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Abstract. Masking is a popular countermeasure against side channel
attacks. Many practical works use Boolean masking because of its sim-
plicity, ease of implementation and comparably low performance over-
head. Some recent works have explored masking schemes with higher
algebraic complexity and have shown that they provide more security
than Boolean masking at the cost of higher overheads. In particular,
masking based on the inner product was shown to be practical, albeit
not efficient, for a small security parameter, and at the same time prov-
able secure in the domain of leakage resilient cryptography for a large
security parameter. In this work we explore a security versus efficiency
tradeoff and provide an improved and tweaked inner product masking.
Our practical security evaluation shows that it is less secure than the
original inner product masking but more secure than Boolean masking.
Our performance evaluation shows that our scheme is only four times
slower than Boolean masking and more than two times faster than the
original inner product masking. Besides the practical security analysis
we prove the security of our scheme and its masked operations in the
threshold probing model.

1 Introduction

Side-channel attacks (SCA) are a well-known threat to embedded security. They
allow to perform key recovery attacks on cryptographic implementations by ana-
lyzing physical properties present in embedded devices. Examples are execution
time [22], power consumption [23] or electromagnetic emanations [16, 30]. SCA
exploit the fact that these measurable quantities are statistically dependent on
the intermediate variables being processed in the implementation. One of the
most popular and well-studied countermeasures for block ciphers are data ran-
domization techniques, commonly known as masking [5, 19]. These aim to conceal
all intermediate variables of a cryptographic computation with random data.

The core principle of higher-order masking is to split any sensitive variable S
into n random and secret shares. The way in which such a splitting is made deter-
mines the masking type or the masking function. Typical examples are Boolean
masking (S = S1 + . . . + Sn) or multiplicative masking (S = S1 × . . . × Sn). A
masking scheme additionally defines a set of operations to process the n shares



while preserving the correctness of computations and ensuring that intermediate
values remain independent of the sensitive variables. The security order d of a
masking scheme is defined as the smallest number of d + 1 intermediate values
that, considered jointly, are not independent of a sensitive variable S. While a
d-th order masking scheme can always be broken by a d+ 1-th order SCA that
exploits the leakage of d+1 intermediate values in the protected implementation
jointly, the design of higher-order masking countermeasures is of practical inter-
est due to two main reasons. First, the data complexity of applying a d + 1-th
order SCA grows exponentially on d given a sufficient amount of noise [5, 27,
11]. And second, the computational complexity of searching for the d+1 leakage
points grows combinatorially in the attack order [32].

1.1 Related Work

Ishai, Sahai and Wagner [21] were first to introduce a higher-order Boolean
masking scheme tailored to hardware contexts by showing how to protect a
circuit over F2 composed of NOT and AND gates. They also proved the security
of their construction against an adversary capable of probing d wires of the
protected circuit. The framework introduced in [21] (commonly known as the
ISW probing model) provides a sound basis to determine the security of higher-
order masking schemes, as security against d probes directly implies d-th order
SCA resistance [7]. Ishai et al. proved their construction secure in the probing
model for n ≥ 2d+ 1.

Rivain and Prouff [33] extended the ideas of [21] to any finite field. They
devised a series of provable secure operations in the masked domain and applied
them to efficiently secure AES implementations in software contexts. To protect
the most complex part of AES, namely the nonlinear part of the S-box, they
employed a power function devised to minimize the number of costly multipli-
cations. Although the original claim in [33] was that n = d + 1 shares could
provide d-th order provable security, Coron et al. [9] have shown that in fact
n ≥ 2d+ 1 shares are necessary. Despite this, the Boolean scheme due to Rivain
and Prouff remains one of the most efficient generic higher-order constructions
in the literature.

Further work has focused on improving the performance of higher-order
Boolean masking for the most challenging part of cipher implementations, namely
nonlinear transformations. Genelle et al. [17] proposed a method to securely
switch between Boolean and multiplicative masking at any order. The technique
is particularly suitable to protect implementations of the AES, as it enables to
switch the mask type before and after the S-box power function. Carlet et al. [4]
built on the ideas of [33] to secure any look-up table using Lagrange interpola-
tion. Coron [7] introduced a method to mask look-up tables at any order.

Generic higher-order countermeasures using other types of masking have also
been investigated. Because of their higher algebraic complexity, observation of
the shares results in significantly less information leakage than for the Boolean
type given the same security order d and low levels of noise. Along these lines,
von Willich [37] proposed affine masking in which variables are encoded as S′ =



mask1×S+mask2. Fumaroli et al. [15] analyzed this type of masking and showed
how it can be used to secure AES software implementations, in which the S-box
is protected by means of table re-computation. The authors achieve performance
results that are comparable to those of Boolean masking, but the affine masking
construction has not been generalized to higher security orders d > 1.

Another proposal for a different type of masking is polynomial masking.
Independently introduced by Prouff and Roche [29] as well as by Goubin and
Martinelli [18], it employs Shamir’s secret-sharing [34] and secure multi-party
computation techniques [2]. In particular, a sensitive variable S is associated to

a polynomial of degree d of the form PS(X) = S+
∑d

i=1 ai×Xi where the ai are
random secret coefficients. An encoding of a variable S is performed by selecting
n distinct nonzero elements αi and evaluating Si = PS(αi) for i = 1, . . . , n. The
variable S is then represented in the masked domain as the combination of n
pairs (αi, Si), of which only the Si are secret. The variable S can be reconstructed
as S =

∑n
i=1 Si × βi, where the coefficients βi are computed from the public αi.

Although based on the same masking type, the schemes due to Prouff and
Roche [29] and by Goubin and Martinelli [18] have notable differences. In partic-
ular, the construction of [29] is specifically designed to prove d-th order security
in the presence of glitches [24], while the construction of [18] is designed to
achieve “classical” d-th order SCA resistance. Both schemes use an algorithm to
compute the product of two masked variables that is based on the secure multi-
party computation scheme due to Ben-Or et al. [2], and that requires n ≥ 2d+1.
The authors of [18] additionally propose a more efficient algorithm that reduces
the number of required shares to n ≥ d + 1. Despite this improvement, the
complexity of both multiplication algorithms is O(n3) in the number of shares,
as opposed to e.g. Boolean masking which achieves O(n2). A recent work by
Coron et al. [8] has improved this complexity to Õ(n2) by using DFT for fast
polynomial evaluation.

A different approach is followed by Balasch et al. [1]. They introduce IP mask-
ing based on the inner product construction of Dziembowski and Faust [12]. A
masked variable is represented by 2n shares in the form of two random vec-
tors (L,R) of n elements each such that S equals the inner product of L and
R. The authors propose an efficient multiplication algorithm with complexity
O(n2), thus similar to Boolean constructions, while achieving significantly less
information leakage than other types of masking at the same security order d
for low noise levels. Despite these advantages, the addition and refreshing algo-
rithms are more complex (larger constant terms) than their counterparts in the
Boolean and polynomial masking schemes.

Overall, the applicability of higher-order masking techniques other than Boolean
is still an open question. Coron et al. [8] have identified a first-order flaw in the
faster multiplication routine of the polynomial masking construction of Goubin
and Martinelli [18]. Similarly, a first-order leakage in the refresh and addition
operations of IP Masking [1] has been pointed out by Prouff et al. [28]. And
the polynomial masking scheme by Prouff and Roche [29] has been shown to
be rather demanding when implemented in hardware [25], mostly due to its se-



curity guarantees even in the presence of glitches. Eventually, and despite their
potential, higher-order countermeasures based on masking constructions other
than Boolean do not appear to be ready for practical applications.

1.2 Our Contributions

In this work, we develop several improvements to the original IP masking scheme
proposed in [1].

New IP masking scheme. Our first contribution is to introduce a few tweaks in
the definition of the masking function that result in significant performance im-
provements. Similar to the original IP masking, a masked variable is represented
by 2n shares in the form of two vectors (L,R). Our first change is to let L be a
public value, allowing us to reduce the number of secret shares from 2n to n. As
a result we fix L to a constant value in such a way that all variables involved in
computations are masked under the same L, but different R. Additionally, we
require that the first public element of L is L1 = 1. The combination of these
changes results in great efficiency improvements for all operations in the masked
domain. In particular, the complexity of the addition and refreshing algorithms
becomes comparable to those of Boolean and polynomial masking schemes. An
important side benefit of our tweaks is that the first-order leakage identified
in [28] on the refresh and addition algorithms no longer applies.

Practical security analysis. Our second contribution is to evaluate the impact
of our tweaks and compare the security of the new masking type with other
higher-order masking functions. We use the mutual information between the
secret variable and the leakage of all shares of its masked representation as
figure of merit. Our evaluation shows that our new masking function leaks more
than IP masking, which is expected because L is now public, but it leaks roughly
one order of magnitude less than Boolean masking with the same security order
d. It also leaks similar to polynomial masking with the same security order d.

Security in the threshold-probing model. As a third contribution we prove the
security of our improved scheme in the probing model introduced by Ishai, Sahai
and Wagner [21]. Our security analysis shows that our construction is secure
against d probes, when n ≥ 2d+ 1. We emphasize that this is the same security
threshold that can be achieved by most other higher-order masking schemes [21,
33, 7]. Notice that only for the multiplication operation we require that n ≥
2d+ 1. For all other operations including the masking function, it is sufficient to
set n > d.

Efficient implementation. Finally, our fourth contribution is to determine the
performance of our masking scheme in securing a block cipher implementation.
Similar to [1], we opt to protect a software implementation of AES-128 on an
embedded 8-bit controller and we compare our results to other d-th order mask-
ing schemes. The results show that our improved construction allows to halve



the execution time with respect to the original IP masking scheme, and to reduce
the gap with Boolean masking from approximately a factor 10 to a factor 4.

2 Notation

In the following we denote by K a field of characteristic 2 and we represent field
elements with upper-case letters. For instance, S ∈ F28 denotes an element in the
AES field GF (28). Let X,Y represent two vectors over Kn. Field elements in
vectors are addressed with subindex i, e.g. Xi and Yi, respectively. The standard
inner product function over K is denoted as 〈X,Y 〉 =

∑
iXi × Yi.

The matrix Â = X × Y over Kn×n is defined as the tensor product of two
vectors X and Y . Field elements in a matrix are addressed as Ai,j , where i

and j represent row and column position, respectively. If Â, B̂ are matrices over
Kn×n, then we denote by 〈Â, B̂〉 the inner product of matrices when we view
them as vectors of n2 field elements, i.e.

∑
i

∑
j Ai,j ×Bi,j .

For an integer n we denote by [n] the set {1, . . . , n}.

3 Our Construction

Our scheme improves on the IP masking by Balasch et al. [1] based on the inner
product construction of Dziembowski and Faust [12]. A variable S ∈ K in IP
masking is encoded by using two vectors (L,R) of n elements with L← K\{0}n
and R← Kn. Note that the elements of the vector L are by definition different
than zero.

Our new masking function has three major differences with respect to [1].
First, the vector L is computed once and kept as a constant parameter. This
implies that all masked variables employed in our scheme share a unique vector
L. Second, we let the vector L be a public (rather than secret) parameter. In
other words, we assume the elements Li can be known to the adversary. And
third, we constrain the selection of the first element of L such that L1 = 1.
The number of shares that are kept secret in our masking function is therefore
determined by the security parameter n, which corresponds to the number of
elements in R. We show in the remainder of this section that all these choices
allow to significantly reduce the complexity of operations in the masked domain.

The procedure IPSetupn depicted in Algorithm 1 details the initialization
steps of our masking construction. Given n and a field description K, the algo-
rithm returns a public vector L and a public matrix L̂. The latter corresponds
to the tensor product L × L, and its pre-computation allows us to speed-up
multiplications in the masked domain. One can imagine IPSetupn is executed
before system roll-out during device personalization, e.g. in parallel with key
generation. The sub-routine randNonZero() returns a nonzero element in the
field K. More precisely, it samples uniformly at random from K\{0}.

Algorithm 2 depicts the steps to convert a variable S ∈ K into the masked
domain. This routine, denoted by IPMaskL, is parametrized by a vector L re-
sulting from executing IPSetupn. The sub-routine rand() returns a randomly



Algorithm 1 Setup the masking scheme: (L, L̂)← IPSetupn(K)

Input: field description K
Output: random vector L and tensor product L̂ = L×L
1: L1 = 1;
2: for i = 2 to n do
3: Li ← randNonZero(K);
4: end for
5: for i = 1 to n do
6: for j = 1 to n do
7: Li,j = Li × Lj ;
8: end for
9: end for

selected element in the field K. This function is called n − 1 times in order to
set the values of R2 . . . Rn. The value R1 is then computed in order to obtain a
valid masking of S under the inner product construction.

Algorithm 2 Masking a variable: R← IPMaskL(S)

Input: variable S ∈ K
Output: vector R such that S = 〈L,R〉
1: for i = 2 to n do
2: Ri ← rand(K);
3: end for
4: R1 = S +

∑n
i=2 Li ×Ri

3.1 Operations in the Masked Domain

We propose three main algorithms of our masking construction: IPRefreshL,
IPAddL and IPMultL,L̂. For an implementation of the AES (as detailed in
Sect. 6) it is advantageous to further have a dedicated squaring routine in the
masked domain. For this reason we also propose an additional IPSquareL algo-
rithm.

The routine IPRefreshL is depicted in Algorithm 3. It consists of two steps.
First, the computation of a vector A orthogonal to L. And second, the addition
of A to R to obtain a fresh vector R′. The correctness of the algorithm is easy
to prove:
〈L,R′〉 = 〈L,R + A〉 = 〈L,R〉+ 〈L,A〉 = 〈L,R〉+ 0 = 〈L,R〉.
The routine IPAddL is illustrated in Algorithm 4. Because all variables in our

construction are masked with a common vector L, the output vector T can be
simply obtained by adding the input vectors R and Q.

Note that the IPAddL algorithm is similar to that of Boolean masking con-
structions, yet our type of masking has higher algebraic complexity. This im-



Algorithm 3 Refresh vector: R′ ← IPRefreshL(R)

Input: vector R
Output: vector R′ such that 〈L,R〉 = 〈L,R′〉
1: A ∈R Kn s.t. 〈A,L〉 = 0
2: R′ = R + A

Algorithm 4 Add masked values: T ← IPAddL(R,Q)

Input: vectors R and Q
Output: vector T such that 〈L,T 〉 = 〈L,R〉+〈L,Q〉
1: T = R + Q

provement is a direct consequence of letting L be a public and constant param-
eter.

The multiplication routine IPMultL,L̂ depicted in Algorithm 5 is the most
involved operation. Our starting point is the masked multiplication of [1], albeit
with some efficiency improvements. First, since both input operands are masked
under the same vector L, the computation of the matrix L̂ is not dependent
on the input operands. Consequently, we can save n2 field multiplications by
pre-computing this matrix during IPSetupn. And second, because the first com-
ponent of L is set to L1 = 1, a constant b can be added to a masking (L,R) by
simply computing the new masking as (L, (R1 + b, R2, . . . , Rn)).

Algorithm 5 Multiply masked values: T ← IPMultL,L̂(R,Q)

Input: vectors R and Q
Output: vector T such that 〈L,T 〉 = 〈L,R〉×〈L,Q〉
1: Â ∈R Kn×n s.t. 〈L̂, Â〉 = 0
2: R̂ = R×Q
3: B̂ = R̂⊕ Â
4: b =

∑n
i=2

∑n
j=1 Li,j ×Bi,j

5: T = (B1,1 + b,B1,2, . . . , B1,n)

In order to keep the d-th order security for n = 2d+ 1 throughout the whole
execution of IPMultL,L̂, it is important that operations in lines 1 and 4 are
computed in a certain way as depicted in Table 1. In particular, the intermediate
values ∆j are calculated by aggregating the intermediate products of elements

in matrices Â and L̂ in a column-wise fashion. In contrast, the values βi are
computed by processing the elements of the matrices L̂ and B̂ row by row. This
important difference in the way we compute the sums is crucial for the security
proof and, in fact, crucial for the actual security of our scheme.

For illustration purposes, consider a setting where the operations in line 1 and
line 4 of IPMultL,L̂ are computed row-wise. Let us also assume that all elements
in L are Li = 1. Under these circumstances, the following attack would apply:



Line 1: Â ∈R Kn×n s.t. 〈L̂, Â〉 = 0 Line 4: b =
∑n

i=2

∑n
j=1 Li,j ×Bi,j

//Random sampling //Row-wise processing

for (i, j) 6= (n, n) do β1 = 0

Ai,j ← rand(K) for i = 2 to n do

end βi = βi−1 +
∑n

j=1 Li,j ×Bi,j

//Column-wise processing end

∆0 = 0 b = βn

for j = 1 to n− 1 do

∆j = ∆j−1 +
∑n

i=1Ai,j × Li,j

end

An,n = (∆n−1 +
∑n−1

i=1 Ai,n ×Li,n)×L−1
n,n

Table 1. Detailed description of operations in IPMultL,L̂.

1. The adversary learns the value ∆2 =
∑n

j=1A2,j

2. The adversary learns β2 =
∑n

j=1A2,j +Q2 ×Rj = ∆2 +Q2〈L,R〉
3. The adversary learns Q2

Assuming that Q2 6= 0 the above attack indeed recovers completely the secret
value 〈L,R〉. Notice that the attack even applies when Li 6= 1 but in this case the
bias in the leaky distribution decreases with the number of shares. We prevent
this attack by computing the intermediate values ∆j as a sum of elements in a
column, and βi as a sum of elements in a row. This approach effectively results
in a “mixing” of the random shares and enables a security proof.

For an implementation of the AES it is beneficial to have a particularly
efficient implementation of the squaring algorithm. The IPSquareL routine is
illustrated in Algorithm 6.

Algorithm 6 Square masked variable: T ← IPSquareL(R)

Input: vector R
Output: vector R′ such that 〈L,T 〉 = 〈L,R〉×〈L,R〉

for i = 1 to n do
Ti ← (Ri)

2 × Li;
end for

4 Practical Evaluation

In this section we evaluate the information leakage of our improved IP masking
scheme and compare it to that of other masking schemes that can be imple-
mented at any order, e.g. Boolean masking, polynomial masking and the original
IP masking. We follow the common approach to focus the analysis on the type



of masking, i.e. to analyze the leakage of the shares of one masked variable. In
practice, the leakage of the operations in the masked domain depends a lot on
their (secure) implementation and on the target platform, for instance a table
lookup in software versus combinational logic in hardware. We abstract from
such practical issues to be able to provide a fair and meaningful comparison.

4.1 Attack Order

We begin the evaluation by deriving the minimum order for an attack against
our type of masking. We say that a masking function is d-th order SCA secure,
if every tuple of d or less shares is independent of the masked variable.

It is easy to see that the masking function of our improved scheme is d-th
order SCA secure for n = d + 1. If we choose all elements in L equal to 1 the
argument is exactly the same as for Boolean masking. It uses the same number
of uniformly distributed secret shares. If we choose any Li greater than 1 we just
need to observe that the field multiplication Li × Ri does not introduce biases,
i.e. for uniformly distributed Ri the output is uniformly distributed. Recall that
all elements in L are nonzero by definition.

4.2 Information Leakage

It remains to explore the security versus efficiency tradeoff of our improved
scheme. It is known that a more complex algebraic relation between the shares
and the masked variable provides less information leakage. We hence expect our
type of masking to leak less information than the Boolean type whenever at least
one Li is unequal to 1 (since the field multiplication Li×Ri adds diffusion) but
more than the original IP masking since L is public.

Similar to our type of masking, in polynomial masking half of the shares
are distinct nonzero public constants and the other half are random and secret
masks. For our evaluation of information leakage we refer only to the n secret
shares. For example, polynomial masking of security order d uses n = d + 1
random and secret shares, and can theoretically be broken by a d + 1-th order
SCA. Due to the similar representations of variables in the masked domain, we
expect our masking function and the polynomial type to provide comparable
information leakage.

We compare our type of masking with Boolean masking, polynomial masking
(all of security order d using n = d+1 secret shares) and, for completeness, with
the original IP masking (of security order d = 1 using n = 4 secret shares).

Following previous work [1, 18, 29, 35, 36] we use the mutual information be-
tween a variable and the leakage of all shares of its masked representation as
criterion for the comparison. We estimate the mutual information using com-
puter simulations.

We evaluate our improved IP masking for d = 1 (L1 = 1, L2 = 255) and
for d = 2 (L1 = 1, L2 = 15, L3 = 233). Boolean masking uses d + 1 shares
(M1, . . . ,Md, V ) where the Mi ∈R F28 and V is computed such that S = M1 +



. . .+Md + V holds. We evaluate Boolean masking for d ∈ {1, 2, 3}. Polynomial
masking uses d + 1 public coefficients (α1, . . . , αd+1) with αi ∈R F28 \ {0} and
pairwise distinct, and d + 1 shares (S1, . . . , Sd+1) with Si = PS(αi) ∈ F28 [29].
We evaluate polynomial masking for d = 1 (α1 = 3, α2 = 7) and d = 2 (α1 =
13, α2 = 240, α3 = 163). For the original IP masking we set d = 1 and let
R2 ∈R F28 and L1, L2 ∈R F28 \ {0} such that S = L1 ×R1 + L2 ×R2.

We model the relation between a share and its physical leakage as usual in the
literature: each share leaks its Hamming weight, each share leaks independently
of all other shares, and each leakage is affected by independent Gaussian noise.
In summary, we model the leakage of our improved scheme as

Leak(L,R) = (HW(R1) + n1, . . . ,HW(Rd+1) + nd+1) ,

the leakage of boolean masking as

Leak(M1, . . . ,Md, V ) = (HW(M1) + n1, . . . ,HW(Md) + nd,HW(V ) + nd+1) ,

the leakage of polynomial masking as

Leak(S1, . . . , Sd+1) = (HW(S1) + n1, . . . ,HW(Sd+1) + nd+1)

and the leakage of the original IP masking as

Leak(L,R) = (HW(L1) + n1,HW(R1) + n2,HW(L2) + n3,HW(R2) + n4) ,

where the ni are independent Gaussian variables with mean zero and stan-
dard deviation σ. The mutual information between the secret variable and the
leaked information is then I(S; Leak(L,R)), I(S; Leak(M1, . . . , Md, V ), and
I(S; Leak(S1, . . . , Sd+1)) respectively. Recall that the mutual information is di-
rectly related to the number of measurements that a Template Attack [6] (worst
case attack scenario) requires to achieve a given success probability. Standaert
et al. [36] defined the relation via c · I(·; ·)−1 where the constant c is related to
the success probability.

Figure 1 shows plots of the mutual information (in log10 scale) between S and
the information leaked by all shares of its masked representation, over increasing
noise levels σ, for all masking types considered.

The results are in line with our expectations. Our improved IP masking
leaks more information than the original IP masking (in the improved scheme
L is public), which illustrates the security versus efficiency tradeoff. But it leaks
less than Boolean masking with the same number of shares, which is due to
the more complex algebraic relation between the shares and the secret variable.
The difference is particularly pronounced for low levels of noise and it seems
to increase with increasing security order d. Finally, our improved IP masking
and polynomial masking leak comparably. We attribute this to their similar
representation of variables in the masked domain.



Fig. 1. Mutual information (log10) over increasing noise standard deviation σ for dif-
ferent masking functions.

5 Security Proof in the Probing Model

We start our security analysis with a proof in the so-called probing model intro-
duced by Ishai, Sahai and Wagner [21]. Recall that our masking scheme has the
form (L,R), where L is public and R is secret and random in Kn for n ∈ N be-
ing the security parameter. We will show that our construction is secure against
any d probing adversary, where we assume that n = 2d + 1. That is, an adver-
sary that can learn up to d arbitrary intermediate values computed during the
execution of the masked scheme will not learn anything about the underlying
secrets. Let in the following denote by P the set of intermediate values that the
adversary is probing.

As a first step we show that our masking function is indeed secure against an
(n − 1)-probing adversary. We use the notation An−1(IPMaskL(S)) to describe
that the adversary A obtains at most n− 1 shares of the masking.

Lemma 1. For any two secrets S, S′ ∈ K and any (n− 1)-probing adversary A
we have

An−1(S) = An−1(S′),

where L was sampled as specified by the setup algorithm and S ← IPMaskL(S)
and S′ ← IPMaskL(S′).

Proof. Notice that in our scheme the vector L is public and hence does not
contribute to the security against probing attacks. Further, recall that all Li 6= 0,
and hence all values of R contribute to the security of the masking. The proof
follows by the fact that given L with all components 6= 0 the vector R is a
perfect random additive (n− 1) out of n secret sharing scheme. More precisely,
let I ⊂ [n] be the subset of indices for which An−1 learns Ri, i.e., for all i ∈ I
we have that An−1 probes Ri. As |I| < n there exists at least one j ∈ [n] such



that j /∈ I. Hence, for any value S ∈ K, any choice of L and any Ri such that
i ∈ I there exists Rj such that S = 〈L,R〉. ut

5.1 Security of Masked Operations

We now show the security of the different operations presented in Section 3.
Informally, we will show that any subset of wires P with size |P| ≤ d is indepen-
dent of the underlying masked values, i.e., the probes P given to the adversary
will not help the adversary in breaking the security guarantee of the underly-
ing scheme. To this end, we will prove the security for any masked operation
individually and then show that also a combination of such masked operations
remains secure if the adversary obtains at most d probes in the entire circuit.

The proof is easy for the masked addition operation: probes at the inputs
and outputs directly translate to probes at the underlying masked value. We will
show security for the masked squaring and masked multiplication operation.
The proof of the masked multiplication is rather tedious since simulating the
intermediate values just from the encoded inputs and outputs of the masked
operations requires careful bookkeeping.

We will denote by Ad(Operation(X,Y )) the output of an adversary that
probes up to d values in the execution of the operation Operation when run on
masked inputs X and Y . Notice that Ad may also probe the output produced
by Operation, i.e., Z←Operation(X,Y ). As an example let Operation be the
IPMultL,L̂(Q,R) operation on inputs Q and R. The adversary may learn up to
d of the intermediate values produced during the computation of this algorithm.
Moreover, for a vector X and a subset I ⊂ [n] we denote by X |I the set
{Xi}i∈I . Following Ishai et al. we will say that a masked operation Operation is
secure against d probing attacks if probes on intermediate values produced by
the masked operation Operation can be simulated by just access to the inputs of
the operation.

Security of the masked squaring operation. It is simple to show security of the
squaring algorithm presented in Algorithm 6 in the probing model, where d < n.

Lemma 2. Let n be the security parameter and let d < n, then for any d-probing
adversary Ad and any R ∈ K and R← IPMaskL(R), there exists a subset I ⊂ [n]
with |I| ≤ d and a simulator Sim(R|I) such that:

Ad(IPSquareL(R)) ≡ Sim(R|I).

Proof. We start by a description of how to build the set I, which initially is set
to I = {}. For each probe of the form Ri, (Ri)

2 or (Ri)
2×Li add the index i to

I. Since the adversary can make at most d probes, we clearly have |I| ≤ d. Given
the set RI and L (which is public and hence the simulator has access to it), it is
easy to simulate all probes in IPSquareL(R) in a perfect way and in particular
consistent with probes on the real execution of the squaring algorithm. ut



Security of masked multiplication. We prove the security of Algorithm 5 in the
d-probing model, where n ≥ 2d+ 1.

Lemma 3. For any Q,R ∈ K let Q← IPMaskL(Q) and R← IPMaskL(R). Let
n be the security parameter and let d be such that 2d < n, then for any d-probing
adversary Ad that learns at most d probes on intermediate values produced during
the masked multiplication IPMultL,L̂(Q,R), there exists a subset I ⊂ [n] with
|I| ≤ 2d and a simulator Sim(Q|I ,R|I) such that:

Ad(IPMultL,L̂(Q,R)) ≡ Sim(Q|I ,R|I).

Proof. To simplify the analysis we assume that L is given in its entirety a-priori
to the adversary. We show that the entire distribution of the multiplication al-
gorithm can be simulated by having access to at most 2d shares of Q and R,
respectively. Since by Lemma 1 seeing 2d shares of Q and R respectively, is
independent of the masked secret this proves the security of the masked mul-
tiplication operation. The set that keeps track of what values are revealed of
Q,R is called I. Moreover, we keep track of two sets T and U that are needed
to keep the simulation consistent. T keeps tuples (i, j) ⊂ [n] × [n] of pairs that
correspond to the values of Ai,j which are revealed during a probing attack,
while U represents the values (i, j) of Bi,j that are revealed by the attack. To
simplify our analysis, we will be rather generous to the adversary and usually
give him much more values than what are revealed during the actual probe of
the particular intermediate value. Below we describe how to build the set I.

A. Building the sets I,U , T : In this step we initialize the sets that later are
needed for the simulation.

1. Initially, we set the sets I,U , T to the empty set {}.
2. Probes when ∆i is computed, i.e., probes of the form A1,i, . . . , An,i or

probes of the form ∆i−1+
∑

1≤j<n Lj,i×Aj,i: Add the index (1, i), . . . , (n, i)
into the set T .

3. Probes of the form Bi,j or sums of the form
∑

j Li,j×Bi,j: We distinguish
two cases:

(a) For i > 1: Add the index (i, 1), . . . , (i, n) to the set U .
(b) For i = 1: Add the index (i, j) to the set U .

The above two cases capture the fact that for row i = 1 of the matrix
B̂ we do not compute the sum of values B1,j , i.e., of the first row of the

matrix B̂. Additionally, for each such (i, j) that has been added to U : if
(i, j) is in T , then add i, j to I.

4. Probes of the form Qi, Rj and Qi×Rj: For probes of the form Qi resp. Rj

add i resp. j to I. For a probe of the form Qi × Rj add the indices i, j
to I.

Given the above description of the the sets I, T and U , we can now define
the simulator SimI,T ,U (R|I ,Q|I).



B. Sampling variables independently of probes: We start by sampling some
of the values a-priori before we answer the actual probing queries. We will
later take care that all probes are answered consistently with the values
sampled in this initial step.
1. Choose β2, . . . , βn uniformly at random. Notice that this allows to com-

pute all the potential values that appear in the sum when computing the
value b – including the value b.

2. Sample ∆1, . . . ,∆n−1 uniformly at random and set ∆0 = ∆n = 0.
C. Simulating the probes: We next show how to answer the probing queries

of the adversary given all values {Qi}i∈I and {Ri}i∈I , and the values ∆i,
βj sampled in Step B.
1. Probes of the form β2, . . . , βn and sums thereof: These values have been

fixed in Step B1 and hence probes on these values can easily be answered
from the above sampled values.

2. Probes on the sampling of Ai,j: Notice that this involves the individual
values Ai,j as well as sub-sums of values in the columns with the appro-
priate values ∆i. If (1, i), . . . , (n, i) are in T then sample A1,i, . . . , An,i

uniformly at random such that
∑

j Lj,i × Aj,i = ∆i + ∆i−1. Given the
above sampled values and the values ∆i sampled in Step B2, we can
answer any probe of the adversary.

3. Probes of the form Qi, Rj and Qi × Rj: Given access to {Qi}i∈I and
{Ri}i∈I we can easily simulate the probes in a consistent way.

4. Probes of Bi,j, or when i > 1 of sums thereof: To answer these probes,
we sample the values of Bi,j in the following way:
(a) If (i, j) is not in U then leave the values Bi,j un-assigned.
(b) If (i, j) is in U and (i, j) is in T then compute Bi,j = Qi×Rj +Ai,j .

Notice that this is possible since the relevant values of Qi and Rj are
given in {Qi}i∈I and {Ri}i∈I and Ai,j has been assigned in Step C2.

(c) If (i, j) is in U , but (i, j) is not in T , then we sample Bi,j uniformly
at random subject to the constraint that βi =

∑
j Li,j ×Bi,j . Notice

that the later requirement only is needed for i > 1. The value B1,j

is chosen uniformly at random.

We will show below that (1) the simulation has the same distribution as the real
execution of the masked multiplication operation (second claim below), and (2)
we argue that the size of the set I has always cardinality |I| ≤ 2d (first claim
below). Putting these two claims together proves the lemma.

In the following analysis we denote by u the number of probes corresponding
to Step A2, by v the number of probes corresponding to Step A3 and by w the
number of probes corresponding to Step A4.

Claim. Let n ∈ N be the security parameters and d be the number of probes
such that 2d < n. Then, |I| ≤ 2d.

Proof. Observe that the simulator adds elements to I only in Step A3 and
Step A4. As each probe in Step A4 leads to adding at most two elements to I
and w ≤ d, this directly implies |I| ≤ 2d if probes appear only in Step A4. It



remains to analyze the number of elements we add to I for each probe done in
Step A3. The analysis for Step A3 is a little more involved as the number of
elements added to I depends on both u (number of probes in Step A2) and v
(number of probes in Step A3). Recall that for each probe of Step A2 that is
within the i-th column we add all indices (1, i), . . . , (n, i) to T that correspond
to the elements in the i-th column of the matrix Â, while for each probe in
Step A3 we add all indices (i, 1), . . . , (i, n) to U that correspond to the i-th
row of the matrix B̂ (except for the first row, but this does not matter for the
rest of the analysis). Furthermore, recall that each Bi,j is computed from Ai,j .
Depending on the values added to T and U , in Step A3 we will add all i, j to I
where (i, j) is an “intersection” between the columns and rows mentioned above.
Unfortunately, it is easy to see that for u columns and v = d − u − w rows we
may have more than 2d intersections.3 The good news is, however, that many
elements will be added multiple times to I, hence not increasing the size of I.

More precisely, for a query in the i-th row from Step A3, we add the index
i into the set I. Additionally, for each such query we add index of the column
at which we have an intersection from a query in the j-th column. The main
observation is that for each row the indices added by the intersections with the
columns are the same. In other words, for each i the tuples (i, j) have the same
second component, and hence we add at most u+ v ≤ d indices to I in Step A3.
Combining it with the probes from Step A4, we add u+ v + 2w elements to I.
Since u+ v + w ≤ d, we get that |I| ≤ 2d, which proves the claim. ut

The next claim shows that the sampling of the simulator produces the same view
as a d-probing adversary obtains in a real attack against the masked multiplica-
tion operation.

Claim. For any Q,R ∈ K let Q← IPMaskL(Q) and R← IPMaskL(R), we have:

Ad(IPMultL,L̂(Q,R)) ≡ Sim(Q|I ,R|I),

with parameters defined as in the statement of the lemma.

Proof. By the last claim we have |I| ≤ 2d. We compare the way in which the
probes are answered by the simulator in Steps B and C with the real attack
against the execution of the masked multiplication.

Step B: The joint distribution of values sampled at this step in the simulation
is identically distributed with the real experiment even given all these values
to the adversary. This is easy to see for the βi values as they are just sums
of random values Ai,j . Moreover, for the ∆j values we observe that the first
row is never used in computing βi (since i > 1), and hence all ∆j for j < n
can be chosen uniformly at random (they can essentially be made consistent
with the view of the adversary by choosing A1,j appropriately. The value ∆n

is fixed to 0 as we require 〈Â, L̂〉 = 0.

3 For instance, suppose that u = d− 3 and v = 3, then we add 3d− 9 elements to the
set I.



Step C2: In Step B2 we sampled ∆1, . . . ∆n−1 uniformly at random and in
Step C2 we sample each column (A1,i, . . . , An,i) of the matrix Â uniformly
at random such that ∆i + ∆i−1 =

∑
j∈[n] Lj,i × Aj,i. This implies that all

Ai,j for j ∈ [n] are chosen uniformly at random4. For the last column of
the matrix we require that ∆n +∆n−1 = ∆n−1 =

∑
j∈[n] Lj,n ×Aj,n, which

guarantees that 〈Â, L̂〉 = 0 as required by the protocol. It remains to show
that the choice of the Ai,j values produced by the simulator is consistent
with the simulator’s choice of the values βi.
To this end observe that after a probing attack at most u ≤ d columns of
the matrix Â have been assigned, i.e., the values in n − d columns remain
un-assigned. As βi = a+

∑
j Ai,j for some fixed value a = Qi × Li × R the

value βi is distributed uniformly at random even given all values ∆i and
all values Ai,j that haven been assigned previously. Notice that this is the

case since (a) there is at least one column in the matrix Â that has not been
assigned yet, and (b) the scheme never computes

∑
j A1,j as β1 is not needed

for the computation. More precisely, let j∗ be the column that is unassigned
after the assignment of the values above, then each βi is perfectly hidden by
Ai,j∗ and we can choose A1,j∗ in such a way that the column is consistent
with ∆j∗ . This concludes the analysis of Step C2.

Step C3: To answer the queries on Qi, Rj and Qi×Rj we use the values given
in {Qi}i∈I and {Ri}i∈I . To argue that this gives us the right distribution
(independent of Q and R), we first recall that by the last claim |I| ≤ 2d.
Notice that these values will always be consistent with the previously as-
signed values since each βi is still blinded by at least one un-assigned value
Ai,j∗ . Moreover, probes of this form (by itself) do not reveal any additional

information about Â.5

Step C4: We can ignore the values sampled in Step C4a as these values re-
main un-assigned, i.e., they are never directly probed nor are they used in
the computation of other probes. The values sampled in Step C4b can be
computed from the values that have been assigned previously (since (i, j)
was in U and T which implies that i, j ∈ I), and, hence will not affect the
joint distribution. Notice that in this step we will always only fix a subset
of the Bi,j elements in the i-th row, because there are at most u ≤ d probes
in Step A2 (which lead to adding tuples (i, j) to T ). The remaining values
for the i-th row are chosen as defined in Step C4c. That is, in the simulation
we choose these values uniformly at random such that βi =

∑
j Li,j × Bi,j

taking into account the previously assigned values for Bi,j from Step C4b.
By the requirement given in Step C4c our choice of Bi,j is consistent with
the choice of βi.
It remains to argue why the simulator’s choice is also consistent with the
matrix Â as sampled in Step C2 and with ∆1, . . . ,∆n. To this end, observe
that the simulator only samples Bi,j according to Step C4c if Ai,j has not

been revealed previously (i.e., it was in a column of Â that has never been

4 At this step we also require that Li,j 6= 0 as required by our scheme.
5 They can, however, reveal information about Bi,j as we will see in the next step.



probed). Hence, indeed Bi,j is uniformly distributed (since it is blinded by
the random and unknown value Ai,j). Finally, it remains to argue that the
choice of Bi,j is also consistent with the choice of ∆j from Step B. Recall
that for values Bi,j for which (i, j) ∈ U , but not in T this implies that the
j-th row has not been queried. Moreover, we know since v ≤ d there are at
least n − v > d rows that have not been probed. Hence, there exists some
Bk,j and Ak,j that have not been assigned during the experiment (i.e., they
belong to Step C4a). Such values Ak,j were never used in the experiment
and can always be chosen such that the total sum is consistent with ∆j .

The above description concludes the proof. ut

Putting together the above two claims we obtain the statement of the lemma.
ut

This completes the analysis of the security of individual masked operations. In
the next section we briefly argue about security of masked composed algorithms.

5.2 Security of General Masked Computation

In Section 5.1 we showed that an adversary that probes up to d intermediate
values in the computation of the basic masked operation will not be able to learn
anything about the underlying sensitive information. We are now interested in
what happens to the security when multiple of such operations are combined
to carry out some more complicated computation such as the AES encryption
algorithm. In other words, we let the adversary learn d intermediate values of
the computation carried out by the masked AES algorithm (or any other masked
algorithm). Notice that this in particular requires that, e.g., learning d1 values
in a masked multiplication cannot be exploited together with d2 values learnt
from a consecutive masked squaring algorithm as long as d1 + d2 ≤ d.

Similar to earlier work [21], we only provide an informal analysis of d-probing
security of composed masked operations. To this end, observe that both in
Lemma 2 and Lemma 3 the simulation only depends on at most 2d elements of
the outputs of the masked operation. As an example consider the masked mul-
tiplication that outputs the vector T and assume that T is input for a squaring
algorithm. If the adversary probes d1 intermediate values in the multiplication
operation, then it is easy to see that the simulation described in Lemma 3 de-
pends on at most 2d1 shares of T . Moreover, the masked multiplication operation
guarantees that even given Q and R entirely, the output T is a uniformly and
independently chosen maskings of Q×R. This means that for the simulation of
the adjacent squaring algorithm the simulator starts with a masking of which 2d1
shares are already known. Since according to Lemma 2 the simulator requires
d2 elements of its inputs to simulate the probes in the squaring operation, the
simulator will learn additionally d2 elements of T . Since 2d1 +d2 < n this shows
security of the simple composed circuit consisting of a multiplication followed
by a masked squaring operation. The above argument can easily be extended to
arbitrary complicated masked algorithms consisting of many masked operations.



Another difficulty occurs when the adversary can run the masked algorithm
multiple times and in each execution he may observe d intermediate values. For
instance, one may think of a masked AES algorithm running with a masked key
K. Notice that this setting is different from the setting of composed masked com-
putation described above since now the adversary can observe qd intermediate
values, where q is the number of executions that the masked algorithm is run. As
in earlier work [21, 7] the problem of a continuous probing adversary, i.e., an ad-
versary that learns up to d intermediate values in each execution of the masked
AES algorithm, can be addressed by a key refresh algorithm. If (L,R) denotes
the masking of a key byte of the AES, then the masking of this key byte can be
refreshed by running the Algorithm 3 n times consecutively. In other words, the
key refresh algorithm takes as input R0 := R and for i = 1, . . . n proceeds as
follows: Compute Ri = IPRefreshL(Ri−1) and output R′ = Rn. Clearly, since
we execute IPRefreshL n times and the adversary can probe only d < n in-
termediate values there must exist at least one execution of IPRefreshL(Ri−1)
that does not leak at all. Hence the mask of R is completely refreshed. This en-
ables us to transform our result to a continuous probing adversary without any
additional loss, when in each execution the adversary can learn up to d values
(where 2d < n).

We notice that the fact that IPRefreshL is repeated multiple times to refresh
the masking of the key is not only an artefact of the security proof. In fact, it
is easy to show that for natural implementations of IPRefreshL the scheme
becomes insecure. To illustrate this, we present a simple attack against a more
efficient key refresh algorithm that executes IPRefreshL only a single time.
For simplicity, let us assume that L = (1, . . . , 1), i.e., the vector is the all-1
vector. Notice that in this case the inner product masking function is identical
to the Boolean masking used, e.g., in [33]. Let us assume that A is sampled in
IPRefreshL in the following way:

1. Let t0 = 0. For i = 1, . . . , n− 1 repeat the following:
(a) Sample Ai uniformly at random in K
(b) Compute ti = ti−1 +Ai.

2. Set An = ti and output A = (A1, . . . , An).

Consider a masked implementation of the AES that at the end of the execu-
tion refreshes its key shares by applying a single execution of the IPRefreshL
algorithm. We now describe an attack that allows to recover the key with only
2 probes in each execution of the masked AES implementation. Notice that we
consider the full probing model [7], where the adversary can move its probes
between consecutive rounds of execution. Our attack does not apply in the re-
stricted probing model [7]. We denote by Ki the masking of the key k at the
beginning of the i-th round, i.e., for all i we have 〈L,Ki〉 = k. We have K0

being the initially shared key. Moreover, we denote by Ai the vector that is
used in the i-th execution of the masked AES implementation for refreshing,
i.e., Ki = Ki−1 + Ai.

1. First execution of the masked AES: Probe K0
1 and A0

1. Notice that this allows
us to compute K1

1 .



2. In the i-th execution of the masked AES: Probe Ki
i and tii−1.

We will now describe how to compute k from the above described probes. Sup-
pose at the beginning of the i-th round (i.e., before carrying out the probes

in this round) the adversary knows
∑i−1

j=1K
i−1
j . We show how with the probes

described above he can compute
∑i

j=1K
i
j . To this end, notice that:

i∑
j=1

Ki
j =

i−1∑
j=1

Ki−1
j + tii−1 +Ki

i ,

where the second and the third term the adversary knows from the probes in
the i-th round and the first term he knows by assumption. Hence, by induction
it is easy to argue that the above attack allows to recover the secret key k.

6 Performance Evaluation

We have applied our masking scheme to protect a software implementation of
AES-128 encryption. For illustrative purposes we have opted to develop two
implementations employing n = 2 and n = 3 shares, respectively. This choice
not only enables a better comparison with other higher-order schemes, but also
allows us to gain insight into how the performance scales with an increasing
number of shares.

Our target platform is a legacy AVR ATMega163 microcontroller. This device
has an 8-bit architecture and offers 32 general purpose registers, 1 024 bytes of
internal SRAM and 16 KBytes of Flash memory. Our implementation is aimed
for speed. To this end, we have written all operations in assembly code and made
use of lookup tables whenever possible.

The lowest implementation layer corresponds to arithmetic in the field F28 .
Field addition is very efficient, as it can be performed in one clock cycle via the
native XOR instruction. Field multiplication on the other hand is not part of the
AVR instruction set, and we opt to implement it using log and alog tables [38].
Because this method contains a conditional statement, i.e. check if any of the
operands equals zero, realizing it with a constant flow of instructions requires in
our implementation 22 cycles. Field squaring - as well as raisings to the power
of four and sixteen - are implemented by means of lookup tables. Our platform
does not have internal support for generating random numbers, as opposed to
e.g. JavaCard smart cards. For the sake of completeness and testing, random
numbers are provided externally and stored in memory.

The public parameters L and L̂ are initialized at setup time and kept con-
stant for each execution of the cipher. Consequently, they are hardcoded in
Flash memory. Note that for n = 2, there exist 28 possible vectors A orthog-
onal to L satisfying 〈A,L〉 = 0. These vectors can be as well precomputed
during initialization and stored in Flash memory as a look-up table T satisfying
T (A2) = A1 = L2 × A2. During IPRefreshL, a value A2 is picked at random



and the corresponding value A1 is looked up as T (A2). This allows to improve
the efficiency of IPRefreshL at the cost of storing 256 bytes in Flash memory.

The main difficulty of applying our masking scheme (and any other) to AES
consists in efficiently masking its nonlinear part, i.e. the SubBytes transforma-
tion. In software contexts it is common to implement this transformation by
means of a lookup table. While there exist techniques in the literature to pro-
tect table lookups at higher-order, e.g. [7], these are rather costly in terms of
performance and storage. Alternatively, one can compute the full SubBytes step
by using the following equation over F28 for a given input state byte X:

SubBytes[X] = {05} ×X254 + {09} ×X253 + {f9} ×X251 + {25} ×X247+

{f4} ×X239 +X223 + {b5} ×X191 + {8f} ×X127 + {63}.

This equation involves multiple field operations (particularly costly multipli-
cations) in order to calculate the different powers of X. It is therefore not very
suitable if one aims for an efficient implementation. We therefore follow a dif-
ferent path as already done in [1], i.e. we carry out both steps of the SubBytes

transformation (inverse and affine transformation) separately. Specifically, we
first compute the field inverse by using the following power function:

Inverse[X] = X254 =
(
(X2 ×X)4 × (X2 ×X)

)16 × (X2 ×X)4 ×X2.

As discussed in [33], this equation can be efficiently carried out with only 4
multiplications and 7 squarings. For the affine transformation (linear only in F2)
we employ the following equation over F28 :

AffTrans[X] = {05} ×X128 + {09} ×X64 + {f9} ×X32 + {25} ×X16+

{f4} ×X8 + {01} ×X4 + {b5} ×X2 + {8f} ×X + {63},

requiring 7 squarings, 8 additions, and 7 multiplications with a constant.
The MixCol transformation operates on the AES state column-by-column.

In particular, each of the bytes in the 0 ≤ j ≤ 3 columns is replaced as:

s′0,j = {02} × s0,j + {03} × s1,j + s2,j + s3,j

s′1,j = s0,j + {02} × s1,j + {03} × s2,j + s3,j

s′2,j = s0,j + s1,j × {02}+ s2,j + {03} × s3,j
s′3,j = {03} × s0,j + s1,j + s2,j + {02} × s3,j .

From these equations it follows that this step can be implemented using a
total of 12 masked additions and 8 masked multiplications by a constant, for
each column. In [10], the authors of AES suggest a more efficient way to com-
pute the MixCol step by using the so-called xtime tables. Such technique takes
advantage of the fact that field addition is more efficient than field multipli-
cation in general purpose processors. Due to this, they suggest an alternative
approach that requires 15 additions and 4 multiplications by 02, which can be
simply performed as table lookups. We employ this technique to compute the
MixCol transformation.



The performance of our protected AES-128 implementation is given in Ta-
ble 2 for n = 2 and n = 3 secret shares. We have also implemented Boolean
masking as proposed in [33] with the same number of secret shares. In order to
enable a fair comparison, all implementations are developed on the same plat-
form and follow the same optimization strategy. Finally, we also provide the
results given in [1] for the original IP masking using n = 4 secret shares. Recall
that the original IP masking was developed to provide security order d = 1 for
n = 4, the same as our new scheme and Boolean masking for n = 3.

The performance results presented in Table 2 are given in clock cycles. The
rightmost column shows the execution time of a full AES-128 encryption includ-
ing key schedule, while the other columns depict the performances achieved for
each AES building block.

Table 2. Performance evaluation (in clock cycles) of protected AES implementations.
This work and Boolean with n = 2 secret shares (top); this work and Boolean with
n = 3 secret shares (middle); original IP masking with n = 4 secret shares (bottom).

AddKey SubBytes ShiftRows MixCol NextSubKey Full AES

n = 2
this work 364 28 810 100 465 7 416 373 544

Boolean 364 7 850 100 465 2 175 110 569

n = 3
this work 476 63 354 150 678 16 148 812 303

Boolean 476 17 034 150 678 4 568 230 221

n = 4 original IP 8 796 117 760 200 27 468 44 437 1 912 000

The improvement with respect to the original IP masking is clear from the
results. The overall execution time is reduced by more than a factor 2. This
efficiency gain is due to our tweaks in the type of masking leading to an improved
construction. In fact, almost all newly proposed operations in the masked domain
involve significantly less field operations than in [1]. On the implementation
side, this reduction in complexity enables a better usage of the register file,
i.e. the number of memory accesses to load/store intermediate results can be
significantly reduced.

When compared to Boolean masking for the same security level, our scheme
still performs slower. The difference is not entirely due to the operations in the
masked domain, but rather to the way the AES affine transformation is de-
fined. Because this operation is linear in F2, protecting it with Boolean masking
requires only a matrix multiplication (table lookup) followed by an XOR opera-
tion. In contrast, and due to the higher algebraic complexity of the inner product
construction, our implementation needs to compute the more complex formula
defined over F28 . Despite this limitation, our results manage to bridge the gap
from approximately a factor 10 to a factor 4. This result makes our proposal an
interesting alternative to secure implementations at higher orders.



7 Discussion

In this section we discuss further relevant properties of our improved IP masking
scheme and touch on ideas for future work.

Similarities and differences with polynomial masking. A direct consequence of
our tweaks is that some characteristics of our construction become closer to those
of polynomial masking. In particular, variables in both schemes are encoded
using 2n shares (Li, Ri) and (αi, Si) respectively, with n shares being public and
n shares being secret. The decoding sequences of a masked variable S follow the
same pattern of operations, e.g. S = 〈L,R〉 =

∑
i Li × Ri and S =

∑
i βi × Si.

We note, however, that the latter is not a consequence of our simplifications. The
same sequence was already used in [1]. In contrast, a direct effect of our tweaks
is that the information leakage of encoded secrets using the mutual information
as figure of merit becomes comparable.

Despite these high-level similarities, the low-level constructions proposed in
this work to carry out operations in the masked domain are different from those
proposed in [18, 29]. The only exception is the addition algorithm, in which the
secret shares Ri (Si, respectively) of the input operands are added element-wise
to obtain the secret shares of the output. We note that this is also the same for
other constructions based on e.g. Boolean masking. The most notable differences
can be found in the steps followed to compute the product of two masked vari-
ables. In addition, the asymptotic complexity of our multiplication algorithm is
O(n2) rather than O(n3) as presented in [18, 29] or Õ(n2) as described in [8].
Asymptotic improvements are possible using more efficient protocols from mul-
tiparty computation – in particular, techniques from multiparty computation
using packed secret sharing [14, 20], which results overall in quasi-linear com-
plexity (for large and parallelizable computation).

Finally, we recall that the very nature of both approaches is different. Poly-
nomial masking employs secure multi-party computation techniques [2] and
Shamir’s secret-sharing [34], while our construction is inspired by work on leak-
age resilient cryptography [12]. This difference is for instance prominently re-
flected in the procedures to mask a variable. In polynomial masking the secret
shares are obtained by polynomial evaluation Si = PS(αi) of the public shares
αi, which is different from the procedure described in IPSetupn. Another dif-
ference is that the public parameters αi of polynomial masking must be both
distinct and nonzero, while for IP masking only the latter requirement applies,
i.e. several Li can have the same value.

Bounded leakage model. We notice that we do not prove the security of our
construction in the bounded independent leakage model as done in the work
of Balasch et al. [1]. Instead, the goal of the current work is to develop an
efficient higher-order masking scheme that exhibits higher algebraic complexity
than Boolean masking and prove its security in the ISW probing model. Note
that it is still possible to provide a scheme secure in the independent leakage
model even if the vector L is public but random. The technical reason for this is



that the inner product is a strong extractor, i.e. security holds even if one part
is revealed completely.

The only requirement we need is that the leakage functions are chosen a-
priori and independently of L, which allows us to rely on the fact that the inner
product function over finite fields is a strong extractor [31].6 While this may
slightly improve the bounds, for small field size, we would still require a large
number of shares which may be unrealistic for practical settings. In addition,
we would have to make slight changes to the construction, e.g. to our optimized
squaring algorithm, to prevent simultaneous access to the two halves (L,R) of
the IP encoding (which becomes insecure under bounded independent leakages).

Resistance against glitches. The original scheme in [1] achieves provable secu-
rity in the presence of glitches only when the security parameter n is large. In
fact, the proof for glitch resistance follows directly from security in the bounded
independent leakage model. However, the construction in this work is proven se-
cure in the probing model, which does not automatically imply glitch resistance.
Hence we do not claim that our construction is provable secure in the presence
of glitches, in contrast to e.g. the polynomial masking scheme by Prouff and
Roche [29] and the Threshold Implementation scheme by Nikova et al. [26, 3].

Future work. An interesting question for future work is if the ideas from [9] can
be applied in order to gain a factor 2, i.e. it may be feasible to achieve security
against d probes when d = n− 1 in the restricted model.
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26. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-
linear functions in the presence of glitches. J. Cryptology, 24(2):292–321, 2011.

27. E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security
proof. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT, volume 7881 of
LNCS, pages 142–159. Springer, 2013.

28. E. Prouff, M. Rivain, and T. Roche. On the Practical Security of a Leakage
Resilient Masking Scheme. In J. Benaloh, editor, Topics in Cryptology - CT-RSA
2014, volume 8366 of LNCS, pages 169–182. Springer, 2014.

29. E. Prouff and T. Roche. Higher-Order Glitches Free Implementation of the AES
Using Secure Multi-party Computation Protocols. In B. Preneel and T. Takagi,
editors, Cryptographic Hardware and Embedded Systems - CHES 2011, volume
6917 of LNCS, pages 63–78. Springer, 2011.

30. J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In I. Attali and T. P. Jensen, editors, Smart
Card Programming and Security - E-smart 2001, volume 2140 of LNCS, pages
200–210. Springer, 2001.

31. A. Rao. An Exposition of Bourgain’s 2-Source Extractor. Electronic Colloquium
on Computational Complexity - ECCC, 14(034), 2007.

32. O. Reparaz, B. Gierlichs, and I. Verbauwhede. Selecting time samples for mul-
tivariate DPA attacks. In E. Prouff and P. Schaumont, editors, Cryptographic
Hardware and Embedded Systems - CHES 2012, volume 7428 of LNCS, pages 155–
174. Springer, 2012.



33. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In
S. Mangard and F.-X. Standaert, editors, Cryptographic Hardware and Embedded
Systems - CHES 2010, volume 6225 of LNCS, pages 413–427. Springer, 2010.

34. A. Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613,
1979.

35. F.-X. Standaert, T. Malkin, and M. Yung. A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In A. Joux, editor, Advances in Cryptology
- EUROCRYPT 2009, volume 5479 of LNCS, pages 443–461. Springer, 2009.

36. F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard. The World Is Not Enough: Another Look on Second-
Order DPA. In M. Abe, editor, Advances in Cryptology - ASIACRYPT 2010,
volume 6477 of LNCS, pages 112–129. Springer, 2010.

37. M. von Willich. A Technique with an Information-Theoretic Basis for Protecting
Secret Data from Differential Power Attacks. In B. Honary, editor, Cryptography
and Coding, volume 2260 of LNCS, pages 44–62. Springer, 2001.

38. E. D. Win, A. Bosselaers, S. Vandenberghe, P. D. Gersem, and J. Vandewalle. A
Fast Software Implementation for Arithmetic Operations in GF(2n). In K. Kim
and T. Matsumoto, editors, Advances in Cryptology - ASIACRYPT ’96, volume
1163 of LNCS, pages 65–76. Springer, 1996.

39. Y. Yu, F. Standaert, O. Pereira, and M. Yung. Practical leakage-resilient pseudo-
random generators. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors,
Computer and Communications Security - CCS 2010, pages 141–151. ACM, 2010.


