Damg̊ard hash function does not offer optimal second preimage
resistance for long messages.
In this paper, we develop new algorithms for cryptanalysis of hash com-
biners and use them to devise the first second preimage attack on the
concatenation combiner. The attack finds second preimages faster than
2n for messages longer than 22n/7 and has optimal complexity of 23n/4.
This shows that the concatenation of two Merkle-Damg̊ard hash func-
tions is not as strong a single ideal hash function.
Our methods are also applicable to other well-studied combiners, and we
use them to devise a new preimage attack with complexity of 22n/3 on
the XOR combiner H1(M)⊕H2(M) of two Merkle-Damg̊ard hash func-
tions. This improves upon the attack by Leurent and Wang (presented
at Eurocrypt 2015) whose complexity is 25n/6 (but unlike our attack is
also applicable to HAIFA hash functions).
Our algorithms exploit properties of random mappings generated by fix-
ing the message block input to the compression functions of H1 and H2.
Such random mappings have been widely used in cryptanalysis, but we
exploit them in new ways to attack hash function combiners.
Keywords: Hash function, cryptanalysis, concatenation combiner, XOR
combiner.

1 Introduction

Hash functions are among the main building blocks of many cryptographic pro-
tocols used today. A hash function H takes as an input a message M of an
arbitrary length, and maps it to an output H(M) of a fixed length n. The main
security properties expected from a hash function are:

1. Collision resistance: It should be difficult to find a pair of different mes-
sages M and M ′ such that H(M) = H(M ′).



2. Preimage resistance: Given an arbitrary n-bit value V , it should be diffi-
cult to find any message M such that H(M) = V .

3. Second preimage resistance: Given a target message M , it should be
difficult to find any different message M ′ such that H(M) = H(M ′).

When the hash is function viewed as a “random oracle”, it offers collision re-
sistance up to a security level of 2n/2 due to the birthday paradox. The expected
security level against preimage and second preimage attacks is 2n.

In practice, widely deployed standards (such as MD5 and SHA-1) have failed
to provide the expected security level [37, 38]. As a result, researchers have pro-
posed to combine the outputs of two hash functions to provide better security in
case one (of even both) hash functions are weak. In fact, hash function combiners
were also used in practice in previous versions of the SSL and TLS protocols [10,
15].

The most well-known hash function combiner is the concatenation combiner
that concatenates the outputs of two hash functions H1(M)‖H2(M). This com-
biner was described already in 1993 [34] and has been subject to extensive anal-
ysis in various settings (e.g., [20, 26]). From the theoretical side, researchers
have studied the notion of a robust combiner, which is secure in case at least
one of the combined hash functions is secure. Clearly, the concatenation com-
biner is secure with respect to the main security properties defined above, e.g.,
a collision H1(M)‖H2(M) = H1(M ′)‖H2(M ′) implies H1(M) = H1(M ′) and
H2(M) = H2(M ′). Lines of research regarding robust combiners include the
study of advanced combiners in [13, 14] and study of the minimal output length
of robust combiners [5, 33, 35] (more recently works include [27, 29]).

We are interested in this paper in the security of combiners of iterated hash
functions that break the message M into blocks m1‖m2‖ . . . ‖mL of fixed length
and processes them by iterative applications of a compression function h (or sev-
eral compression functions) that updates an internal state xi using the previous
state and the current message block xi = h(xi−1,mi). Hash functions whose in-
ternal state size is n-bits are known as “narrow-pipe” constructions and typically
output the final state xL. A very common way to build iterated hash functions
is the Merkle-Damg̊ard construction [8, 28] which applies the same compression
function h in all iterations, and adds a padding of the message length to final
message block (known as Merkle-Damg̊ard strengthening). Iterated hash func-
tion constructions (and in particular, the Merkle-Damg̊ard construction) are
very efficient and widely used in practice.

In a breakthrough paper published in 2004 [22], Joux showed that the collision
and preimage resistance of the concatenation combiner of iterated narrow-pipe
hash functions1 is not much greater than that of a single n-bit hash function. The
result of Joux was highly influential and resulted in numerous followup works in
hash function analysis. The main technique introduced in [22] (known as Joux
multi-collisions) generates a large multi-collision (many message that map to the
same value) in a narrow-pipe hash function in time which is not much greater
than 2n/2 (the time required to generate a single collision).

1 In fact, only one of the hash functions has to be iterated.
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Joux’s multi-collisions were used shortly afterwards by Kelsey and Schneier
in order to show that the second preimage resistance of the Merkle-Damg̊ard
construction is less than the optimal 2n for a long input target message M [23].
The idea is to compute the specific sequence of n-bit states a1, . . . , aL that is
generated during the application of the compression function h on the message
M . We then try to “connect” to some internal state ai in this sequence with a
different message prefix, and reuse the message suffixmi+1‖ . . . ‖mL to obtain the
second preimage M ′. However, this approach is foiled by the Merkle-Damg̊ard
strengthening if M and M ′ are not of the same length. The main idea of Kelsey
and Schneier was use Joux’s multi-collisions to construct an expandable message
which essentially allows to expand the connected message prefix of M ′ to the
desired length i, and overcome the length restriction.

Following the results of Joux (which showed that the concatenation com-
biner does not increase collision and preimage resistance), and the later results
of Kelsey and Schneier (which showed that the second preimage resistance of
the Merkle-Damg̊ard construction is less than 2n), a natural question is whether
there exists a second preimage attack on the concatenation combiner of Merkle-
Damg̊ard hash functions that is faster than 2n. Interestingly, the problem of
devising such an attack remained open for a long time despite being explicitly
mentioned in several papers including [12], and much more recently in [25]. In
fact, although the works of [22, 23] have attracted a significant amount of fol-
lowup research on countermeasures against second preimage attacks (such as
“hash twice” or “dithered hash”) and attacks that break them [1–3], there has
been no progress with respect to second preimage attacks on the basic concate-
nation combiner.

In this paper, we devise the first second preimage attack on the concatena-
tion combiner of Merkle-Damg̊ard hash functions which is faster than 2n. As in
related attacks (and in particular, [23]) we obtain a tradeoff between the com-
plexity of the attack and the length of the target message. In particular, our
second preimage attack is faster than 2n only for input messages of length at
least2 22n/7. The optimal complexity3 of our attack is 23n/4, and is obtained
for (very) long messages of length 23n/4. Due to these constraints, the practical
impact of our second preimage attack is limited and its main significance is the-
oretical. Namely, it shows that the concatenation of two Merkle-Damg̊ard hash
functions is not as strong a single ideal hash function.

The general framework of our attack is similar to the one of the long message
second preimage attack of Kelsey and Schneier. Namely, we first compute the
sequences of internal states a1, . . . , aL and b1, . . . , bL by applying the compression
functions h1 and h2 on the target message M = m1‖ . . . ‖mL. Our goal is then
to “connect” to one of the state pairs (ai, bi) using a different message prefix of

2 For example, for n = 160 and message block of length 512 bits (as in SHA-1), the
attack is faster than 2160 only for messages containing at least 246 blocks, or 252

bytes.
3 The complexity formulas do not take into account (small) constant factors, which

are generally ignored throughout this paper.
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the same size. Once we manage to achieve this, we can reuse the same message
suffix as in M and obtain a second preimage.

There are two main challenges in this approach, where the main challenge
is connect to some state pair (ai, bi) generated by M from a different message.
The secondary challenge is to ensure that the connected message prefixes are of
the same length. We overcome the later challenge by building a (simultaneous)
expandable message for two Merkle-Damg̊ard hash functions with complexity
that is not much larger than the complexity of building it for a single hash
function [23]. The expandable message is built by using a cascaded form of
Joux’s multi-collisions, a technique which was used in previous works starting
from Joux’s original paper [22] and up to subsequent works such as [19, 30].
A similar construction of an expandable message over two hash functions was
proposed in the independent paper [21] by Jha and Nandi, which analyzes the
zipper hash.

A much more difficult challenge is to actually connect to the target message
on a state pair (ai, bi) from a different message of arbitrary (smaller) length.
Indeed, the obvious approach of attempting to reach an arbitrary 2n-bit state
pair by trying random messages requires more than 2n time, since the number
of target state pairs is equal to the message length which is smaller than 2n. A
more promising approach is to use the interchange structure, which was recently
introduced at Eurocrypt 2015 by Leurent and Wang [25]. Indeed, this structure is
very useful in analysis of hash combiners as it breaks the dependency between the
sequences of states computed during the computation of h1 and h2 on a common
message. More specifically, the structure consists of an initial state pair (as, bs)
and two sets of internal states A for H1 and B for H2 such that: for any value
a ∈ A and any value b ∈ B, it is possible to efficiently construct a message Ma,b

that sends (as, bs) to (a, b). Assume that there exists an index i ∈ {1, 2, . . . , L}
such that ai ∈ A and bi ∈ B, then we can connect to (ai, bi) using Mai,bi as
required. Unfortunately, this does not result in an efficient attack, essentially
because the complexity of building an interchange structure for sufficiently large
sets A and B is too high.

In this paper we use a different approach whose first step is to fix an arbitrary
message block m, giving rise to functional graphs generated by the random n to
n-bit mappings f1(x) = h1(x,m) and f2(y) = h2(y,m). Such random mappings
have many interesting properties and have been extensively studied and used
in cryptography in the classical works of Hellman [18] and van Oorschot and
Wiener [36], and much more recently in [11, 17, 24, 31, 32]. However, in our case,
the use of random mappings may seem quite artificial and unrelated to our goal
of connecting to the arbitrary target message. Nevertheless, we will show how
to exploit random mappings to search for a “special” state pair (ap, bp) whose
states can be reached relatively easily from an arbitrary starting state pair (using
the fixed message block m), thus connecting to the target message.

More specifically, we are particularly interested in “special” states of a1, . . . , aL
and b1, . . . , bL that are located deep in the functional graphs defined by f1 and
f2, i.e., these states can be reached after iterating f1 and f2 many times. Such
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special states (called deep iterates) are relatively easy to reach from arbitrary
starting states. Our goal is to find a state pair (ap, bp) composed of two deep it-
erates in f1(x) and f2(y), respectively.4 Once we find such a “special” state pair,
we show how to simultaneously reach both of its states in an efficient manner
from an arbitrary state pair. Combined with the expandable message, this gives
the desired second preimage.

Interestingly, our algorithms for cryptanalysis of hash combiners are related
to recent attacks on hash-based MACs [11, 17, 24, 32], as in both settings the
notion of distance of a node in the functional graph from a deep iterate plays an
important role in the attack.

Our techniques are quite generic and can be applied to attack other Merkle-
Damg̊ard hash function combiners. In particular, they are applicable to another
well-known combiner defined as H1(M)⊕H2(M) and known as the XOR com-
biner. At Eurocrypt 2015 [25], Leurent and Wang devised the first preimage
attack against the XOR combiner (using the aforementioned interchange struc-
ture) with optimal complexity of 25n/6. Here, we improve this attack for Merkle-
Damg̊ard hash functions and obtain an optimal complexity of 22n/3. In practice,
many concrete hash functions limit the maximal allowed message length L, and
our attack on the XOR combiner gives a trade-off of 2n · L−2/3 (between L
and the time complexity of attack). This improves the tradeoff of 2n · L−1/2,
obtained by Leurent and Wang’s attack. For a particular example mentioned
in [25], we improve the complexity of finding a preimage of the XOR of two well-
known Merkle-Damg̊ard hash functions SHA-512 ⊕WHIRLPOOL by a factor of
about 221 (from 2461 to 2440). On the other hand, we stress that our techniques
only apply in case that both hash functions combined use the Merkle-Damg̊ard
construction. In particular, our attacks are not applicable in case at least one
combined hash function in built using the HAIFA mode [4] (that uses a block
counter in every compression function call). In this case, the attack of Leurent
and Wang remains the only published preimage attack on the XOR combiner
that is faster than exhaustive search.

Finally, we point out that we can use the interchange structure [25] in order
to optimize the complexity of our attacks on both the concatenation and XOR
combiners. Although this does not lead to a very big improvement, it further
demonstrates the wide applicability of this structure in cryptanalysis of hash
function combiners.

The rest of the paper is organized as follows. In Section 2 we describe some
preliminaries. In Section 3 we describe our second preimage attack on the con-
catenation combiner, while our preimage attack on the XOR combiner is de-
scribed is Section 4. Finally, we conclude the paper in Section 5.

2 Preliminaries

In this section, we describe preliminaries that are used in the rest of the paper.

4 The actual attack is slightly different, as it searches for deep iterates from which
(ap, bp) can be reached with a common message block.
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2.1 The Merkle-Damg̊ard Construction [8, 28]

The Merkle-Damg̊ard construction [8, 28] is a common way to build a hash func-
tion from a compression function h : {0, 1}n×{0, 1}k → {0, 1}n, where n denotes
the size of the chaining value5 and k denotes the block size.

The input message M is padded with its length (after additional padding
which ensures that the final message length is a multiple of the block size k).
The message is then divided into k-bit blocks m1‖m2‖ . . . ‖mL. The initial state
of the hash function is an n-bit initial chaining value x0 = IV . The compression
function is then applied L times

xi = h(xi−1,mi).

The hash value is set as H(M) = xL. We extend the definition of h recursively to
process an arbitrary number of k-bit message blocks, namely h(x,m1‖m2‖ . . . ‖mL) =
h(h(x,m1),m2‖ . . . ‖mL). Moreover, we donote by |M | the length of M in blocks.

Given a state x and a message m such that x′ = h(x,m), we say that m maps
the state x to the state x′ (the compression function h used for this mapping will

be clear from the context) and denote this by x
m−→ x′. Throughout this paper

we assume that the compression function is chosen uniformly at random from
all n+ k to n-bit functions, which implies that our analysis applies to most (but
not all) compression functions.

2.2 Hash Function Combiners

Given two hash functions H1 and H2, the concatenation combiner is defined as
H1(M)‖H2(M) while the XOR combiner is defined as H1(M)⊕H2(M). In this
paper we are interested in the security of these combiners in the case that both
H1 and H2 are based on the Merkle-Damg̊ard construction with independent
compression functions. We denote the IVs of H1 and H2 by IV1 and IV2 (re-
spectively), their compression functions by h1 and h2, (respectively), and assume
that both the chaining values and outputs are of size n (our techniques can also
be extended to other cases). An additional technicality has to do with the mes-
sage block sizes of H1 and H2, and we assume that both are equal to k. Once
again, our techniques also apply in the case that the block sizes are different. A
generic (although not always to most efficient) way to deal with this case is to
align the block sizes by defining a “superblock” whose size is the least common
multiple of the two block sizes.

We pair the (extended) compression functions h1 and h2 using the notation
of h1,2. Given two states x, y and a message m such that x′ = h1(x,m) and
y′ = h2(y,m), we write (x′, y′) = h1,2((x, y),m). In this case, we say that m
maps (or sends) the state pair (x, y) to the state pair (x′, y′) (the compression

functions h1, h2 are clear from the context) and denote this by (x, y)
m−→ (x′, y′).

5 In this paper, we mainly consider “narrow-pipe” constructions in which the sizes of
the chaining value and the hash function output are the same, but our techniques
and analysis extend naturally (with additional cost) to “wide-pipe” constructions in
which the chaining value size is larger.
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2.3 Joux’s Multi-collisions [22]

In a well-known result [22], Joux observed that finding a large multi-collision in
an iterated hash function H is not much more expensive than finding a single
collision. The algorithm starts from a state x0 and evaluates the compression
function for arbitrary message blocks until a collision is found. According to the
birthday paradox, 2n/2 compression function evaluations are sufficient to find a
collision h(x0,m1) = h(x0,m

′
1) for some m1 and m′1. Next, we set x1 = h(x0,m1)

and continue the process iteratively t times. This gives 2t t-block messages that
reach xt from x0, as in the i’th block we can select either mi or m′i. Altogether,
2t collisions are found with about t · 2n/2 compression function evaluations.

Joux’s multi-collisions have numerous applications in cryptanalysis of hash
functions. Next, we focus on one of the most relevant applications for this paper.

2.4 The Long Message Second Preimage Attack [23]

In [9], Dean devised a second preimage attack for long messages on specific
Merkle-Damg̊ard hash functions for which it is easy to find fixed points in their
compression function. Given a target message M = m1‖m2‖ . . . ‖mL, the at-
tacker computes the sequence of internal states IV = a0, a1, . . . , aL generated
during the invocation of the compression function on M . A simplified attack
would now start from the state IV = x0 and evaluate the compression function
with arbitrary message blocks until a collision h(x0,m) = ai is found for some
message block m and index i. The attacker can now append the message suffix
mi+1‖ . . . ‖mL to m, hoping to obtain the target hash value H(M). However, this
approach does not work due to the final padding of the message length which
would be different if the message prefixes are of different lengths.

The solution of Dean was to compute an expandable message which consists
of the initial state x0 and another state x̂ such that for each length κ (in some
range) there is a message Mκ of κ blocks that maps x0 to x̂. Thus, the algorithm
first finds a collision h(x̂,m) = ai, and the second preimage is computed as
Mi−1‖m‖mi+1‖ . . . ‖mL.

The assumption that it is easy to find fixed points in the compression function
is used in [9] in efficient construction of the expandable message. In [23], Kelsey
and Schneier described a more generic attack that uses multi-collisions of a
special form to construct an expandable message, removing the restriction of
Dean regarding fixed points. As in Joux’s original algorithm, the multi-collisions
are constructed iteratively in t steps. In the i′th step, we find a collision between
some mi and m′i such that |mi| = 1 (it is a single block) and |m′i| = 2i−1 + 1,
namely h(xi−1,mi) = h(xi−1,m

′
i). This is done by picking an arbitrary prefix of

size 2i−1 of m′i denoted by m′, computing h(xi−1,m
′) = x′ and then looking for a

collision h(xi−1,mi) = h(x′,m′′) using a final block m′′ (namely, m′i = m′‖m′′).
The construction of Kelsey and Schneier gives an expandable message that

can be used to generate messages starting from x0 and reaching x̂ = xt whose
(integral) sizes range in the interval [t, 2t+ t−1] (it is denoted as a (t, 2t+ t−1)-
expandable message). A message of length t ≤ κ ≤ 2t + t − 1 is generated by
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looking at the t-bit binary representation of κ−t. In iteration i ∈ {1, 2, . . . , t}, we
select the long message fragment m′i if the i′th LSB of κ−t is set to 1 (otherwise,
we select the single block mi).

Given that the target message M is of length L ≤ 2n/2 blocks, the con-
struction of the expandable message in the first phase of the attack requires less
than n · 2n computation, while obtaining the collision with one of the states
computed during the computation of M requires about 1/L · 2n compression
function evaluations according to the birthday paradox.

2.5 Functional Graph

In various phases of our attacks, we evaluate a compression function h with a
fixed message input block m (e.g., the zero block), and simplify our notation by
defining f(x) = h(x,m). The mapping f gives rise a directed functional graph
in which nodes are the n-bit states and an edge from node x to y is defined if
and only if f(x) = y.

In this paper, we are particularly interested in nodes of f which are located
deep in the functional graph. More specifically, x′ is an iterate of depth i if
there exists some ancestor node x′ such that x′ = f i(x). Deep iterates can be
reached using chains evaluated from an arbitrary starting point x0 by computing
a sequence of nodes using the relation xi+1 = f(xi). We denote this sequence by
−→x .

A useful algorithm for expanding the functional graph of f is given below.
This algorithm is not new and has been previously used (for example, in [17, 32]).
It takes an input parameter g ≥ n/2 which determines the number of expanded
nodes (and the running time of the algorithm).

1. Initialize G = ∅ as a data structure of evaluated nodes.
2. Until G contains 2g nodes:

(a) Pick an arbitrary starting point x0 and evaluate the chain xi+1 =
f(xi) until it cycles (there exists xi = xj for i 6= j) or it hits a point
in G. Add the points of the chain to G.

A simple but important observation that we exploit is that after we have
executed the algorithm and developed 2g nodes, then another chain from an ar-
bitrary starting point is expected to collide with the evaluated graph at depth of
roughly 2n−g. This is a direct consequence of the birthday paradox. In particu-
lar, this observation implies that most chains developed by the algorithm will be
extended to depth Ω(2n−g) (without colliding with G of cycling), and therefore
a constant fraction of the developed nodes are iterates of depth 2n−g. In total,
the algorithm develops Θ(2g) iterates of f of depth 2n−g in 2g time.

In this paper we will be interested in the probability of encountering a specific
deep iterate at each stage of the evaluation of a chain from an arbitrary starting
point.
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Lemma 1. Let f be an n-bit random mapping, and x′0 an arbitrary point. Let
D ≤ 2n/2 and define the chain x′i = f(x′i−1) for i ∈ {1, . . . , D} (namely, x′D is an
iterate of depth D). Let x0 be a randomly chosen point, and define xd = f(xd−1).
Then, for any d ∈ {1, . . . , D}, Pr[xd = x′D] = Θ(d · 2−n).

Proof (Sketch). We can assume that the chains do not cycle (i.e., each chain
contains distinct nodes), as D ≤ 2n/2. In order for xd = x′D to occur then xd−i
should collide with x′D−i for6 some 0 ≤ i ≤ d. For a fixed i, the probability for
this collision is roughly7 2−n, and summing over all 0 ≤ i ≤ d (are events are
disjoint), we get that the probability is about d · 2−n.

Distinguished Points The memory complexity of many algorithms that are
based on functional graphs (e.g., parallel collision search [36]) can be reduced by
utilizing the distinguished points method (which is attributed to Ron Rivest).
Assume that our goal is to detect a collision of a chain (starting from an arbitrary
node) with the nodes of G computed above, but without storing all the 2g nodes
in memory. The idea is to define a set of 2g distinguished points (nodes) using a
simple predicate (e.g. the n−g LSBs of a node are zero). The nodes of G contain
approximately 2g · 2g−n = 22g−n distinguished points, and only they are stored
in memory. A collision of an arbitrary chain with G is expected to occur at
depth of about 2n−g, and will be detected at the next distinguished point which
is located (approximately) after traversing additional 2n−g nodes. Consequently,
we can detect the collision with a small overhead in time complexity, but a
significant saving factor of 2n−g in memory.

Interestingly, in the specific attack of Section 4, the distinguished points
method is essential for reducing the time complexity of the algorithm.

3 A New Long Message Second Preimage Attack on the
Concatenation Combiner

In this attack we are given a target message M = m1‖m2‖ . . . ‖mL and our goal
is to find another message M ′ such that H1(M ′)‖H2(M ′) = H1(M)‖H2(M) (or
equivalently H1(M ′) = H1(M) and H2(M ′) = H2(M)). We denote the sequence
of internal states computed during the invocation of h1 (respectively, h2) on M
by a0, a1, . . . , aL (respectively, b0, b1, . . . , bL). We start with a high-level overview
of the attack and then give the technical details.

The attack is composed of three main phases. In the first phase, we build (a
special form of) an expandable message, similarly to the second preimage attack
on a single hash function [23]. This expandable message essentially consists of
the initial state pair (IV1, IV2) and final state pair (x̂, ŷ) such that for each
length κ in some appropriate range (which is roughly [n2, L]) there is a message
Mκ of κ blocks that maps (IV1, IV2) to (x̂, ŷ).

6 A collision between xd−i and x′D−i occurs if xd−i = x′D−i but xd−i−1 6= x′D−i−1.
7 A more accurate analysis would take into account the event that the chains collide

before xd−i, but the probability for this is negligible.
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In the second phase our goal is to find a pair of states (x̄, ȳ), a message block

m̄ and an index p such that (x̄, ȳ)
m̄−→ (ap, bp) (note that the state pair (ap, bp)

is computed during the evaluation of the target message). Moreover, the state
pair (x̄, ȳ) should have a special property which is formally defined in the full
description of the second phase.

In the third and final phase, we start from (x̂, ŷ) and compute a message

fragment M̂ of length q (shorter than p − 1) such that (x̂, ŷ)
M̂−→ (x̄, ȳ). This

phase can be performed efficiently due to the special property of (x̄, ȳ).

In order to compute the second preimage, we pick Mp−q−1 using the expand-

able message, giving (IV0, IV1)
Mp−q−1−−−−−→ (x̂, ŷ), and concatenate Mp−q−1‖M̂‖m̄

in order to reach the state pair (ap, bp) from (IV1, IV2) with a message of appro-
priate length p. Indeed, we have

(IV0, IV1)
Mp−q−1−−−−−→ (x̂, ŷ)

M̂−→ (x̄, ȳ)
m̄−→ (ap, bp).

Altogether, we obtain the second preimage

M ′ = Mp−q−1‖M̂‖m̄‖mp+1‖ . . . ‖mL.

This attack can be optimized using the interchange structure, as described
in Appendix A.

Notation For the sake of clarity, we summarize below the notation that is
shared across the various phases. We note that each phase also introduces addi-
tional “internal” notation whose scope is only defined within the phase.

M = m1| . . .‖mL : Target Message.

a0, . . . , aL : Sequence of internal states computed during the

(b0, . . . , bL) invocation of h1 (h2) on M .

M ′ : Computed second preimage.

(x̂, ŷ) : Endpoint pair of expandable message (computed

in Phase 1).

(ap, bp) : State pair (in the sequences a0, . . . , aL and b0, . . . , bL)

on which the computation of M and M ′ coincides

(computed in Phase 2).

(x̄, ȳ), m̄ : ”Special” state pair and message block used to reach

(ap, bp) (computed in Phase 2).

M̂ : Message fragment that maps (x̂, ŷ) to (x̄, ȳ) (computed

in Phase 3).

q : Length of M̂ (smaller than p− 1).
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Complexity Evaluation Denote L = 2`. For a parameter g1 ≥ max(n/2, n−
`), the complexity of the phases of the attack (as computed in their detail de-
scription) is given below (ignoring constant factors).

Phase 1: L+ n2 · 2n/2 = 2` + n2 · 2n/2
Phase 2: 1/L · 22n−g1 = 22n−g1−`

Phase 3: 23g1/2

We balance the second and third phases by setting 2n − g1 − ` = 3g1/2, or
g1 = 2/5 · (2n− `), giving time complexity of 23/5·(2n−`). This tradeoff holds as
long as 2` +n2 · 2n/2 ≤ 23/5(2n−`), or ` ≤ 3n/4. The optimal complexity is 23`/4,
obtained for ` = 3n/4. The attack is faster than 2n (Joux’s preimage attack) for8

` > n/3. The message range for which the attack is faster than 2n can be slightly
improved to L ≥ 22n/7 using the optimized attack, described in Appendix A.

3.1 Details of Phase 1: Constructing an Expandable Message

In this phase, we build a simultaneous expandable message for two Merkle-
Damg̊ard hash functions. This expandable message consists of the initial states
(IV1, IV2) and final states (x̂, ŷ) such that for each length κ in some appropriate
range (determined below) there is a message Mκ of κ blocks that maps (IV1, IV2)
to (x̂, ŷ).

We set C ≈ n/2 + log(n) as a constant. Our basic building block consists
of two pairs of states (xa, ya) and (xb, yb) and two message fragments ms and
ml that map the state pair (xa, ya) to (xb, yb). The message ms is the (shorter)
message fragment of fixed size C, while ml is of size i > C. Below, we will show
how to construct this building block for any state pair (xa, ya) and length i > C.

Given this building block and a positive parameter t, we build an expandable
message in the range of [C(C − 1) + tC,C2 − 1 +C(2t + t− 1)]. This is done by
utilizing a sequence of C − 1 + t basic building blocks. The first C − 1 building
blocks are built with parameters i ∈ {C + 1, C + 2, . . . , 2C − 1}. It is easy to see
that these structures give a (C(C− 1), C2− 1)–expandable message by selecting
at most one longer message fragment from the sequence, where the remaining
C − 2 (or C − 1) fragments are of length C. The final t building blocks give a
standard expandable message, but it is built in intervals of C. These t building
blocks are constructed with parameters i = C(2j−1 + 1) for j ∈ {1, . . . , t}.

Given a length κ in the appropriate range of [C(C−1)+tC,C2−1+C(2t+t−
1)], we can construct a corresponding message by first computing κ (modulo C).
We then select the length κ′ ∈ [C(C − 1), C2 − 1] such that κ′ ≡ κ (modulo C),
defining the first C − 1 message fragment choices. Finally, we compute (κ −
κ′)/C which is an integer in the range of [t, 2t + t − 1] and select the final t
message fragment choices as in a standard expandable message using the binary
representation of (κ− κ′)/C.

8 Note that for ` > n/3, g1 = 2/5 · (2n− `) > 2n/3 > max(n/2, n− `), as required.
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Construction of the Building Block Given state pair (xa, ya) and length
i > C, the algorithm for constructing the building block for the expandable
message is based on multi-collisions as described below.

1. Pick an arbitrary prefix mp of size i − C blocks and compute xp =
h1(xa,mp).

2. Find a collision h1(xa,m1) = h1(xp,m′1) = x2 with single block mes-
sages m1,m

′
1.

3. Build a 2C−1 standard Joux multi-collision in h1 starting from x2 and
denote its final endpoint by xb. Altogether we have a multi-collision in
h1 with 2C messages that map xa to xb. Out of these messages, 2C−1

are of length C (obtained by first selecting m1) and we denote this set of
messages by S1. The remaining 2C−1 messages are of length i (obtained
by first selecting the (i − C + 1)-block prefix mp‖m′1), and we denote
this set of messages by S2.

4. Evaluate yp = h2(ya,mp) and store the result. Next, evaluate h2 from
ya on the two sets S1 and S2 (using the stored yp to avoid recomputing
h2(ya,mp)) and find a collision between them (such a collision is very
likely to occur since C − 1 > n/2). The collision gives the required
ms ∈ S1 and ml ∈ S2 of appropriate sizes such that yb , h2(ya,ms) =
h2(ya,ml) and xb , h1(xa,ms) = h1(xa,ml).

The complexity of Step 1 is less than i compression function evaluations.
The complexity of Step 2 is about 2n/2, while the complexity of Step 3 is about
C · 2n/2 ≈ n · 2n/2. The complexity of Step 4 is about i + n · 2n/2. In total, the
complexity of constructing the basic building block is about i+n ·2n/2 (ignoring
small factors).

Complexity Analysis of the Full Phase The full expandable message re-
quires computing C − 1 + t building blocks whose sum of length parameters
(dominated by the final building block) is about C · 2t ≈ n · 2t. Assuming that
t < n, we construct C − 1 + t ≈ n building blocks and the total time complexity
of constructing the expandable message is about n · 2t + n2 · 2n/2. Our attack
requires the (C(C−1)+tC,C2−1+C(2t+t−1))–expandable message to extend
up to length L, implying that L ≈ n · 2t, and giving time complexity of about

L+ n2 · 2n/2.

3.2 Details of Phase 2: Finding a Target State Pair

In the second phase, we fix some message block m, giving rise to the functional
graphs f1(x) = h1(x,m) and f2(y) = h1(y,m) and let g1 ≥ n/2 be a parameter
(to be determined later). Our goal is to find a pair of states (x̄, ȳ), a message
block m̄ and an index p such that the following two conditions hold:

1. The state x̄ is an iterate of depth 2n−g1 in the functional graph of f1(x) and
ȳ is an iterate of depth 2n−g1 in the functional graph of f2(y).
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2. The state pair (x̄, ȳ) is mapped to (ap, bp) by m̄, or (x̄, ȳ)
m̄−→ (ap, bp).

The algorithm of this phase is given below.

1. Fix an arbitrary single-block value m.
2. Expand the functional graph of f1 using the procedure of Section 2.5

with parameter g1. Store all encountered iterates of depth 2n−g1 in a
table T1.

3. Similarly, expand the functional graph of f2 using the procedure of
Section 2.5 with parameter g1. Store all encountered iterates of depth
2n−g1 in a table T2.

4. For single-block values m′ = 0, 1, . . ., perform the following steps:
(a) For each node x ∈ T1 evaluate x′ = h1(x,m′) and store the matches

x′ = ai with thea sequence a1, . . . , aL in a table T ′1, sorted according
to the index i of ai.

(b) Similarly, for each node y ∈ T2 evaluate y′ = h2(y,m′) and look
for matches y′ = bj with the sequence b1, . . . , bL. For each match
with some bj , search for the index j in the table T ′1. If a match

i = j is found, set p , i (namely, (ap, bp) , (x′, y′)), m̄ , m′ and

(x̄, ȳ) , (x, y). This gives (x̄, ȳ)
m̄−→ (ap, bp) as required. Otherwise

(no match i = j is found), go back to Step 4.

a More precisely, due to the minimal length restriction of the expandable message,
matches x′ = ai with i smaller than (approximately) C2 ≈ n2 cannot be
exploited in the full attack. Moreover, the maximal exploitable value of i is
L− 2. However, the fraction of these nodes is very small and can be ignored in
the complexity analysis.

The time complexity of steps 2 and 3 (which execute the algorithm of Sec-
tion 2.5) is about 2g1 . The time complexity of step 4.(a) and step 4.(b) is also
bounded by 2g1 (given that a1, . . . , aL and b1, . . . , bL are sorted in memory), as
the size of T1 and T2 is at most 2g1 and the number of matches found in each
step can only be smaller.

We now calculate the expected number of executions of Step 4 until the
required (ap, bp) is found. Using the analysis of Section 2.5, the expected size of
T1 and T2 (that contain iterates of depth 2n−g1) is close to 2g1 . According to
the birthday paradox, the expected size of T ′1 is about L · 2g1−n. Similarly, the
number of matches y′ = bj is also about L · 2g1−n. The probability of a match
i = j in Step 4.(b) is computed using a birthday paradox on the L possible
indexes, namely, 1/L · (L · 2g1−n)2 = L · 22g1−2n. As a result, Step 4 is executed
about 1/L · 22n−2g1 times until the required (ap, bp) is found (the executions
with different blocks m′ are essentially independent). Altogether, the total time
complexity of this step is

2g1 · 1/L · 22n−2g1 = 1/L · 22n−g1 .

Since the index p is uniformly distributed in the interval [1, L], we will assume
that p = Θ(L).
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3.3 Details of Phase 3: Hitting the Target State Pair

In the third and final phase, we start from (x̂, ŷ) and compute a message fragment

M̂ of length q < p − 1 such that (x̂, ŷ)
M̂−→ (x̄, ȳ). We use in a strong way the

fact that the state x̄ (and ȳ) is a deep iterate (of depth 2n−g1) in the functional
graph of f1(x) (f2(y)).

This phase is carried out by picking an arbitrary starting message block ms,
which gives points x0 = h1(x̂,ms) and y0 = h2(ŷ,ms). We then continue to
evaluate the chains xi = h1(xi−1,m) and yj = h2(yj−1,m) up to a maximal
length L′ (determined below). We hope to encounter x̄ at some distance q − 1
from x0 and to encounter ȳ at the same distance q − 1 from y0. Given that
q− 1 < p, this will give the required M̂ = ms‖[m]q−1 (where [m]q−1 denotes the
concatenation of q − 1 message blocks m), which is of length q < p− 1. In case
x̄ and ȳ are encountered at different distances in the chains, or at least one of
them is not encountered at all, we pick a different value for ms and start again.

The next question which we address is to what maximal length L′ should we
evaluate −→x and −→y . As we wish to reach iterates x̄ and ȳ of depth 2n−g1 , it can
be shown that L′ = 2n−g1 is optimal. Since the total chain length should be less
than p− 1, this imposes the restriction L′ = 2n−g1 < p− 1 < L, or 2g1 < 2n/L.

We now estimate the probability that x̄ and ȳ will be encountered at the
same distance from the arbitrary starting points of the chains x0 and y0. This
probability will allow us to compute the number of chains from different starting
points that we need to evaluate in this phase of the attack, which is an important
parameter in the complexity evaluation.

Since x̄ is an iterate of depth 2n−g1 in f1(x), it is an endpoint of a chain of
states of length L′ = 2n−g1 (such a chain was computed in Section 3.2). Let d be
in the interval [1, L′] = [1, 2n−g1 ], then according to Lemma 1, Pr[xd = x̄] ≈ d ·
2−n (this is the probability that x̄ will be encountered at distance d from x0). Due
to the independence of f1 and f2, Pr[xd = x̄

∧
yd = ȳ] ≈ (d·2−n)2. Summing the

probabilities of the (disjoint) events over all distances d in the interval [1, 2n−g1 ],
we conclude that the probability that x̄ and ȳ will be encountered at the same
distance is about (2n−g1)3 · 2−2n = 2n−3g1 .

The probability calculation seems to give rise to the conclusion that we need
to compute about 23g1−n chains from different starting points in this phase of the
attack. This conclusion was verified experimentally, but its proof is incomplete
since the various trials performed by selecting different starting points for the
chains are dependent. More details can be found in Appendix B.

The Algorithm of Phase 3 The naive algorithm described above performs
about 23g1−n trials, where each trial evaluates chains of length L′ = 2n−g1 from
arbitrary points, giving a total time complexity of about 23g1−n+n−g1 = 22g1 .
Since g1 ≥ n/2, the time complexity of the full algorithm is at least 2n and it is
not faster than Joux’s preimage attack.

In order to optimize the algorithm, we further expand the graphs of f1 and
f2. As a result, the evaluated chains are expected to collide with the graphs
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sooner (before they are evaluated to the full length of 2n−g1). Once a collision
occurs, we use a lookahead procedure to calculate the distance of the chain’s
starting point from x̄ (or ȳ). This lookahead procedure resembles the one used
in recent attacks on hash-based MACs [17, 32] (although the setting and actual
algorithm in our case are obviously different).

More specifically, we pick a parameter g2 > g1 and execute the algorithm
below (see Figure 1 for illustration).

1. Develop 2g2 nodes in the functional graphs of f1 (and f2) (as specified
in Section 2.5) with the following modifications.
– Store at each node its distance from x̄ (or ȳ in f2) (the maximal

stored distance is L′ = 2n−g1): for each computed chain, once it hits
a previously visited node in the graph, obtain its stored distance
from x̄ (or ȳ in f2) and update it in all the computed nodes in the
current chain up to the maximal value L′ = 2n−g1 .

– If a chain does not hit x̄, then the distance of its nodes is undefined
and stored as a special value ⊥. Similarly, this special value is used
for nodes whose distance from x̄ is larger than L′.

– The evaluated nodes for f1 (f2) are stored in the data structure G1

(G2).
2. For single-block values ms = 0, 1, . . ., compute x0 = h1(x̂,ms) and
y0 = h2(ŷ,ms) and repeat the following step:
(a) Compute the chains −→x and −→y up to maximal length L′ = 2n−g1 ,

or until they hit G1 and G2 (respectively).
– If −→x (or −→y ) does not hit G1 (G2), return to Step 2.
– Otherwise, once −→x (−→y ) hits G1 (G2), obtain the stored distance

from x̄ (ȳ) at the collision point. If the distance to x̄ (or ȳ) is
undefined, return to Step 2.

– Compute the respective distances i and j of x0 and y0 from x̄
and ȳ. If i 6= j, return to Step 2.

– Otherwise (i = j), denote q = i + 1. If q ≥ p − 1, return to
Step 2.

– Otherwise (q < p − 1), return the message M̂ = ms‖[m]i =
ms‖[m]q−1 as output.

The time complexity of Step 1 is 2g2 . As previously computed, in Step 2 we
perform about 23g1−n trials before encountering two starting points with the
same distance to x̄ and ȳ. According to the analysis of Section 2.5, each trial
requires about 2n−g2 computation (before hitting G1 and G2). Therefore, the
total time complexity of this phase is 2g2 + 23g1−n · 2n−g2 = 2g2 + 23g1−g2 . The
complexity is minimized by setting g2 = 3g1/2 which balances the two terms
and gives time complexity of

23g1/2.

Finally, we note that the memory complexity of this algorithm can be opti-
mized using distinguished points. A detailed way to achieve this will be presented
in the closely related algorithm of Section 4.2.
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Fig. 1. Phase 3 of the Attack

4 A New Preimage Attack on the XOR Combiner

In this attack we are given a target n-bit preimage value V and our goal is to find
a message M such that H1(M)⊕H2(M) = V . Although the formal problem does
not restrict M in any way, several concrete hash functions restrict the length of
M . Therefore, we will also assume that the size of M is bounded by a parameter
L. As in the previous attack, we start with a high-level overview and then give
the technical details.

The attack is composed of three main phases which are similar to the second
preimage attack on the concatenation combiner of Section 3. The first phase
is identical to the first phase of the attack of Section 3. Namely, we build an
expandable message that consists of the initial states (IV1, IV2) and final states
(x̂, ŷ) such that for each length κ in an appropriate range there is a message Mκ

of κ blocks that maps (IV1, IV2) to (x̂, ŷ). The description of this phase is given
in Section 3.1 and is not repeated below.

In the second phase of the attack, we find a set S (of size 2s) of tuples of the

form ((x, y), w) such that w is a single block, (x, y)
w−→ (a, b), and h1(a, pad) ⊕

h2(b, pad) = V , where pad is the final block of the (padded) preimage message
of length L. Moreover, (x, y) has a special property that will be defined in the
detailed description of this phase.

In the third and final phase, we start from (x̂, ŷ) and compute a message

fragment M̂ of length q (shorter than L− 2) such that (x̂, ŷ)
M̂−→ (x̄, ȳ) for some

((x̄, ȳ), m̄) ∈ S. For this tuple, denote (ā, b̄) , h1,2((x̄, ȳ), m̄).

Finally, we pickML−q−2 using the expandable message, giving (IV0, IV1)
ML−q−2−−−−−→

(x̂, ŷ), and concatenate ML−q−2‖M̂‖m̄ in order to reach the state pair (ā, b̄) from
(IV1, IV2) with a message of appropriate length L− 1. Indeed, we have

(IV0, IV1)
ML−q−2−−−−−→ (x̂, ŷ)

M̂−→ (x̄, ȳ)
m̄−→ (ā, b̄).

Altogether, we obtain the padded preimage for the XOR combiner

M = ML−q−2‖M̂‖m̄‖pad.
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We note that this attack can be optimized using the interchange structure,
similarly to the attack on the concatenation combiner. However, the improve-
ment is rather small and we do not give the details here.

Notation We summarize below the notation that is shared across the various
phases.

V : Target preimage.

M : Computed preimage.

L : Length of M .

pad : Final block of (the padded) M .

(x̂, ŷ) : Endpoint pair of expandable message

(computed in Phase 1).

S : Set containing tuples of the form ((x, y), w) such that w is a

single block, (x, y)
w−→ (a, b), and h1(a, pad)⊕ h2(b, pad) = V

(computed in Phase 2).

2s : Size of S.

((x̄, ȳ), m̄) : State pair and message block in S used in M

(computed in Phase 3).

(ā, b̄) : State pair defined as (ā, b̄) , h1,2((x̄, ȳ), m̄)

(computed in Phase 3).

M̂ : Message fragment used in M that maps (x̂, ŷ) to (x̄, ȳ)

(computed in Phase 3).

q : The length of M̂ (smaller than L− 2).

Complexity Evaluation Denote L = 2`. For parameters g1 ≥ max(n/2, n−`)
and s ≥ 0, the complexity of the phases of the attack (as computed in their
detail description) is given below (ignoring constant factors).

Phase 1: 2` + n2 · 2n/2
Phase 2: 2n+s−g1

Phase 3: 23g1/2−s/2+L·29g1/2−2n−3s/2+L·22g1−n = 23g1/2−s/2+2`+9g1/2−2n−3s/2+
2`+2g1−n

We balance the time complexities of the second phase and the first term
in the expression of the third phase by setting n + s − g1 = 3g1/2 − s/2, or
s = 5g1/3 − 2n/3, giving a value of 2n/3+2g1/3 for these terms. Furthermore,
` + 9g1/2 − 2n − 3s/2 = ` + 2g1 − n and the time complexity expression of
Phase 3 is simplified to 2n/3+2g1/3 + 2`+2g1−n. Since g1 is a positive factor in all
the terms, we optimize the attack by picking the minimal value of g1 under the
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restriction g1 ≥ max(n/2, n − `). In case ` ≤ n/2, we set g1 = n − ` and the
total time complexity of the attack9 is

2n/3+2(n−`)/3 = 2n−2`/3.

The optimal complexity is 22n/3, obtained for ` = n/2 by setting g1 = n/2.

4.1 Details of Phase 2: Finding a Set of Target State Pairs

In the second phase, we fix some message block m, giving rise to the functional
graphs defined by the random mappings f1(x) = h1(x,m) and f2(y) = h1(y,m).
Given parameters g1 ≥ n/2 and s ≥ 0, our goal is to compute a set S (of size
2s) of tuples of the form ((x, y), w) where w is a single block such that for each
tuple:

1. The state x is an iterate of depth 2n−g1 in the functional graph of f1(x) and
y is an iterate of depth 2n−g1 in the functional graph of f2(y).

2. (x, y)
w−→ (a, b) and h1(a, pad)⊕h2(b, pad) = V , where pad is a final block of

the (padded) preimage message of length L.

The algorithm of this phase is (obviously) somewhat different from the algo-
rithm of Section 3.2 due to the fact that the goal of this attack and the actual
combiner scheme attacked are different. This algorithm resembles the algorithm
used in the final phase in Leurent and Wang’s attack [25], as both look for state
pairs (x, y) that give h1(x,w‖pad)⊕ h2(y, w‖pad) = V (for some message block
w). The difference is that in the attack of [25], (x, y) was an arbitrary endpoint
pair of the interchange structure, while in our case, we look for x and y that are
deep iterates.

1. Fix an arbitrary single-block value m.
2. Expand the functional graph of f1 using the procedure of Section 2.5

with parameter g1. Store all encountered iterates of depth 2n−g1 in a
table T1.

3. Similarly, expand the functional graph of f2 using the procedure of
Section 2.5 with parameter g1. Store all encountered iterates of depth
2n−g1 in a table T2.

4. Allocate a set S = ∅. For single-block values w = 0, 1, . . ., perform the
following steps until S contains 2s elements:
(a) For each node x ∈ T1 evaluate h1(x,w‖pad), and store the results

in a table T ′1, sorted according h1(x,w‖pad).
(b) Similarly, for each node y ∈ T2 evaluate h2(y, w‖pad)⊕V , and look

for matches h2(y, w‖pad) ⊕ V = h1(x,w‖pad) with T ′1. For each
match, add the tuple ((x, y), w) to S.

9 Note that ` + 2g1 − n = n− ` < n− 2`/3.
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The time complexity of steps 2 and 3 is about 2g1 . The time complexity of
step 4.(a) and step 4.(b) is also bounded by 2g1 . We now calculate the expected
number of executions of Step 4 until 2s matches are found and inserted into S.

According to the analysis of Section 2.5, the expected size of T1 and T2 (the
number of deep iterates) is close to 2g1 . Thus, for each execution of Step 4, the
expected number of matches on n-bit values h2(y, w‖pad) ⊕ V = h1(x,w‖pad)
is 22g1−n. Consequently, Step 4 is executed 2s+n−2g1 times in order to obtain 2s

matches. Altogether, the total time complexity of this step is

2n+s−2g1+g1 = 2n+s−g1 .

4.2 Details of Phase 3: Hitting a Target State Pair

In the third and final phase, we start from (x̂, ŷ) and compute a message M̂ of

length q (shorter than L− 2) such that (x̂, ŷ)
M̂−→ (x̄, ȳ) for some ((x̄, ȳ), m̄) ∈ S.

This phase is carried out by picking an arbitrary starting message block ms,
which gives points x0 = h1(x̂,ms) and y0 = h2(ŷ,ms). We then continue to
evaluate the chains xi+1 = h1(xi,m) and yj+1 = h2(yj ,m) up to length at most
L− 3. We hope to encounter x̄ at some distance q− 1 from x0 and to encounter
ȳ at the same distance q− 1 from y0, where ((x̄, ȳ), m̄) ∈ S for some single block
value m̄. This gives the required M̂ = ms‖[m]q−1.

The goal of this algorithm is very similar to one of the algorithm of Sec-
tion 3.3, where the difference is the size of the set S, which essentially contained
a single element10 in Section 3.3, but can now have a larger size. This difference
results in a complication that arises when the algorithm builds the functional
graph of f1 (and f2), and has to keep track of distances of encountered nodes
from all the 2s nodes x (and y) that are in tuples of S (instead of merely keeping
track of distances from a single node as in Section 3.3).

More formally, we define an S-node (for f1) as a node x such that there
exists a node y and a message block w such that ((x, y), w) ∈ S. An S-node for
f2 in defined in a similar way. In order to avoid heavy update operations for
the distances from all the S-nodes, we use distinguished points. Essentially, each
computed chain is partitioned into intervals according to distinguished points,
where each distinguished point stores only the distances to all the S-nodes that
are contained in its interval up to the next distinguished point. Given a parameter
g2 > g1, the algorithm for this phase is described below.

1. Develop (about) 2g2 nodes in the functional graphs of f1 (and f2) (as
specified in Section 2.5) with the following modifications.
– Store only distinguished points for which the n− g2 LSBs are zero.
– Once an S-node is encountered, update its distance in the previ-

ously encountered distinguished point (which is defined with high
probabilitya).

10 One may ask why we did not compute a larger set S in Section 3.2. The reason for
this is that it can be shown that in the previous case a set of size 1 is optimal.
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– Stop evaluating each chain once it hits a stored distinguished point.
– The evaluated distinguished points for f1 (f2) are stored in the data

structure G1 (G2).
2. For single-block values ms = 0, 1, . . ., compute x0 = h1(x̂,ms) and
y0 = h2(ŷ,ms) and repeat the following step:
(a) Compute chains −→x and −→y as specified below.

– First, compute the chains in a standard way by evaluating the
compression functions h1 and h2, until they hit stored distin-
guished points in G1 and G2 (respectively).

– Then, allocate a table T1 (T2 for f2) and continue traversing
(only) the distinguished points of the chain (using the links in
G1 and G2) up to depth L− 2, while updating T1 (T2): for each
visited distinguished point, add all its stored S-nodes to T1 (T2)
with its distance from x0 (y0).

– Once the maximal depth L−2 is reached, sort T1 and T2. Search
for nodes x̄ and ȳ that were encountered at the same distance
q − 1 from x0 and y0 (respectively), such that ((x̄, ȳ), m̄) ∈ S.
If such x̄ ∈ T1 and ȳ ∈ T2 exist, return the message M̂ =
ms‖[m]q−1 and m̄ (retrieved from S) as output. Otherwise (no
such x̄ and ȳ were found), return to Step 2.

a Since g2 > g1, S-nodes are deeper iterates than distinguished points, and thus
distinguished points are likely to be encountered in an arbitrary chain before
an S-node.

The time complexity of Step 1 is about 2g1 , as described in Section 2.5
(note that we always perform a constant amount of work per developed node).
Compared to the second step of the algorithm of Section 3.3, S contains 2s

elements (instead of 1), and this reduces by the same factor the expected number
of trials we need to execute in order to reach some ((x̄, ȳ), m̄) ∈ S in Step 2.
Reusing the analysis of Section 3.3, the expected number of trials (executions of
Step 2) is reduced from 23g1−n to 23g1−n−s.

The analysis of the complexity of Step 2.(a) is somewhat more involved com-
pared to the corresponding step of Section 3.3. First, we estimate the expected
number of nodes that we visit during the computation of a chain. Initially (as
in Section 3.3), we compute about 2n−g2 nodes until we hit stored distinguished
points. Then, we continue by traversing (only) distinguished points up to depth
of about L. The expected number of such points is L·2g2−n. Therefore, we expect
to visit about 2n−g2 + L · 2g2−n nodes while computing a chain.

Finally, we need to account for all the S-nodes encountered while traversing
the chains of depth L. Basically, there are 2s S-nodes which are iterates of
depth 2n−g1 , (essentially) randomly chosen in Phase 2 out of about 2g1 such
deep iterates. As a result, the probability of such a deep iterate to be an S-node
is about 2s−g1 (while other nodes have probability 0). Therefore, while traversing
chains of depth L, we expect to encounter at most L · 2s−g1 S-nodes (which is a
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bound on the sizes of T1 and T2). Altogether, the expected time complexity of
a single execution of Step 2.(a) is at most 2n−g2 + L · 2g2−n + L · 2s−g1 .

The total time complexity of this phase is 2g2 +23g1−n−s ·(2n−g2 +L ·2g2−n+
L·2s−g1) = 2g2 +23g1−g2−s+L·23g1+g2−2n−s+L·22g1−n. We set g2 = 3g1/2−s/2
which balances the first two terms and gives time complexity of

23g1/2−s/2 + L · 29g1/2−2n−3s/2 + L · 22g1−n.

The time complexity evaluation of the full attack at the beginning of this
section shows that for the optimal parameters of this attack, the extra two terms
L · 29g1/2−2n−3s/2 +L · 22g1−n are negligible compared to the other terms in the
complexity equation. In other words, the distinguished points method allowed
us to resolve with no overhead the complication of keeping track of distances
from the S-nodes.

5 Conclusions and Open Problems

In this paper we devised the first second preimage attack on the concatena-
tion combiner and improved the preimage attack on the XOR combiner (due to
Leurent and Wang) in case both hash functions use the Merkle-Damg̊ard con-
struction. Since both of our second preimage and preimage attacks on the con-
catenation and XOR combiners have higher complexities than the lower bounds
(2n/L and 2n/2, respectively), it would be interesting to further improve them,
and it particular, extend the second preimage attack to shorter messages. There
are many additional interesting future work items such as extending our algo-
rithms to combine more than two hash functions. Indeed, while it is easy to
extend the expandable message to more than two hash functions with small
added complexity, extending the random mapping techniques is less obvious.
Yet another open problem is to improve preimage attack of Leurent and Wang
on the XOR combiner in case only one of the functions uses the Merkle-Damg̊ard
construction.
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September 25-29, 2009, volume 584 of CEUR Workshop Proceedings, pages 71–76.
CEUR-WS.org, 2009.

36. P. C. van Oorschot and M. J. Wiener. Parallel Collision Search with Cryptanalytic
Applications. J. Cryptology, 12(1):1–28, 1999.

37. X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup,
editor, Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceed-
ings, volume 3621 of Lecture Notes in Computer Science, pages 17–36. Springer,
2005.

38. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In Cramer
[7], pages 19–35.

A Optimizing the Second Preimage Attack Using the
Interchange Structure

The interchange structure [25] is built with a parameter that we denote by r.
It consists of a starting state pair (as, bs) and two sets of 2r internal states A
for H1 and B for H2 such that: for any value a ∈ A and any value b ∈ B,
it is possible to efficiently construct a message Ma,b (of length 22r) such that

(as, bs)
Ma,b−−−→ (a, b). We now describe how to use the interchange structure as a

black box in order to optimize the second preimage attack of Section 3.
The idea is to insert the interchange structure after the expandable mes-

sage in order to reach (x̄, ȳ) more efficiently in the third phase of the attack.
More specifically, consider Step 2 in the attack of Section 3.3. There, we start
computing from the state pair (x̂, ŷ) and evaluate chains independently for each
single-block value ms = 0, 1, . . .. In the optimized attack, we build the inter-
change structure with the starting state pair (x̂, ŷ) and sets of 2r states A, B.
We pick some single-block value ms and compute two sets of 2r chains starting
from the states of A and B. Our goal is to find any pair of states a ∈ A and

b ∈ B such that (a, b)
ms‖[m]q−1

−−−−−−−→ (x̄, ȳ) for some q ≤ p − 2r − 1. Therefore, we

have (x̂, ŷ)
Ma,b−−−→ (a, b)

ms‖[m]q−1

−−−−−−−→ (x̄, ȳ), and we set M̂ = Ma,b‖ms‖[m]q−1.
In the original attack, we evaluate and compare two chains for each execu-

tion of Step 2. In contrast, in the optimized attack, in each execution of modified
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Step 2 we evaluate 2 · 2r chains and compare them in 2r · 2r = 22r pairs. Conse-
quently, the time complexity of (modified) Step 2 is increased by 2r, but we have
to execute it 22r less times. The complexity evaluation of the attack is rather
technical as we need to balance several parameters and account for the message
length 22r of Ma,b.

We sketch the complexity evaluation for short messages, where the length of
Ma,b is roughly equal to L, i.e., we have L = 2` = 22r or r = `/2. According to
Section 3.3, the complexity of Phase 3 in the original attack is 2g2 +23g1−n ·2n−g2 .
Since building the interchange structure requires 2n/2+2r time, the modified
complexity is 2g2 + 23g1−n−2r · 2n−g2+r + 2n/2+2r = 2g2 + 23g1−g2−`/2 + 2n/2+`

(setting r = `/2). We balance the first two terms and obtain g2 = 3g1/2 − `/4,
giving time complexity of 23g1/2−`/4 + 2n/2+`. Recall from Section 3.2 that the
complexity of Phase 2 is 22n−g1−`. We balance the second and third phases by
setting g1 = 4n/5− 3`/10, which gives time complexity of 26n/5−7`/10 for small
values of ` in which the term 2n/2+` is negligible. Therefore, we obtain an attack
faster than 2n for messages of length L > 22n/7 (which is a small improvement
compared to L ≥ 2n/3, obtained without this optimization).

For larger values of ` we need to redo the computation and account for the
term 2n/2+2r in the complexity evaluation. However, since the improvement over
the original attack in not very significant, we do not give the details here.

B On the Number of Required Chain Evaluations in
Section 3.3

In Section 3.3 we concluded that the probability of encountering x̄ and ȳ at the
same distance in chains (of f1 and f2) evaluated from arbitrary starting points x0

and y0 is about 2n−3g1 . If the trials of chain evaluations were independent, this
would have led to the conclusion that we need to compute about 23g1−n chains
from different starting points in Phase 3. However, the trials are dependent as
explained below.

Reconsider Lemma 1 in case we select more than 2n/D2 starting points xi0
such that the chains (of length D) evaluated from them contain in total more
than D · 2n/D2 = 2n/D nodes. In this case, a new chain of length D (evaluated
from x0) is very likely to collide with a previously evaluated node before colliding
with the original chain (evaluated from x′0) due to the birthday paradox. After
a collision of the new chain with a previously evaluated node, the outcome of
the trial is determined and cannot be analyzed probabilistically. Of course, this
does not imply that Lemma 1 does not hold for more than 2n/D2 trials, but it
does imply that in a formal proof we need to account for the dependency of the
trials when applying this lemma with more than 2n/D2 trials.11

A potential way to handle this is to select more targets12 of the form (x̄, ȳ)
in Phase 2, which reduces the number of trials that we need to perform in Phase

11 Note that in our case D = 2n−g1 or 2g1 = 2n/D, so 23g1−n = 22n/D3 > 2n/D2.
12 In a similar way to the algorithm of Section 4.
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3 (as we need to reach only one target). This will enable us to complete the
theoretical analysis of the attack, but it does result in a performance degradation
(although the attack remains faster than 2n for a modified set of parameters).

However, based on simulations (described below), we strongly believe that
indeed about 23g1−n trials are required in Section 3.3 in order to reach arbitrary
iterates x̄ and ȳ of depth 2n−g1 at the same distance. We note that assumptions
of this type are not uncommon in analysis of random functions. A recent and
related conjecture was made in [17].

Experimental Results In our simulations we preformed hundreds of exper-
iments on independent n-bit random mappings f1 and f2 for n ∈ {12, . . . , 28}
with several13 values of n/3 ≤ g1 < n/2. In the beginning of each experiment,
we chose different mappings f1 and f2 and arbitrary deep iterates x̄, ȳ of depth
2n−g1 . Each experiment was carried out by performing 2 · 23g1−n trials (with
chains evaluated from arbitrary different starting points), trying to hit x̄ and
ȳ at the same distance (up to 2n−g1). The success rate of the experiments was
more than 50% and did not drop as the value of n increased.

13 Smaller values of n where chosen for smaller values of g1, as these experiments are
more expensive.
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