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Abstract. Pseudorandom functions (PRFs) play a central role in sym-
metric cryptography. While in principle they can be built from any one-
way functions by going through the generic HILL (SICOMP 1999) and
GGM (JACM 1986) transforms, some of these steps are inherently se-
quential and far from practical. Naor, Reingold (FOCS 1997) and Rosen
(SICOMP 2002) gave parallelizable constructions of PRFs in NC2 and
TC0 based on concrete number-theoretic assumptions such as DDH,
RSA, and factoring. Banerjee, Peikert, and Rosen (Eurocrypt 2012) con-
structed relatively more efficient PRFs in NC1 and TC0 based on “learn-
ing with errors” (LWE) for certain range of parameters. It remains an
open problem whether parallelizable PRFs can be based on the “learn-
ing parity with noise” (LPN) problem for both theoretical interests and
efficiency reasons (as the many modular multiplications and additions in
LWE would then be simplified to AND and XOR operations under LPN).

In this paper, we give more efficient and parallelizable constructions of
randomized PRFs from LPN under noise rate n−c (for any constant
0 < c < 1) and they can be implemented with a family of polynomial-
size circuits with unbounded fan-in AND, OR and XOR gates of depth
ω(1), where ω(1) can be any small super-constant (e.g., log log logn or
even less). Our work complements the lower bound results by Razborov
and Rudich (STOC 1994) that PRFs of beyond quasi-polynomial secu-
rity are not contained in AC0(MOD2), i.e., the class of polynomial-size,
constant-depth circuit families with unbounded fan-in AND, OR, and
XOR gates.

Furthermore, our constructions are security-lifting by exploiting the re-
dundancy of low-noise LPN. We show that in addition to parallelizability
(in almost constant depth) the PRF enjoys either of (or any tradeoff be-
tween) the following:
– A PRF on a weak key of sublinear entropy (or equivalently, a uniform

key that leaks any (1 − o(1))-fraction) has comparable security to
the underlying LPN on a linear size secret.

– A PRF with key length λ can have security up to 2O(λ/ log λ), which
goes much beyond the security level of the underlying low-noise LPN.

where adversary makes up to certain super-polynomial amount of queries.



1 Introduction

Learning Parity with Noise. The computational version of learning parity
with noise (LPN) assumption with parameters n ∈ N (length of secret), q ∈ N
(number of queries) and 0 < µ < 1/2 (noise rate) postulates that it is compu-
tationally infeasible to recover the n-bit secret s ∈ {0, 1}n given (a · s ⊕ e, a),
where a is a random q×n matrix, e follows Berqµ, Berµ denotes the Bernoulli dis-
tribution with parameter µ (i.e., Pr[Berµ = 1] = µ and Pr[Berµ = 0] = 1−µ), ‘·’
denotes matrix vector multiplication over GF(2) and ‘⊕’ denotes bitwise XOR.
The decisional version of LPN simply assumes that a · s ⊕ e is pseudorandom
(i.e., computationally indistinguishable from uniform randomness) given a. The
two versions are polynomially equivalent [12,36,5].

Hardness of LPN. The computational LPN problem represents a well-known
NP-complete problem “decoding random linear codes” [9] and thus its worst-case
hardness is well studied. LPN was also extensively studied in learning theory,
and it was shown in [24] that an efficient algorithm for LPN would allow to
learn several important function classes such as 2-DNF formulas, juntas, and
any function with a sparse Fourier spectrum. Under a constant noise rate (i.e.,
µ = Θ(1)), the best known LPN solvers [13,40] require time and query com-
plexity both 2O(n/ logn). The time complexity goes up to 2O(n/ log logn) when
restricted to q = poly(n) queries [42], or even 2O(n) given only q = O(n) queries
[45]. Under low noise rate µ = n−c (0 < c < 1), the security of LPN is less well
understood: on the one hand, for q = n + O(1) we can already do efficient dis-

tinguishing attacks with advantage 2−O(n1−c) that match the statistical distance
between the LPN samples and uniform randomness (see Remark 2); on the other
hand, for (even super-)polynomial q the best known attacks [54,15,11,39,7] are

not asymptotically better, i.e., still at the order of 2Θ(n1−c). We mention that
LPN does not succumb to known quantum algorithms, which makes it a promis-
ing candidate for “post-quantum cryptography”. Furthermore, LPN also enjoys
simplicity and is more suited for weak-power devices (e.g., RFID tags) than other
quantum-secure candidates such as LWE [52] 5.

LPN-based Cryptographic Applications. LPN was used as a basis for
building lightweight authentication schemes against passive [31] and even active
adversaries [35,36] (see [1] for a more complete literature). Recently, Kiltz et al.
[38] and Dodis et al. [20] constructed randomized MACs based on the hardness of
LPN, which implies a two-round authentication scheme with man-in-the-middle
security. Lyubashevsky and Masny [43] gave an more efficient three-round au-
thentication scheme from LPN (without going through the MAC transforma-
tion) and recently Cash, Kiltz, and Tessaro [16] reduced the round complexity

5 The inner product of LWE requires many multiplications modulo a large prime p
(polynomial in the security parameter), and in contrast the same operation for LPN
is simply an XOR sum of a few AND products.



to 2 rounds. Applebaum et al. [4] showed how to constructed a linear-stretch6

pseudorandom generator (PRG) from LPN. We mention other not-so-relevant
applications such as public-key encryption schemes [3,22,37], oblivious transfer
[19], commitment schemes and zero-knowledge proofs [33], and refer to a recent
survey [49] on the current state-of-the-art about LPN.

Does LPN imply low-depth PRFs? Pseudorandom functions (PRFs) play a
central role in symmetric cryptography. While in principle PRFs can be obtained
via a generic transform from any one-way function [29,26], these constructions
are inherently sequential and too inefficient to compete with practical instanti-
ations (e.g., the AES block cipher) built from scratch. Motivated by this, Naor,
Reingold [46] and Rosen [47] gave direct constructions of PRFs from concrete
number-theoretic assumptions (such as decision Diffie-Hellman, RSA, and fac-
toring), which can be computed by low-depth circuits in NC2 or even TC0.
However, these constructions mainly established the feasibility result and are
far from practical as they require extensive preprocessing and many exponentia-
tions in large multiplicative groups. Banerjee, Peikert, and Rosen [6] constructed
relatively more efficient PRFs in NC1 and TC0 based on the “learning with er-
rors” (LWE) assumption. More specifically, they observed that LWE for certain
range of parameters implies a deterministic variant which they call “learning
with rounding” (LWR), and that LWR in turn gives rise to pseudorandom syn-
thesizers [46], a useful tool for building low-depth PRFs. Despite that LWE is
generalized from LPN, the derandomization technique used for LWE [6] does not
seemingly apply to LPN, and thus it is an interesting open problem if low-depth
PRFs can be based on (even a low-noise variant of) LPN (see a discussion in [49,
Footnote 18]). In fact, we don’t even know how to build low-depth weak PRFs
from LPN. Applebaum [4] observed that LPN implies “weak randomized pseu-
dorandom functions”, which require independent secret coins on every function
evaluation, and Akavia et al. [2] obtained weak PRFs in “AC0◦MOD2” from a
relevant non-standard hard learning assumption.

Our contributions. In this paper, we give constructions of low-depth PRFs
from low-noise LPN (see Theorem 1 below), where the noise rate n−c (for
any constant 0 < c < 1) encompasses the noise level of Alekhnovich [3] (i.e.,
c = 1/2) and higher noise regime. Strictly speaking, the PRFs we obtain are
not contained in AC0(MOD2)7, but the circuit depth ω(1) can be arbitrarily
small (e.g., log log log n or even less). This complements the negative result of
Razborov and Rudich [51] (which is based on the works of Razborov and Smolen-
sky [50,53]) that PRFs with more than quasi-polynomial security do not exist
in AC0(MOD2).

6 A PRG G : {0, 1}`1 → {0, 1}`2 has linear stretch if the stretch factor `2/`1 equals
some constant greater than 1.

7 Recall that AC0(MOD2) refers to the class of polynomial-size, constant-depth circuit
families with unbounded fan-in AND, OR, and XOR gates.



Theorem 1 (main results, informal). Assume that the LPN problem with
secret length n and noise rate µ = n−c (for any constant 0 < c < 1) is (q =

1.001n, t = 2O(n1−c), ε = 2−O(n1−c))-hard8. Then,

1. for any d = ω(1), there exists a (q′ = nd/3, t−q′poly(n), O(nq′ε))-randomized-
PRF on any weak key of Rényi entropy no less than O(n1−c · log n), or on

an n1− c2 -bit uniform random key with any (1 − O(logn)
nc/2

)-fraction of leakage
(independent of the public coins of the PRF);

2. let λ = Θ(n1−c log n), for any d = ω(1), there exists a (q′ = λΘ(d), t′ =
2O(λ/ log λ), ε′ = 2−O(λ/ log λ)))-randomized PRF with key length λ;

where both PRFs are computable by polynomial-size depth-O(d) circuits with
unbounded-fan-in AND, OR and XOR gates.

On lifted security. Note that there is nothing special with the factor 1.001,
which can be replaced with any constant greater than 1. The first parallelizable
PRF has security9 comparable to the underlying LPN (with linear secret length)
yet it uses a key of only sublinear entropy, or in the language of leakage resilient
cryptography, a sublinear-size secret key with any (1− o(1))-fraction of leakage
(independent of the public coins). From a different perspective, let the security
parameter λ be the key length of the PRF, then the second PRF can have security
up to 2O(λ/ log λ) given any nΘ(d) number of queries. We use security-preserving
PRF constructions without relying on k-wise independent hash functions. This is
crucial for low-depth constructions as recent works [34,17] use (almost) ω(log n)-
wise independent hash functions, which are not known to be computable in
(almost) constant-depth even with unbounded fan-in gates. We remark that
circuit depth d = ω(1) is independent of the time/advantage security of PRF,
and is reflected only in the query complexity q′ = nΘ(d). This is reasonable
in many scenarios as in practice the number of queries may depend not only
on adversary’s computing power but also on the amount of data available for
cryptanalysis. It remains open whether the dependency of query complexity on
circuit depth can be fully eliminated.

Bernoulli-like Randomness Extractor/Sampler. Of independent inter-
ests, we propose the following randomness extractor/sampler in constant depth
and they are used in the first/second PRF constructions respectively.

– A Bernoulli randomness extractor in AC0(MOD2) that converts almost all
entropy of a weak Rényi entropy source into Bernoulli noise distributions.

– A sampler in AC0 that uses a short uniform seed and outputs a Bernoulli-like
distribution of length m and noise rate µ, denoted as ψmµ (see Algorithm 1).

Alekhnovich’s cryptosystem [3] considers a random distribution of length m that
has exactly µm 1’s, which we denote as χmµm. The problem of sampling χmµm dates

8 t and 1/ε are upper bounded by 2O(n1−c) due to known attacks.
9 Informally, we say that a PRF has security T if it is 1/T -indistinguishable from a

random function for all oracle-aid distinguishers running in time T and making up
to certain superpolynomial number of queries.



back to [12], but the authors only mention that it can be done efficiently, and it
is not known whether χmµm can be sampled in AC0(MOD2). Instead, Applebaum
et al. [4] propose the following sampler for Bernoulli distribution Berqµ using
uniform randomness. Let w = w1 · · ·wn be an n-bit uniform random string, and
for convenience assume that µ is a negative power of 2 (i.e., µ = 2−v for integer
v). Let sample : {0, 1}v → {0, 1} output the AND of its input bits, and let

e = (sample(w1 · · ·wv), · · · , sample(w(q−1)v+1 · · ·w(q−1)v+v))

so that e ∼ Berqµ for any q ≤ bn/ log(1/µ)c. Note that Berµ has Shannon en-
tropy H1(Berµ) = Θ(µ log(1/µ)) (see Fact A1), and thus the above converts
a (qH1(Berµ)/n) = O(µ)-fraction of the entropy into Bernoulli randomness. It
was observed in [4] that conditioned on e source w remains of (1−O(µ))n bits
of average min-entropy, which can be recycled into uniform randomness with a
universal hash function h. That is, the two distributions are statistically close

( e, h(w) , h )
s∼ ( Berqµ, U(1−O(µ))n , h ) ,

where Uq denotes a uniform distribution over {0, 1}q. The work of [4] then
proceeded to a construction of PRG under noise rate µ = Θ(1). However, for
µ = n−c the above only samples an O(n−c)-fraction of entropy. To convert more
entropy into Bernoulli distributions, one may need to apply the above sample-
then-recycle process to the uniform randomness recycled from a previous round
(e.g., h(w) of the first round) and repeat the process many times. However,
this method is sequential and requires a circuit of depth Ω(nc) to convert any
constant fraction of entropy. We propose a more efficient and parallelizable ex-
tractor in AC0(MOD2). As shown in Figure 1, given any weak source of Rényi
entropy Θ(n), we apply i.i.d. pairwise independent hash functions h1, · · · , hq
(each of output length v) to w and then use sample on the bits extracted to
get the Bernoulli distributions. We prove a lemma showing that this method
can transform almost all entropy into Bernoulli distribution Berqµ, namely, the
number of extracted Bernoulli bits q can be up to Θ(n/H1(Berµ)). This imme-
diately gives an equivalent formulation of the standard LPN by reusing matrix
a to randomize the hash functions. For example, for each 1 ≤ i ≤ q denote by ai
the i-th row of a, let hi be described by ai, and let i-th LPN sample be 〈ai, s〉
⊕ sample(hi(w)). Note that the algorithm is non-trivial as (h1(w), · · · , hq(w))
can be of length Θ(n1+c), which is much greater than the entropy of w.

The Bernoulli randomness extractor is used in the first PRF construction.
For our second construction, we introduce a Bernoulli-like distribution ψmµ that
can be more efficiently sampled in AC0 (i.e., without using XOR gates), and
show that it can be used in place of Bermµ with provable security.

PRGs and PRFs from LPN. It can be shown that standard LPN implies
a variant where the secret s and noise vector e are sampled from Bern+q

µ or
even ψn+q

µ . This allows us to obtain a randomized PRG Ga with short seed and
polynomial stretch, where a denotes the public coin. We then use the technique
of Goldreich, Goldwasser and Micali [26] with a nΘ(1)-ary tree of depth ω(1)
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Fig. 1. An illustration of the proposed Bernoulli randomness extractor in AC0(MOD2).

(reusing public coin a at every invocation of Ga) and construct a randomized
PRF (see Definition 4) Fk,a with input length ω(log n), secret key k and public
coin a. This already implies PRFs of arbitrary input length by Levin’s trick

[41], i.e., F̄(k,h),a(x)
def
= Fk,a(h(x)) where h is a universal hash function from any

fixed-length input to ω(log n) bits. Note that F̄(k,h),a is computable in depth
ω(1) (i.e., the depth of the GGM tree) for any small ω(1). However, the security
of the above does not go beyond nω(1) due to a birthday attack. To overcome
this, we use a simple and parallel method [8,44] by running a sub-linear number
of independent10 copies of F̄(k,h),a and XORing their outputs, and we avoid key
expansions by using pseudorandom keys (expanded using Ga or Fk,a) for all
copies of F̄(k,h),a. We obtain our final security-preserving construction of PRFs
by putting together all the above ingredients.

The rest of the paper is organized as follows: Section 2 gives background infor-
mation about relevant notions and definitions. Section 3 presents the Bernoulli
randomness extractor. Section 4 and Section 5 give the two constructions of
PRFs respectively. We include in Appendix A well-known lemmas and inequal-
ities used, and refer to Appendix B for all the proofs omitted in the main text.

2 Preliminaries

Notations and definitions. We use [n] to denote set {1, . . . , n}. We use
capital letters11 (e.g., X, Y ) for random variables and distributions, standard
letters (e.g., x, y) for values, and calligraphic letters (e.g. X , E) for sets and
events. The support of a random variable X, denoted by Supp(X), refers to the
set of values on which X takes with non-zero probability, i.e., {x : Pr[X = x] >
0}. Denote by |S| the cardinality of set S. We use Berµ to denote the Bernoulli
distribution with parameter µ, i.e., Pr[Berµ = 1] = µ, Pr[Berµ = 0] = 1 − µ,
while Berqµ denotes the concatenation of q independent copies of Berµ. We use
χqi , i ≤ q, to denote a uniform distribution over {e ∈ {0, 1}q : |e| = i}, where
|e| denotes the Hamming weight of binary string e. For n ∈ N, Un denotes the

10 By “independent” we mean that F̄(k,h),a is evaluated on independent keys but still
reusing the same public coin a.

11 The two exceptions are G and F , which are reserved for PRGs and PRFs respectively.



uniform distribution over {0, 1}n and independent of any other random variables
in consideration, and f(Un) denotes the distribution induced by applying the
function f to Un. X∼D denotes that random variable X follows distribution D.
We use s← S to denote sampling an element s according to distribution S, and

let s
$←− S denote sampling s uniformly from set S.

Entropy definitions. For a random variable X and any x ∈ Supp(X), the
sample-entropy of x with respect to X is defined as

HX(x)
def
= log(1/Pr[X = x])

from which we define the Shannon entropy, Rényi entropy and min-entropy of
X respectively, i.e.,

H1(X)
def
= Ex←X [ HX(x) ], H2

def
= − log

∑
x∈Supp(X)

2−2HX(x), H∞(X)
def
= min
x∈Supp(X)

HX(x).

For 0 < µ < 1/2, let H(µ)
def
= µ log(1/µ) + (1 − µ) log(1/(1 − µ)) be the binary

entropy function so that H(µ) = H1(Berµ). We know that H1(X) ≥ H2(X) ≥
H∞(X) with equality when X is uniformly distributed. A random variable X of
length n is called an (n, λ)-Rényi entropy (resp., min-entropy) source if H2(X) ≥
λ (resp., H∞(X) ≥ λ). The statistical distance between X and Y , denoted by
SD(X,Y ), is defined by

SD(X,Y )
def
=

1

2

∑
x

|Pr[X = x]− Pr[Y = x]|

We use SD(X,Y |Z) as a shorthand for SD((X,Z), (Y,Z)).

Simplifying Notations. To simplify the presentation, we use the following
simplified notations. Throughout, n is the security parameter and most other
parameters are functions of n, and we often omit n when clear from the context.
For example, µ = µ(n) ∈ (0, 1/2), q = q(n) ∈ N, t = t(n) > 0, ε = ε(n) ∈ (0, 1),
and m = m(n) = poly(n), where poly refers to some polynomial.

Definition 1 (computational/decisional LPN). Let n be a security param-
eter, and let µ, q, t and ε all be functions of n. The decisional LPNµ,n problem
(with secret length n and noise rate µ) is (q, t, ε)-hard if for every probabilistic
distinguisher D running in time t we have∣∣ Pr

A,S,E
[ D(A, A·S ⊕ E) = 1 ] − Pr

A,Uq
[ D(A,Uq) = 1 ]

∣∣ ≤ ε (1)

where A ∼ Uqn is a q × n matrix, S ∼ Un and E ∼ Berqµ. The computational
LPNµ,n problem is (q, t, ε)-hard if for every probabilistic algorithm D running in
time t we have

Pr
A,S,E

[ D(A, A·S ⊕ E) = (S,E) ] ≤ ε,

where A ∼ Uqn, S ∼ Un and E ∼ Berqµ.



Definition 2 (LPN variants). The decisional/computational X-LPNµ,n is de-
fined as per Definition 1 accordingly except that (S,E) follows distribution X.
Note that standard LPNµ,n is a special case of X-LPNµ,n for X ∼ (Un,Ber

q
µ).

In respect of the randomized feature of LPN, we generalize standard PRGs /
PRFs to equivalent randomized variants, where the generator/function addition-
ally uses some public coins for randomization, and that seed/key can be sampled
from a weak source (independent of the public coins).

Definition 3 (randomized PRGs on weak seeds). Let λ ≤ `1 < `2, `3, t, ε
be functions of security parameter n. An efficient function family ensemble G =
{Ga : {0, 1}`1 → {0, 1}`2 , a ∈ {0, 1}`3}n∈N is a (t, ε) randomized PRG on (`1, λ)-
weak seed if for every probabilistic distinguisher D of running time t and every
(`1, λ)-Rényi entropy source K it holds that∣∣ Pr

K,A∼U`3
[ D(GA(K), A) = 1 ] − Pr

U`2 ,A∼U`3
[ D(U`2 , A) = 1 ]

∣∣ ≤ ε .

The stretch factor of G is `2/`1. Standard (deterministic) PRGs are implied by

defining G′(k, a)
def
= (Ga(k), a) for a uniform random k.

Definition 4 (randomized PRFs on weak keys). Let λ ≤ `1, `2, `3, `, t, ε be
functions of security parameter n. An efficient function family ensemble F =
{Fk,a : {0, 1}` → {0, 1}`2 , k ∈ {0, 1}`1 , a ∈ {0, 1}`3}n∈N is a (q, t, ε) randomized
PRF on (`1, λ)-weak key if for every oracle-aided probabilistic distinguisher D
of running time t and bounded by q queries and for every (`1, λ)-Rényi entropy
source K we have∣∣ Pr

K,A∼U`3
[ DFK,A(A) = 1 ] − Pr

R,A∼U`3
[ DR(A) = 1 ]

∣∣ ≤ ε(n),

where R denotes a random function distribution ensemble mapping from ` bits
to `2 bits. Standard PRFs are a special case for empty a (or keeping k′ = (k, a)
secret) on uniformly random key.

Definition 5 (universal hashing). A function family H = {ha : {0, 1}n →
{0, 1}m, a ∈ {0, 1}l} is universal if for any x1 6= x2 ∈ {0, 1}n it holds that

Pr
a

$←−{0,1}l
[ ha(x1) = ha(x2) ] ≤ 2−m.

Definition 6 (pairwise independent hashing). A function family H = {
ha: {0, 1}n → {0, 1}m, a ∈ {0, 1}l} is pairwise independent if for any x1 6=
x2 ∈ {0, 1}n and any v ∈ {0, 1}2m it holds that

Pr
a

$←−{0,1}l
[ (ha(x1), ha(x2)) = v ] = 2−2m.



Concrete constructions. We know that for every m ≤ n there exists a
pairwise independent (and universal) H with description length l = Θ(n), where
every h ∈ H can be computed in AC0(MOD2). For example, H1 and H2 defined
below are universal and pairwise independent respectively:

H1 =
{
ha : {0, 1}n → {0, 1}m | ha(x)

def
= a · x, a ∈ {0, 1}n+m−1

}
H2 =

{
ha,b : {0, 1}n → {0, 1}m | ha,b(x)

def
= a·x⊕b, a ∈ {0, 1}n+m−1, b ∈ {0, 1}m

}
where a ∈ {0, 1}n+m−1 is interpreted as an m × n Toeplitz matrix and ‘·’ and
‘⊕’ denote matrix-vector multiplication and addition over GF(2) respectively.

3 Bernoulli Randomness Extraction in AC0(MOD2)

First, we state below a variant of the lemma (e.g., [28]) that taking sufficiently
many samples of i.i.d. random variables yields an “almost flat” joint random
variable, i.e., the sample-entropy of most values is close to the Shannon entropy of
the joint random variable. The proof is included in Appendix B for completeness.

Lemma 1 (Flattening Shannon entropy). For any n ∈ N, 0 < µ < 1/2 and
for any ∆ > 0 define

E def
=
{
e ∈ {0, 1}q : HBerqµ(e) ≤ (1 +∆)qH(µ)

}
. (2)

Then, we have Pr[ Berqµ ∈ E ] ≥ 1− exp−
min(∆,∆2)µq

3 .

Lemma 2 states that the proposed Bernoulli randomness extractor (see Fig-
ure 1) extracts almost all entropy from a Rényi entropy (or min-entropy) source.
We mention that the extractor can be considered as a parallelized version of the
random bits recycler of Impagliazzo and Zuckerman [32] and the proof technique
is also closely relevant to the crooked leftover hash lemma [21,14].

Lemma 2 (Bernoulli randomness extraction). For any m, v ∈ N and 0 <
µ ≤ 1/2, let W ∈ W be any (dlog |W|e,m)-Rényi entropy source, let H be
a family of pairwise independent hash functions mapping from W to {0, 1}v,
let H = (H1, . . . ,Hq) be a vector of i.i.d. random variables such that each Hi

is uniformly distributed over H, let sample : {0, 1}v → {0, 1} be any Boolean
function such that sample(Uv) ∼ Berµ. Then, for any constant 0 < ∆≤1 it holds
that

SD( Berqµ, sample(H(W )) | H ) ≤ 2

(
(1+∆)qH(µ)−m

)
/2 + exp−

∆2µq
3 ,

where
sample(H(W ))

def
= (sample(H1(W )), . . . , sample(Hq(W ))) .

Remark 1 (On entropy loss). The amount of entropy extracted (i.e., qH(µ)) can
be almost as large as entropy of the source (i.e., m) by setting m = (1+2∆)qH(µ)
for any arbitrarily small constant ∆. Further, the leftover hash lemma falls into
a special case for v = 1 (sample being an identity function) and µ = 1/2.



Proof. Let set E be defined as in (2). For any e ∈ {0, 1}q and h ∈ Hq, use short-

hands ph
def
= Pr[H = h], pe|h

def
= Pr[ sample(h(W )) = e ] and pe

def
= Pr[ Berqµ = e ].

We have

SD
(

(Berqµ,H), (sample(H(W )),H)
)

=
1

2

∑
h∈Hq,e∈E

ph| pe|h − pe | +
1

2

∑
h∈Hq,e/∈E

ph| pe|h − pe |

≤ 1

2

∑
h∈Hq,e∈E

(
√
ph · pe) ·

(√
ph
pe

∣∣ pe|h − pe ∣∣ )

+
1

2

( ∑
h∈Hq,e/∈E

phpe|h +
∑

h∈Hq,e/∈E

phpe

)

≤ 1

2

√√√√√
 ∑
h∈Hq,e∈E

ph · pe

 ·
 ∑
h∈Hq,e∈E

ph
pe
·
(
pe|h − pe

)2+ Pr[Berqµ /∈ E ]

≤ 1

2

√√√√ 1 ·
∑
e∈E

( ∑
h∈Hq

php2
e|h

pe
− 2

∑
h∈Hq

phpe|h +
∑
h∈Hq

phpe

)
+ exp−

∆2µq
3

≤ 1

2

√
|E| · 2−m + exp−

∆2µq
3

≤ 2
(1+∆)qH(µ)−m

2 + exp−
∆2µq

3 ,

where the second inequality is Cauchy-Schwarz, i.e., |
∑
aibi| ≤

√
(
∑
a2
i ) · (

∑
bi)2

and (3) below, the third inequality follows from Lemma 1, and the fourth in-
equality is due to (4) and (5), i.e., fix any e (and thus fix pe as well) we can
substitute pe · (2−m+pe) for

∑
h∈Hq php

2
e|h, and pe for both

∑
h∈Hq phpe|h and∑

h∈Hq phpe, and the last inequality follows from the definition of E (see (2))

|E| ≤ 1/min
e∈E

Pr[Berqµ = e] ≤ 2(1+∆)qH(µ)

which completes the proof.

Claim 1 ∑
h∈Hq,e/∈E

phpe|h =
∑

h∈Hq,e/∈E

phpe = Pr[Berqµ /∈ E ] (3)

∀e ∈ {0, 1}q :
∑
h∈Hq

php
2
e|h ≤ pe · (2−m + pe) (4)

∀e ∈ {0, 1}q :
∑
h∈Hq

phpe|h =
∑
h∈Hq

phpe = pe (5)



Proof. Let H(W )
def
= (H1(W ), . . . ,Hq(W )). The pairwise independence of H

implies that
H(W ) ∼ (U1

v , . . . , U
q
v )

holds even conditioned on any fixing of W = w, and thus sample(H(W )) ∼ Berqµ.
We have ∑

h∈Hq,e/∈E

phpe|h = Pr[ sample(H(W )) /∈ E ] = Pr[ Berqµ /∈ E ],

∀e ∈ {0, 1}q :
∑
h∈Hq

phpe|h = Pr[ sample(H(W )) = e ] = Pr[ Berqµ = e ] = pe,

∑
h∈Hq,e/∈E

phpe =
∑
h∈Hq

ph ·
∑
e/∈E

pe = Pr[ Berqµ /∈ E ],

∀e ∈ {0, 1}q :
∑
h∈Hq

phpe = pe ·
∑
h∈Hq

ph = pe.

Now fix any e ∈ {0, 1}q, and let W1 and W2 be random variables that are i.i.d.
to W , we have ∑

h∈Hq
php

2
e|h

= Pr
W1,W2,H

[ sample(H(W1)) = sample(H(W2)) = e ]

≤ Pr
W1,W2

[W1 = W2] · Pr
W1,H

[ sample(H(W1)) = e ]

+ Pr
H

[sample(H(w1)) = sample(H(w2)) = e | w1 6= w2]

≤ 2−m · pe + Pr[Berqµ = e]2 = 2−m · pe + p2
e,

where the second inequality is again due to the pairwise independence of H, i.e.,
for any w1 6= w2, H(w1) and H(w2) are i.i.d. to (U1

v , . . . , U
q
v ) and thus the two

distributions sample(H(w1)) and sample(H(w2)) are i.i.d. to Berqµ.

4 Parallelizable PRFs on Weak Keys

4.1 A Succinct Formulation of LPN

The authors of [22] observed that the secret of LPN is not necessary to be
uniformly random and can be replaced with a Bernoulli distribution. We state a
more quantitative version (than [22, Problem 2]) in Lemma 3 that Bern+q

µ -LPNµ,n
(see Definition 2) is implied by standard LPN for nearly the same parameters
except that standard LPN needs n more samples. The proof follows by a simple
reduction and is included in Appendix Appendix B.

Lemma 3. Assume that the decisional (resp., computational) LPNµ,n problem is
(q, t, ε)-hard, then the decisional (resp., computational) Bern+q

µ -LPNµ,n problem
is at least (q − (n+ 2), t− poly(n+ q), 2ε)-hard.



Remark 2 (On the security of low-noise LPN). For µ = n−c, a trivial statis-
tical test suggests (by the piling-up lemma) that any single sample of deci-

sional Bern+q
µ -LPNµ,n is (1/2+2−O(n1−c))-biased to 0. In other words, decisional

Bern+q
µ -LPNµ,n is no more than (q = 1, t = O(1), ε = 2−O(n1−c))-hard and thus

it follows (via the reduction of Lemma 3) that decisional LPNµ,n cannot have

indistinguishability beyond (q = n + 3, t = poly(n), ε = 2−O(n1−c)). Asymptot-
ically, this is also the current state-of-the-art attack on low-noise LPN using
q = poly(n) or even more samples.

4.2 A Direct Construction in Almost Constant Depth

To build a randomized PRG (on weak source w) from the succinct LPN, we first
sample Bernoulli vector (s, e) from w (using random coins a), and then output
a·s⊕e. Theorem 2 states that the above yields a randomized PRG on weak seed
w and public coin a.

Theorem 2 (randomized PRGs from LPN). Let n be a security parameter,
let δ > 0 be any constant, and let µ = n−c for any 0 < c < 1. Assume that

decisional LPNµ,n problem is ((1+2δ)n, t, ε)-hard, then G = {Ga : {0, 1}n
1− c

2 →
{0, 1}δn, a ∈ {0, 1}δn×n}n∈N, where

Ga(w) = a · s⊕ e, s ∈ {0, 1}n, e ∈ {0, 1}δn

and (s, e) = sample(ha(w)), is a (t−poly(n), O(ε))-randomized PRG on (n1− c2 ,
4c(1 + δ2)n1−c · log n)-weak seed with stretch factor δ·n c2 .

Proof. We have by Lemma 3 that ((1+2δ)n, t, ε)-hard decisional LPNµ,n implies

(δn, t − poly(n), 2ε)-hard decisional Bern+δn
µ -LPNµ,n, so the conclusion follows

if we could sample (s, e)
$←− Bern+δn

µ from w. This follows from Lemma 2 by
choosing q = n+δn, ∆ = δ, and m = 4c(1+δ)2n1−c · log n such that the sampled
noise vector is statistically close to Bern+δn

µ except for an error bounded by

2

(
(1+∆)qH(µ)−m

)
/2 + exp−

∆2µq
3

≤ 2

(
(1+δ)2nH(µ)−2(1+δ)2nH(µ)

)
/2 + 2−Ω(n1−c)

= 2−Ω(n1−c·logn) + 2−Ω(n1−c)

= 2−Ω(n1−c)

where recall by Fact A1 that µ log(1/µ) < H(µ) < µ(log(1/µ) + 2) and thus
m > 2(1 + δ2)n1−c(c log n+ 2) > 2(1 + δ2)nH(µ). We omit the above term since

ε = 2−O(n1−c) (see Remark 2).

We state a variant of the theorem by Goldreich, Goldwasser and Micali [26]
on building PRFs from PRGs, where we consider PRGs with stretch factor 2v

for v = O(log n) (i.e., a balanced 2v-ary tree) and use randomized (instead of
deterministic) PRG Ga, reusing public coin a at every invocation of Ga.



Theorem 3 (PRFs from PRGs [26]). Let n be a security parameter, let
v = O(log n), λ ≤ m = nO(1), λ = poly(n), t = t(n) and ε = ε(n). Let G = {Ga :
{0, 1}m → {0, 1}2v·m, a ∈ A}n∈N be a (t, ε) randomized PRG (with stretch factor
2v) on (m,λ)-weak seed. Parse Ga(k) as 2v blocks of m-bit strings:

Ga(k)
def
= G0···00

a (k)‖G0···01
a (k)‖ · · · ‖G1···11

a (k)

where Gi1···iva (k) denotes the (i1 · · · iv)-th m-bit block of Ga(k). Then, for any
d ≤ poly(n) and q = q(n), the function family ensemble F = {Fk,a : {0, 1}dv →
{0, 1}2v·m, k ∈ {0, 1}m, a ∈ A}n∈N, where

Fk,a(x1 · · ·xdv)
def
= Ga( G

x(d−1)v+1···xdv
a (· · ·Gxv+1···x2v

a (Gx1···xv
a (k)) · · · ) ),

is a (q, t− q · poly(n), dqε) randomized PRF on (m,λ)-weak key.

On polynomial-size circuits. The above GGM tree has Θ(2dv) nodes and
thus it may seem that for dv = ω(log n) we need a circuit of super-polynomial
size to evaluate Fk,p. This is not necessary since we can represent the PRF in
the following alternative form:

Fk,a = Ga ◦ muxx(d−1)v+1···xdv ◦Ga︸ ︷︷ ︸
G
x(d−1)v+1···xdv
a

◦ · · · ◦muxxv+1···x2v
◦Ga︸ ︷︷ ︸

G
xv+1···x2v
a

◦muxx1···xv ◦Ga︸ ︷︷ ︸
G
x1···xv
a

where ‘◦’ denotes function composition, each multiplexer muxi1···iv : {0, 1}2vm →
{0, 1}m simply selects as output the (i1 · · · iv)-th m-bit block of its input, and
it can be implemented with O(2v ·m) = poly(n) NOT and (unbounded fan-in)
AND/OR gates of constant depth. Thus, for v = O(log n) function Fk,p can be
evaluated with a polynomial-size circuit of depth O(d).

Lemma 4 (Levin’s trick [41]). For any ` ≤ n ∈ N, let R1 be a random
function distribution over {0, 1}` → {0, 1}n, let H be a family of universal hash
functions from n bits to ` bits, and let H1 be a function distribution uniform

over H. Let R1◦H1(x)
def
= R1(H1(x)) be a function distribution over {0, 1}n →

{0, 1}n. Then, for any q ∈ N and any oracle aided D bounded by q queries, we
have ∣∣ Pr

R1,H1

[ DR1◦H1 = 1 ] − Pr
R

[ DR = 1 ]
∣∣ ≤ q2

2`+1
,

where R is a random function distribution from n bits to n bits.

Theorem 4 (A direct PRF). Let n be a security parameter, and let µ = n−c

for constant 0 < c < 1. Assume that decisional LPNµ,n problem is (αn, t, ε)-hard
for any constant α > 1, then for any (efficiently computable) d = ω(1) ≤ O(n)
and any q ≤ nd/3 there exists a (q, t− q poly(n), O(dqε) + q2n−d)- randomized
PRF on (n1− c2 , O(n1−c log n))12-weak key

F̄ = {F̄k,a : {0, 1}n → {0, 1}n, k ∈ {0, 1}n
1− c

2 , a ∈ {0, 1}O(n2)}n∈N (6)

12 Here the big-Oh omits a constant dependent on c and α.



which is computable by a uniform family of polynomial-size depth-O(d) circuits
with unbounded-fan-in AND, OR and XOR gates.

Proof. For µ = n−c, we have by Theorem 2 that the decisional (αn, t, ε)-hard
LPNµ,n implies a (t−poly(n), O(ε)) randomized PRG in AC0(MOD2) on (n1− c2 ,

O (n1−c log n) )-weak seed k and public coin a ∈ {0, 1}O(n2) with stretch factor
2v = n

c
2 . We plug it into the GGM construction (see Theorem 3) with tree

depth d′ = 2d/c to get a (q, t − q poly(n), O(dqε)) randomized PRF on weak
keys (of same parameters) with input length d′v = d log n and output length
2v · n1− c2 = n as below:

F = {Fk,a : {0, 1}d logn → {0, 1}n, k ∈ {0, 1}n
1− c

2 , a ∈ {0, 1}O(n2)}n∈N. (7)

Now we expand k (e.g., by evaluating Fk,a on a few fixed points) into a pseu-

dorandom (k̄, h̄1), where k̄ ∈ {0, 1}n
1− c

2 and h̄1 describes a universal hash
function from n bits to ` = d log n bits. Motivated by Levin’s trick, we de-

fine a domain-extended PRF F̄k,a(x)
def
= Fk̄,a ◦ h̄1(x). For any oracle-aided dis-

tinguisher D running in time t − qpoly(n) and making q queries, denote with

δD(F1, F2)
def
=
∣∣Pr[ DF1(A) = 1 ] − Pr[ DF2(A) = 1 ]

∣∣ the advantage of D (who
gets public coin A as additional input) in distinguishing between function oracles
F1 and F2. Therefore, we have by a triangle inequality

δD(FK̄,A ◦ H̄1, R) ≤ δD(FK̄,A ◦ H̄1, FK,A ◦H1) + δD(FK,A ◦H1, R1 ◦H1)

+ δD(R1 ◦H1, R)

≤ O(dqε) + q2n−d,

where advantage is upper bounded by three terms, namely, the indistinguisha-
bility between (K̄, H̄1) and truly random (K,H1), that between FK,A and ran-
dom function R1 (of the same input/output lengths as FK,A), and that due to
Lemma 4. Note that A is independent of R1, H1 and R.

4.3 Going Beyond the Birthday Barrier

Unfortunately, for small d = ω(1) the security of the above PRF does not go be-
yond super-polynomial (cf. term q2n−d) due to a birthday attack. This situation
can be handled using security-preserving constructions. Note the techniques from
[34,17] need (almost) Ω(d log n)-wise independent hash functions which we don’t
know how to compute with unbounded fan-in gates of depth O(d). Thus, we use
a more intuitive and depth-preserving approach below by simply running a few
independent copies and XORing their outputs. The essential idea dates backs
to [8,44] and the technique receives renewed interest recently in some different
contexts [23,25]. We mention that an alternative (and possibly more efficient)
approach is to use the second security-preserving domain extension technique
from [10] that requires a few pairwise independent hash functions and makes
only a constant number of calls to the underlying small-domain PRFs. This
yields the PRF stated in Theorem 5.



Lemma 5 (Generalized Levin’s Trick [8,44]). For any κ, ` ≤ n ∈ N, let R1,
. . . , Rκ be independent random function distributions over {0, 1}` → {0, 1}n, let
H be a family of universal hash functions from n bits to ` bits, and let H1,
· · · , Hκ be independent function distributions all uniform over H. Let FR,H be
a function distribution (induced by R = (R1, . . . , Rκ) and H = (H1, . . . ,Hκ))
over {0, 1}n → {0, 1}n defined as

FR,H(x)
def
=

κ⊕
i=1

Ri(Hi(x)). (8)

Then, for any q ∈ N and any oracle aided D bounded by q queries, we have∣∣Pr[ DFR,H = 1 ] − Pr[ DR = 1 ]
∣∣ ≤ qκ+1

2κ`

where R is a random function distribution over {0, 1}n → {0, 1}n.

Finally, we get the first security-preserving construction below. To have com-
parable security to LPN with secret size n, it suffices to use a key of entropy
O(n1−c ·log n), or a uniform key of size n1− c2 with any (1−O(n−

c
2 log n))-fraction

of leakage (see Fact A7), provided that leakage is independent of public coin a.

Theorem 5 (A security-preserving PRF on weak key). Let n be a se-
curity parameter, and let µ = n−c for constant 0 < c < 1. Assume that the
decisional LPNµ,n problem is (αn, t, ε)-hard for any constant α > 1, then for
any (efficiently computable) d = ω(1) ≤ O(n) and any q ≤ nd/3 there exists a
(q, t− qpoly(n), O(dqε))- randomized PRF on (n1− c2 , O(n1−c · log n))-weak key

F̂ = {F̂k,a : {0, 1}n → {0, 1}n, k ∈ {0, 1}n
1− c

2 , a ∈ {0, 1}O(n2)}n∈N

which are computable by a uniform family of polynomial-size depth-O(d) circuits
with unbounded-fan-in AND, OR and XOR gates.

Proof sketch. Following the proof of Theorem 4, we get a (q, t−qpoly(n), O(dqε) )-
randomized PRF F = {Fk,a}n∈N on weak keys (see (7)) with input length
d log n and of depth O(d). We define F ′ = {F ′(k,h),a : {0, 1}n → {0, 1}n,k ∈

{0, 1}O(κn1− c
2 ),h ∈ Hκ, a ∈ {0, 1}O(n2)}n∈N where

F ′(k,h),a(x)
def
=

κ⊕
i=1

Fki,a(hi(x)), k = (k1, · · · , kκ), h = (h1, · · · , hκ) .

Let δD(F1, F2)
def
=
∣∣Pr[ DF1(A) = 1 ] − Pr[ DF2(A) = 1 ]

∣∣. We have that for
any oracle-aided distinguisher running in time t− qpoly(n) and making up to q
queries, we have by a triangle inequality that

δD( F ′(K,H),A, R ) ≤ δD( F ′(K,H),A, FR,H ) + δD( FR,H , R )

≤ O(κdqε) + nd(1−2κ)/3

= O(κdqε) + 2−ω(n1−c) = O(κdqε) ,



where FR,H is defined as per (8), the first term of the second inequality is
due to a hybrid argument (replacing every FKi,A with Ri one at a time), the
second term of the second inequality follows from Lemma 5 with ` = d log n and
q ≤ nd/3, and the equalities follow by setting κ = n1−c to make the first term
dominant. Therefore, F ′(k,h),a is almost the PRF as desired except that it uses

a long key (k,h), which can be replaced with a pseudorandom one. That is, let

F̂k,a(x)
def
= F ′(k,h),a(x) and (k,h)

def
= Fk,a(1) ‖ Fk,a(2) ‖ · · · ‖ Fk,a(O(κ)), which

adds only a layer of gates of depth O(d). �

5 An Alternative PRF with a Short Uniform Key

In this section, we introduce an alternative construction based on a variant
of LPN (reducible from standard LPN) whose noise vector can be sampled in
AC0 (i.e., without using XOR gates). We state the end results in Theorem 6
that standard LPN with n-bit secret implies a low-depth PRF with key size
Θ(n1−c log n). Concretely (and ideally), assume that computational LPN is (q =

1.001n, t = 2n
1−c/3, ε = 2−n

1−c/12)-hard, and let λ = Θ(n1−c log n), then for
any ω(1) = d = O(λ/ log2 λ) there exists a parallelizable (q′ = λΘ(d), t′ =
2Θ(λ/ log λ), ε′ = 2−Θ(λ/ log λ)))-randomized PRF computable in depth O(d) with

secret key length λ and public coin length O(λ
1+c
1−c ).

5.1 Main Results and Roadmap

Theorem 6 (A PRF with a compact uniform key). Let n be a security
parameter, and let µ = n−c for constant 0 < c < 1. Assume that the computa-
tional LPNµ,n problem is (αn, t, ε)-hard for any constant α > 1 and efficiently
computable ε, then for any (efficiently computable) d = ω(1) ≤ O(n) and any
q′ ≤ nd/3 there exists a (q′, Θ(t · ε2n1−2c), O(dq′n2ε))- randomized PRF on
uniform key

F̃ = {F̃k,a : {0, 1}n → {0, 1}n, k ∈ {0, 1}Θ(n1−c·logn), a ∈ {0, 1}O(n2)}n∈N

which are computable by a uniform family of polynomial-size depth-O(d) circuits
with unbounded-fan-in AND, OR and XOR gates.

We sketch the steps below to prove Theorem 6, where ‘C-’ and ‘D-’ stand for
‘computational’ and ‘decisional’ respectively.

1. Introduce distribution ψmµ that can be sampled in AC0.

2. ((1+Θ(1))n,t,ε)-hard C- LPNµ,n =⇒ (Θ(n), t−poly(n), 2ε)-hard C- Bern+q
µ -

LPNµ,n (by Lemma 3).
3. (Θ(n), t, ε)-hard C- Bern+q

µ -LPNµ,n =⇒ (Θ(n), t−poly(n), O(n3/2−cε))-hard
C- ψn+q

µ -LPNµ,n (by Lemma 9).
4. (Θ(n), t, ε)-hard C- ψn+q

µ -LPNµ,n =⇒ (Θ(n), Ω(t(ε/n)2), 2ε)-hard D- ψn+q
µ -

LPNµ,n (by Theorem 7).



5. (Θ(n), t, ε)-hard D- ψn+q
µ -LPNµ,n =⇒ (q, t − q poly(n), O(dq′ε))- random-

ized PRF for any d = ω(1) and q′ ≤ nd/3, where the PRF has key length
Θ(n1−c log n) and can be computed by polynomial-size depth-O(d) circuits
with unbounded-fan-in AND, OR and XOR gates. This is stated as Theo-
rem 8.

5.2 Distribution ψmµ and the ψn+qµ -LPNµ,n Problem

We introduce a distribution ψmµ that can be sampled in AC0 and show that ψn+q
µ -

LPNµ,n is implied by Bern+q
µ -LPNµ,n (and thus by standard LPN). Further, for

µ = n−c sampling ψmµ needs Θ(mn−c log n) random bits, which asymptotically
match the Shannon entropy of Bermµ .

Algorithm 1 Sampling distribution ψmµ in AC0

Require: 2µm logm random bits (assume WLOG that m is a power of 2)
Ensure: ψmµ satisfies Lemma 6

1: Sample random z1, . . . , z2µm of Hamming weight 1, i.e., for every i ∈ [m] zi
$←− {z ∈

{0, 1}m : |z| = 1}.
{E.g., to sample z1 with randomness r1 . . . rlogm, simply let each (b1 . . . blogm)-th

bit of z1 to be rb11 ∧· · ·∧r
blogm
logm , where r

bj
j

def
= rj for bj = 0 and r

bj
j

def
= ¬rj otherwise.

Note that AC0 allows NOT gates at the input level. }
2: Output the bitwise-OR of the vectors z1, . . . , z2µm.
{Note: we take a bitwise-OR (not bitwise-XOR) of the vectors.}

Lemma 6. The distribution ψmµ (sampled as per Algorithm 1) is 2−Ω(µm log(1/µ))-
close to a convex combination of χmµm, χmµm+1, . . . , χm2µm.

Proof. It is easy to see that ψmµ is a convex combination of χm1 , χm2 , . . . , χm2µm
as conditioned on |ψmµ | = i (for any i) ψmµ hits every y ∈ {0, 1}m of Hamming
weight |y| = i with equal probability. Hence, it remains to show that those χmj ’s

with Hamming weight j < µm sum to a fraction less than 2−µm(log(1/µ)−2), i.e.,

Pr[|ψmµ | < µm] =
∑

y∈{0,1}m:|y|<µm

Pr[ψmµ = y]

< µ2µm·2mH(µ)− logm
2 +O(1)

< µ2µm·2µm(log(1/µ)+2)+O(1) = 2µm(− log(1/µ)+2)+O(1)

where the first inequality is due to the partial sum of binomial coefficients (see
Fact A5) and that for any fixed y with |y| < µm ψmµ = y happens only if the bit
1 of every zi (see Algorithm 1) hits the 1’s of y (each with probability less than
µ independently) and the second inequality is Fact A1.



By definition of ψn+q
µ the sampled (s, e) has Hamming weight no greater than

2µ(n+ q) and the following lemma states that ψn+q
µ -LPNµ,n is almost injective.

Lemma 7 (ψn+q
µ -LPNµ,n is almost injective). For q = Ω(n), define set Y def

=
{(s, e) ∈ {0, 1}n+q : |(s, e)| ≤ (n+ q)/ log n}. Then, for every (s, e) ∈ Y,

Pr
a←Uqn

[
∃(s′, e′) ∈ Y : (s′, e′) 6= (s, e) ∧ as⊕ e = as′ ⊕ e′

]
= 2−Ω(q) .

Proof. Let H def
= {ha : {0, 1}n+q → {0, 1}q, a ∈ {0, 1}qn, ha(s, e)

def
= as ⊕ e} and

it is not hard to see that H is a family of universal hash functions. We have

log |Y| = log

(n+q)/ logn∑
i=0

(
n+ q

i

)
= O

(
(n+ q) log log n/ log n

)
= o(q) ,

where the approximation is due to Fact A5 and the conclusion immediately
follows from Lemma 8.

Lemma 8 (The injective hash lemma (e.g. [55])). For any integers l1 ≤
l2,m, let Y be any set of size |Y| ≤ 2l1 , and let H def

= {ha : {0, 1}m → {0, 1}l2 , a ∈
A,Y ⊆ {0, 1}m} be a family of universal hash functions. Then, for every y ∈ Y
we have

Pr
a

$←−A
[ ∃y′ ∈ Y : y′ 6= y ∧ ha(y′) = ha(y) ] ≤ 2l1−l2 .

5.3 Computational Bern+qµ -LPNµ,n → Computational ψn+qµ -LPNµ,n

Lemma 9 non-trivially extends the well-known fact that the computational LPN
implies the computational exact LPN, i.e., (Un, χ

q
µq)-LPNµ,n.

Lemma 9. Let q = Ω(n), µ = n−c (0 < c < 1) and ε = 2−O(n1−c). Assume
that the computational Bern+q

µ -LPNµ,n problem is (q, t, ε)-hard, then the compu-

tational ψn+q
µ -LPNµ,n problem is (q, t− poly(n+ q), O(µ(n+ q)3/2ε))-hard.

Proof. Let m = n + q and write AdvD(X)
def
= Pr

a
$←−Uqn,(s,e)←X

[ D(a, a·s ⊕
e) = (s, e) ]. Towards a contradiction we assume that there exists D such that
AdvD(ψmµ ) > ε′, and we assume WLOG that on input (a, z) D always outputs
(s′, e′) with |(s′, e′)| ≤ 2µm. That is, even if it fails to find any (s′, e′) satisfying
as′⊕e′ = z and |(s′, e′)| ≤ 2µm it just outputs a zero vector. Lemma 6 states that
ψmµ is 2−Ω(µn(log(1/µ))-close to a convex combination of χmµm, χmµm+1, . . . , χm2µm,
and thus there exists j ∈ {µm, µm + 1, . . . , 2µm} such that AdvD(χmj ) > ε′ −
2−Ω(n1−c logn) > ε′/2, which further implies that AdvD(Bermj/m) = Ω(ε′/

√
m)

as Bermj/m is a convex combination of χm0 , . . . , χmm, of which it hits χmj with

probability Ω(1/
√
m) by Lemma 10. Next, we define D′ as in Algorithm 2.

We denote Esuc the event that D succeeds in finding (s′, e′) such that as′⊕e′ =
z⊕ (as1⊕ e1) and thus we have a(s′⊕ s1)⊕ (e′⊕ e1) = z = as⊕ e, where values



Algorithm 2 a Bermµ -LPNµ,n solver D′

Require: a random Bermµ -LPNµ,n instance (a, z = a·s⊕ e) as input
Ensure: a good chance to find out (s, e)

1: Sample j∗
$←− {µm,µm+ 1, . . . , 2µm} as a guess about j.

2: Compute µ′ = j∗/m.
3: (s1, e1)← Bermµ′−µ

1−2µ

. {This makes (a, z⊕(as1⊕e1)) a random Bermµ′ -LPNµ′,n sample

by the piling-up lemma (see Fact A6)}
4: (s′, e′)← D( a, z ⊕ (as1 ⊕ e1) ).
5: Output (s′ ⊕ s1, e

′ ⊕ e1). {D′ succeeds iff (s′ ⊕ s1, e
′ ⊕ e1) = (s, e)}

are sampled as defined above. This however does not immediately imply (s, e) =

(s′ ⊕ s1, e
′ ⊕ e1) unless conditioned on the event Einj that ha(s, e)

def
= a·s⊕ e is

injective on input (s, e).

Pr
a←Uqn, (s,e)←Bermµ , (s1,e1)←Berm

µ′−µ
1−2µ

, s′←D(a,y⊕(as1⊕e1))
[ (s′ ⊕ s1, e

′ ⊕ e1) = (s, e) ]

≥ Pr[Esuc ∧ Einj ]
≥ Pr[Esuc]− Pr[¬Einj ]

≥ Pr[j∗ = j] · AdvD(Bermj/m)− 2−Ω(m/ log2 n)

= Ω(ε′/µm3/2),

where the bound on event ¬Einj is given below. We reach a contradiction by
setting ε′ = Ω(1) ·µm3/2ε for a large enough Ω(1) so that D′ solves Bermµ -LPNµ,n
with probability greater than ε.

Pr[¬Einj ]
≤ Pr[¬Einj ∧ (s, e) ∈ Y ∧ (s′ ⊕ s1, e

′ ⊕ e1) ∈ Y]

+ Pr[(s, e) /∈ Y ∨ (s′ ⊕ s1, e
′ ⊕ e1) /∈ Y

]
≤ 2−Ω(m) + Pr[(s, e) /∈ Y] + Pr[(s′ ⊕ s1, e

′ ⊕ e1) /∈ Y ]

≤ 2−Ω(m) + Pr
(s,e)←Bermµ

[ |(s, e)| ≥ m/ log n ] + Pr
(s1,e1)←Berm

µ′−µ
1−2µ

[ |(s1, e1)| ≥ (
1

logn
− 2µ)m ]

= 2−Ω(m/ log2 n),

where Y def
= {(s, e) ∈ {0, 1}m : |(s, e)| < m/ log n}, the second inequality is from

Lemma 7, the third inequality is that |(u⊕w)| ≥ κ implies |w| ≥ κ− |u| and by
definition of D string (s′, e′) has Hamming weight no greater than 2µm, and the
last inequality is a typical Chernoff-Hoeffding bound.

Lemma 10. For 0 < µ′ < 1/2 and m ∈ N, we have that

Pr

[
|Bermµ′ | = dµ′me

]
= Ω(1/

√
m).



5.4 C- ψn+qµ -LPNµ,n → D- ψn+qµ -LPNµ,n → ω(1)-depth PRFs

Next we show that the computational ψn+q
µ -LPNµ,n problem implies its deci-

sional counterpart. The theorem below is implicit in [5]13 and the case for ψn+q
µ -

LPNµ,n falls into a special case. Note that ψn+q
µ -LPNµ,n is almost injective by

Lemma 7, and thus its computational and decisional versions are equivalent in a
sample-preserving manner. In fact, Theorem 7 holds even without the injective
condition, albeit with looser bounds.

Theorem 7 (Sample preserving reduction [5]). If the computational X-
LPNµ,n is (q, t, ε)-hard for any efficiently computable ε, and it satisfies the in-
jective condition, i.e., for any (s, e) ∈ Supp(X) it holds that

Pr
a←Uqn

[ ∃(s′, e′) ∈ Supp(X) : (s′, e′) 6= (s, e) ∧ a · s⊕ e = a · s′ ⊕ e′ ] ≤ 2−Ω(n).

Then, the decisional X-LPNµ,n is (q,Ω(t(ε/n)2), 2ε)-hard.

Theorem 8 (Decisional ψn+q
µ -LPNµ,n → PRF). Let n be a security param-

eter, and let µ = n−c for any constant 0 < c < 1. Assume that the decisional
ψn+q
µ -LPNµ,n problem is (δn, t, ε)-hard for any constant δ > 0, then for any

(efficiently computable) d = ω(1) ≤ O(n) and any q′ ≤ nd/3 there exists a
(q′, t − q′poly(n), O(dq′ε))- randomized PRF (on uniform key) with key length
Θ(n1−c log n) and public coin size O(n2), which are computable by a uniform
family of polynomial-size depth-O(d) circuits with unbounded-fan-in AND, OR
and XOR gates.

Proof sketch. The proof is essentially the same as that of Theorem 5, replacing
the Bernoulli randomness extractor with the ψn+q

µ sampler. That is, decisional
ψn+q
µ -LPNµ,n for q = Θ(n) implies a constant-depth polynomial-stretch random-

ized PRG on seed length 2µ(n+q) log (n+ q) = Θ(n1−c log n) and output length
Θ(n), which in turn implies a nearly constant-depth randomized PRF, where the
technique in Lemma 5 is also used to make the construction security preserving.
�
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A Well-known Facts, Lemmas and Inequalities

Fact A1 Let H(µ)
def
= µ log(1/µ) + (1 − µ) log(1/(1 − µ)) be the binary entropy

function. Then, for any 0 < µ < 1/2 it holds that

µ log(1/µ) < H(µ) < µ(log(1/µ) + 2).

Proof.

µ log(1/µ)

<

(
H(µ) = µ log(1/µ) + (1− µ) log(1/(1− µ))

)
= µ log(1/µ) + (1− µ) log(1 +

µ

1− µ
)

= µ log(1/µ) + (1− µ)
ln(1 + µ

1−µ )

ln 2

≤ µ log(1/µ) +
µ

ln 2
< µ(log(1/µ) + 2) ,

where the first inequality is due to (1 − µ) log(1/(1 − µ)) > 0, the second one
follows from the elementary inequality ln(1 + x) ≤ x for any x > 0, and the last
inequality is simply 1 < 2 ln 2.

Lemma 11 (Chernoff bound). For any n ∈ N, let X1, . . ., Xn be independent
random variables and let X̄ =

∑n
i=1Xi, where Pr[0≤Xi≤1] = 1 holds for every

1 ≤ i ≤ n. Then, for any ∆1 > 0 and 0 < ∆2 < 1,

Pr[ X̄ > (1 +∆1) · E[X̄] ] < exp−
min(∆1,∆

2
1)

3 E[X̄] ,

Pr[ X̄ < (1−∆2) · E[X̄] ] < exp−
∆2

2
2 E[X̄] .

Theorem 9 (The Hoeffding bound [30]). Let q ∈ N, and let ξ1, ξ2, . . .,
ξq be independent random variables such that for each 1 ≤ i ≤ q it holds that
Pr[ai ≤ ξi ≤ bi] = 1. Then, for any t > 0 we have

Pr

[ ∣∣∣∣ q∑
i=1

ξi − E[

q∑
i=1

ξi]

∣∣∣∣ ≥ t

]
≤ 2 exp

− 2t2∑q
i=1

(bi−ai)2 .

Fact A2 For any σ ∈ N+, the probability that a random (n + σ)×n Boolean
matrix M ∼ U(n+σ)×n has full rank (i.e., rank n) is at least 1− 2−σ+1.



Proof. Consider matrix M being sampled column by column, and denote Ei to
be the event that “column i is non-zero and neither is it any linear combination
of the preceding columns (i.e., columns 1 to i− 1)”.

Pr[ M has full rank ] = Pr[E1] · Pr[E2|E1] · · · · · Pr[En|En−1]

= (1− 2−(n+σ))·(1− 2−(n+σ)+1) · · · · · (1− 2−(n+σ)+n−1)

> 2−
(

2−(n+σ)+1+2−(n+σ)+2+···+2−(n+σ)+n
)

> 2−2−σ+1

> exp−2−σ+1

> 1− 2−σ+1

where the first inequality is due to Fact A4 and the last follows from Fact A3.

Fact A3 For any x > 0 it holds that exp−x > 1− x.

Fact A4 For any 0 < x < 2−
√

2
2 it holds that 1− x > 2−( 2+

√
2

2 )x > 2−2x.

Fact A5 (A partial sum of binomial coefficients ([27], p.492)) For any 0
< µ < 1/2, and any m ∈ N

mµ∑
i=0

(
m

i

)
= 2mH(µ)− logm

2 +O(1)

where H(µ)
def
= µ log(1/µ) + (1−µ) log(1/(1−µ)) is the binary entropy function.

Fact A6 (Piling-up Lemma) For any 0 < µ ≤ µ′ < 1/2, (Berµ⊕Ber µ′−µ
1−2µ

) ∼
Berµ′ .

Fact A7 (Min-entropy source conditioned on leakage) Let X be any ran-
dom variable over support X with H∞(X) ≥ l1, let f : X → {0, 1}l2 be any
function. Then, for any 0 < ε < 1, there exists a set X1×Y1 ⊆ X ×{0, 1}l2 such
that Pr[ (X, f(X)) ∈ (X1 × Y1) ] ≥ 1− ε and for every (x, y) ∈ (X1 × Y1)

Pr[ X = x | f(X) = y ] ≤ 2−(l1−l2−log(1/ε)).

B Lemmas and Proofs Omitted

Proof of Lemma 1. Recall that H(µ)
def
= µ log(1/µ) + (1 − µ) log(1/(1 − µ))

equals to H1(Berµ). Parse Berqµ as Boolean variables E1,. . .,Eq, and for each
1≤i≤q define

ξi
def
=

{
1, if Ei = 1

log( 1
1−µ )

log( 1
µ )

, if Ei = 0



and thus we have that ξ1, . . ., ξq are i.i.d. over { log(1/(1−µ))
log(1/µ) ,1}, each of expecta-

tion H(µ)/ log(1/µ).

Pr
[
Berqµ ∈ E

]
= 1 − Pr

[ q∑
i=1

ξi > (1 +∆) · qH(µ)

log(1/µ)

]
> 1 − exp−

min(∆,∆2)qH(µ)
3 log(1/µ) > 1 − exp−

min(∆,∆2)µq
3 ,

where the inequality follows from the Chernoff bound (see Lemma 11) and we
recall H(µ) > µ log(1/µ) by Fact A1. �

Proof of Lemma 3.
Decisional LPNµ,n → decisional Bern+q

µ -LPNµ,n

Assume for contradiction there exists a distinguisher D that

Pr
A,S,E

[ D(A, A·S ⊕ E) = 1 ] − Pr
A,Uq−(n+2)

[ D(A,Uq−(n+2)) = 1 ] > 2ε,

where A ∼ U(q−(n+2))n, S ∼ Bernµ and E ∼ Berq−(n+2)
µ . To complete the proof,

we show that there exists another D′ (of nearly the same complexity as D) that
on input (a′, b) ∈ {0, 1}qn × {0, 1}q that distinguishes (A′, A′ · X ⊕ Berqµ) from
(A′, Uq) for A′ ∼ Uqn and X ∼ Un with advantage more than ε. We parse the
q × n matrix a′ and q-bit b as

a′ =

[
m
a

]
, b = (bm, ba) (9)

where m and a are (n + 2) × n and (q − (n + 2)) × n matrices respectively,
bm ∈ {0, 1}n+2 and ba ∈ {0, 1}q−(n+2). Algorithm D′ does the following: it first
checks whether m has full rank or not, and if not it outputs a random bit.
Otherwise (i.e., m has full rank), D′ outputs D(am̄−1, (am̄−1)·bm̄ ⊕ ba), where
m̄ is an n×n invertible submatrix of m and bm̄ is the corresponding14 substring
of bm. Now we give the lower bound of the advantage in distinguishing the
two distributions. On the one hand, when (a′, b) ← (A′, (A′ · X) ⊕ Berqµ) and
conditioned on that m̄ is invertible, we have that

m̄ · x⊕ s = bm̄
a · x⊕ e = ba

(10)

where a←U(q−(n+2))n, x← Un, s← Bernµ, and e← Berq−(n+2)
µ , and it follows (by

elimination of x) that ba = (am̄−1)s⊕ (am̄−1)bm̄⊕e, and thus (am̄−1)bm̄⊕ ba =
(am̄−1)s⊕e. On the other hand, when (a′, b)← (Uqn, Uq) and conditioned on an

14 E.g., if m̄ is the submatrix of m by keeping only the first n rows, then bm̄ is the
n-bit prefix of bm.



invertiblem it holds that (am̄−1, (am̄−1)·bm̄⊕ba) follows (U(q−(n+2))n, Uq−(n+2)).

Therefore, for A ∼ U(q−(n+2))n, S ∼ Bernµ and E ∼ Berq−(n+2)
µ we have

Pr[ D′(Uqn, Uqn · Un ⊕ Berqµ) = 1 ] − Pr[ D′(Uqn, Uq) = 1 ]

≥ Pr[Ef ] ·
(

Pr
A,S,E

[D(A, A·S ⊕ E) = 1]− Pr
A,Uq−(1+δ)n

[ D(A,Uq−(1+δ)n) = 1 ]

)
> (1− 2−1)2ε = ε

where Ef denotes the event that m← U(n+2)×n has full rank whose lower bound
probability is given in Fact A2.
Computational LPNµ,n → computational Bern+q

µ -LPNµ,n

The reduction follows steps similar to that of the decisional version. Assume for
contradiction there exists a distinguisher D that

Pr
A,S,E

[ D(A, A·S ⊕ E) = (S,E) ] > 2ε,

where A ∼ U(q−(n+2))n, S ∼ Bernµ and E ∼ Berq−(n+2)
µ , then there exists another

D′ that on input (a′, b = a′x ⊕ e′) ∈ {0, 1}qn × {0, 1}q recovers (x, e′) with
probability more than ε. Similarly, D′ parses (a′, b) as in (9), checks if m has full
rank and we define m̄, bm̄ and Ef same as the above reduction. Let (s∗, e∗) ←
D(am̄−1, (am̄−1)·bm̄⊕ba). As analyzed above, conditioned on Ef we have (am̄−1)·
bm̄ ⊕ ba = (am̄−1)s⊕ e where (am̄−1, s, e) follows distribution (A,S,E) defined
above, and hence (s∗, e∗) = (s, e) with probability more than 2ε. Once D′ got s∗,
it computes x∗ = m̄−1 · (bm̄⊕ s∗) (see (10)), e′∗ = a′x∗⊕ b and outputs (x∗, e′∗).

Pr[ D′(A′, A′ ·X ⊕ E′) = (X,E′) ]

≥ Pr[ Ef ] · Pr
A,S,E

[ D(A, A·S ⊕ E) = (S,E) ]

> (1− 2−1)2ε = ε

where A′ ∼ Uqn, X ∼ Un and E′ ∼ Berqµ.
�

Proof of Lemma 5. To prove this indistinguishability result we use Patarin’s
H-coefficient technique in its modern transcript-based incarnation [48,18].

Without loss of generality the distinguisher D is deterministic and does not
repeat queries. We refer to the case when the D’s oracle is FR,H as the real
world and to the case where the D’s oracle is R as the ideal world.

D transcript consists of a sequence (X1, Y1), . . . , (Xq, Yq) of query-answer
pairs to its oracle, plus (and following the “transcript stuffing” technique of
[18]) the vector H = H1, . . . ,Hκ of hash functions, appended to the transcript
after the distinguisher has made its last query; in the ideal world, H consists
of a “dummy” κ-tuple H1, . . . ,Hκ that can be sampled after the distinguisher’s
last query, and is similarly appended to the transcript.

The probability space underlying the real world is Ωreal
def
= Hκ×Fκ`→n where

F`→n is the set of all functions from ` bits to n bits, with uniform measure. The



probability space underlying the ideal world is Ωideal
def
= Hκ×Fn→n where Fn→n

is the set of all functions from n bits to n bits, also with uniform measure.
We can identify elements of Ωreal and/or Ωideal as “oracles” for D to interact

with. We write Dω for the transcript obtained when D interacts with oracle ω,
where ω ∈ Ωreal in the real world and ω ∈ Ωideal in the ideal world. Thus, the
real-world transcripts are distributed according to DWreal where Wreal is uniformly
distributed over Ωreal, while the ideal-world transcripts are distributed according
to DWideal where Wideal is uniformly distributed over Ωideal.

A transcript τ is attainable if there exists some ω ∈ Ωideal such that Dω = τ .
(Which transcripts are attainable depends on D, but we assume a fixed D.) A
transcript τ = ((X1, Y1), . . . , (Xq, Yq), H1, . . . ,Hκ) is bad if there exists some
i ∈ [q] such that

Hj(Xi) ∈ {Hj(X1), . . . ,Hj(Xi−1)}

for all j ∈ κ. We let Tbad be the set of bad attainable transcripts, Tgood the set
of non-bad attainable transcripts.

We will show that Pr[DWreal = τ ] = Pr[DWideal = τ ] for all τ ∈ Tgood. In this
case, by Patarin’s H-coefficient technique [18], D’s distinguishing advantage is
upper bounded by Pr[DWideal ∈ Tbad]. We commence by upper bounding the later
quantity, and then move to the former claim.

Let Ei,j , (i, j) ∈ [q]× [κ], be the event that

Hj(Xi) ∈ {Hj(X1), . . . ,Hj(Xi−1)}

and let
Ei = Ei,1 ∧ · · · ∧ Ei,κ.

Since the values X1, . . . , Xq and the hash functions H1, . . . ,Hκ are uniquely
determined by any ω ∈ Ωideal or ω ∈ Ωreal, we can write Ei(Wideal) (in the ideal
world) or Ei(Wreal) (in the real world) to emphasize that Ei is a deterministic
predicate of the uniformly distributed oracle, in either world. Then

(DWideal ∈ Tbad) ⇐⇒ (E1(Wideal) ∨ · · · ∨ Eq(Wideal)). (11)

Moreover,

Pr[Ei,j(Wideal)] ≤ (i− 1)
1

2`
≤ q

2`

since the hash functions H1, . . . ,Hκ are chosen independently of everything in
the ideal world, and by the universality of H, and

Pr[Ei(Wideal)] ≤
( q

2`

)κ
since the events Ei,1, . . . , Ei,κ are independent in the ideal world; finally

Pr[DWideal ∈ Tbad] ≤ q
( q

2`

)κ
=
qκ+1

2`κ

by (11) and by a union bound.



To complete the proof, we must show that Pr[DWreal = τ ] = Pr[DWideal = τ ]
for all τ ∈ Tgood. Clearly,

Pr[DWideal = τ ] =
1

2nq
· 1

|H|κ

for all attainable τ . Moreover, if

τ = ((x1, y1), . . . , (xq, yq), h1, . . . , hκ)

then it is easy to see that

Pr[DWreal = τ |H(Wreal) = (h1, . . . , hκ)] =
1

2nq

by induction on the number of distinguisher queries, using τ ∈ Tgood. (We write
H(Wreal) for the H-coordinate of Wreal.) Since

Pr[H(Wreal) = (h1, . . . , hκ)] =
1

|H|κ

this completes the proof. �

Proof of Lemma 8.

Pr
a

$←−A
[ ∃y ∈ Y : y′ 6= y ∧ ha(y′) = ha(y) ]

≤
∑

y′∈Y\{y}

Pr
a

$←−A
[ ha(y′) = ha(y) ]

≤ |Y|·2−l2 ≤ 2−(l2−l1),

where the first inequality is a union bound and the second inequality follows by
the universality of H. �

Proof of Lemma 10. Assume WLOG that µ′m is integer and use shorthand

pl
def
= Pr[ |Bermµ′ | = l ] and thus

pµ′m =

(
m

µ′m

)
µµ
′m(1− µ′)m−µ

′m

For 1 ≤ i ≤ µ′m, we have

pµ′m−i =

(
m

µ′m− i

)
µ′
µ′m−i

(1− µ′)m−µ
′m+i

=
m!·µ′µ

′m
(1− µ′)m−µ′m

(µ′m− i)!(m− µ′m+ i)!

= pµ′m
(µ′m− i+ 1)(µ′m− i+ 2) . . . (µ′m− i+ i)

(m− µ′m+ 1)(m− µ′m+ 2) . . . (m− µ′m+ i)
·(1− µ′

µ′
)i

= pµ′m
(1− i−1

µ′m )(1− i−2
µ′m ) . . . (1− 0

µ′m )

(1 + 1
m(1−µ′) )(1 + 2

m(1−µ′) ) . . . (1 + i
m(1−µ′) )

.



Similarly, for 1 ≤ i ≤ (1− µ′)m we can show that

pµ′m+i = pµ′m
(1− 0

m(1−µ′) )(1− 1
m(1−µ′) ) . . . (1− i−1

m(1−µ′) )

(1 + 1
µ′m )(1 + 2

µ′m ) . . . (1 + i
µ′m )

.

Therefore, we have pµ′m = max{pi | 0 ≤ i ≤ m } and thus complete the proof
with the following

(1 + 2
√
m)·pµ′m ≥

µ′m+
√
m∑

j=µ′m−min{
√
m,µ′m}

pj

≥ 1 − Pr[
∣∣ |Bermµ′ | − µ′m∣∣ ≥ √m ]

≥ 1 − 2 exp−2 = Ω(1)

where the last inequality is a Hoeffding bound. �
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