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Abstract. Multilinear map is a novel primitive which has many cryp-
tographic applications, and GGH map is a major candidate of K-linear
maps for K > 2. GGH map has two classes of applications, which are
applications with public tools for encoding and with hidden tools for en-
coding. In this paper, we show that applications of GGH map with public
tools for encoding are not secure, and that one application of GGH map
with hidden tools for encoding is not secure. On the basis of weak-DL at-
tack presented by the authors themselves, we present several efficient at-
tacks on GGH map, aiming at multipartite key exchange (MKE) and the
instance of witness encryption (WE) based on the hardness of exact-3-
cover (X3C) problem. First, we use special modular operations, which we
call modified encoding/zero-testing to drastically reduce the noise. Such
reduction is enough to break MKE. Moreover, such reduction negates
K-GMDDH assumption, which is a basic security assumption. The pro-
cedure involves mostly simple algebraic manipulations, and rarely needs
to use any lattice-reduction tools. The key point is our special tools for
modular operations. Second, under the condition of public tools for en-
coding, we break the instance of WE based on the hardness of X3C prob-
lem. To do so, we not only use modified encoding/zero-testing, but also
introduce and solve “combined X3C problem”, which is a problem that
is not difficult to solve. In contrast with the assumption that multilinear
map cannot be divided back, this attack includes a division operation,
that is, solving an equivalent secret from a linear equation modular some
principal ideal. The quotient (the equivalent secret) is not small, so that
modified encoding/zero-testing is needed to reduce size. This attack is
under an assumption that some two vectors are co-prime, which seems to
be plausible. Third, for hidden tools for encoding, we break the instance
of WE based on the hardness of X3C problem. To do so, we construct
level-2 encodings of 0, which are used as alternative tools for encoding.
Then, we break the scheme by applying modified encoding/zero-testing
and combined X3C, where the modified encoding/zero-testing is an ex-
tended version. This attack is under two assumptions, which seem to
be plausible. Finally, we present cryptanalysis of two simple revisions of
GGH map, aiming at MKE. We show that MKE on these two revisions
can be broken under the assumption that 2K is polynomially large. To
do so, we further extend our modified encoding/zero-testing.

⋆ c⃝ IACR 2016. This article is the final version submitted by the authors to the
IACR and to Springer-Verlag in February 2016, which appears in the proceedings of
EUROCRYPT 2016.
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1 Introduction

1.1 Background and Our Contributions

Multilinear map is a novel primitive. Mathematically speaking, multilinear map
is a leveled encoding system. In other words, it is such a system that can multiply
but cannot divide back, and goes further to let us recover some limited infor-
mation. It is the solution of a long-standing open problem [1], and has many
novel cryptographic applications, such as multipartite key exchange (MKE) [2],
witness encryption (WE) [3–9], obfuscation [8–10], and so on. It also has sev-
eral advantages in the traditional cryptographic area such as IBE, ABE [11],
Broadcasting encryption, and so on. The first candidate of multilinear map is
GGH map [2], and GGHLite map [12] is a special version of GGH map for the
purpose of improving efficiency. Up until now, GGH map is a major candidate
of K-linear maps for K > 2. It uses noisy encoding to obtain the trapdoor. The
security of GGH map is not well-understood. In particular, hardness of lattice
problems is necessary for its security, but it is not sufficient. GGH map has t-
wo classes of applications. The first class is applications with public tools for
encoding/zero-testing such as MKE [2], IBE, ABE, Broadcasting encryption,
and so on. The second class contains applications with hidden tools for encoding
such as GGHRSW obfuscation [8]. WE can be in the first and second classes.
For the first class, WE tools for encoding are generated and published by the
system, and can be used by any user. For the second class, WE tools for encod-
ing are generated and hidden by a unique encrypter, and can only be used by
him/herself. Besides, WE is another novel cryptographic notion and the instance
of WE based on the hardness of exact-3-cover (X3C) problem is its first instance.
Garg et al. provided in [2] a survey of relevant cryptanalysis techniques from the
literature, and also described two new attacks on GGH map. In particular they
presented the weak-DL attack, which indicated that GGH map makes division
possible to some extent, and which is used in our attacks as well. We emphasize,
however, that they did not show how to use that attack to break any of their
proposed schemes.

In this paper, we show that applications of GGH map with public tools for
encoding are not secure, and that one application of GGH map with hidden
tools for encoding is not secure. We present several efficient attacks on GGH
map, aiming at MKE and the instance of WE based on the hardness of X3C
problem. In all of our attacks we begin by using the weak-DL attack from [2] to
recover an “equivalent secret” which is equal to the original secret modulo some
known ideal, but is not small. Then we proceed as follows.

First, we use special modular operations, which we call modified encoding/zero-
testing to drastically reduce the noise. Such reduction is enough to break MKE.
Moreover, such reduction negates K-GMDDH assumption (Assumption 5.1 of
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[11]), which is the security basis of the ABE scheme [11]. The procedure in-
volves mostly simple algebraic manipulations, and rarely needs to use any lattice-
reduction tools. The key point is our special tools for modular operations.

Second, under the condition of public tools for encoding, we break the in-
stance of WE based on the hardness of X3C problem. To do so, we not only use
modified encoding/zero-testing, but also introduce and solve “combined X3C
problem”, which is a problem that is not difficult to solve. In contrast with the
assumption that multilinear map cannot be divided back, this attack includes a
division operation, that is, solving an equivalent secret from a linear equation
modular some principal ideal. The quotient (the equivalent secret) is not small,
so that modified encoding/zero-testing is needed to reduce size. This attack is
under an assumption that some two vectors are co-prime, which seems to be
plausible.

Third, for hidden tools for encoding, we break the instance of WE based on
the hardness of X3C problem. To do so, we construct level-2 encodings of 0,
which are used as alternative tools for encoding. Then, we break the scheme by
applying modified encoding/zero-testing and combined X3C, where the modified
encoding/zero-testing is an extended version. This attack has several preparing
works, including solving a new type of “equivalent secret”. This attack is under
two assumptions, which seem to be plausible.

Finally, we check whether GGH structure can be simply revised to avoid
our attack. We present cryptanalysis of two simple revisions of GGH map, aim-
ing at MKE. We show that MKE on these two revisions can be broken under
the assumption that 2K is polynomially large. To do so, we further extend our
modified encoding/zero-testing.

1.2 Principles and Main Techniques of Our Attack

Quite unlike the original DH maps and bilinear maps, all candidates of multilin-
ear maps have a common security worry that zero-testing tools are public. This
allows the adversary to zero-test messages freely. The adversary can choose those
zero-tested messages that are small enough without protection of the modular
operation. Such security worry has been used to break CLT map [13–17], which
is another major candidate of multilinear maps, and which is simply over inte-
gers. Multilinear maps over the integer polynomials (GGH map [2] and GGHLite
map [12]) haven’t been broken because (1) (NTRU declaration) the product of
a short polynomial and modular inverse of another short polynomial seems un-
able to be decomposed; and (2) the product of several short polynomials seems
unable to be decomposed. However, the product of several short polynomials
is a somewhat short polynomial. Although it cannot be decomposed, it can be
used as a modulus to reduce the noise. On the other hand, breaking applica-
tions of GGH map with public tools for encoding does not mean solving the
users’ secrets. It only means solving “high-order bits of zero-test of the product
of encodings of users’ secrets”, a weaker requirement. Therefore, by using our
modified encoding/zero-testing, we can easily migrate between modular oper-
ations and real number operations to find vulnerabilities which have not been
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found before. All of the above form the first principle of our attack. The sec-
ond principle is that if one uses GGH map for constructing the instance of WE
based on the hardness of X3C problem, special structure of GGH map allows
us to transform the underlying X3C problem into a much easier combined X3C
problem. Our main techniques are as follows.

Modified encoding/zero-testing. For the secret of each user, we have an
equivalent secret which is the sum of original secret and a noise. These equiv-
alent secrets cannot be encoded, because they are not small. We compute the
product of these equivalent secrets, rather than computing their modular prod-
uct. Notice that the product is the sum of the product of original secrets and a
noise. Then our modified encoding/zero-testing is quite simple. It contains three
simple operations, avoiding computing original secrets of users, and extracting
same information. That is, it extracts same high-order bits of zero-tested mes-
sage. Table 1 is a comparison between processing routines of GGH map and our
work. It is a note of our claim that we can achieve the same purpose without
knowing the secret of any user.

Table 1. Processing routines

GGH map secrets → encodings → modular product → zero-testing → high-order bits

Our work equivalent secrets → product → modified encoding/zero-testing → high-order bits

Solving combined exact-3-cover (Combined X3C) problem. The
reason that X3C problem can be transformed into a combined X3C problem
is that the special structure of GGH map sometimes makes division possible.
We can solve combined X3C problem with non-negligible probability and break
the instance of WE based on the hardness of X3C problem for public tools of
encoding.

Finding alternative encoding tools. When encoding tools are hidden,
we can use redundant information to construct alternative encoding tools. For
example, there are many redundant pieces beside X3C. Encodings of these re-
dundant pieces can be composed into several level-2 encodings of 0. Only one
level-2 encoding of 0 is enough to break the instance of WE based on the hard-
ness of X3C problem for hidden tools of encoding. This technique can be adapted
to other applications of GGH map, where although encoding tools are hidden,
a large number of redundant information are needed to protect some secrets.

1.3 The Organization

In subsection 1.4 we review recent works related to multilinear map. In section 2
we review GGHmap and two applications, MKE and the instance of WE on X3C.
In section 3 we define special tools for our attack, which are special polynomials
used for our modular operations. Also in this section, for the secret of each
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user, we generate an equivalent secret, which is not a short vector. Immediately,
we obtain an “equivalent secret” of the product of the users’ secrets, which is
the product of the users’ equivalent secrets. In section 4 we present modified
encoding/zero-testing. We show how “high-order bits of zero-test of the product
of encodings of users’ secrets” can be solved, so that MKE is broken. In section 5
we show how to break the instance of WE on X3C problem with public tools for
encoding. In this section, we first introduce and solve “combined X3C problem”,
then solve “high-order bits of zero-test of the product of encodings of users’
secrets”. In section 6 we present an attack on the instance of WE based on
the hardness of X3C problem with hidden tools for encoding. We show that
this instance can be broken under several stronger assumptions. In section 7 we
present cryptanalysis of two simple revisions of GGH map, aiming at MKE. We
show that MKE on these two revisions can be broken under the assumption that
2K is polynomially large. Section 8 contains other results, some considerations,
and poses several questions.

1.4 Related Works

Garg et al. presented in [2] three variants, which are “asymmetric encoding”,
“providing zero-test security” and “avoiding principal ideals”. Arita and Handa
[5] presented two applications of multilinear maps: MKE with smaller commu-
nication and an instance of WE. Their WE scheme (called AH scheme) has the
security claim based on the hardness of Hamilton Cycle problem. The novelty
is that they used an asymmetric multilinear map over integer matrices. Bellare
and Hoang [6] presented adaptive witness encryption with stronger security than
soundness security, named adaptive soundness security. Garg et al. [8] present-
ed witness encryption by using indistinguishability obfuscation and Multilinear
Jigsaw Puzzle, a simplified variant of multilinear maps. Extractable witness en-
cryption was presented [7, 9, 10]. Gentry et al. designed multilinear maps based
on graph [18]. Coron et al. presented efficient attack on CLT map for hidden
tools for encoding [19]. Coron et al. designed CLT15 map [20]. Then Cheon et
al. [21] and Minaud and Fouque [22] broke CLT15 respectively.

2 GGH Map and Two Applications

2.1 Notations and Definitions

We denote the rational numbers by Q and the integers by Z. We specify that
n-dimensional vectors of Qn and Zn are row vectors. We consider the 2n’th
cyclotomic polynomial ring R = Z[X]/(Xn + 1), and identify an element u ∈ R
with the coefficient vector of the degree-(n−1) integer polynomial that represents
u. In this way, R is identified with the integer lattice Zn. We also consider the
ring Rq = R/qR = Zq[X]/(Xn + 1) for a (large enough) integer q. Addition
in these rings is done component-wise in their coefficients, and multiplication is
polynomial multiplication modulo the ring polynomial Xn + 1. In some cases,
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we also consider the ring K = Q[X]/(Xn + 1), which is likewise associated
with the linear space Qn. We redefine the operation “mod q” as follows: if q is
an odd, a(mod q) is within {−(q − 1)/2,−(q − 3)/2, . . . , (q − 1)/2}; if q is an
even, a(mod q) is within {−q/2,−(q − 2)/2, . . . , (q − 2)/2}. For x ∈ R, ⟨x⟩ =
{x · u : u ∈ R} is the principal ideal in R generated by x (alternatively, the
sub-lattice of Zn corresponding to this ideal). For x ∈ R, y ∈ R, y(mod x) is
such a vector: y(mod x) = ax, where each entry of a is within [-0.5, 0.5), and
y − y(mod x) ∈ ⟨x⟩. We refer the readers to Babai [23].

2.2 The GGH Construction

We secretly sample a short element g ∈ R. Let ⟨g⟩ be the principal ideal in R.
g itself is kept secret, and no “good” description of ⟨g⟩ is made public. Another
secret element z ∈ Rq is chosen at random, and hence is not short.

An element y is called encoding parameter, or called level-1 encoding of
1, and is set in the following description. We secretly sample a short element
a ∈ R, and let y = (1 + ag)z−1(mod q). The elements {x(i), i = 1, 2} are called
randomizers, or called level-1 encodings of 0, and are set as follows. We secretly
sample a short element b(i) ∈ R, and let x(i) = b(i)gz−1(mod q), i = 1, 2. The
public element pzt is called level-K zero-testing parameter, where K ≥ 3 is an
integer. pzt is set as follows. We secretly sample a “somewhat small” element
h ∈ R, and let pzt = (hzKg−1)(mod q). Simply speaking, parameters y and
{x(i), i = 1, 2} are tools for encoding, while public parameter pzt is tool of zero-
test. {g, z, a, {b(i), i = 1, 2}, h} are kept from all users. For MKE, y and {x(i),
i = 1, 2} are public. For WE, they can be either public or hidden.

Suppose a user has a secret v ∈ R, which is a short element. He secretly sam-
ples short elements {u(i) ∈ R, i = 1, 2}. He computes noisy encoding V = vy +
(u(1)x(1) + u(2)x(2))(mod q), where vy(mod q) and (u(1)x(1) + u(2)x(2))(mod q)
are respectively encoded secret and encoded noise. He publishes V . Then, GGH
K-linear map includes K, y, {x(i), i = 1, 2}, pzt, and all noisy encoding V s for all
users.

We call g grade 1 element, and denote σ as the standard deviation for sam-
pling g. We call {a, {b(i), i = 1, 2}} and {v, {u(i), i = 1, 2}} grade 2 elements,
and denote σ′ as the standard deviation for sampling {a, {b(i), i = 1, 2}} and
{v, {u(i), i = 1, 2}}. Both σ and σ′ are much smaller than

√
q, and GGH K-linear

map [2] suggests σ′ = nσ. Finally, we call h grade 3 element, and take σ′′ =
√
q

as the standard deviation for sampling h. We say that g, {a, {b(i), i = 1, 2}} and
{v, {u(i), i = 1, 2}} are “very small”, and that h is “somewhat small”. h cannot
be “very small” for security reasons.

2.3 Application 1: MKE

Suppose that K + 1 users want to generate a commonly shared key by pub-
lic discussion. To do so, each user k generates his secret v(k), and publishes
the noisy encoding V (k), k = 1, . . . ,K + 1. Then, each user can use his/her se-
cret and other users’ noisy encodings to compute KEY , the commonly shared
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key. KEY is high-order bits of any zero-tested message. For example, user
k0 first computes v(k0)pzt

∏
k ̸=k0

V (k)(mod q), then KEY is high-order bits of

v(k0)pzt
∏

k ̸=k0
V (k)(mod q). That is, he/she first computes

v(k0)pzt
∏
k̸=k0

V (k)(mod q) =

h(1 + ag)Kg−1
K+1∏
k=1

v(k)+

hv(k0)
∑

S⊂{1,...,K+1}
−{k0},|S|≥1

(1 + ag)K−|S|g|S|−1
∏

k∈{1,...,K+1}−
{k0}−S

(v(k))
∏
t∈S

(u(t,1)b(1) + u(t,2)b(2))(mod q).

It is the modular sum of two terms, zero-tested message and zero-tested noise.
Zero-tested message is

h(1 + ag)Kg−1
K+1∏
k=1

v(k)(mod q).

Zero-tested noise is

hv(k0)
∑

S⊂{1,...,K+1}
−{k0},|S|≥1

(1 + ag)K−|S|g|S|−1
∏

k∈{1,...,K+1}
−{k0}−S

(v(k))
∏
t∈S

(u(t,1)b(1) + u(t,2)b(2)).

Notice that zero-tested noise is the sum of 3K − 1 terms. For example,
h(1 + ag)K−1b(1)u(1,1)

∏K+1
k=2 (v(k)) is a term of the zero-tested noise. Each term

is the product of a “somewhat small” element and several “very small” elements.
Therefore, zero-tested noise is “somewhat small”, and it can be removed if we on-
ly extract high-order bits of v(k0)pzt

∏
k ̸=k0

V (k)(mod q). In other words,KEY is

actually high-order bits of zero-tested message h(1+ag)Kg−1
∏K+1

k=1 v(k)(mod q).

2.4 Application 2: The Instance of WE on Exact-3-cover

Definition 1. A witness encryption scheme for an NP language L (with cor-
responding witness relation Rel) consists of the following two polynomial-time
algorithms:

Encryption. The algorithm Encrypt(1λ,x,M) takes as input a security pa-
rameter 1λ, a string x, and a message M , and outputs a ciphertext CT.

Decryption. The algorithm Decrypt(CT,w) takes as input a ciphertext C-
T and a string w, and outputs a message M if Rel(w,x)=1 or the symbol ⊥
otherwise.

exact-3-cover problem [3, 24]. If we are given a subset of {1, 2, . . . , 3K}
containing 3 integers, we call it a piece. If we are given a collection of K pieces
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without intersection, we call it a X3C of {1, 2, . . . , 3K}. The X3C problem is
that for arbitrarily given N(K) different pieces with a hidden X3C, find it. It
is clear that 1 ≤ N(K) ≤ C3

3K . Intuitively, the X3C problem is often not hard
when N(K) ≤ O(K), because X3C is not hidden well. An extreme example is
that if the number i is contained by only one piece {i, j, k}, then {i, j, k} is cer-
tainly from X3C. Picking up {i, j, k} and abandoning those pieces containing j
or k, then other pieces form a reduced X3C problem on {1, 2, . . . , 3K}−{i, j, k}.
So that N(K) ≥ O(K2) to avoid weak case. On the other hand, the larger
N(K) the easier our attack. So that in rest of this paper we will always take
N(K) = O(K2).

Now we describe the WE based on the hardness of X3C problem from GGH
structure.

Encryption. The encrypter samples short elements v(1), v(2), . . . , v(3K) ∈ R.
He/she computes the encryption key as follows. He/she first computes v(1)v(2) . . . v(3K)yK

pzt(mod q), then takes EKEY as its high-order bits. In fact, EKEY is high-
order bits of v(1)v(2) . . . v(3K)(1+ag)Khg−1(mod q). He/she can use EKEY and
an encryption algorithm to encrypt any plaintext. Then, he/she hides EKEY
into pieces as follows. He/she arbitrarily generates N(K) different pieces of
{1, 2, . . . , 3K}, with a hidden X3C called XC. For each piece {i1, i2, i3}, he/she
computes noisy encoding of the product v(i1)v(i2)v(i3), that is, secretly sam-
ples short elements {u({i1,i2,i3},i) ∈ R, i = 1, 2}, then computes and publishes
V {i1,i2,i3} = v(i1)v(i2)v(i3)y + (u({i1,i2,i3},1)x(1) + u({i1,i2,i3},2)x(2))(mod q).

Decryption. The one who knows XC computes the zero-test of
∏

{i1,i2,i3}∈XC

V {i1,i2,i3}(mod q), that is, he/she computes pzt
∏

{i1,i2,i3}∈XC V {i1,i2,i3}(mod q).

Then, EKEY is its high-order bits. In other words, pzt
∏

{i1,i2,i3}∈XC V {i1,i2,i3}(mod q)

is the modular sum of two terms, the first term is zero-tested message v(1)v(2) . . . v(3K)(1+
ag)Khg−1 (mod q), while the second term is zero-tested noise which doesn’t af-
fect high-order bits of pzt

∏
{i1,i2,i3}∈XC V {i1,i2,i3}(mod q).

3 Weak-DL Attack: Generating Equivalent Secrets

As the start of our attack, we will find equivalent secrets. The method is weak-DL
attack [2].

3.1 Generating an Equivalent Secret for One User

We can obtain special elements {Y,X(i), i = 1, 2}, where

Y = yK−1x(1)pzt(mod q) = h(1 + ag)K−1b(1),

X(i) = yK−2x(i)x(1)pzt(mod q) = h(1 + ag)K−2(b(i)g)b(1),

i = 1, 2.

Notice that the right sides of these equations have no operation “mod q”.
More precisely, each of {Y,X(i), i = 1, 2} is a factor of a term of zero-tested noise.



Cryptanalysis of GGH Map 9

For example, Y u(1,1)
∏K+1

k=2 (v(k)) is a term of the zero-tested noise. Therefore,
each of {Y,X(i), i = 1, 2} is far smaller than a term of the zero-tested noise.
However, they are not small enough because of the existence of the factor h. We
say they are “somewhat small”, and take them as our tools.

Take the noisy encoding V (corresponding to the secret v and unknown
{u(1), u(2)}), and compute special element

W = V yK−2x(1)pzt(mod q) = vY + (u(1)X(1) + u(2)X(2)).

Notice that the right side of this equation has no operation “mod q”. Then,
compute

W (mod Y ) =
(
u(1)X(1)(mod Y ) + u(2)X(2)(mod Y )

)
(mod Y ).

Step 1. By knowing W (mod Y ) and {X(1)(mod Y ), X(2)(mod Y )}, we obtain
W ′ ∈ ⟨X(i), i = 1, 2⟩ such that W −W ′(mod Y ) = 0. This is quite easy algebra,
and we present the details in Appendix A. Notice that W − W ′ is not a short
vector. Denote W ′ = u′(1)X(1) + u′(2)X(2).

Step 2. Compute v(0) = (W − W ′)/Y (division over real numbers with the
quotient which is an integer vector). Then,

v(0) = v + ((u(1)X(1) + u(2)X(2))−W ′)/Y

= v + ((u(1) − u′(1))X(1) + (u(2) − u′(2))X(2))/Y

= v + ((u(1) − u′(1))b(1) + (u(2) − u′(2))b(2))g/(1 + ag).

By considering another fact that g and 1+ag are co-prime, we have v(0)−v ∈ ⟨g⟩.
We call v(0) an equivalent secret of v, and call residual vector v(0) − v the noise.
Notice that v(0) is not a short vector.

3.2 Generating an Equivalent Secret for the Product of Secrets

Suppose that each user k has his/her secret v(k) and we generate v(0,k), an equiva-

lent secret of v(k), where k = 1, . . . ,K+1. For the product
∏K+1

k=1 v(k), we have an

equivalent secret
∏K+1

k=1 v(0,k), where the noise is
∏K+1

k=1 v(0,k)−
∏K+1

k=1 v(k) ∈ ⟨g⟩.
Notice that

∏K+1
k=1 v(0,k) is not a short vector.

4 Modified Encoding/Zero-testing

In this section we transform
∏K+1

k=1 v(0,k) by our modified encoding/zero-testing.

Denote η =
∏K+1

k=1 v(0,k). The procedure has three steps, which are η′ = Y η, η′′ =
η′(mod X(1)), and η′′′ = y(x(1))−1η′′(mod q) (or η′′′ = Y (X(1))−1η′′(mod q)).
To help understanding their functions, we compare them with GGH processing
procedure. The first operation is like a level-K encoding followed by a zero-
testing, but there are three differences. Difference 1: The first operation doesn’t
use modular q. Difference 2: η′(mod q) contains a modular q factor yK−1, while
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zero-tested message contains a modular q factor yK . In other words, η′(mod q)
lacks a y. Difference 3: η′(mod q) contains a modular q factor x(1), while zero-
tested message doesn’t contain such modular q factor. In other words, η′(mod q)
has a surplus x(1). η′′ is also like a level-K encoding followed by a zero-testing,
and there are also three differences as above, but the size is reduced to “somewhat
small”. To obtain η′′′, we get rid of x(1) and put y in so that η′′′ is a level-K
encoding followed by a zero-testing, and that we can guarantee zero-tested noise
“somewhat small”. Notice η =

∏K+1
k=1 v(k) + ξg, where ξ ∈ R.

Step 1. Compute η′ = Y η. By noticing that Y is a multiple of b(1), we have a
fact that η′ = Y

∏K+1
k=1 v(k) + ξ′b(1)g, where ξ′ ∈ R.

Step 2. Compute η′′ = η′(mod X(1)). There are 3 facts as follows.

(1) η′′ = Y
∏K+1

k=1 v(k) + ξ′′b(1)g, where ξ′′ ∈ R. Notice that η′′ is the sum of η′

and a multiple of X(1), and that X(1) is a multiple of b(1)g.

(2) η′′ has a similar size to that of
√
nX(1). In other words, η′′ is smaller than one

term of zero-tested noise. Notice standard deviations for sampling various
variables.

(3) Y
∏K+1

k=1 v(k) has a similar size to that of one term of zero-tested noise.

The above 3 facts result in a new fact that ξ′′b(1)g = η′′ − Y
∏K+1

k=1 v(k) has
a similar size to that of one term of zero-tested noise.

Step 3. Compute η′′′ = y(x(1))−1η′′(mod q). There are 3 facts as follows.

(1) η′′′ = (h(1 + ag)Kg−1)
∏K+1

k=1 v(k) + ξ′′(1 + ag)(mod q). Notice fact (1) of
Step 2, and notice the definitions of Y and X(1).

(2) ξ′′(1 + ag) has a similar size to that of one term of zero-tested noise. In
other words, ξ′′(1 + ag) is smaller than zero-tested noise. This fact is clear
by noticing that ξ′′b(1)g has a similar size to that of one term of zero-tested
noise, and by noticing that 1 + ag and b(1)g have a similar size.

(3) (h(1+ag)Kg−1)
∏K+1

k=1 v(k)(mod q) is zero-tested message, therefore its high-
order bits are what we want to obtain.

The above 3 facts result in a new fact that η′′′ is the modular sum of zero-
tested message and a new zero-tested noise which is smaller than original zero-
tested noise. Therefore, high-order bits of η′′′ are what we want to obtain. MKE
has been broken. More important is that K-GMDDH assumption (Assumption
5.1 of [11]) is negated.

5 Breaking the Instance of WE Based on the Hardness of
Exact-3-cover Problem with Public Tools for Encoding

Our modified encoding/zero-testing cannot directly break the instance of WE
based on the hardness of X3C problem, because the X3C is hidden. In this section
we show that special structure of GGH map can simplify the X3C problem into
a combined X3C problem, and then show how to use a combined exact cover
to break the instance under the condition that low-level encodings of zero are
made publicly available.
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5.1 Combined Exact-3-cover Problem: Definition and Solution

Definition 2. Suppose we are given N(K) = O(K2) different pieces of {1, 2, . . . , 3K}.
A subset {i1, i2, i3} of {1, 2, . . . , 3K} is called a combined piece, if

(1) {i1, i2, i3} is not a piece;

(2) {i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} − {l1, l2, l3};
(3) {j1, j2, j3}, {k1, k2, k3} and {l1, l2, l3} are pieces;

(4) {j1, j2, j3} and {k1, k2, k3} don’t intersect. (Then {j1, j2, j3} ∪ {k1, k2, k3} ⊃
{l1, l2, l3}).

Definition 3. A subset {i1, i2, i3} of {1, 2, . . . , 3K} is called a second-order
combined piece, if

(1) {i1, i2, i3} is neither a piece nor a combined piece;

(2) {i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} − {l1, l2, l3};
(3) {j1, j2, j3}, {k1, k2, k3} and {l1, l2, l3} are pieces or combined pieces.

(4) {j1, j2, j3} and {k1, k2, k3} don’t intersect. (Then {j1, j2, j3} ∪ {k1, k2, k3} ⊃
{l1, l2, l3}).

K pieces or combined pieces or second-order combined pieces without inter-
section are called a combined X3C of {1, 2, . . . , 3K}. The combined X3C prob-
lem is that for arbitrarily given N(K) = O(K2) different pieces, find a combined
X3C. We will show that the combined X3C problem is not difficult to solve. More
specifically, suppose that O(K2) pieces are sufficiently randomly distributed, in
them there is a hidden X3C, and the instance of X3C problem is assumed to be
hard. Then we will prove that corresponding instance of combined X3C problem
can be solved in polynomial time. Our proving procedure has two steps, which
are obtaining combined pieces and obtaining second-order combined pieces.

Obtaining combined pieces. We take P (E) as the probability of the event E,
and P

(
E
∣∣E′) as the conditional probability of E under the condition E′. Arbi-

trarily take a subset {i1, i2, i3} which is not a piece. In Appendix B we show that
P ({i1, i2, i3} is not a combined piece) ≈ exp{−(O(K2))3/K6}. For the sake of
simple deduction, we temporarily assume O(K2) > K2, then this probability
is smaller than e−1. Now we construct all combined pieces from O(K2) pieces,
and we have a result: there are more than (1 − e−1)C3

3K different subsets of
{1, 2, . . . , 3K}, each containing 3 elements, which are pieces or combined pieces.

Obtaining second-order combined pieces. There are less than e−1C3
3K d-

ifferent subsets of {1, 2, . . . , 3K}, each containing 3 elements, which are neither
pieces nor combined pieces. Arbitrarily take one subset {i1, i2, i3} from them.
By a deduction procedure similar to Appendix B, we can show that P ({i1, i2, i3}
is not a second-order combined piece) is negatively exponential in K. Now we
construct all second-order combined pieces from more than (1− e−1)C3

3K pieces
or combined pieces, and then we are almost sure to have a result: all C3

3K differ-
ent subsets of {1, 2, . . . , 3K}, each containing 3 elements, are pieces or combined
pieces or second-order combined pieces. Therefore, the combined X3C problem
is solved.
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5.2 Positive/Negative Factors

Definition 4. Take a fixed combined X3C. Take an element {i1, i2, i3} of this
combined X3C.

(1) If {i1, i2, i3} is a piece, we count it as a positive factor.

(2) If {i1, i2, i3} is a combined piece, {i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} −
{l1, l2, l3}, we count pieces {j1, j2, j3} and {k1, k2, k3} as positive factors,
and count the piece {l1, l2, l3} as a negative factor.

(3) Suppose {i1, i2, i3} is a second-order combined piece,{i1, i2, i3} = {j1, j2, j3}∪
{k1, k2, k3} − {l1, l2, l3}, where {j1, j2, j3}, {k1, k2, k3} and {l1, l2, l3} are
pieces or combined pieces.

(3.1) If {j1, j2, j3} is a piece, we count it as a positive factor; if {j1, j2, j3}
is a combined piece, we count 2 positive factors corresponding to it as
positive factors, and the negative factor corresponding to it as a negative
factor.

(3.2) Similarly, if {k1, k2, k3} is a piece, we count it as a positive factor; if
{k1, k2, k3} is a combined piece, we count 2 positive factors corresponding
to it as positive factors, and the negative factor corresponding to it as a
negative factor.

(3.3) Oppositely, if {l1, l2, l3} is a piece, we count it as a negative factor; if
{l1, l2, l3} is a combined piece, we count 2 positive factors corresponding
to it as negative factors, and the negative factor corresponding to it as a
positive factor.

Positive and negative factors are pieces. All positive factors form a collec-
tion, and all negative factors form another collection (notice that we use the
terminology “collection” rather than “set”, because it is possible that one piece
is counted several times). Take CPF as the collection of positive factors, NPF
as the number of positive factors. Take CNF as the collection of negative fac-
tors, NNF as the number of negative factors. Notice that some pieces may be
counted repeatedly. It is easy to see that NPF − NNF = K. On the other
hand, from C3

3K different subsets of {1, 2, . . . , 3K}, there are O(K2) different
pieces, more than (1 − e−1)C3

3K − O(K2) different combined pieces, and less
than e−1C3

3K different second-order combined pieces. Each piece is a positive
factor, each combined piece is attached by 2 positive factors and a negative fac-
tor, each second-order combined piece is attached by at most 5 positive factors
and 4 negative factors. Therefore, for a randomly chosen combined X3C, it is
almost sure that NPF ≤ 3K, resulting in NNF ≤ 2K.

5.3 Our Construction

Randomly take a combined X3C. Obtain CPF , the collection of positive fac-
tors, and CNF , the collection of negative factors. For a positive factor pf =
{i1, i2, i3}, we denote v(pf) = v(i1)v(i2)v(i3) as the secret of pf , and v′(pf) as the e-
quivalent secret of v(pf) obtained in subsection 3.1. Similarly we denote v(nf) and
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v′(nf) for a negative factor nf . Denote PPF =
∏

pf∈CPF v′(pf) as the product of

equivalent secrets of all positive factors. Denote PNF =
∏

nf∈CNF v′(nf) as the

product of equivalent secrets of all negative factors. Denote PTS =
∏3K

k=1 v
(k)

as the product of true secrets. The first clear equation is
∏

pf∈CPF v(pf) =

PTS ×
∏

nf∈CNF v(nf). Then, we have

Proposition 1.

(1) PPF −
∏

pf∈CPF v(pf) ∈ ⟨g⟩.
(2) PNF −

∏
nf∈CNF v(nf) ∈ ⟨g⟩.

(3) PPF − PNF × PTS ∈ ⟨g⟩.

Proof. By considering subsection 3.1, we know that

(1) PPF =
∏

pf∈CPF v(pf) + βPF , where βPF ∈ ⟨g⟩.
(2) PNF =

∏
nf∈CNF v(nf) + βNF , where βNF ∈ ⟨g⟩.

On the other hand, (3) is true from∏
pf∈CPF

v(pf) = PTS ×
∏

nf∈CNF

v(nf).

Proposition 1 is proven. �

Perhaps there is hope in solving PTS. However, we cannot filter off βPF and
βNF , because no “good” description of ⟨g⟩ has been made public. Fortunately,
we don’t need to solve PTS for breaking the instance. We only need to find
an equivalent secret of PTS, without caring about the size of the equivalent
secret. Then, we can reduce zero-tested noise much smaller by our modified
encoding/zero-testing. Proposition 2 describes the shape of the equivalent secret
of PTS under an assumption.

Proposition 2.

(1) If PTS′ is an equivalent secret of PTS, then PPF − PNF × PTS′ ∈ ⟨g⟩.
(2) Assume that PNF and g are co-prime. If PPF −PNF ×PTS′ ∈ ⟨g⟩, then

PTS′ is an equivalent secret of PTS.

Proof. (1) is clear by considering (3) of Proposition 1. If PPF −PNF ×PTS′ ∈
⟨g⟩, then PNF × (PTS′ − PTS) ∈ ⟨g⟩. According to our assumption, we have
(PTS′ − PTS) ∈ ⟨g⟩, hence (2) is proven. �

Now we want to find an equivalent secret of PTS. From viewpoint of multi-
linear map, this is a division operation: We “divide” PPF by PNF to obtain
PTS′. Under our assumption, we only need to find a vector PTS′ ∈ R such that
PPF −PNF ×PTS′ ∈ ⟨g⟩ without caring about the size of PTS′. To do so we
only need to obtain a “bad” description of ⟨g⟩. That is, we only need to obtain
a public basis of the lattice ⟨g⟩; for example, the Hermite normal form. This is
not a difficult task, and in Appendix C we will present our method for doing so.
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After obtaining a public basis G, the condition PPF − PNF × PTS′ ∈ ⟨g⟩ is
transformed into an equivalent condition

PPF ×G−1 − PTS′ × PNF ×G−1 ∈ R,

where G−1 is the inverse matrix of G, and

PNF =


PNF0 PNF1 · · · PNFn−1

−PNFn−1 PNF0 · · · PNFn−2

...
...

. . .
...

−PNF1 −PNF2 · · · PNF0

 .

Take each entry of PPF ×G−1 and PNF ×G−1 as the form of reduced fraction,
and take lcm as the least common multiple of all denominators, and then the
condition is transformed into another equivalent condition

(lcm× PPF ×G−1)(mod lcm)

= PTS′ × (lcm× PNF ×G−1)(mod lcm).

This is a linear equation modular lcm, and it is easy to obtain a solution PTS′.
After that we take our modified encoding/zero-testing, exactly the same as in
section 4. Denote η = PTS′. Compute η′ = Y η. Compute η′′ = η′(mod X(1)).
Compute η′′′ = y(x(1))−1η′′(mod q). Then, high-order bits of η′′′ are what we
want to obtain. The instance has been broken.

We can explain that temporary assumption O(K2) > K2 is not needed for
a successful attack. For smaller number of pieces, we can always generate com-
bined pieces, second-order combined pieces, third-order combined pieces, . . .,
step by step, until we can easily obtain a combined X3C. From this combined
X3C, each set is a piece or a combined piece or a second-order combined piece or
a third-order combined piece or . . ., rather than only a piece or a combined piece
or a second-order combined piece. Then, we can obtain all positive and negative
factors, which can be defined step by step. In other words, we can sequentially
define positive/negative factors attached to a third-order combined piece, to a
fourth-order combined piece, . . ., and so on. Finally, we can break the instance
by using the same procedure. The difference is merely a more complicated de-
scription. A question left is whether the assumption “PNF and g are co-prime”
is a plausible case. It means that g and each factor of PNF are co-prime. The
answer is seemingly yes. A test which we haven’t run is that we take two different
combined X3Cs, so that we obtain two different values of PNF . If they finally
obtain the same high-order bits of η′′′, we can believe the assumption is true for
two values of PNF .

6 Breaking the Instance of WE Based on the Hardness of
Exact-3-cover Problem with Hidden Tools for Encoding

6.1 Preparing Work (1): Finding Level-2 Encodings of 0

Take two pieces {i1, i2, i3} and {j1, j2, j3} which do not intersect. From other
pieces, randomly choose two pieces {k1, k2, k3} and {l1, l2, l3}, then the prob-
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ability that {k1, k2, k3} ∪ {l1, l2, l3} = {i1, i2, i3} ∪ {j1, j2, j3} is about 1
C6

3K
,

which is polynomially small. From all of N(K) = O(K2) pieces, we construct
all sets of 4 pieces, and we estimate the average number of such sets of 4 pieces
{{i1, i2, i3}, {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3}} that {i1, i2, i3} and {j1, j2, j3} do
not intersect, and {k1, k2, k3}∪{l1, l2, l3} = {i1, i2, i3}∪{j1, j2, j3}. This number

is of the order of magnitude
C4

O(K2)

C6
3K

, meaning that we have “many” such sets. At

least finding one such set is noticeable. Take one of such sets {{i1, i2, i3}, {j1, j2, j3},
{k1, k2, k3}, {l1, l2, l3}} and corresponding encodings {V {i1,i2,i3}, V {j1,j2,j3}, V {k1,k2,k3},
V {l1,l2,l3}}, then(

V {i1,i2,i3}V {j1,j2,j3} − V {k1,k2,k3}V {l1,l2,l3}
)
(mod q) = ugz−2(mod q),

where u is very small. We call it a level-2 encoding of 0. According to the state-
ment above, we have “many” level-2 encodings of 0. Here we fix and remember
one such encoding of 0, and call it V ∗. Correspondingly, we fix and remember u.

6.2 Preparing Work (2): Supplement and Division

Take a combined X3C. Obtain CPF and CNF , collections of positive and nega-
tive factors. Suppose NPF ≤ 2K−2 (therefore NNF = NPF−K ≤ K−2. It is
easy to see that this case is noticeable). Take a piece {i1, i2, i3} and supplement
it 2K − NPF times into CPF , so that we have new NPF = 2K. Similarly,
supplement such a piece {i1, i2, i3} K −NNF = 2K −NPF times into CNF ,
so that we have a new NNF = K. We fix and remember the piece {i1, i2, i3}.

Then, we divide the collection CPF into two subcollections, CPF (1) and
CPF (2), where

(1) ∥CPF (1)∥ = ∥CPF (2)∥ = K. That is, CPF (1) and CPF (2) are of equal
size.

(2) CPF (2) contains {i1, i2, i3} at least twice.

(3) CPF (1) contains two pieces {j1, j2, j3} and {k1, k2, k3} which do not in-
tersect. We fix and remember these two pieces {j1, j2, j3} and {k1, k2, k3}.

The purpose of such supplementation and division is the convenience for
level-K zero-testing.

6.3 Preparing Work (3): Constructing the Equation

We have fixed and remembered five elements: V ∗ (a level-2 encoding of 0),u
(V ∗ = ugz−2(mod q)), {i1, i2, i3} (a piece contained by CPF (2) at least twice),
{j1, j2, j3} and {k1, k2, k3} (they are from CPF (1), and do not intersect each
other). Now we denote four elements as follows.

Dec(P (1)) = pztV
∗

∏
pf∈CPF (1)−{{j1,j2,j3},{k1,k2,k3}}

V (pf)(mod q),
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Dec(P (2)) = pztV
∗

∏
pf∈CPF (2)−{{i1,i2,i3},{i1,i2,i3}}

V (pf)(mod q),

Dec(N) = pztV
∗

∏
nf∈CNF−{{i1,i2,i3},{i1,i2,i3}}

V (nf)(mod q),

Dec(Original) = hV ∗g−1z2
∏

k∈{1,...,3K}−{j1,j2,j3,k1,k2,k3}

v(k)(mod q).

We can rewrite Dec(P (1)), Dec(P (2)), Dec(N), Dec(Original), as follows.

Dec(P (1)) = hu
∏

pf∈CPF (1)−{{j1,j2,j3},{k1,k2,k3}}

(v(pf)(1 + ag) + u(pf,1)b(1)g + u(pf,2)b(2)g),

Dec(P (2)) = hu
∏

pf∈CPF (2)−{{i1,i2,i3},{i1,i2,i3}}

(v(pf)(1 + ag) + u(pf,1)b(1)g + u(pf,2)b(2)g),

Dec(N) = hu
∏

nf∈CNF−{{i1,i2,i3},{i1,i2,i3}}

(v(nf)(1 + ag) + u(nf,1)b(1)g + u(nf,2)b(2)g),

Dec(Original) = hu
∏

k∈{1,...,3K}−{j1,j2,j3,k1,k2,k3}

v(k).

Notice that {a, b(1), b(2)} has been fixed and remembered in subsection 2.2.
Four facts about {Dec(P (1)), Dec(P (2)), Dec(N), Dec(Original)} are as fol-
lows.

(1) They are all somewhat small.

(2) Dec(P (1)), Dec(P (2)), Dec(N) can be obtained, while Dec(Original) can-
not.

(3) We have the equation

Dec(P (1))×Dec(P (2))−Dec(N)×Dec(Original) ∈ ⟨(hu)2g⟩ ⊂ ⟨hu2g⟩.

This equation is clear by considering the encoding procedure and definitions
of {Dec(P (1)), Dec(P (2)), Dec(N), Dec(Original)}.

(4) Conversely, suppose there is D′ ∈ R such that

Dec(P (1))×Dec(P (2))−Dec(N)×D′ ∈ ⟨hu2g⟩.

Then, D′ is the sum of Dec(Original) and an element of ⟨ug⟩. Here we use

a small assumption that Dec(N)
u and (ug) are co-prime, which is noticeable.

In other words, D′ is a solution of the equation

Dec(P (1))×Dec(P (2)) ≡ Dec(N)×D′(mod ⟨hu2g⟩),

if and only if D′ is the sum of Dec(Original) and an element of ⟨ug⟩. Here
“mod ⟨hu2g⟩” is general lattice modular operation by using a basis of the
lattice ⟨hu2g⟩. We call D′ “an equivalent secret” of Dec(Original). Notice
that such new type of “equivalent secret” and original secret are congruent
modular ⟨ug⟩ rather than modular ⟨g⟩.
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6.4 Solving the Equation: Finding “An Equivalent Secret”

We want to obtain “an equivalent secret” ofDec(Original) without caring about
the size. To do so we only need to obtain a basis of the lattice ⟨hu2g⟩ (the “bad”
basis). If we can obtain many elements of ⟨hu2g⟩ which are somewhat small,
obtaining a basis of ⟨hu2g⟩ is not hard work. Arbitrarily take K − 4 pieces
{piece(1), piece(2), . . . , piece(K−4)} without caring whether they are repeated.
Then,

pzt(V
∗)2

K−4∏
k=1

V (piece(k))(mod q) =

hu2g
K−4∏
k=1

(v(piece(k))(1 + ag) + u(piece(k),1)b(1)g + u(piece(k),2)b(2)g) ∈ ⟨hu2g⟩.

Thus, we can generate enough elements of ⟨hu2g⟩ which are somewhat small.
This fact implies that finding a D′ may be easy.

6.5 Reducing the Zero-tested Noise Much Smaller

Suppose we have obtained D′, “an equivalent secret” of Dec(Original). D′ is
the sum of Dec(Original) and an element of ⟨ug⟩, and D′ is not a short vector.
Arbitrarily take an element of ⟨hu2g⟩ which is somewhat small, and call it V ∗∗.
Compute V ∗∗∗ = D′(mod V ∗∗). Two facts about V ∗∗∗ are as follows.

(1) V ∗∗∗ = Dec(Original) + V ∗∗∗∗, where V ∗∗∗∗ ∈ ⟨ug⟩.
(2) Both V ∗∗∗ and Dec(Original) are somewhat small, so that V ∗∗∗∗ is some-

what small.

Then, compute

V # = V ∗∗∗V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1(mod q) =[(
Dec(Original)×V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1

)
+
(
V ∗∗∗∗×V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1

)]
(mod q).

Two facts about V # are as follows.

(1) (
Dec (Original)× V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1

)
(mod q)

= hg−1V (j1,j2,j3)V (k1,k2,k3)z2
∏

k∈{1,...,3K}−{j1,j2,j3,k1,k2,k3}

v(k)(mod q)

= hg−1(v(j1,j2,j3)(1 + ag) + u((j1,j2,j3),1)b(1)g + u((j1,j2,j3),2)b(2)g)

(v(k1,k2,k3)(1 + ag) + u((k1,k2,k3),1)b(1)g + u((k1,k2,k3),2)b(2)g)∏
k∈{1,...,3K}−{j1,j2,j3,k1,k2,k3}

v(k) (mod q)

Therefore, its high-order bits are the secret key.
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(2) (
V ∗∗∗∗ × V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1

)
(mod q)

= V ∗∗∗∗(ug)−1(v(j1,j2,j3)(1 + ag) + u((j1,j2,j3),1)b(1)g + u((j1,j2,j3),2)b(2)g)

(v(k1,k2,k3)(1 + ag) + u((k1,k2,k3),1)b(1)g + u((k1,k2,k3),2)b(2)g) (mod q).

It is somewhat small because V ∗∗∗∗ is somewhat small, V ∗∗∗∗ is a multiple
of (ug), and (ug) and

(v(j1,j2,j3)(1 + ag) + u((j1,j2,j3),1)b(1)g + u((j1,j2,j3),2)b(2)g)×
(v(k1,k2,k3)(1 + ag) + u((k1,k2,k3),1)b(1)g + u((k1,k2,k3),2)b(2)g)

have same size.

These two facts mean that high-order bits of V # are the secret key. The
instance has been broken.

6.6 A Note

We have assumed that original NPF ≤ 2K−2, and have supplemented pieces to
make a new NPF = 2K. In fact, we can assume that original NPF ≤ 3K − 2,
and supplement pieces to make a new NPF = 3K. In this case, we can still
break the instance, but our attack will be a little bit more complicated.

7 Cryptanalysis of Two Simple Revisions of GGH Map

7.1 The First Simple Revision of GGH Map and Corresponding
MKE

The first simple revision of GGH map is described as follows. All parameters
of GGH map are reserved, except that we change encoding parameter y into
encoding parameters {y(i), i = 1, 2}, and accordingly we change Level-K zero-

testing parameter pzt into Level-K zero-testing parameters {p(i)zt , i = 1, 2}. Our
encoding parameters are {y(i), i = 1, 2}, where y(i) = (y(0,i) + a(i)g)z−1(mod q),
{y(0,i), a(i), i = 1, 2} are very small and are kept secret. We can see that {y(i), i =
1, 2} are encodings of secret elements {y(0,i), i = 1, 2}, rather than encodings of

1. Accordingly, our level-K zero-testing parameters are{p(i)zt , i = 1, 2}, where
p
(i)
zt = hy(0,i)zKg−1(mod q).
Suppose a user has a secret (v(1), v(2)) ∈ R2, where v(1) and v(2) are short

elements. He/she secretly samples short elements {u(i) ∈ R, i = 1, 2}. He/she
computes noisy encoding V = (v(1)y(1)+v(2)y(2))+(u(1)x(1)+u(2)x(2))(mod q).
He/she publishes V . Then, the first revision of GGH map includes K, {y(i), i =
1, 2}, {x(i), i = 1, 2}, {p(i)zt , i = 1, 2}, and all noisy encoding V for all users. To
guarantee our attack work, we assume that 2K is polynomially large.



Cryptanalysis of GGH Map 19

Suppose that K+1 users want to generate KEY , a commonly shared key by
public discussion. To do so, each user k generates his/her secret (v(k,1), v(k,2)),
and publishes the noisy encoding V (k), k = 1, . . . ,K + 1. Then, each user
can use his/her secret and other users’ noisy encodings to compute KEY ,

the commonly shared key. For example, user k0 first computes (v(k0,1)p
(1)
zt +

v(k0,2)p
(2)
zt )

∏
k ̸=k0

V (k)(mod q), then takes KEY as its high-order bits. It is easy
to see that

(v(k0,1)p
(1)
zt + v(k0,2)p

(2)
zt )

∏
k ̸=k0

V (k)(mod q) = (A+B(k0))(mod q),

such that

A = hg−1
∑

(j1,...,jK+1)∈{1,2}K+1

v(K+1,jK+1)y(0,jK+1)
K∏

k=1

v(k,jk)(y(0,jk) + a(jk)g)(mod q),

which has no relation with user k0; B
(k0) is the sum of several terms which are

somewhat small. If related parameters are small enough, KEY is high-order bits
of A(mod q).

7.2 Generating “Equivalent Secret”

For the secret (v(1), v(2)) ∈ R2, we construct an “equivalent secret (v′(1), v′(2)) ∈
R2”, such that(
v(1)(y(0,1)+a(1)g)+v(2)(y(0,2)+a(2)g)

)
−
(
v′(1)(y(0,1)+a(1)g)+v′(2)(y(0,2)+a(2)g)

)
is a multiple of g. An equivalent requirement is that (v(1)y(0,1) + v(2)y(0,2)) −
(v′(1)y(0,1) + v′(2)y(0,2)) is a multiple of g. That is enough, and we do not need
(v′(1), v′(2)) small. Take V , the noisy encoding of (v(1), v(2)), we compute special
element

W ∗ = V (y(1))K−2x(1)p
(1)
zt (mod q) = hy(0,1)

[
v(1)(y(0,1) + a(1)g)K−1b(1)

+ v(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
.

Notice that

(1) Right side of this equation has no operation “mod q”, therefore W ∗ is some-
what small.

(2) Four vectors hy(0,1)(y(0,1)+a(1)g)K−1b(1), hy(0,1)(y(0,2)+a(2)g)(y(0,1)+a(1)g)K−2b(1),
hy(0,1)(b(1)g)(y(0,1) + a(1)g)K−2b(1) and hy(0,1)(b(2)g)(y(0,1) + a(1)g)K−2b(1)

can be obtained.
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Now we start to find (v′(1), v′(2)). First, compute W ∗(mod hy(0,1)(y(0,1) +
a(1)g)K−1b(1)). Second, compute {v′(2), u′(1), u′(2)} such that

W ∗(mod h y(0,1)(y(0,1) + a(1)g)K−1b(1)) =

h y(0,1)
[
v′(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1) +

u ′(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1) +

u ′(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
(mod hy(0,1)(y(0,1) + a(1)g)K−1b(1)).

Solving this modular equation is quite easy algebra, as shown in Appendix A.
Solutions are not unique, therefore {v′(2), u′(1), u′(2)} ̸= {v(2), u(1), u(2)}. Third,
compute v′(1) such that

W ∗ = hy(0,1)
[
v′(1)(y(0,1) + a(1)g)K−1b(1)

+ v′(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
,

which is another version of easy algebra. Finally, we obtain (v′(1), v′(2)), and
can easily check that (v(1)(y(0,1) + a(1)g) + v(2)(y(0,2) + a(2)g)) − (v′(1)(y(0,1) +
a(1)g) + v′(2)(y(0,2) + a(2)g)) is a multiple of g, although v′(1) and v′(2) are not
short vectors.

7.3 Generalization of Modified Encoding/Zero-testing: Our Attack
on MKE

Suppose K +1 users hide (v(k,1), v(k,2)) and publish V (k), k = 1, . . . ,K +1, and
for each user k we have obtained an equivalent secret (v′(k,1), v′(k,2)). For each
“K + 1-dimensional boolean vector” (j1, . . . , jK+1) ∈ {1, 2}K+1, we denote two
products

v(j1,...,jK+1) =

K+1∏
k=1

v(k,jk),

v′(j1,...,jK+1) =

K+1∏
k=1

v′(k,jk).

v(j1,...,jK+1) is clearly smaller than “somewhat small”, because it does not
include h. v′(j1,...,jK+1) is not a short vector. v(j1,...,jK+1) cannot be obtained,
while v′(j1,...,jK+1) can. Suppose former K entries {j1, . . . , jK} include N1 1s and
N2 2s, N1 +N2 = K. We denote the supporter s(j1,...,jK+1) as follows.

s(j1,...,jK+1) = hy(0,jK+1)(y(0,1) + a(1)g)N1−1(y(0,2) + a(2)g)N2b(1) for N1 ≥ N2,

s(j1,...,jK+1) = hy(0,jK+1)(y(0,1) + a(1)g)N1(y(0,2) + a(2)g)N2−1b(1) for N1 < N2.
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s(j1,...,jK+1) can be obtained. IfN1 ≥ N2, s
(j1,...,jK+1) = p

(jK+1)
zt (y(1))N1−1(y(2))N2x(1)(mod q),

and if N1 < N2, s
(j1,...,jK+1) = p

(jK+1)
zt (y(1))N1(y(2))N2−1x(1)(mod q). s(j1,...,jK+1)

is somewhat small. Then, we denote

V (N1≥N2) =
2∑

jK+1=1

∑
N1≥N2

v(j1,...,jK+1)s(j1,...,jK+1),

V (N1<N2) =

2∑
jK+1=1

∑
N1<N2

v(j1,...,jK+1)s(j1,...,jK+1),

V ′(N1≥N2) =
2∑

jK+1=1

∑
N1≥N2

v′(j1,...,jK+1)s(j1,...,jK+1),

V ′(N1<N2) =
2∑

jK+1=1

∑
N1<N2

v′(j1,...,jK+1)s(j1,...,jK+1).

V (N1≥N2) and V (N1<N2) are somewhat small, while V ′(N1≥N2) and V ′(N1<N2)

are not short vectors. V (N1≥N2) and V (N1<N2) cannot be obtained, while V ′(N1≥N2)

and V ′(N1<N2) can be obtained, because v′(j1,...,jK+1)s(j1,...,jK+1) can be obtained
for each (j1, . . . , jK+1) ∈ {1, 2}K+1, and 2K is polynomially large. Another fact
is that ξ∗ is a multiple of b(1)g, where

ξ∗ = (y(0,1)+a(1)g)(V ′(N1≥N2)−V (N1≥N2))+(y(0,2)+a(2)g)(V ′(N1<N2)−V (N1<N2)).

There are two reasons: (1) By considering the definitions of equivalent se-
crets, we know that ξ∗ is a multiple of g. (2) By considering the definition of
s(j1,...,jK+1), we know that ξ∗ is a multiple of b(1). Here we use a small assump-
tion that b(1) and g are co-prime. Notice that ξ∗ is not a short vector, and that
ξ∗ cannot be obtained. Then, we compute a tool for the modular operations,

M = hy(0,1)(b(1))KgK−1 = p
(1)
zt (x

(1))K(mod q).

For the same reason, M is somewhat small. Then, we compute the modular
operations

V ′′(N1≥N2) = V ′(N1≥N2)(mod M),

V ′′(N1<N2) = V ′(N1<N2)(mod M).

Both V ′′(N1≥N2) and V ′′(N1<N2) are somewhat small. Therefore, both V ′′(N1≥N2)−
V (N1≥N2) and V ′′(N1<N2)−V (N1<N2) are somewhat small. Therefore, both (y(0,1)+
a(1)g)(V ′′(N1≥N2) − V (N1≥N2)) and (y(0,2) + a(2)g)(V ′′(N1<N2) − V (N1<N2)) are
somewhat small. Therefore,

ξ∗∗ = (y(0,1)+a(1)g)(V ′′(N1≥N2)−V (N1≥N2))+(y(0,2)+a(2)g)(V ′′(N1<N2)−V (N1<N2))
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is somewhat small. On the other hand, ξ∗∗ is a multiple of b(1)g, because ξ∗ is a
multiple of b(1)g. Therefore, ξ∗∗/(b(1)g) is somewhat small. Finally,

ξ∗∗

(b(1)g)
= ξ∗∗(b(1)g)−1(mod q)

=
[(

(y(0,1) + a(1)g)V ′′(N1≥N2) + (y(0,2) + a(2)g)V ′′(N1<N2)
)
(b(1)g)−1 −A

]
(mod q),

which means that KEY is high-order bits of[(
(y(0,1) + a(1)g)V ′′(N1≥N2) + (y(0,2) + a(2)g)V ′′(N1<N2)

)
(b(1)g)−1

]
(mod q),

which can be obtained, because (y(0,1) + a(1)g)(b(1)g)−1(mod q) and (y(0,2) +
a(2)g)(b(1)g)−1(mod q) can be obtained.

7.4 The Second Simple Revision of GGH Map and Its Cryptanalysis

The second simple revision of GGH map is described as follows. All parame-
ters of the first simple revision are reserved, except that we change K-order

zero-testing parameters {p(i)zt = hy(0,i)zKg−1(mod q), i = 1, 2} into {p(i)zt =
(y(0,i) + h(i)g)zKg−1(mod q), i = 1, 2}, where both h(1) and h(2) are somewhat
small sampled with standard deviation

√
q. MKE is just the same procedure as

the first simple revision, except for the different {p(i)zt , i = 1, 2}. Such a structure
can be taken as a simplified version of Gu map-1 [25]. Our cryptanalysis obtains
the same result: MKE can be broken under the the assumption that 2K is poly-
nomially large. The deduction procedure is almost same, and we present it in
Appendix D.

8 Some Considerations and Remaining Questions

There are many different variants of the GGH construction that one can con-
sider, below we briefly discuss one of them. The variant which seems to defeat
our attacks is using non-commutative operations (e.g., using matrices). However
this greatly reduces the usability of this construction, for example the WE con-
struction based on X3C requires commutativity. Other variants are under our
study.

Trying to find extensions of these attacks and their limitations remains an
interesting research direction. For example, we do not know whether the two
simple revisions that we analyzed above can be used to construct a secure WE
scheme based on X3C. It will also be very interesting to find a way to use our
attacks against GGH-based obfuscation schemes.
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Appendix

A

Suppose W (mod Y ) = W ′′′Y , X(1)(mod Y ) = X ′(1)Y , and X(2)(mod Y ) =
X ′(2)Y . We want to obtain a solution u′(i) ∈ R, i = 1, 2, such that W ′′′Y =
(u′(1)X ′(1)+u′(2)X ′(2))Y (mod Y ). First, the equation has solution, because {u(i) ∈
R, i = 1, 2} is a solution. Second, the equation can be modified as an equivalent
equation W ′′′ = (u′(1)X ′(1) + u′(2)X ′(2))(mod 1). Third, take each entry of W ′′′,
X ′(1), and X ′(2) as the form of reduced fraction, and take LCM as the least
common multiple of all denominators, then the equation can be modified as an
equivalent equation, which is a linear equation modular LCM :

(LCM)W ′′′ = (u′(1)((LCM)X ′(1)) + u′(2)((LCM)X ′(2)))(mod (LCM)).
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B

Arbitrarily take a subset {i1, i2, i3} which is not a piece. We will compute
P ({i1, i2, i3} is not a combined piece). First, we take a random experiment: ran-
domly choosing 3 subsets {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3} from {1, 2, . . . , 3K}.
Then, the probability of such event:

{j1, j2, j3} ∪ {k1, k2, k3} ⊃ {i1, i2, i3},

{l1, l2, l3} = {j1, j2, j3} ∪ {k1, k2, k3} − {i1, i2, i3},

is

C3
3KC3

6

(C3
3K)3

≈ 1

K6
.

Second, from O(K2) pieces we generate all 3-tuples of 3 pieces {{j1, j2, j3},
{k1, k2, k3}, {l1, l2, l3}}. We know there are O(K2)(O(K2) − 1)(O(K2) − 2) 3-
tuples. Then, the probability of such event: there is no a 3-tuples {{j1, j2, j3},
{k1, k2, k3}, {l1, l2, l3}}, such that

{j1, j2, j3} ∪ {k1, k2, k3} ⊃ {i1, i2, i3},

{l1, l2, l3} = {j1, j2, j3} ∪ {k1, k2, k3} − {i1, i2, i3},

is about (
1− 1

K6

)O(K2)(O(K2)−1)(O(K2)−2)

≈ exp
{
− (O(K2))3

K6

}
.

C

We need to obtain Hermite normal form G =

 G0

G1 1

...
. . .

Gn−1 1

 , where each row of

G is an element of ⟨g⟩, G0 is the absolute value of the determinant of the matrix g0 g1 ··· gn−1

−gn−1 g0 ··· gn−2

...
...

. . .
...

−g1 −g2 ··· g0

 , and Gi(mod G0) = Gi for i = 1, . . . , n− 1.

For a principal ideal ⟨g′⟩, we call the determinant of


g′
0 g′

1 ··· g′
n−1

−g′
n−1 g′

0 ··· g′
n−2

...
...

. . .
...

−g′
1 −g′

2 ··· g′
0


corresponding determinant of ⟨g′⟩. We use the definition of parallel piped [26].
For a vector α ∈ R, we call the set PP (α) = {z ∈ R : z(mod α) = z} parallel
piped of α.
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Two facts. We have {Y,X(i), i = 1, 2}, therefore we can obtain hermite normal
forms of the principal ideals {⟨Y ⟩, ⟨X(i)⟩, i = 1, 2}.

Suppose Hermite normal form of the principal ideal ⟨g′⟩ is


G′

0

G′
1 1

...
. . .

G′
n−1 1

 ,

g ∈ R is a factor of g′, and absolute value of corresponding determinant of ⟨g⟩ is

G0. Then, Hermite normal form of the principal ideal ⟨g⟩ is


G0

G′
1(mod G0) 1

...
. . .

G′
n−1(mod G0) 1

.

Computing Hermite normal form of ⟨h(1+ag)K−2b(1)⟩. We take a triv-
ial assumption that 1 + ag and b(1)g are co-prime.

Step 1. By using {Y, (−Yn−1, Y0, . . . , Yn−2), . . . , (−Y1, . . . ,−Yn−1, Y0)} as the
basis, Gaussian sample Z, with sufficiently large deviation.

Step 2. Compute Z ′ = Z(mod X(1)). Then, Z ′ is uniformly distributed over the
intersection area ⟨h(1+ag)K−2b(1)⟩∩PP (X(1)). Algebra and Gaussian sampling
theory have proven this result.

Step 3. Compute absolute value of corresponding determinant of ⟨Z ′⟩.
Step 4. Repeat Step 1∼3 polynomially many times, so that we obtain polyno-
mially many absolute values of corresponding determinant.

Step 5. Compute the greatest common divisor of these polynomially many ab-
solute values. Then, the greatest common divisor should be absolute value of
corresponding determinant of ⟨h(1 + ag)K−2b(1)⟩. By considering a fact stated
in last subsection, we obtain Hermite normal form of ⟨h(1 + ag)K−2b(1)⟩.

Computing Hermite normal form of ⟨h(1 + ag)K−2b(1)g⟩. We take a
trivial assumption that b(1) and b(2) are co-prime. The procedure is similar to
last subsection.

Step 1. By using {X(2), (−X
(2)
n−1, X

(2)
0 , . . . , X

(2)
n−2), . . . , (−X

(2)
1 , . . . ,−X

(2)
n−1, X

(2)
0 )}

as the basis, Gaussian sample Z, with sufficiently large deviation.

Step 2. Compute Z ′ = Z(mod X(1)). Then, Z ′ is uniformly distributed over
the intersection area ⟨h(1 + ag)K−2b(1)g⟩ ∩ PP (X(1)).

Step 3. Compute absolute value of corresponding determinant of ⟨Z ′⟩.
Step 4. Repeat Step 1∼3 polynomially many times, so that we obtain polyno-
mially many absolute values of corresponding determinant.

Step 5. Compute the greatest common divisor of these polynomially many ab-
solute values. Then, the greatest common divisor should be absolute value of
corresponding determinant of ⟨h(1+ag)K−2b(1)g⟩, therefore, we obtain Hermite
normal form of ⟨h(1 + ag)K−2b(1)g⟩.
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Obtaining Hermite normal form of ⟨g⟩. Divide absolute value of corre-
sponding determinant of ⟨h(1+ag)K−2b(1)g⟩ by absolute value of corresponding
determinant of ⟨h(1+ag)K−2b(1)⟩. Then, we obtain absolute value of correspond-
ing determinant of ⟨g⟩, therefore we obtain Hermite normal form of ⟨g⟩.

D

Here we use several symbols which have been used for analyzing the first simple

revision of GGHmap. User k0 first computes (v(k0,1)p
(1)
zt +v(k0,2)p

(2)
zt )

∏
k ̸=k0

V (k)(mod q),
then takes KEY as its high-order bits. It is easy to see that

(v(k0,1)p
(1)
zt + v(k0,2)p

(2)
zt )

∏
k ̸=k0

V (k)(mod q) = (A+B(k0))(mod q),

such that

A = g−1
∑

(j1,...,jK+1)∈{1,2}K+1

v(K+1,jK+1)(y(0,jK+1)+h(jK+1)g)

K∏
k=1

v(k,jk)(y(0,jk)+a(jk)g)(mod q),

which has no relation with user k0; B
(k0) is the sum of several terms which are

somewhat small. If related parameters are small enough, KEY is high-order bits
of A(mod q).

Generating “equivalent secret”. For the secret (v(1), v(2)) ∈ R2, we con-
struct an “equivalent secret (v′(1), v′(2)) ∈ R2”, such that(
v(1)(y(0,1)+a(1)g)+v(2)(y(0,2)+a(2)g)

)
−
(
v′(1)(y(0,1)+a(1)g)+v′(2)(y(0,2)+a(2)g)

)
is a multiple of g. One equivalent requirement is that (v(1)y(0,1) + v(2)y(0,2)) −
(v′(1)y(0,1)+v′(2)y(0,2)) is a multiple of g. Another equivalent requirement is that(
v(1)(y(0,1)+h(1)g)+v(2)(y(0,2)+h(2)g)

)
−
(
v′(1)(y(0,1)+h(1)g)+v′(2)(y(0,2)+h(2)g)

)
is a multiple of g. That is enough, and we do not need (v′(1), v′(2)) small. Take
V , the noisy encoding of (v(1), v(2)), we compute special element

W ∗ = V (y(1))K−2x(1)p
(1)
zt (mod q) = (y(0,1) + h(1)g)

[
v(1)(y(0,1) + a(1)g)K−1b(1)

+ v(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
.

Notice that

(1) Right side of this equation has no operation “mod q”, therefore W ∗ is some-
what small.

(2) Four vectors (y(0,1) + h(1)g)(y(0,1) + a(1)g)K−1b(1), (y(0,1) + h(1)g)(y(0,2) +
a(2)g)(y(0,1)+a(1)g)K−2b(1), (y(0,1)+h(1)g)(b(1)g)(y(0,1)+a(1)g)K−2b(1) and
hy(0,1)(b(2)g)(y(0,1) + a(1)g)K−2b(1) can be obtained.
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Now we start to find (v′(1), v′(2)). First, computeW ∗(mod (y(0,1)+h(1)g)(y(0,1)+
a(1)g)K−1b(1)). Second, compute {v′(2), u′(1), u′(2)} such that

W ∗(mod (y(0,1) + h(1)g)(y(0,1) + a(1)g)K−1b(1)) =

(y(0,1) + h(1)g)
[
v′(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1) +

u′(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1) +

u′(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
(mod (y(0,1) + h(1)g)(y(0,1) + a(1)g)K−1b(1)).

Solving this modular equation is quite easy algebra, as in Appendix A. Solutions
are not unique, therefore {v′(2), u′(1), u′(2)} ̸= {v(2), u(1), u(2)}. Third, compute
v′(1) such that

W ∗ = (y(0,1) + h(1)g)
[
v′(1)(y(0,1) + a(1)g)K−1b(1)

+ v′(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
,

which is another easy algebra. Finally, we obtain (v′(1), v′(2)), and can easily
check that (v(1)(y(0,1) + a(1)g) + v(2)(y(0,2) + a(2)g)) − (v′(1)(y(0,1) + a(1)g) +
v′(2)(y(0,2) + a(2)g)) is a multiple of g, although v′(1) and v′(2) are not short
vectors.

Generalization of modified encoding/zero-testing: our attack on MKE.
Suppose K + 1 users hide (v(k,1), v(k,2)) and publish V (k), k = 1, . . . ,K + 1,
and for each user k we have obtained equivalent secret (v′(k,1), v′(k,2)). For each
“K + 1-dimensional boolean vector” (j1, . . . , jK+1) ∈ {1, 2}K+1, we denote two
products

v(j1,...,jK+1) =
K+1∏
k=1

v(k,jk),

v′(j1,...,jK+1) =
K+1∏
k=1

v′(k,jk).

v(j1,...,jK+1) is clearly smaller than “somewhat small”, because it does not
contain h(1) and h(2). v′(j1,...,jK+1) is not a short vector. v(j1,...,jK+1) cannot be
obtained, while v′(j1,...,jK+1) can. Suppose former K entries {j1, . . . , jK} include
N1 1s and N2 2s, N1+N2 = K. We denote the supporter s(j1,...,jK+1) as follows.

s(j1,...,jK+1) = (y(0,jK+1)+h(jK+1)g)(y(0,1)+a(1)g)N1−1(y(0,2)+a(2)g)N2b(1) for N1 ≥ N2,

s(j1,...,jK+1) = (y(0,jK+1)+h(jK+1)g)(y(0,1)+a(1)g)N1(y(0,2)+a(2)g)N2−1b(1) for N1 < N2.

s(j1,...,jK+1) can be obtained. IfN1 ≥ N2, s
(j1,...,jK+1) = p

(jK+1)
zt (y(1))N1−1(y(2))N2x(1)(mod q),

and if N1 < N2, s
(j1,...,jK+1) = p

(jK+1)
zt (y(1))N1(y(2))N2−1x(1)(mod q). s(j1,...,jK+1)
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is somewhat small. Then, we denote

V (N1≥N2) =

2∑
jK+1=1

∑
N1≥N2

v(j1,...,jK+1)s(j1,...,jK+1),

V (N1<N2) =

2∑
jK+1=1

∑
N1<N2

v(j1,...,jK+1)s(j1,...,jK+1),

V ′(N1≥N2) =
2∑

jK+1=1

∑
N1≥N2

v′(j1,...,jK+1)s(j1,...,jK+1),

V ′(N1<N2) =
2∑

jK+1=1

∑
N1<N2

v′(j1,...,jK+1)s(j1,...,jK+1).

V (N1≥N2) and V (N1<N2) are somewhat small, while V ′(N1≥N2) and V ′(N1<N2)

are not short vectors. V (N1≥N2) and V (N1<N2) cannot be obtained, while V ′(N1≥N2)

and V ′(N1<N2) can be obtained, because v′(j1,...,jK+1)s(j1,...,jK+1) can be obtained
for each (j1, . . . , jK+1) ∈ {1, 2}K+1, and 2K is polynomially large. Another fact
is that ξ∗ is a multiple of b(1)g, where

ξ∗ = (y(0,1)+a(1)g)(V ′(N1≥N2)−V (N1≥N2))+(y(0,2)+a(2)g)(V ′(N1<N2)−V (N1<N2)).

There are two reasons: (1) By considering the definitions of equivalent se-
crets, we know that ξ∗ is a multiple of g. (2) By considering the definition of
s(j1,...,jK+1), we know that ξ∗ is a multiple of b(1). Here we use a small assump-
tion that b(1) and g are co-prime. Notice that ξ∗ is not a short vector, and that
ξ∗ cannot be obtained. Then, we compute a tool for modular operations,

M = (y(0,1) + h(1)g)(b(1))KgK−1 = p
(1)
zt (x

(1))K(mod q).

For the same reason, M is somewhat small. Then, we compute the modular
operations

V ′′(N1≥N2) = V ′(N1≥N2)(mod M),

V ′′(N1<N2) = V ′(N1<N2)(mod M).

Both V ′′(N1≥N2) and V ′′(N1<N2) are somewhat small. Therefore, both V ′′(N1≥N2)−
V (N1≥N2) and V ′′(N1<N2)−V (N1<N2) are somewhat small. Therefore, both (y(0,1)+
a(1)g)(V ′′(N1≥N2) − V (N1≥N2)) and (y(0,2) + a(2)g)(V ′′(N1<N2) − V (N1<N2)) are
somewhat small. Therefore,

ξ∗∗ = (y(0,1)+a(1)g)(V ′′(N1≥N2)−V (N1≥N2))+(y(0,2)+a(2)g)(V ′′(N1<N2)−V (N1<N2))

is somewhat small. On the other hand, ξ∗∗ is a multiple of b(1)g, because ξ∗ is a
multiple of b(1)g. Therefore, ξ∗∗/(b(1)g) is somewhat small. Finally,

ξ∗∗

(b(1)g)
= ξ∗∗(b(1)g)−1(mod q)
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=
[(

(y(0,1) + a(1)g)V ′′(N1≥N2) + (y(0,2) + a(2)g)V ′′(N1<N2)
)
(b(1)g)−1 −A

]
(mod q),

which means that KEY is high-order bits of[(
(y(0,1) + a(1)g)V ′′(N1≥N2) + (y(0,2) + a(2)g)V ′′(N1<N2)

)
(b(1)g)−1

]
(mod q).


